1
|
Wang S, Mu J, Wu Q, Chen L, Yin X. Circulating plasma protein identified as a therapeutic target for intracranial aneurysm through Mendelian Randomization analysis. J Clin Neurosci 2024; 132:110998. [PMID: 39721116 DOI: 10.1016/j.jocn.2024.110998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/21/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Intracranial aneurysms are the main cause of subarachnoid hemorrhage (SAH), a severe stroke with devastating effects. However, there are no existing medications for intracranial aneurysms (IAs) and novel therapeutic targets are required. METHODS We performed a summary data-based Mendelian Randomization (MR) analysis to explore the causal association between circulating plasma proteins and the risk of IAs and SAH. Colocalization analysis was conducted to identify shared causal variants between circulating plasma proteins and IAs, as well as SAH. Finally, mediation MR analyses were conducted to clarify the role of potential plasma proteins in aneurysm formation. RESULTS Proteome-wide MR analysis showed that FGF5 (fibroblast growth factor 5) had a causal effect on IA and SAH risk (Pfdr < 0.05). Moreover, genetic variants affecting FGF5 expression levels showed strong evidence of colocalization with IA risk (PPH4 = 0.993) and SAH risk (PPH = 0.988), suggesting that this protein represents a potential direct target for IA intervention. Mediation analysis using two-step MR showed that systolic blood pressure and diastolic blood pressure mediate the effects of FGF5 on IA and SAH. CONCLUSION Our investigation identified a causal connection between FGF5 and IAs.
Collapse
Affiliation(s)
- Songquan Wang
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Jiali Mu
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, PR China
| | - Quansheng Wu
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Laizhao Chen
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Xiaofeng Yin
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, Taiyuan, PR China.
| |
Collapse
|
2
|
Ou G, Zhang Y, Cai H, Yao K, Qiu Z, Chen Y, Yang Y, Chen Q, Chen X. Lipid-lowering drugs, circulating inflammatory factors, and atrial fibrillation: a mediation Mendelian randomization study. Front Cardiovasc Med 2024; 11:1446610. [PMID: 39563941 PMCID: PMC11573524 DOI: 10.3389/fcvm.2024.1446610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/14/2024] [Indexed: 11/21/2024] Open
Abstract
Background Previous studies have shown an association between lipid-lowering drugs, circulating inflammatory factors, and atrial fibrillation (AF), but the specific effects of lipid-lowering drugs on AF and whether they can be mediated by circulating inflammatory factors remain unclear. Methods We collected 10 genetic variants encoding lipid-lowering drug targets (LDLR, HMGCR, PCSK9, NPC1L1, APOB, APOB, ABCG5, ABCG8, LPL, APOC3, and PPARA) and AF based on genome-wide association study (GWAS) summary statistics. Drug target Mendelian randomization (MR) was used to explore the causal relationship between lipid-lowering drugs and AF. In addition, we performed a mediation analysis of 91 circulating inflammatory factors to explore potential mediators. Sensitivity analyses were performed to verify the reliability of the MR Results by MR-Egger intercept test, Cochran's Q test and leave-one-out test. Results The results of IVW method showed that LPL agonist had a protective effect on AF(OR = 0. 854, 95%CI: 0.816-0.894, P = 1.844E-11). However, the other nine lipid-lowering drug targets had no significant effect on AF. Notably, we found a mediator role of Fibroblast Growth Factor 5 (FGF5) in the protective effect of LPL agonist on AF with a mediator ratio of 9.22%. Sensitivity analyses supported the robustness of our findings, indicating a possible mediating pathway by which LPL agonists affect the risk of AF. Conclusion Our study provides new insights into the complex interactions among lipid-lowering agents, circulating inflammatory factors and AF, and also identified a potential mediating role of FGF5 in the pathogenesis of AF. Our findings highlight the potential of LPL agonists and targeting specific inflammatory factors for therapeutic intervention in AF, providing promising avenues for future research and clinical strategies for the management and prevention of AF.
Collapse
Affiliation(s)
- Guangyang Ou
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yi Zhang
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou Medical University, Jinzhou, China
| | - Huzhi Cai
- International Medical Department, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Kunpeng Yao
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Zerui Qiu
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yaowu Chen
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yang Yang
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Qingyang Chen
- International Medical Department, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xinyu Chen
- Preventive Treatment Center, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
3
|
Wang Y, Zhang H, Zhan Y, Li Z, Li S, Guo S. Comprehensive in silico analysis of prognostic and immune infiltrates for FGFs in human ovarian cancer. J Ovarian Res 2024; 17:197. [PMID: 39385288 PMCID: PMC11465590 DOI: 10.1186/s13048-024-01496-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/14/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Fibroblast growth factors (FGFs) are cell signaling proteins that perform multiple biological processes in many biological processes (cell development, repair, and metabolism). The dynamics of tumor cells, such as angiogenesis, transformation, and proliferation, have a significant impact on neoplasia and are modulated by FGFs. FGFs' expression and prognostic significance in ovarian cancer (OC), however, remain unclear. METHODS Through a series of in silico analysis, we investigated the transcriptional, survival data, genetic variation, gene-gene interaction network, ferroptosis-related genes, and DNA methylation of FGFs in OC patients. RESULTS We discovered that while FGF18 expression levels were higher in OC tissues than in normal OC tissues, FGF2/7/10/17/22 expression levels were lower in the former, and that FGF1/19 expression was related to the tumor stage in OC patients. According to the survival analysis, the clinical prognosis of individuals with OC was associated with the aberrant expression of FGFs. The function of FGFs and their neighboring genes was mainly connected to the cellular response to FGF stimulus. There was a negative correlation between FGF expression and various immune cell infiltration. CONCLUSIONS This study clarifies the relationship between FGFs and OC, which might provide new insights into the choice of prognostic biomarkers of OC patients.
Collapse
Affiliation(s)
- Yu Wang
- Emergency Medicine Clinical Research Center, Beijing Chao-yang Hospital, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Capital Medical University, Beijing, 100020, P.R. China
| | - Haiyue Zhang
- Thrombosis research center, Beijing Jishuitan hospital, Capital Medical University, Beijing, China, Xicheng District, Beijing 100035, China
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Affiliated to Capital Medical University, Xicheng District, Beijing, China
| | - Yuanyuan Zhan
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, 100020, P.R. China
| | - Zhuoran Li
- Emergency Medicine Clinical Research Center, Beijing Chao-yang Hospital, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Capital Medical University, Beijing, 100020, P.R. China
| | - Sujing Li
- Department of Plastic Surgery, Zhengzhou First People's Hospital, Zhengzhou, China
| | - Shubin Guo
- Emergency Medicine Clinical Research Center, Beijing Chao-yang Hospital, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Capital Medical University, Beijing, 100020, P.R. China.
| |
Collapse
|
4
|
Carrion EA, Moses MM, Behringer RR. FGF5. Differentiation 2024; 139:100736. [PMID: 37957094 DOI: 10.1016/j.diff.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023]
Abstract
FGF5 functions as a negative regulator of the hair cycle in mammals. It is expressed in the outer root sheath of hair follicles during the late anagen phase of the hair cycle. It functions as a signaling molecule, mediating the transition of the anagen growth phase to catagen regression phase of the hair cycle. Spontaneous and engineered FGF5 mutations in mammalian animal models result in long hair phenotypes. In humans, inherited FGF5 mutations result in trichomegaly (long eyelashes). Knockdown of fgf5 in zebrafish embryos results in inner ear alterations. Alterations in FGF5 expression are also associated with various human pathologies.
Collapse
Affiliation(s)
- Evelyn A Carrion
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Malcolm M Moses
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Richard R Behringer
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States.
| |
Collapse
|
5
|
Nezamuldeen L, Jafri MS. Boolean Modeling of Biological Network Applied to Protein-Protein Interaction Network of Autism Patients. BIOLOGY 2024; 13:606. [PMID: 39194544 DOI: 10.3390/biology13080606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
Cellular molecules interact with one another in a structured manner, defining a regulatory network topology that describes cellular mechanisms. Genetic mutations alter these networks' pathways, generating complex disorders such as autism spectrum disorder (ASD). Boolean models have assisted in understanding biological system dynamics since Kauffman's 1969 discovery, and various analytical tools for regulatory networks have been developed. This study examined the protein-protein interaction network created in our previous publication of four ASD patients using the SPIDDOR R package, a Boolean model-based method. The aim is to examine how patients' genetic variations in INTS6L, USP9X, RSK4, FGF5, FLNA, SUMF1, and IDS affect mTOR and Wnt cell signaling convergence. The Boolean network analysis revealed abnormal activation levels of essential proteins such as β-catenin, MTORC1, RPS6, eIF4E, Cadherin, and SMAD. These proteins affect gene expression, translation, cell adhesion, shape, and migration. Patients 1 and 2 showed consistent patterns of increased β-catenin activity and decreased MTORC1, RPS6, and eIF4E activity. However, patient 2 had an independent decrease in Cadherin and SMAD activity due to the FLNA mutation. Patients 3 and 4 have an abnormal activation of the mTOR pathway, which includes the MTORC1, RPS6, and eIF4E genes. The shared mTOR pathway behavior in these patients is explained by a shared mutation in two closely related proteins (SUMF1 and IDS). Diverse activities in β-catenin, MTORC1, RPS6, eIF4E, Cadherin, and SMAD contributed to the reported phenotype in these individuals. Furthermore, it unveiled the potential therapeutic options that could be suggested to these individuals.
Collapse
Affiliation(s)
- Leena Nezamuldeen
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
- King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohsin Saleet Jafri
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
6
|
Lai Y, Lu X, Liao Y, Ouyang P, Wang H, Zhang X, Huang G, Qi S, Li Y. Crosstalk between glioblastoma and tumor microenvironment drives proneural-mesenchymal transition through ligand-receptor interactions. Genes Dis 2024; 11:874-889. [PMID: 37692522 PMCID: PMC10491977 DOI: 10.1016/j.gendis.2023.05.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/28/2023] [Accepted: 05/25/2023] [Indexed: 09/12/2023] Open
Abstract
Glioblastoma (GBM) is the most common intrinsic and aggressive primary brain tumor in adults, with a median survival of approximately 15 months. GBM heterogeneity is considered responsible for the treatment resistance and unfavorable prognosis. Proneural-mesenchymal transition (PMT) represents GBM malignant progression and recurrence, which might be a breakthrough to understand GBM heterogeneity and overcome treatment resistance. PMT is a complicated process influenced by crosstalk between GBM and tumor microenvironment, depending on intricate ligand-receptor interactions. In this review, we summarize the autocrine and paracrine pathways in the GBM microenvironment and related ligand-receptor interactions inducing PMT. We also discuss the current therapies targeting the PMT-related autocrine and paracrine pathways. Together, this review offers a comprehensive understanding of the failure of GBM-targeted therapy and ideas for future tendencies of GBM treatment.
Collapse
Affiliation(s)
- Yancheng Lai
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaole Lu
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yankai Liao
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Pei Ouyang
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hai Wang
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xian Zhang
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Guanglong Huang
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Songtao Qi
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yaomin Li
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
7
|
Shie WY, Cheng SJ, Chen KC, Tang CC, Peng HH, Ko HH, Hou HH, Elizabeth Chou HY. Fibroblast growth factor 5 expression predicts the progression of oral squamous cell carcinoma. J Formos Med Assoc 2024; 123:390-399. [PMID: 37704482 DOI: 10.1016/j.jfma.2023.08.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/05/2023] [Accepted: 08/15/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND/PURPOSE Fibroblast growth factor (FGF) 5 is a member of the FGF family that functions as a regulator of tissue growth and regeneration. Aberrant FGF5 expression has been previously associated with the progression of a number of different malignancies. However, its potential role in oral cancer remains unclear. In this study, we explored the relationship between the expression of FGF5 protein in oral squamous cell carcinomas (OSCCs) and the clinicopathological parameters of OSCCs and whether the expression of FGF5 protein in OSCCs could be a prognostic factor for OSCC patients. METHODS The FGF5 protein expression was examined in 64 OSCC and 34 normal oral mucosal specimens by immunohistochemical staining. Stress induced upregulation and intracellular redistribution of FGF5 were verified using xenograft animal model and OSCC cell lines. RESULTS The mean FGF5 protein labelling index was significantly higher in OSCC than in normal oral mucosal samples, with high FGF5 protein labelling index (>58%) being correlated with advanced stage and poor survival of OSCC patients. Apart from the peri-cytoplasmic staining pattern characteristic of paracrine growth factors, FGF5 protein was localized as distinct punctate structures in the cytoplasm of advanced stage or stressed-induced cells. This redistribution and upregulation of FGF5 protein could be sustained after termination of the stress induction in cell line and xenograft animal models. CONCLUSION FGF5 can be induced by cellular stress and risk factors of OSCC, where high expression levels of FGF5 is potentially a useful parameter for predicting OSCC progression and patient survival.
Collapse
Affiliation(s)
- Wan-Yi Shie
- Graduate Institute of Oral Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Jung Cheng
- Graduate Institute of Oral Biology, College of Medicine, National Taiwan University, Taipei, Taiwan; School of Dentistry, National Taiwan University, Taipei, Taiwan; Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan
| | - Kuan-Chi Chen
- Graduate Institute of Oral Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Chun Tang
- Graduate Institute of Oral Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Hui Peng
- School of Dentistry, National Taiwan University, Taipei, Taiwan; Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital Hsin-Chu Branch, College of Medicine, Hsin-Chu, Taiwan
| | - Hui-Hsin Ko
- School of Dentistry, National Taiwan University, Taipei, Taiwan; Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital Hsin-Chu Branch, College of Medicine, Hsin-Chu, Taiwan
| | - Hsin-Han Hou
- Graduate Institute of Oral Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Han-Yi Elizabeth Chou
- Graduate Institute of Oral Biology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan; Center for Biotechnology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
8
|
Chakraborty MP, Das D, Mondal P, Kaul P, Bhattacharyya S, Kumar Das P, Das R. Molecular basis of VEGFR1 autoinhibition at the plasma membrane. Nat Commun 2024; 15:1346. [PMID: 38355851 PMCID: PMC10866885 DOI: 10.1038/s41467-024-45499-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
Ligand-independent activation of VEGFRs is a hallmark of diabetes and several cancers. Like EGFR, VEGFR2 is activated spontaneously at high receptor concentrations. VEGFR1, on the other hand, remains constitutively inactive in the unligated state, making it an exception among VEGFRs. Ligand stimulation transiently phosphorylates VEGFR1 and induces weak kinase activation in endothelial cells. Recent studies, however, suggest that VEGFR1 signaling is indispensable in regulating various physiological or pathological events. The reason why VEGFR1 is regulated differently from other VEGFRs remains unknown. Here, we elucidate a mechanism of juxtamembrane inhibition that shifts the equilibrium of VEGFR1 towards the inactive state, rendering it an inefficient kinase. The juxtamembrane inhibition of VEGFR1 suppresses its basal phosphorylation even at high receptor concentrations and transiently stabilizes tyrosine phosphorylation after ligand stimulation. We conclude that a subtle imbalance in phosphatase activation or removing juxtamembrane inhibition is sufficient to induce ligand-independent activation of VEGFR1 and sustain tyrosine phosphorylation.
Collapse
Affiliation(s)
- Manas Pratim Chakraborty
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur, 741246, India
| | - Diptatanu Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur, 741246, India
| | - Purav Mondal
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur, 741246, India
| | - Pragya Kaul
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur, 741246, India
| | - Soumi Bhattacharyya
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur, 741246, India
| | - Prosad Kumar Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur, 741246, India
| | - Rahul Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur, 741246, India.
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur, 741246, India.
| |
Collapse
|
9
|
Stangis MM, Colah AN, McLean DT, Halberg RB, Collier LS, Ricke WA. Potential roles of FGF5 as a candidate therapeutic target in prostate cancer. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2023; 11:452-466. [PMID: 38148937 PMCID: PMC10749387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/13/2023] [Indexed: 12/28/2023]
Abstract
Fibroblast growth factor (FGF) is a secreted ligand that is widely expressed in embryonic tissues but its expression decreases with age. In the developing prostate, FGF5 has been proposed to interact with the Hedgehog (Hh) signaling pathway to guide mitogenic processes. In the adult prostate, the FGF/FGFR signaling axis has been implicated in prostate carcinogenesis, but focused studies on FGF5 functions in the prostate are limited. Functional studies completed in other cancer models point towards FGF5 overexpression as an oncogenic driver associated with stemness, metastatic potential, proliferative capacity, and increased tumor grade. In this review, we explore the significance of FGF5 as a therapeutic target in prostate cancer (PCa) and other malignancies; and we introduce a potential route of investigation to link FGF5 to benign prostatic hyperplasia (BPH). PCa and BPH are two primary contributors to the disease burden of the aging male population and have severe implications on quality of life, psychological wellbeing, and survival. The development of new FGF5 inhibitors could potentially alleviate the health burden of PCa and BPH in the aging male population.
Collapse
Affiliation(s)
- Mary M Stangis
- Department of Urology, University of Wisconsin-MadisonMadison, WI, USA
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public HealthMadison, WI, USA
| | - Avan N Colah
- Department of Urology, University of Wisconsin-MadisonMadison, WI, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-MadisonMadison, WI, USA
| | - Dalton T McLean
- Department of Urology, University of Wisconsin-MadisonMadison, WI, USA
| | - Richard B Halberg
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public HealthMadison, WI, USA
- Carbone Cancer Center, University of Wisconsin-MadisonMadison, WI, USA
| | - Lara S Collier
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-MadisonMadison, WI, USA
| | - William A Ricke
- Department of Urology, University of Wisconsin-MadisonMadison, WI, USA
- Carbone Cancer Center, University of Wisconsin-MadisonMadison, WI, USA
| |
Collapse
|
10
|
Cannon-Albright LA, Teerlink CC, Stevens J, Facelli JC, Carr SR, Allen-Brady K, Puri S, Bailey-Wilson JE, Musolf AM, Akerley W. A rare FGF5 candidate variant (rs112475347) for predisposition to nonsquamous, nonsmall-cell lung cancer. Int J Cancer 2023; 153:364-372. [PMID: 36916144 PMCID: PMC10182245 DOI: 10.1002/ijc.34510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/16/2023]
Abstract
A unique approach with rare resources was used to identify candidate variants predisposing to familial nonsquamous nonsmall-cell lung cancers (NSNSCLC). We analyzed sequence data from NSNSCLC-affected cousin pairs belonging to high-risk lung cancer pedigrees identified in a genealogy of Utah linked to statewide cancer records to identify rare, shared candidate predisposition variants. Variants were tested for association with lung cancer risk in UK Biobank. Evidence for linkage with lung cancer was also reviewed in families from the Genetic Epidemiology of Lung Cancer Consortium. Protein prediction modeling compared the mutation with reference. We sequenced NSNSCLC-affected cousin pairs from eight high-risk lung cancer pedigrees and identified 66 rare candidate variants shared in the cousin pairs. One variant in the FGF5 gene also showed significant association with lung cancer in UKBiobank. This variant was observed in 3/163 additional sampled Utah lung cancer cases, 2 of whom were related in another independent pedigree. Modeling of the predicted protein predicted a second binding site for SO4 that may indicate binding differences. This unique study identified multiple candidate predisposition variants for NSNSCLC, including a rare variant in FGF5 that was significantly associated with lung cancer risk and that segregated with lung cancer in the two pedigrees in which it was observed. FGF5 is an oncogenic factor in several human cancers, and the mutation found here (W81C) changes the binding ability of heparan sulfate to FGF5, which might lead to its deregulation. These results support FGF5 as a potential NSNSCLC predisposition gene and present additional candidate predisposition variants.
Collapse
Affiliation(s)
- Lisa A Cannon-Albright
- Genetic Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Craig C Teerlink
- Genetic Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Jeff Stevens
- Genetic Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Julio C Facelli
- Department of BioMedical Informatics, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Clinical and Translational Science Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Shamus R Carr
- Thoracic Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kristina Allen-Brady
- Genetic Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Sonam Puri
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
- Medical Oncology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Joan E Bailey-Wilson
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland, USA
| | - Anthony M Musolf
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland, USA
| | - Wallace Akerley
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
- Medical Oncology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
11
|
Wojtyś W, Oroń M. How Driver Oncogenes Shape and Are Shaped by Alternative Splicing Mechanisms in Tumors. Cancers (Basel) 2023; 15:cancers15112918. [PMID: 37296881 DOI: 10.3390/cancers15112918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
The development of RNA sequencing methods has allowed us to study and better understand the landscape of aberrant pre-mRNA splicing in tumors. Altered splicing patterns are observed in many different tumors and affect all hallmarks of cancer: growth signal independence, avoidance of apoptosis, unlimited proliferation, invasiveness, angiogenesis, and metabolism. In this review, we focus on the interplay between driver oncogenes and alternative splicing in cancer. On one hand, oncogenic proteins-mutant p53, CMYC, KRAS, or PI3K-modify the alternative splicing landscape by regulating expression, phosphorylation, and interaction of splicing factors with spliceosome components. Some splicing factors-SRSF1 and hnRNPA1-are also driver oncogenes. At the same time, aberrant splicing activates key oncogenes and oncogenic pathways: p53 oncogenic isoforms, the RAS-RAF-MAPK pathway, the PI3K-mTOR pathway, the EGF and FGF receptor families, and SRSF1 splicing factor. The ultimate goal of cancer research is a better diagnosis and treatment of cancer patients. In the final part of this review, we discuss present therapeutic opportunities and possible directions of further studies aiming to design therapies targeting alternative splicing mechanisms in the context of driver oncogenes.
Collapse
Affiliation(s)
- Weronika Wojtyś
- Laboratory of Human Disease Multiomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Magdalena Oroń
- Laboratory of Human Disease Multiomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland
| |
Collapse
|
12
|
Brown LM, Ekert PG, Fleuren EDG. Biological and clinical implications of FGFR aberrations in paediatric and young adult cancers. Oncogene 2023:10.1038/s41388-023-02705-7. [PMID: 37130917 DOI: 10.1038/s41388-023-02705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Abstract
Rare but recurrent mutations in the fibroblast growth factor receptor (FGFR) pathways, most commonly in one of the four FGFR receptor tyrosine kinase genes, can potentially be targeted with broad-spectrum multi-kinase or FGFR selective inhibitors. The complete spectrum of these mutations in paediatric cancers is emerging as precision medicine programs perform comprehensive sequencing of individual tumours. Identification of patients most likely to benefit from FGFR inhibition currently rests on identifying activating FGFR mutations, gene fusions, or gene amplification events. However, the expanding use of transcriptome sequencing (RNAseq) has identified that many tumours overexpress FGFRs, in the absence of any genomic aberration. The challenge now presented is to determine when this indicates true FGFR oncogenic activity. Under-appreciated mechanisms of FGFR pathway activation, including alternate FGFR transcript expression and concomitant FGFR and FGF ligand expression, may mark those tumours where FGFR overexpression is indicative of a dependence on FGFR signalling. In this review, we provide a comprehensive and mechanistic overview of FGFR pathway aberrations and their functional consequences in paediatric cancer. We explore how FGFR over expression might be associated with true receptor activation. Further, we discuss the therapeutic implications of these aberrations in the paediatric setting and outline current and emerging therapeutic strategies to treat paediatric patients with FGFR-driven cancers.
Collapse
Affiliation(s)
- Lauren M Brown
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| | - Paul G Ekert
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia.
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia.
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia.
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Parkville, VIC, Australia.
| | - Emmy D G Fleuren
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
13
|
Narang S, Evensen NA, Saliba J, Pierro J, Loh ML, Brown PA, Kolekar P, Mulder H, Shao Y, Easton J, Ma X, Tsirigos A, Carroll WL. NSD2 E1099K drives relapse in pediatric acute lymphoblastic leukemia by disrupting 3D chromatin organization. Genome Biol 2023; 24:64. [PMID: 37016431 PMCID: PMC10071675 DOI: 10.1186/s13059-023-02905-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 03/20/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND The NSD2 p.E1099K (EK) mutation is shown to be enriched in patients with relapsed acute lymphoblastic leukemia (ALL), indicating a role in clonal evolution and drug resistance. RESULTS To uncover 3D chromatin architecture-related mechanisms underlying drug resistance, we perform Hi-C on three B-ALL cell lines heterozygous for NSD2 EK. The NSD2 mutation leads to widespread remodeling of the 3D genome, most dramatically in terms of compartment changes with a strong bias towards A compartment shifts. Systematic integration of the Hi-C data with previously published ATAC-seq, RNA-seq, and ChIP-seq data show an expansion in H3K36me2 and a shrinkage in H3K27me3 within A compartments as well as increased gene expression and chromatin accessibility. These results suggest that NSD2 EK plays a prominent role in chromatin decompaction through enrichment of H3K36me2. In contrast, we identify few changes in intra-topologically associating domain activity. While compartment changes vary across cell lines, a common core of decompacting loci are shared, driving the expression of genes/pathways previously implicated in drug resistance. We further perform RNA sequencing on a cohort of matched diagnosis/relapse ALL patients harboring the relapse-specific NSD2 EK mutation. Changes in patient gene expression upon relapse significantly correlate with core compartment changes, further implicating the role of NSD2 EK in genome decompaction. CONCLUSIONS In spite of cell-context-dependent changes mediated by EK, there appears to be a shared transcriptional program dependent on compartment shifts which could explain phenotypic differences across EK cell lines. This core program is an attractive target for therapeutic intervention.
Collapse
Affiliation(s)
- Sonali Narang
- Perlmutter Cancer Center, NYU Langone Health, Smilow 1211, 560 First Avenue, New York, NY, 10016, USA
| | - Nikki A Evensen
- Perlmutter Cancer Center, NYU Langone Health, Smilow 1211, 560 First Avenue, New York, NY, 10016, USA
| | - Jason Saliba
- Perlmutter Cancer Center, NYU Langone Health, Smilow 1211, 560 First Avenue, New York, NY, 10016, USA
| | - Joanna Pierro
- Northwell Health, Staten Island University Hospital, Staten Island, NY, USA
| | - Mignon L Loh
- Department of Pediatrics, Benioff Children's Hospital and The Helen Diller Family Comprehensive Cancer Center University of California, San Francisco, San Francisco, CA, USA
| | - Patrick A Brown
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pandurang Kolekar
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Heather Mulder
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ying Shao
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Aristotelis Tsirigos
- Perlmutter Cancer Center, NYU Langone Health, Smilow 1211, 560 First Avenue, New York, NY, 10016, USA.
- Department of Pathology, NYU Langone Health, New York, NY, USA.
- Perlmutter Cancer Center, NYU Langone Health, Science Building 800, 435 East 30th Street, New York, NY, 10016, USA.
| | - William L Carroll
- Perlmutter Cancer Center, NYU Langone Health, Smilow 1211, 560 First Avenue, New York, NY, 10016, USA.
- Department of Pediatrics, NYU Langone Health, New York, NY, USA.
- Division of Pediatric Hematology/Oncology, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
14
|
Hoang SH. Fibroblast growth factor 5 (FGF5) and its missense mutant FGF5-H174 underlying trichomegaly: a molecular dynamics simulation investigation. J Biomol Struct Dyn 2023; 41:14786-14796. [PMID: 36905676 DOI: 10.1080/07391102.2023.2188953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/28/2023] [Indexed: 03/13/2023]
Abstract
The missense mutation Y174H of FGF5 (FGF5-H174) had been associated with trichomegaly, characterized by abnormally long and pigmented eyelashes. The amino acid tyrosine (Tyr/Y) at position 174 is conserved across many species, proposedly holding important characteristics for the functions of FGF5. Microsecond molecular dynamics simulations along with protein-protein docking and residue interacting network analysis were employed to investigate the structural dynamics and binding mode of both wild-type (FGF5-WT) and its mutated counterpart (FGF5-H174). It was found that the mutation decreased number of hydrogen bonds within the protein, sheet secondary structure, interaction of residue 174 with other residues, and number of salt-bridges. On the other hand, the mutation increased solvent accessible surface area, number of hydrogen bonds between the protein and solvent, coil secondary structure, protein C-alpha backbone root mean square deviation, protein residue root mean square fluctuations, as well as occupied conformational space. In addition, protein-protein docking integrated with molecular dynamics simulations and molecular mechanics - Poisson-Boltzmann surface area (MM/PBSA) binding energy calculation demonstrated that the mutated variant possessed stronger binding affinity towards fibroblast growth factor receptor 1 (FGFR1). However, residue interaction network analysis demonstrated that the binding mode of the FGFR1-FGF5-H174 complex was drastically different from that of the FGFR1-FGF5-WT complex. In conclusion, the missense mutation conferred more instability within itself and stronger binding affinity towards FGFR1 with distinctively altered binding mode or residue connectivity. These findings might help explain the decreased pharmacological activity of FGF5-H174 towards FGFR1, underlying trichomegaly.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Skyler H Hoang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
15
|
Parthasarathy G, Pattison MB, Midkiff CC. The FGF/FGFR system in the microglial neuroinflammation with Borrelia burgdorferi: likely intersectionality with other neurological conditions. J Neuroinflammation 2023; 20:10. [PMID: 36650549 PMCID: PMC9847051 DOI: 10.1186/s12974-022-02681-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Lyme neuroborreliosis, caused by the bacterium Borrelia burgdorferi affects both the central and peripheral nervous systems (CNS, PNS). The CNS manifestations, especially at later stages, can mimic/cause many other neurological conditions including psychiatric disorders, dementia, and others, with a likely neuroinflammatory basis. The pathogenic mechanisms associated with Lyme neuroborreliosis, however, are not fully understood. METHODS In this study, using cultures of primary rhesus microglia, we explored the roles of several fibroblast growth factor receptors (FGFRs) and fibroblast growth factors (FGFs) in neuroinflammation associated with live B. burgdorferi exposure. FGFR specific siRNA and inhibitors, custom antibody arrays, ELISAs, immunofluorescence and microscopy were used to comprehensively analyze the roles of these molecules in microglial neuroinflammation due to B. burgdorferi. RESULTS FGFR1-3 expressions were upregulated in microglia in response to B. burgdorferi. Inhibition of FGFR 1, 2 and 3 signaling using siRNA and three different inhibitors showed that FGFR signaling is proinflammatory in response to the Lyme disease bacterium. FGFR1 activation also contributed to non-viable B. burgdorferi mediated neuroinflammation. Analysis of the B. burgdorferi conditioned microglial medium by a custom antibody array showed that several FGFs are induced by the live bacterium including FGF6, FGF10 and FGF12, which in turn induce IL-6 and/or CXCL8, indicating a proinflammatory nature. To our knowledge, this is also the first-ever described role for FGF6 and FGF12 in CNS neuroinflammation. FGF23 upregulation, in addition, was observed in response to the Lyme disease bacterium. B. burgdorferi exposure also downregulated many FGFs including FGF 5, 7, 9, 11, 13, 16, 20 and 21. Some of the upregulated FGFs have been implicated in major depressive disorder (MDD) or dementia development, while the downregulated ones have been demonstrated to have protective roles in epilepsy, Parkinson's disease, Alzheimer's disease, spinal cord injury, blood-brain barrier stability, and others. CONCLUSIONS In this study we show that FGFRs and FGFs are novel inducers of inflammatory mediators in Lyme neuroborreliosis. It is likely that an unresolved, long-term (neuro)-Lyme infection can contribute to the development of other neurologic conditions in susceptible individuals either by augmenting pathogenic FGFs or by suppressing ameliorative FGFs or both.
Collapse
Affiliation(s)
- Geetha Parthasarathy
- Division of Immunology, Tulane National Primate Research Center, Tulane University, 18703, Three Rivers Road, Room 109, Covington, LA, 70433, USA.
| | - Melissa B Pattison
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, 18703, Three Rivers Road, Covington, LA, 70433, USA
| | - Cecily C Midkiff
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University, 18703, Three Rivers Road, Covington, LA, 70433, USA
| |
Collapse
|
16
|
Huang W, Qiu W, Chen K, Ye S, Wang D, Hu J, Xu H, Lin L, Li X. Research progress of fibroblast growth factor in nervous system diseases. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:738-749. [PMID: 36915973 PMCID: PMC10262007 DOI: 10.3724/zdxbyxb-2022-0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/25/2022] [Indexed: 06/17/2023]
Abstract
Fibroblast growth factors (FGF) are a group of structurally related polypeptides which constitute an elaborate signaling system with their receptors. Evidence accumulated in the years suggests that the FGF family plays a key role in the repair of central nervous system injury. The main protective mechanisms include activating the expression of PI3K-Akt, peroxisome proliferator-activated receptor (PPARγ) and other signals; inhibiting NF-κB-mediated inflammatory response, oxidative stress and apoptosis; regulating neuronal differentiation and neuronal excitability as well as participating in protection of neurovascular units and nerve function repair. This paper comprehensively summarizes the latest research progress in FGF signaling related to diseases of the central nervous system such as cerebral infarction, cerebral hemorrhage, traumatic brain injury, Alzheimer's disease, Parkinson's disease, epilepsy and depression, aiming to provide scientific basis and reference for the development of innovative FGF drugs for the prevention and treatment of neurological diseases.
Collapse
Affiliation(s)
- Wenting Huang
- 1. Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Wanhua Qiu
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Kun Chen
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Shasha Ye
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Dongxue Wang
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Jian Hu
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Huiqin Xu
- 1. Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Li Lin
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Xiaokun Li
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| |
Collapse
|
17
|
Wang H, Lan X, Noman M, Wang Z, Zhang J. Recombinant Oil-Body-Expressed Oleosin-hFGF5 in Arabidopsis thaliana Regulates Hair Growth. Genes (Basel) 2022; 14:genes14010021. [PMID: 36672762 PMCID: PMC9858518 DOI: 10.3390/genes14010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/02/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022] Open
Abstract
FGF5 (Fibroblast Growth Factor) is a member of the fibroblast growth factor family, which not only regulates growth and development but also inhibits hair regeneration. The oil-body expression vector pOTB-hFGF5 was constructed by the genetic engineering method and it was transformed into Arabidopsis by flora dip. T3 homozygous transgenic Arabidopsis was obtained after screening and propagation by the PCR and Western blot methods. The recombinant oil-body-expressed oleosin-hFGF5 can inhibit the proliferation of hair follicle epithelial cells and it exhibits the pharmacological activity of inhibiting hair regeneration in vivo by protein hybridization and imunohistochemistry. At the same time, the potential mechanism of recombinant oil-body-expressed oleosin-hFGF5 inhibiting hair growth was also revealed by RNA-Seq. This implies that the recombinant oil-body-expressed oleosin-hFGF5 has a good effect on inhibiting hair growth.
Collapse
Affiliation(s)
- Hongyu Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Straw Biology and Utilization, The Ministry of Education, Changchun 130118, China
| | - Xinxin Lan
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Muhammad Noman
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Correspondence:
| | - Ze Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Jing Zhang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
18
|
Chwastek J, Kędziora M, Borczyk M, Korostyński M, Starowicz K. Inflammation-Driven Secretion Potential Is Upregulated in Osteoarthritic Fibroblast-Like Synoviocytes. Int J Mol Sci 2022; 23:ijms231911817. [PMID: 36233118 PMCID: PMC9570304 DOI: 10.3390/ijms231911817] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/24/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022] Open
Abstract
Osteoarthritis (OA) is one of the most common joint pathologies and a major cause of disability among the population of developed countries. It manifests as a gradual degeneration of the cartilage and subchondral part of the bone, leading to joint damage. Recent studies indicate that not only the cells that make up the articular cartilage but also the synoviocytes, which build the membrane surrounding the joint, contribute to the development of OA. Therefore, the aim of the study was to determine the response to inflammatory factors of osteoarthritic synoviocytes and to identify proteins secreted by them that may influence the progression of OA. This study demonstrated that fibroblast-like synoviocytes of OA patients (FLS-OA) respond more strongly to pro-inflammatory stimulation than cells obtained from control patients (FLS). These changes were observed at the transcriptome level and subsequently confirmed by protein analysis. FLS-OA stimulated by pro-inflammatory factors [such as lipopolysaccharide (LPS) and tumor necrosis factor alpha (TNFα) were shown to secrete significantly more chemokines (CXCL6, CXCL10, and CXCL16) and growth factors [angiopoietin-like protein 1 (ANGPTL1), fibroblast growth factor 5 (FGF5), and insulin-like growth factor 2 (IGF2)] than control cells. Moreover, the translation of proteolytic enzymes [matrix metalloprotease 3 (MMP3), cathepsin K (CTSK), and cathepsin S (CTSS)] by FLS-OA is increased under inflammatory conditions. Our data indicate that the FLS of OA patients are functionally altered, resulting in an enhanced response to the presence of pro-inflammatory factors in the environment, manifested by the increased production of the previously mentioned proteins, which may promote further disease progression.
Collapse
Affiliation(s)
- Jakub Chwastek
- Department of Neurochemistry, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Marta Kędziora
- Department of Neurochemistry, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Małgorzata Borczyk
- Laboratory of Pharmacogenomics, Department of Molecular Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Michał Korostyński
- Laboratory of Pharmacogenomics, Department of Molecular Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Katarzyna Starowicz
- Department of Neurochemistry, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
- Correspondence:
| |
Collapse
|
19
|
FGF5 protects heart from sepsis injury by attenuating cardiomyocyte pyroptosis through inhibiting CaMKII/NFκB signaling. Biochem Biophys Res Commun 2022; 636:104-112. [DOI: 10.1016/j.bbrc.2022.10.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/18/2022] [Accepted: 10/23/2022] [Indexed: 11/30/2022]
|
20
|
Nandakumar M, Moin ASM, Ramanjaneya M, Qaissi AA, Sathyapalan T, Atkin SL, Butler AE. Severe iatrogenic hypoglycaemia modulates the fibroblast growth factor protein response. Diabetes Obes Metab 2022; 24:1483-1497. [PMID: 35415885 DOI: 10.1111/dom.14716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION There is evidence that fibroblast growth factor (FGF) levels may be implicated in hypoglycaemia, with FGF19 being a potential contributor to insulin-independent pathways driving postprandial hypoglycaemia following bariatric surgery and basic FGF (FGF2) being elevated following mild hypoglycaemia occurring after the glucose tolerance test. However, their response following severe iatrogenic hypoglycaemia is unknown and therefore this pilot exploratory study was undertaken. METHODS A case-control study of aged-matched type 2 diabetes (T2D; n = 23) and control (n = 23) subjects who underwent a hyperinsulinaemic clamp, initially to euglycaemia in T2D (5 mmol/L; 90 mg/dl), and then to hypoglycaemia (<2 mmol/L; <36 mg/dl) with subsequent follow-up time course to 24 h. FGF and FGF receptor proteins were determined by Slow Off-rate Modified Aptamer (SOMA)-scan plasma protein measurement. RESULTS At baseline, FGF12 (p = .006) was higher and FGF20 (p = .004) was lower in T2D versus controls. At hypoglycaemia, FGF7 was lower in T2D. Post-hypoglycaemic levels of FGF18, FGF19, FGF20 and FGF23 were lower while FGF12 and FGF16 were higher in T2D versus control at different time points. No differences between T2D and controls were seen for FGF1, FGF2, FGF4, FGF6, FGF8, FGF9, FGF10, FGF21 or any of the FGF receptors. At 24 h post-hypoglycaemia, FGF20 (p = .01) differed between controls and T2D, while the levels for the other proteins measured returned to baseline. None of the FGF proteins altered from baseline to euglycaemia when clamped in T2D subjects. FGF23 negatively correlated with fasting blood glucose, but no FGFs correlated with body mass index in T2D. CONCLUSION Severe transient hypoglycaemia modulated FGF7, 16, 19, 20 and 23 (known to be associated with diabetes), together with FGF18 and 12, not previously reported to be associated with diabetes but that may be important in the pathophysiology of hypoglycaemia; FGF20 remained low at 24 h. Taken together, these data suggest that recurrent hypoglycaemia may contribute to the development of complications through changes in FGF proteins.
Collapse
Affiliation(s)
- Manjula Nandakumar
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Abu Saleh Md Moin
- Royal College of Surgeons in Ireland Bahrain, Adliya, Kingdom of Bahrain
| | - Manjunath Ramanjaneya
- Qatar Metabolic Institute, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Ahmed Al Qaissi
- Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, Hull, UK
| | | | - Stephen L Atkin
- Royal College of Surgeons in Ireland Bahrain, Adliya, Kingdom of Bahrain
| | - Alexandra E Butler
- Royal College of Surgeons in Ireland Bahrain, Adliya, Kingdom of Bahrain
| |
Collapse
|
21
|
Testa E, Palazzo C, Mastrantonio R, Viscomi MT. Dynamic Interactions between Tumor Cells and Brain Microvascular Endothelial Cells in Glioblastoma. Cancers (Basel) 2022; 14:3128. [PMID: 35804908 PMCID: PMC9265028 DOI: 10.3390/cancers14133128] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
GBM is the most aggressive brain tumor among adults. It is characterized by extensive vascularization, and its further growth and recurrence depend on the formation of new blood vessels. In GBM, tumor angiogenesis is a multi-step process involving the proliferation, migration and differentiation of BMECs under the stimulation of specific signals derived from the cancer cells through a wide variety of communication routes. In this review, we discuss the dynamic interaction between BMECs and tumor cells by providing evidence of how tumor cells hijack the BMECs for the formation of new vessels. Tumor cell-BMECs interplay involves multiple routes of communication, including soluble factors, such as chemokines and cytokines, direct cell-cell contact and extracellular vesicles that participate in and fuel this cooperation. We also describe how this interaction is able to modify the BMECs structure, metabolism and physiology in a way that favors tumor growth and invasiveness. Finally, we briefly reviewed the recent advances and the potential future implications of some high-throughput 3D models to better understanding the complexity of BMECs-tumor cell interaction.
Collapse
Affiliation(s)
- Erika Testa
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Roma, Italy; (C.P.); (R.M.)
| | - Claudia Palazzo
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Roma, Italy; (C.P.); (R.M.)
| | - Roberta Mastrantonio
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Roma, Italy; (C.P.); (R.M.)
| | - Maria Teresa Viscomi
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Roma, Italy; (C.P.); (R.M.)
- IRCCS, Fondazione Policlinico Universitario “Agostino Gemelli”, L.go A. Gemelli 8, 00168 Roma, Italy
| |
Collapse
|
22
|
Kopecky J, Pérez JE, Eriksson H, Visse E, Siesjö P, Darabi A. Intratumoral administration of the antisecretory peptide AF16 cures murine gliomas and modulates macrophage functions. Sci Rep 2022; 12:4609. [PMID: 35301393 PMCID: PMC8930985 DOI: 10.1038/s41598-022-08618-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/09/2022] [Indexed: 11/09/2022] Open
Abstract
Glioblastoma has remained the deadliest primary brain tumor while its current therapy offers only modest survival prolongation. Immunotherapy has failed to record notable benefits in routine glioblastoma treatment. Conventionally, immunotherapy relies on T cells as tumor-killing agents; however, T cells are outnumbered by macrophages in glioblastoma microenvironment. In this study, we explore the effect of AF16, a peptide from the endogenous antisecretory factor protein, on the survival of glioma-bearing mice, the tumor size, and characteristics of the tumor microenvironment with specific focus on macrophages. We elucidate the effect of AF16 on the inflammation-related secretome of human and murine macrophages, as well as human glioblastoma cells. In our results, AF16 alone and in combination with temozolomide leads to cure in immunocompetent mice with orthotopic GL261 gliomas, as well as prolonged survival in immunocompromised mice. We recorded decreased tumor size and changes in infiltration of macrophages and T cells in the murine glioma microenvironment. Human and murine macrophages increased expression of proinflammatory markers in response to AF16 treatment and the same effect was seen in human primary glioblastoma cells. In summary, we present AF16 as an immunomodulatory factor stimulating pro-inflammatory macrophages with a potential to be implemented in glioblastoma treatment protocols.
Collapse
Affiliation(s)
- Jan Kopecky
- Glioma Immunotherapy Group, Division of Neurosurgery, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Barngatan 4, 221 85, Lund, Sweden.
| | - Julio Enríquez Pérez
- Glioma Immunotherapy Group, Division of Neurosurgery, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Barngatan 4, 221 85, Lund, Sweden
| | - Håkan Eriksson
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, Sweden
| | - Edward Visse
- Glioma Immunotherapy Group, Division of Neurosurgery, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Barngatan 4, 221 85, Lund, Sweden
| | - Peter Siesjö
- Glioma Immunotherapy Group, Division of Neurosurgery, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Barngatan 4, 221 85, Lund, Sweden.,Section of Neurosurgery, Department of Clinical Sciences Lund, Skåne University Hospital, Lund, Sweden
| | - Anna Darabi
- Glioma Immunotherapy Group, Division of Neurosurgery, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Barngatan 4, 221 85, Lund, Sweden
| |
Collapse
|
23
|
Chioni AM, Grose RP. Biological Significance and Targeting of the FGFR Axis in Cancer. Cancers (Basel) 2021; 13:5681. [PMID: 34830836 PMCID: PMC8616401 DOI: 10.3390/cancers13225681] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022] Open
Abstract
The pleiotropic effects of fibroblast growth factors (FGFs), the widespread expression of all seven signalling FGF receptors (FGFRs) throughout the body, and the dramatic phenotypes shown by many FGF/R knockout mice, highlight the diversity, complexity and functional importance of FGFR signalling. The FGF/R axis is critical during normal tissue development, homeostasis and repair. Therefore, it is not surprising that substantial evidence also pinpoints the involvement of aberrant FGFR signalling in disease, including tumourigenesis. FGFR aberrations in cancer include mutations, gene fusions, and amplifications as well as corrupted autocrine/paracrine loops. Indeed, many clinical trials on cancer are focusing on targeting the FGF/FGFR axis, using selective FGFR inhibitors, nonselective FGFR tyrosine kinase inhibitors, ligand traps, and monoclonal antibodies and some have already been approved for the treatment of cancer patients. The heterogeneous tumour microenvironment and complexity of FGFR signalling may be some of the factors responsible for the resistance or poor response to therapy with FGFR axis-directed therapeutic agents. In the present review we will focus on the structure and function of FGF(R)s, their common irregularities in cancer and the therapeutic value of targeting their function in cancer.
Collapse
Affiliation(s)
- Athina-Myrto Chioni
- School of Life Sciences Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, UK
| | - Richard P. Grose
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK;
| |
Collapse
|
24
|
Guo Q, Zhang X, Shen T, Wang X. Identification of Autophagy- and Ferroptosis-Related lncRNAs Functioned through Immune-Related Pathways in Head and Neck Squamous Carcinoma. Life (Basel) 2021; 11:life11080835. [PMID: 34440579 PMCID: PMC8399325 DOI: 10.3390/life11080835] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/30/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023] Open
Abstract
The interplay between autophagy and ferroptosis has been highlighted as an important event to decide cancer cell fate. However, the underlying mechanisms remain largely unclear. In this study, we systematically explored the expression, prognostic value and functional roles of lncRNA in autophagy and ferroptosis. By a set of bioinformatics analyses, we identified 363 autophagy- and ferroptosis-related lncRNAs (AF-lncRNAs) and found 17 of them are dramatically related to the prognosis of head and neck squamous cell carcinoma (HNSC) patients, named as prognosis-related AF-lncRNAs (PAF-lncRNAs). Based on six key PAF-lncRNAs, a risk score model was developed and used to categorize the TCGA-retrieved HNSC patients into two groups (high-risk vs. low-risk). Functional analysis showed the differentially expressed genes (DEGs) between the two groups were mainly enriched in immune-related pathways and regulated by a PAF-lncRNA-directed ceRNA (competitive endogenous RNA) network. Combined with a variety of immune infiltration analyses, we also found a decreased landscape of immune cell infiltration in high-risk groups. Together, by revealing PAF-lncRNAs with tumor prognostic features functioned through immune-related pathways, our work would contribute to show the pathogenesis of a lncRNA-directed interplay among autophagy, ferroptosis and tumor immunity in HNSC and to develop potential prognostic biomarkers and targets for tumor immunotherapy.
Collapse
Affiliation(s)
- Qi Guo
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (Q.G.); (X.Z.)
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei 230026, China
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Xuehan Zhang
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (Q.G.); (X.Z.)
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei 230026, China
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Tao Shen
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (Q.G.); (X.Z.)
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei 230026, China
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Correspondence: (T.S.); (X.W.); Tel./Fax: +86-551-63600080 (T.S. & X.W.)
| | - Xiangting Wang
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (Q.G.); (X.Z.)
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei 230026, China
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
- Correspondence: (T.S.); (X.W.); Tel./Fax: +86-551-63600080 (T.S. & X.W.)
| |
Collapse
|
25
|
Lötsch D, Kirchhofer D, Englinger B, Jiang L, Okonechnikov K, Senfter D, Laemmerer A, Gabler L, Pirker C, Donson AM, Bannauer P, Korbel P, Jaunecker CN, Hübner JM, Mayr L, Madlener S, Schmook MT, Ricken G, Maaß K, Grusch M, Holzmann K, Grasl-Kraupp B, Spiegl-Kreinecker S, Hsu J, Dorfer C, Rössler K, Azizi AA, Foreman NK, Peyrl A, Haberler C, Czech T, Slavc I, Filbin MG, Pajtler KW, Kool M, Berger W, Gojo J. Targeting fibroblast growth factor receptors to combat aggressive ependymoma. Acta Neuropathol 2021; 142:339-360. [PMID: 34046693 PMCID: PMC8270873 DOI: 10.1007/s00401-021-02327-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/10/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022]
Abstract
Ependymomas (EPN) are central nervous system tumors comprising both aggressive and more benign molecular subtypes. However, therapy of the high-risk subtypes posterior fossa group A (PF-A) and supratentorial RELA-fusion positive (ST-RELA) is limited to gross total resection and radiotherapy, as effective systemic treatment concepts are still lacking. We have recently described fibroblast growth factor receptors 1 and 3 (FGFR1/FGFR3) as oncogenic drivers of EPN. However, the underlying molecular mechanisms and their potential as therapeutic targets have not yet been investigated in detail. Making use of transcriptomic data across 467 EPN tissues, we found that FGFR1 and FGFR3 were both widely expressed across all molecular groups. FGFR3 mRNA levels were enriched in ST-RELA showing the highest expression among EPN as well as other brain tumors. We further identified high expression levels of fibroblast growth factor 1 and 2 (FGF1, FGF2) across all EPN subtypes while FGF9 was elevated in ST-EPN. Interrogation of our EPN single-cell RNA-sequencing data revealed that FGFR3 was further enriched in cycling and progenitor-like cell populations. Corroboratively, we found FGFR3 to be predominantly expressed in radial glia cells in both mouse embryonal and human brain datasets. Moreover, we detected alternative splicing of the FGFR1/3-IIIc variant, which is known to enhance ligand affinity and FGFR signaling. Dominant-negative interruption of FGFR1/3 activation in PF-A and ST-RELA cell models demonstrated inhibition of key oncogenic pathways leading to reduced cell growth and stem cell characteristics. To explore the feasibility of therapeutically targeting FGFR, we tested a panel of FGFR inhibitors in 12 patient-derived EPN cell models revealing sensitivity in the low-micromolar to nano-molar range. Finally, we gain the first clinical evidence for the activity of the FGFR inhibitor nintedanib in the treatment of a patient with recurrent ST-RELA. Together, these preclinical and clinical data suggest FGFR inhibition as a novel and feasible approach to combat aggressive EPN.
Collapse
MESH Headings
- Animals
- Central Nervous System Neoplasms/genetics
- Central Nervous System Neoplasms/pathology
- Ependymoma/genetics
- Ependymoma/pathology
- Humans
- Mice
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/pathology
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 3/metabolism
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/metabolism
Collapse
Affiliation(s)
- Daniela Lötsch
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Dominik Kirchhofer
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Bernhard Englinger
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, USA
| | - Li Jiang
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, USA
| | - Konstantin Okonechnikov
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Daniel Senfter
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Anna Laemmerer
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Lisa Gabler
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Christine Pirker
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Andrew M Donson
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
- Department of Pediatrics, University of Colorado Denver, Aurora, CO, USA
| | - Peter Bannauer
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Pia Korbel
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Carola N Jaunecker
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Jens-Martin Hübner
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Lisa Mayr
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Sibylle Madlener
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Maria T Schmook
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Gerda Ricken
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Kendra Maaß
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Michael Grusch
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Klaus Holzmann
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Bettina Grasl-Kraupp
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Sabine Spiegl-Kreinecker
- Department of Neurosurgery, Kepler University Hospital GmbH, Johannes Kepler University, Linz, Austria
| | - Jennifer Hsu
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Christian Dorfer
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Karl Rössler
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Amedeo A Azizi
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Nicholas K Foreman
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
- Department of Pediatrics, University of Colorado Denver, Aurora, CO, USA
| | - Andreas Peyrl
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Christine Haberler
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Thomas Czech
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Irene Slavc
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, USA
| | - Kristian W Pajtler
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Haematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Walter Berger
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Johannes Gojo
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria.
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
26
|
Zhou P, Irving A, Wu H, Luo J, Aguirre J, Costa M, Khamsuree M, Gerads N, Liu W. Validation of MicroRNA-188-5p Inhibition Power on Tumor Cell Proliferation in Papillary Thyroid Carcinoma. Cell Transplant 2021; 29:963689720918300. [PMID: 32425116 PMCID: PMC7586257 DOI: 10.1177/0963689720918300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Given the crucial role of microRNAs in the cellular proliferation of various types of cancers, we aimed to analyze the expression and function of a cellular proliferation-associated miR-188-5p in papillary thyroid carcinoma (PTC). Here we demonstrate that miR-188-5p is downregulated in PTC tumor tissues compared with the associated noncancerous tissues. We also validate that the miR-188-5p overexpression suppressed the PTC cancer cell proliferation. In addition, fibroblast growth factor 5 (FGF5) is observed to be downregulated in the PTC tumor tissues compared with the associated noncancerous tissues. Subsequently, FGF5 is identified as the direct functional target of miR-188-5p. Moreover, the silencing of FGF5 was found to inhibit PTC cell proliferation, which is the same pattern as miR-188-5p overexpression. These results suggest that miR-188-5p-associated silencing of FGF5 inhibits tumor cell proliferation in PTC. It also highlights the importance of further evaluating miR-188-5p as a potential biomarker and therapy target in PTC.
Collapse
Affiliation(s)
- Ping Zhou
- Department of Clinical Laboratory, First Affiliated Hospital of Hainan Medical College, Hainan, China
| | - Andrew Irving
- Department of Life Science, Dell Medical School of the University of Texas at Austin, Austin, TX, USA
| | - Huifang Wu
- Medical Department, The Second Hospital of Wuhan Iron and Steel Group, Wuhan, China
| | - Juan Luo
- Medical Department, The Second Hospital of Wuhan Iron and Steel Group, Wuhan, China
| | - Johana Aguirre
- Department of Pathology, The University of São Paulo Medical School, São Paulo, Brazil
| | - Mariana Costa
- Department of Pathology, The University of São Paulo Medical School, São Paulo, Brazil
| | - Monny Khamsuree
- Department of Biology, The University of Tübingen, Maryland, Tübingen, Germany
| | - Natascha Gerads
- Department of Biology, The University of Tübingen, Maryland, Tübingen, Germany
| | - Weibang Liu
- Medical Department, The Second Hospital of Wuhan Iron and Steel Group, Wuhan, China
- Weibang Liu, Medical Department, The Second Hospital of Wuhan Iron and Steel Group, Wuhan, China.
| |
Collapse
|
27
|
Ferguson HR, Smith MP, Francavilla C. Fibroblast Growth Factor Receptors (FGFRs) and Noncanonical Partners in Cancer Signaling. Cells 2021; 10:1201. [PMID: 34068954 PMCID: PMC8156822 DOI: 10.3390/cells10051201] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023] Open
Abstract
Increasing evidence indicates that success of targeted therapies in the treatment of cancer is context-dependent and is influenced by a complex crosstalk between signaling pathways and between cell types in the tumor. The Fibroblast Growth Factor (FGF)/FGF receptor (FGFR) signaling axis highlights the importance of such context-dependent signaling in cancer. Aberrant FGFR signaling has been characterized in almost all cancer types, most commonly non-small cell lung cancer (NSCLC), breast cancer, glioblastoma, prostate cancer and gastrointestinal cancer. This occurs primarily through amplification and over-expression of FGFR1 and FGFR2 resulting in ligand-independent activation. Mutations and translocations of FGFR1-4 are also identified in cancer. Canonical FGF-FGFR signaling is tightly regulated by ligand-receptor combinations as well as direct interactions with the FGFR coreceptors heparan sulfate proteoglycans (HSPGs) and Klotho. Noncanonical FGFR signaling partners have been implicated in differential regulation of FGFR signaling. FGFR directly interacts with cell adhesion molecules (CAMs) and extracellular matrix (ECM) proteins, contributing to invasive and migratory properties of cancer cells, whereas interactions with other receptor tyrosine kinases (RTKs) regulate angiogenic, resistance to therapy, and metastatic potential of cancer cells. The diversity in FGFR signaling partners supports a role for FGFR signaling in cancer, independent of genetic aberration.
Collapse
Affiliation(s)
- Harriet R. Ferguson
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester M13 9PT, UK;
| | - Michael P. Smith
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester M13 9PT, UK;
| | - Chiara Francavilla
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester M13 9PT, UK;
- Manchester Breast Centre, Manchester Cancer Research Centre, The University of Manchester, Manchester M20 4GJ, UK
| |
Collapse
|
28
|
FGF/FGFR Signaling in Hepatocellular Carcinoma: From Carcinogenesis to Recent Therapeutic Intervention. Cancers (Basel) 2021; 13:cancers13061360. [PMID: 33802841 PMCID: PMC8002748 DOI: 10.3390/cancers13061360] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary As the most common primary liver cancer, HCC is a tricky cancer resistant to systemic therapies. The fibroblast growth factor family and its receptors are gaining more and more attention in various cancers. Noticing an explosion in the number of studies about aberrant FGF/FGFR signaling in HCC being studied, we were encouraged to summarize them. This review discusses how FGF/FGFR signaling influences HCC development and its implications in HCC prediction and target treatment, and combination treatment. Abstract Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, ranking third in cancer deaths worldwide. Over the last decade, several studies have emphasized the development of tyrosine kinase inhibitors (TKIs) to target the aberrant pathways in HCC. However, the outcomes are far from satisfactory due to the increasing resistance and adverse effects. The family of fibroblast growth factor (FGF) and its receptors (FGFR) are involved in various biological processes, including embryogenesis, morphogenesis, wound repair, and cell growth. The aberrant FGF/FGFR signaling is also observed in multiple cancers, including HCC. Anti-FGF/FGFR provides delightful benefits for cancer patients, especially those with FGF signaling alteration. More and more multi-kinase inhibitors targeting FGF signaling, pan-FGFR inhibitors, and selective FGFR inhibitors are now under preclinical and clinical investigation. This review summarizes the aberrant FGF/FGFR signaling in HCC initiating, development and treatment status, and provide new insights into the treatment of HCC.
Collapse
|
29
|
Ardizzone A, Scuderi SA, Giuffrida D, Colarossi C, Puglisi C, Campolo M, Cuzzocrea S, Esposito E, Paterniti I. Role of Fibroblast Growth Factors Receptors (FGFRs) in Brain Tumors, Focus on Astrocytoma and Glioblastoma. Cancers (Basel) 2020; 12:E3825. [PMID: 33352931 PMCID: PMC7766440 DOI: 10.3390/cancers12123825] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022] Open
Abstract
Despite pharmacological treatments and surgical practice options, the mortality rate of astrocytomas and glioblastomas remains high, thus representing a medical emergency for which it is necessary to find new therapeutic strategies. Fibroblast growth factors (FGFs) act through their associated receptors (FGFRs), a family of tyrosine kinase receptors consisting of four members (FGFR1-4), regulators of tissue development and repair. In particular, FGFRs play an important role in cell proliferation, survival, and migration, as well as angiogenesis, thus their gene alteration is certainly related to the development of the most common diseases, including cancer. FGFRs are subjected to multiple somatic aberrations such as chromosomal amplification of FGFR1; mutations and multiple dysregulations of FGFR2; and mutations, translocations, and significant amplifications of FGFR3 and FGFR4 that correlate to oncogenesis process. Therefore, the in-depth study of these receptor systems could help to understand the etiology of both astrocytoma and glioblastoma so as to achieve notable advances in more effective target therapies. Furthermore, the discovery of FGFR inhibitors revealed how these biological compounds improve the neoplastic condition by demonstrating efficacy and safety. On this basis, this review focuses on the role and involvement of FGFRs in brain tumors such as astrocytoma and glioblastoma.
Collapse
Affiliation(s)
- Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.A.); (S.A.S.); (M.C.); (S.C.); (E.E.)
| | - Sarah A. Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.A.); (S.A.S.); (M.C.); (S.C.); (E.E.)
| | - Dario Giuffrida
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande (CT), Italy; (D.G.); (C.C.)
| | - Cristina Colarossi
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande (CT), Italy; (D.G.); (C.C.)
| | - Caterina Puglisi
- IOM Ricerca Srl, Via Penninazzo 11, 95029 Viagrande (CT), Italy;
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.A.); (S.A.S.); (M.C.); (S.C.); (E.E.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.A.); (S.A.S.); (M.C.); (S.C.); (E.E.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.A.); (S.A.S.); (M.C.); (S.C.); (E.E.)
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.A.); (S.A.S.); (M.C.); (S.C.); (E.E.)
| |
Collapse
|
30
|
Georgiou V, Gkretsi V. The role of fibroblast growth factors and their receptors in gliomas: the mutations involved. Rev Neurosci 2020; 30:543-554. [PMID: 30379640 DOI: 10.1515/revneuro-2018-0051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/10/2018] [Indexed: 11/15/2022]
Abstract
The central nervous system (CNS) comprises of neurons, which are responsible for impulse transmission, and glial cells, which surround neurons providing protection and nutrition. Glial cells are categorized into astrocytes, oligodendrocytes, microglial cells, and ependymal cells. Tumors forming from glial cells are called gliomas, and they are classified accordingly into astrocytomas, oligodendrogliomas, and ependymomas. Gliomas are characterized by high mortality rates and degree of malignancy, heterogeneity, and resistance to treatment. Among the molecular players implicated in glioma pathogenesis are members of the fibroblast growth factor (FGF) superfamily as well as their receptors (FGFRs). In the present study, we provide a review of the literature on the role of FGFs and FGFRs in glioma pathogenesis. We also demonstrate that FGFs, and particularly FGF1 and FGF2, bear a variety of mutations in gliomas, while FGFRs are also crucially involved. In fact, several studies show that in gliomas, FGFRs bear mutations, mainly in the tyrosine kinase domains. Specifically, it appears that FGFR1-TACC1 and FGFR3-TACC3 fusions are common in these receptors. A better understanding of the mutations and the molecular players involved in glioma formation will benefit the scientific community, leading to the development of more effective and innovative therapeutic approaches.
Collapse
Affiliation(s)
- Vasiliki Georgiou
- Biomedical Sciences Program, Department of Life Sciences, School of Sciences, European University of Cyprus, 6, Diogenis Str, Engomi 2404, Nicosia, Cyprus
| | - Vasiliki Gkretsi
- Biomedical Sciences Program, Department of Life Sciences, School of Sciences, European University of Cyprus, 6, Diogenis Str, Engomi 2404, Nicosia, Cyprus
| |
Collapse
|
31
|
Hao J, Kim Y, Mallavarapu T, Oh JH, Kang M. Interpretable deep neural network for cancer survival analysis by integrating genomic and clinical data. BMC Med Genomics 2019; 12:189. [PMID: 31865908 PMCID: PMC6927105 DOI: 10.1186/s12920-019-0624-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Understanding the complex biological mechanisms of cancer patient survival using genomic and clinical data is vital, not only to develop new treatments for patients, but also to improve survival prediction. However, highly nonlinear and high-dimension, low-sample size (HDLSS) data cause computational challenges to applying conventional survival analysis. Results We propose a novel biologically interpretable pathway-based sparse deep neural network, named Cox-PASNet, which integrates high-dimensional gene expression data and clinical data on a simple neural network architecture for survival analysis. Cox-PASNet is biologically interpretable where nodes in the neural network correspond to biological genes and pathways, while capturing the nonlinear and hierarchical effects of biological pathways associated with cancer patient survival. We also propose a heuristic optimization solution to train Cox-PASNet with HDLSS data. Cox-PASNet was intensively evaluated by comparing the predictive performance of current state-of-the-art methods on glioblastoma multiforme (GBM) and ovarian serous cystadenocarcinoma (OV) cancer. In the experiments, Cox-PASNet showed out-performance, compared to the benchmarking methods. Moreover, the neural network architecture of Cox-PASNet was biologically interpreted, and several significant prognostic factors of genes and biological pathways were identified. Conclusions Cox-PASNet models biological mechanisms in the neural network by incorporating biological pathway databases and sparse coding. The neural network of Cox-PASNet can identify nonlinear and hierarchical associations of genomic and clinical data to cancer patient survival. The open-source code of Cox-PASNet in PyTorch implemented for training, evaluation, and model interpretation is available at: https://github.com/DataX-JieHao/Cox-PASNet.
Collapse
Affiliation(s)
- Jie Hao
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Youngsoon Kim
- Department of Computer Science, Kennesaw State University, Marietta, GA, USA
| | | | - Jung Hun Oh
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mingon Kang
- Department of Computer Science, University of Nevada, Las Vegas, Las Vegas, NV, USA.
| |
Collapse
|
32
|
Casadei C, Dizman N, Schepisi G, Cursano MC, Basso U, Santini D, Pal SK, De Giorgi U. Targeted therapies for advanced bladder cancer: new strategies with FGFR inhibitors. Ther Adv Med Oncol 2019; 11:1758835919890285. [PMID: 31803255 PMCID: PMC6878604 DOI: 10.1177/1758835919890285] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/29/2019] [Indexed: 12/15/2022] Open
Abstract
Inhibitors of fibroblast growth factor receptor (FGFR) represent an outstanding treatment approach for selected patients with urothelial cancer (UC). These agents are changing the clinical approach to a subgroup of UC, the luminal-papillary subtype, characterized by FGFR mutations, fusions, or amplification. In this review, we provide an overview of the results of recent clinical trials on FGFR tyrosine kinase inhibitors (TKIs) currently in clinical development for the treatment of UC: erdafitinib, rogaratinib, infigratinib, and the monoclonal antibody vofatamab. The Food and Drug Administration recently granted accelerated approval to erdafitinib for patients with advanced UC with alterations of FGFR2 or FGFR3 after progression on platinum-based chemotherapy. We also look at future therapeutic options of combination regimens with immune-checkpoint inhibitors as strategies for improving the antitumor effects of this class of drug, and for preventing or delaying the development of resistance.
Collapse
Affiliation(s)
- Chiara Casadei
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Nazli Dizman
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Giuseppe Schepisi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | | | - Umberto Basso
- Medical Oncology Unit, Istituto Oncologico Veneto, IOV-IRCCS, Padova, Italy
| | - Daniele Santini
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Rome, Italy
| | - Sumanta K. Pal
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Ugo De Giorgi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Maroncelli 40, Meldola, 47014, Italy
| |
Collapse
|
33
|
Zhao T, Qian K, Zhang Y. High Expression of FGF5 Is an Independent Prognostic Factor for Poor Overall Survival and Relapse-Free Survival in Lung Adenocarcinoma. J Comput Biol 2019; 27:948-957. [PMID: 31553229 DOI: 10.1089/cmb.2019.0241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Lung cancer is not only a serious disease but also a public problem threatening human health all over the world. Nonsmall cell lung cancer-which accounts for the majority of lung cancer-is mainly composed of lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC). FGF5 is a gene located in q21.21. In the past years, research on FGF5 is mainly focused on hair length and hereditary spherocytosis. In our study, bioinformatics analysis of FGF5 was performed through multiple databases. Expression of FGF5 was compared between tumor and normal tissues, association between gene expression and clinical outcomes was investigated in LUAD and LUSC separately, and potential signaling pathways were predicted. FGF5 expression was upregulated in lung cancer tissues compared with normal tissues. What is more, the high FGF5 expression group had significantly lower proportions of lymph node negative (N0) patients (77/144, 53.5%, vs. 253/358, 70.7%, p = 0.000), and is associated with worse overall survival (OS) (p < 0.0001) and relapse-free survival (RFS) (p = 0.024) in LUAD patients, which could not be seen in LUSC. The following analysis confirmed that high FGF5 expression could be an independent prognostic factor for poor OS (HR: 0.431, 95% CI: 0.312-0.597, p = 0.001) and RFS (HR: 0.678, 95% CI: 0.471-0.977, p = 0.037) in LUAD, but not in LUSC. Coexpression genes related to FGF5 were explored and potential pathways were investigated for further research. FGF5 is a tumor-associated gene that upregulated in lung cancer tissues, and could be an independent prognostic factor that have potential value for further research.
Collapse
Affiliation(s)
- Teng Zhao
- Department of Thoracic Surgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Kun Qian
- Department of Thoracic Surgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Yi Zhang
- Department of Thoracic Surgery, Xuanwu Hospital Capital Medical University, Beijing, China
| |
Collapse
|
34
|
FGF5 methylation is a sensitivity marker of esophageal squamous cell carcinoma to definitive chemoradiotherapy. Sci Rep 2019; 9:13347. [PMID: 31527639 PMCID: PMC6746740 DOI: 10.1038/s41598-019-50005-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/04/2019] [Indexed: 12/13/2022] Open
Abstract
Definitive chemoradiotherapy (dCRT) is the major treatment for esophageal squamous cell carcinoma (ESCC), and prediction of the response to dCRT is important so as not to miss an opportunity to cure an ESCC. Nevertheless, few validated markers are available. Here, we aimed to identify a highly reproducible marker using multi-layer omics analysis. 117 ESCC samples from 67 responders and 50 non-responders were divided into screening, validation, and re-validation sets. In the screening cohort (n = 41), somatic mutations in 114 genes showed no association with dCRT response. Genome-wide DNA methylation analysis using Infinium HumanMethylation450 BeadChip array identified four genic regions significantly associated with dCRT response. Among them, FGF5 methylation was validated to be associated with dCRT response (n = 34; P = 0.001), and further re-validated (n = 42; P = 0.020) by bisulfite-pyrosequencing. The sensitivity and specificity in the combined validation and re-validation sets (n = 76) were 45% and 90%, respectively, by using the cut-off value established in the screening set, and FGF5 methylation had predictive power independent from clinicopathological parameters. In ESCC cell lines, FGF5 promoter methylation repressed its expression. FGF5 expression was induced by cisplatin (CDDP) treatment in three unmethylated cell lines, but not in two methylated cell lines. Exogenous FGF5 overexpression in a cell line with its methylation conferred resistance to CDDP. In non-cancerous esophageal tissues, FGF5 was not expressed, and its methylation was present in a small fraction of cells. These results showed that FGF5 methylation is a validated marker for ESCC sensitivity to dCRT.
Collapse
|
35
|
Transcriptome analysis reveals the molecular mechanisms of combined gamma-tocotrienol and hydroxychavicol in preventing the proliferation of 1321N1, SW1783, and LN18 glioma cancer cells. J Physiol Biochem 2019; 75:499-517. [DOI: 10.1007/s13105-019-00699-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 07/31/2019] [Indexed: 12/31/2022]
|
36
|
Han D, Wang M, Yu Z, Yin L, Liu C, Wang J, Liu Y, Jiang S, Ren Z, Yin J. FGF5 promotes osteosarcoma cells proliferation via activating MAPK signaling pathway. Cancer Manag Res 2019; 11:6457-6466. [PMID: 31372048 PMCID: PMC6628182 DOI: 10.2147/cmar.s200234] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/12/2019] [Indexed: 11/23/2022] Open
Abstract
Objective: This study aimed to investigate the role of fibroblast growth factor-5 (FGF5) in osteosarcoma (OS) and explore the potential mechanisms. Methods: OS gene expression data was downloaded from the Gene Expression Omnibus (GEO; GSE12865) and analyzed by R software. OS tissues and cell lines were collected. The expression level of FGF5 in tumor tissues and cell lines was detected using qRT-PCR. Knockout of FGF5 was performed using CRISPR/Cas9 system. The effects of FGF5 knockout on OS cell proliferation and tumor growth were determined through cell counting kit-8 assay and xenograft nude mice, respectively. Additionally, recombinant FGF5 (rFGF5) was added into OS cell and the effects of rFGF5 on the proliferation and apoptosis of OS cell lines were assayed. Furthermore, the protein expression levels of mitogen-activated protein kinase (MAPK) signaling pathway were detected through Western blot. Results: FGF5 was significantly upregulated in OS tissues and cells, and closely associated with poor differentiation, larger tumor size, lymph node metastasis, and advanced TNM stage. FGF5 knockout could inhibit proliferation of OS cells and tumor growth in nude mouse model. Addition of exogenous rFGF5 promoted OS cell proliferation while inhibited OS cell apoptosis. The expression levels of MAPK signaling pathway proteins in FGF5 knockout group were significantly lower than that in control when there was no rFGF5. Additionally, their expression level in rFGF5 addition group was higher than that in without rFGF5 group. Conclusion: We demonstrated for the first time that FGF5 was overexpressed in OS cell lines and clinical tissue samples and promotes OS cell proliferation by activating MAPK signaling pathway, which indicated that FGF5 was a potential therapeutic target for OS.
Collapse
Affiliation(s)
- Dunxin Han
- Department of Spine Surgery, 970 Hospital of the PLA Joint Logistic Support Force, Yantai, Shandong, People's Republic of China
| | - Mingming Wang
- Department of Clinical Laboratory, Qingdao Women and Children's Hospital, Qingdao, People's Republic of China
| | - Zhongkai Yu
- Department of Emergency, Liaocheng People's Hospital, Liaocheng, Shandong, People's Republic of China
| | - Long Yin
- Department of Spine Surgery, 970 Hospital of the PLA Joint Logistic Support Force, Yantai, Shandong, People's Republic of China
| | - Changli Liu
- Department of Spine Surgery, 970 Hospital of the PLA Joint Logistic Support Force, Yantai, Shandong, People's Republic of China
| | - Jianmin Wang
- Department of Spine Surgery, 970 Hospital of the PLA Joint Logistic Support Force, Yantai, Shandong, People's Republic of China
| | - Yongjun Liu
- Department of Spine Surgery, 970 Hospital of the PLA Joint Logistic Support Force, Yantai, Shandong, People's Republic of China
| | - Shengyang Jiang
- Department of Spine Surgery, 970 Hospital of the PLA Joint Logistic Support Force, Yantai, Shandong, People's Republic of China
| | - Zhongwu Ren
- Department of Spine Surgery, 970 Hospital of the PLA Joint Logistic Support Force, Yantai, Shandong, People's Republic of China
| | - Jun Yin
- Department of Orthopedics, First People's Hospital of Yancheng, Yancheng, Jiangsu, People's Republic of China
| |
Collapse
|
37
|
He ZH, Lv W, Wang LM, Wang YQ, Hu J. Identification of Genes Associated with Lung Adenocarcinoma Prognosis. Comb Chem High Throughput Screen 2019; 22:220-224. [PMID: 30947660 DOI: 10.2174/1386207322666190404152140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/14/2018] [Accepted: 12/11/2018] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Lung cancer is the most prevalent cancer in the world, and lung adenocarcinoma is the most common lung cancer subtype. Identification and determination of relevant prognostic markers are the key steps to personalized cancer management. METHODS We collected the gene expression profiles from 265 tumor tissues of stage I patients from The Cancer Genome Atlas (TCGA) databases. Using Cox regression model, we evaluated the association between gene expression and the overall survival time of patients adjusting for gender and age at initial pathologic diagnosis. RESULTS Age at initial pathologic diagnosis was identified to be associated with the survival, while gender was not. We identified that 15 genes were significantly associated with overall survival time of patients (FDR < 0.1). The 15-mRNA signature- based risk score was helpful to distinguish patients of high-risk group from patients of low-risk group. CONCLUSION Our findings reveal novel genes associated with lung adenocarcinoma survival and extend our understanding of how gene expression contributes to lung adenocarcinoma survival. These results are helpful for the prediction of the prognosis and personalized cancer management.
Collapse
Affiliation(s)
- Zhe-Hao He
- Department of Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Wang Lv
- Department of Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Lu-Ming Wang
- Department of Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Yi-Qing Wang
- Department of Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Jian Hu
- Department of Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, China
| |
Collapse
|
38
|
Tian R, Yao C, Yang C, Zhu Z, Li C, Zhi E, Wang J, Li P, Chen H, Yuan Q, He Z, Li Z. Fibroblast growth factor-5 promotes spermatogonial stem cell proliferation via ERK and AKT activation. Stem Cell Res Ther 2019; 10:40. [PMID: 30670081 PMCID: PMC6343348 DOI: 10.1186/s13287-019-1139-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/05/2019] [Accepted: 01/07/2019] [Indexed: 12/24/2022] Open
Abstract
Background Sertoli cells are the most important somatic cells contributing to the microenvironment (named niche) for spermatogonial stem cells (SSCs). They produce amounts of crucial growth factors and structure proteins that play essential roles in the complex processes of male SSCs survival, proliferation, and differentiation. It has been suggested that Sertoli cell abnormalities could result in spermatogenesis failure, eventually causing azoospermia in humans. However, to the end, the gene expression characteristics and protein functions of human Sertoli cells remained unknown. In this study, we aimed to evaluate the effect of fibroblast growth factor-5 (FGF5), a novel growth factor downregulated in Sertoli cells from Sertoli cell-only syndrome (SCOS) patients compared to Sertoli cells from obstructive azoospermia (OA) patients, on SSCs. Methods We compared the transcriptome between Sertoli cell from SCOS and OA patients. Then, we evaluated the expression of FGF5, a growth factor which is downregulated in SCOS Sertoli cells, in human primary cultured Sertoli cells and testicular tissue. Also, the proliferation effect of FGF5 in mice SSCs was detected using EDU assay and CCK-8 assay. To investigate the mechanism of FGF5, Phospho Explorer Array was performed. And the results were verified using Western blot assay. Results Using RNA-Seq, we found 308 differentially expressed genes (DEGs) between Sertoli cells from SCOS and OA patients. We noted and verified that the expression of fibroblast growth factor-5 (FGF5) was higher in Sertoli cells of OA patients than that of SCOS patients at both transcriptional and translational levels. Proliferation assays showed that rFGF5 enhanced the proliferation of mouse SSCs line C18-4 in a time- and dose-dependent manner. Moreover, we demonstrated that ERK and AKT were activated and the expression of Cyclin A2 and Cyclin E1 was enhanced by rFGF5. Conclusion The distinct RNA profiles between Sertoli cells from SCOS and OA patients were identified using RNA-Seq. Also, FGF5, a growth factor that downregulated in SCOS Sertoli cells, could promote SSCs proliferation via ERK and AKT activation.
Collapse
Affiliation(s)
- Ruhui Tian
- Department of Andrology, the Center for Men's Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Chencheng Yao
- Department of Andrology, the Center for Men's Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Chao Yang
- Department of Andrology, the Center for Men's Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Zijue Zhu
- Department of Andrology, the Center for Men's Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Chong Li
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, 250 Bibo Road, Shanghai, 201203, China
| | - Erlei Zhi
- Department of Andrology, the Center for Men's Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Junlong Wang
- Department of Andrology, the Center for Men's Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Peng Li
- Department of Andrology, the Center for Men's Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Huixing Chen
- Department of Andrology, the Center for Men's Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Qingqing Yuan
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Lingshan Road, Shanghai, 200135, China
| | - Zuping He
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China.
| | - Zheng Li
- Department of Andrology, the Center for Men's Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China.
| |
Collapse
|
39
|
Hu G, Zhang Y, Ouyang K, Xie F, Fang H, Yang X, Liu K, Wang Z, Tang X, Liu J, Yang L, Jiang Z, Tao W, Zhou H, Zhang L. In vivo acquired sorafenib-resistant patient-derived tumor model displays alternative angiogenic pathways, multi-drug resistance and chromosome instability. Oncol Lett 2018; 16:3439-3446. [PMID: 30127946 PMCID: PMC6096179 DOI: 10.3892/ol.2018.9078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 09/28/2017] [Indexed: 02/06/2023] Open
Abstract
Acquired resistance to targeted therapies is an important clinical challenge. Research focusing on acquired resistance is hindered by the lack of relevant model systems. In the present study, the generation and characterization of an in vivo acquired sorafenib-resistant hepatocellular carcinoma (HCC) xenograft model derived from a patient tumor is reported. A cancer cell line (LIXC-004SR) was generated from a tumor that had developed following ~100 days of sorafenib treatment of a HCC patient-derived xenograft (PDX) model (LIX004). The xenograft tumors derived from this cell line demonstrated sorafenib-resistance in vivo. By contrast, a cell line (LIXC-004NA) generated from a vehicle-treated LIX004 PDX model remained sensitive to sorafenib in vivo. Following treatment with sorafenib in vivo, angiogenesis was significantly elevated in the LIXC-004SR tumors when compared with that in the LIXC-004NA tumors. The LIXC-004SR cell culture supernatant stimulated human umbilical vein endothelial cell proliferation and extracellular-signal-regulated kinase and protein kinase B phosphorylation, which can only be inhibited by the combination of sorafenib and a fibroblast growth factor receptor 1 (FGFR1) inhibitor, AZD4547. The tumor growth of the sorafenib-resistant LIXC-004SR xenograft was inhibited by the FGFR1 inhibitor in vivo, suggesting that one of the underlying mechanisms of the acquired resistance is likely due to activation of alternative angiogenic pathways. The LIXC-004SR cell line also exhibited signs of multi-drug resistance and genetic instability. Taken together, these data suggest that this in vivo model of acquired resistance from a PDX model may reflect sorafenib-resistance in certain patients and may facilitate drug resistance research, as well as contributing to the clinical prevention and management of drug resistance.
Collapse
Affiliation(s)
- Gang Hu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China.,Shanghai ChemPartner Co., Ltd., Shanghai 201203, P.R. China.,Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai 201203, P.R. China.,ClinicalExplorer (Shanghai) Co., Ltd., Shanghai 201203, P.R. China
| | - Yixin Zhang
- Department of Surgery, Nantong Cancer Hospital, Nantong, Jiangsu 226361, P.R. China
| | - Kedong Ouyang
- Shanghai ChemPartner Co., Ltd., Shanghai 201203, P.R. China
| | - Fubo Xie
- Shanghai ChemPartner Co., Ltd., Shanghai 201203, P.R. China.,Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai 201203, P.R. China
| | - Houshun Fang
- Shanghai ChemPartner Co., Ltd., Shanghai 201203, P.R. China
| | - Xueyang Yang
- Shanghai ChemPartner Co., Ltd., Shanghai 201203, P.R. China
| | - Kunyan Liu
- Shanghai ChemPartner Co., Ltd., Shanghai 201203, P.R. China.,Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai 201203, P.R. China.,ClinicalExplorer (Shanghai) Co., Ltd., Shanghai 201203, P.R. China
| | - Zongyu Wang
- Shanghai ChemPartner Co., Ltd., Shanghai 201203, P.R. China.,Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai 201203, P.R. China
| | - Xuzhen Tang
- Shanghai ChemPartner Co., Ltd., Shanghai 201203, P.R. China
| | - Jibin Liu
- Department of Surgery, Nantong Cancer Hospital, Nantong, Jiangsu 226361, P.R. China
| | - Lei Yang
- Department of Surgery, Nantong Cancer Hospital, Nantong, Jiangsu 226361, P.R. China
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Weikang Tao
- Shanghai ChemPartner Co., Ltd., Shanghai 201203, P.R. China
| | - He Zhou
- Shanghai ChemPartner Co., Ltd., Shanghai 201203, P.R. China.,Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai 201203, P.R. China
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
40
|
Soluble E-cadherin promotes tumor angiogenesis and localizes to exosome surface. Nat Commun 2018; 9:2270. [PMID: 29891938 PMCID: PMC5995921 DOI: 10.1038/s41467-018-04695-7] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/18/2018] [Indexed: 02/08/2023] Open
Abstract
The limitations of current anti-angiogenic therapies necessitate other targets with complimentary mechanisms. Here, we show for the first time that soluble E-cadherin (sE-cad) (an 80-kDa soluble form), which is highly expressed in the malignant ascites of ovarian cancer patients, is a potent inducer of angiogenesis. In addition to ectodomain shedding, we provide further evidence that sE-cad is abundantly released in the form of exosomes. Mechanistically, sE-cad-positive exosomes heterodimerize with VE-cadherin on endothelial cells and transduce a novel sequential activation of β-catenin and NFκB signaling. In vivo and clinical data prove the relevance of sE-cad-positive exosomes for malignant ascites formation and widespread peritoneal dissemination. These data advance our understanding of the molecular regulation of angiogenesis in ovarian cancer and support the therapeutic potential of targeting sE-cad. The exosomal release of sE-cad, which represents a common route for externalization in ovarian cancer, could potentially be biomarkers for diagnosis and prognosis. A soluble form E-cadherin is highly expressed in ovarian cancer. Here, the authors show that soluble E-cadherin is released by ovarian cancer cells packaged in exosomes and promotes tumor angiogenesis through β-catenin and NFkB signaling activation.
Collapse
|
41
|
Identification of tumorigenesis-related mRNAs associated with RNA-binding protein HuR in thyroid cancer cells. Oncotarget 2018; 7:63388-63407. [PMID: 27542231 PMCID: PMC5325372 DOI: 10.18632/oncotarget.11255] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 07/26/2016] [Indexed: 12/23/2022] Open
Abstract
RNA binding proteins (RBPs) play a central role in cell physiology and pathology. Among them, HuR is a nuclear RBP, which shuttles to the cytoplasm to allow its RNA targets processing. HuR over-expression and delocalization are often associated to cell transformation. Numerous cancers display increased HuR protein levels and its high cytoplasmic levels has been associated with a worse prognosis. In our study, we first evaluated HuR expression in normal and cancer thyroid tissues and then evaluated its function in thyroid cell lines. HuR is over-expressed in all thyroid tumor tissues; high cytoplasmic levels are detected in all thyroid carcinomas. HuR silencing decreased cell viability and determined apoptotic cell death, in a non-tumorigenic (Nthy-ori-3.1) and a tumorigenic (BCPAP) thyroid cell line. Global transcriptome analysis indicated that HuR silencing, though having similar biological effects, induces distinct gene expression modifications in the two cell lines. By using the RIP-seq approach, the HuR-bound RNA profiles of different thyroid cell lines were evaluated. We show that in distinct cell lines HuR-bound RNA profiles are different. A set of 114 HuR-bound RNAs distinguishing tumorigenic cell lines from the non-tumorigenic one was identified. Altogether, our data indicate that HuR plays a role in thyroid tumorigenesis. Moreover, our findings are a proof of concept that RBP targets differ between cells with the same origin but with distinct biological behavior.
Collapse
|
42
|
Liu D, Zhang C, Li X, Zhang H, Pang Q, Wan A. MicroRNA-567 inhibits cell proliferation, migration and invasion by targeting FGF5 in osteosarcoma. EXCLI JOURNAL 2018; 17:102-112. [PMID: 29743851 PMCID: PMC5938541 DOI: 10.17179/excli2017-932] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/19/2017] [Indexed: 01/18/2023]
Abstract
MicroRNAs (miRNAs) have been widely reported to have important regulatory roles in various human tumors, including osteosarcoma (OS). The aim of this study was to focus on the role of less well-known miRNA-567 (miR-567) in OS. We found the expression of miR-567 was significantly reduced in OS tissues and cell lines (MG-63, U2OS and Saos-2) compared with the adjacent normal tissues and normal osteoblastic cells (hFOB), respectively. Moreover, exogenous miR-567 overexpression inhibited OS cell proliferation, migration and invasion by CCK-8, Transwell assays, respectively. We further explored the mechanism underlying the suppressive effects of miR-567 on OS cells and identified a potential target of miR-567 binds to the 3'UTR of fibroblast growth factor 5 (FGF5) using TargetScan program. Furthermore, enforced expression of miR-567 decreased the expression of FGF5 in both MG-63 and U2OS cells using luciferase reporter assay and Western blotting. We also showed that overexpression of FGF5 could partially antagonize the suppressive effects of miR-567 on OS cell proliferation, migration and invasion. Taken together, our data indicated that miR-567 may function as a tumor suppressor by negatively regulating FGF5 and be potential therapeutic targets for the treatment of OS.
Collapse
Affiliation(s)
- Daodong Liu
- Department of Orthopaedics, Jingzhou Hospital of Traditional Chinese Medicine, The Third Clinical College of Yangtze University, Hubei, China
| | - Chaoju Zhang
- Department of Orthopaedics, Jingzhou Hospital of Traditional Chinese Medicine, The Third Clinical College of Yangtze University, Hubei, China
| | - Xiaolin Li
- Department of Orthopaedics, Medical School of Yangtze University, Hubei, China
| | - Hongmei Zhang
- Department of Orthopaedics, Wangjing Hospital of China Academy Chinese Medical Science, Beijing, China
| | - Qixiong Pang
- Department of Orthopaedics, Jingzhou Hospital of Traditional Chinese Medicine, The Third Clinical College of Yangtze University, Hubei, China
| | - An Wan
- Department of Orthopaedics, Jingzhou Hospital of Traditional Chinese Medicine, The Third Clinical College of Yangtze University, Hubei, China
| |
Collapse
|
43
|
Targeting cellular pathways in glioblastoma multiforme. Signal Transduct Target Ther 2017; 2:17040. [PMID: 29263927 PMCID: PMC5661637 DOI: 10.1038/sigtrans.2017.40] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/31/2017] [Accepted: 06/13/2017] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a debilitating disease that is associated with poor prognosis, short median patient survival and a very limited response to therapies. GBM has a very complex pathogenesis that involves mutations and alterations of several key cellular pathways that are involved in cell proliferation, survival, migration and angiogenesis. Therefore, efforts that are directed toward better understanding of GBM pathogenesis are essential to the development of efficient therapies that provide hope and extent patient survival. In this review, we outline the alterations commonly associated with GBM pathogenesis and summarize therapeutic strategies that are aimed at targeting aberrant cellular pathways in GBM.
Collapse
|
44
|
FGF5 is expressed in melanoma and enhances malignancy in vitro and in vivo. Oncotarget 2017; 8:87750-87762. [PMID: 29152117 PMCID: PMC5675669 DOI: 10.18632/oncotarget.21184] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 08/17/2017] [Indexed: 11/25/2022] Open
Abstract
Although FGF5 mRNA was previously found expressed in some melanoma cell lines in contrast to normal human melanocytes, neither its contribution to melanoma growth nor its expression in melanoma tissue has been investigated. Here we demonstrate that ectopic overexpression of FGF5 in human melanoma cells with low endogenous FGF5 expression increased clonogenicity and invasion but not short-term growth in vitro. Silencing of FGF5 in melanoma cells with high endogenous FGF5 expression had the opposite effect on clonogenicity. FGF overexpression led to increased signaling along the MAPK and NFAT axis but had no effect on STAT3 signaling. In an in vivo experiment in immunocompromised mice, human melanoma xenografts overexpressing FGF5 showed enhanced tumor growth, a higher Ki-67 proliferation index, decreased apoptosis and enhanced angiogenesis. Immunohistochemistry performed on a tissue microarray demonstrated FGF5 protein expression in more than 50% of samples of melanoma and benign nevi. These data suggest that FGF5 has oncogenic potential in melanoma cells and contributes to melanoma growth in a subset of patients. This highlights the importance of further evaluating FGF5 as potential biomarker and therapy target in melanoma.
Collapse
|
45
|
Liu N, Irvin MR, Zhi D, Patki A, Beasley TM, Nickerson DA, Hill CE, Chen J, Kimmel SE, Limdi NA. Influence of common and rare genetic variation on warfarin dose among African-Americans and European-Americans using the exome array. Pharmacogenomics 2017; 18:1059-1073. [PMID: 28686080 DOI: 10.2217/pgs-2017-0046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
AIM We conducted a genome-wide association study using the Illumina Exome Array to identify coding SNPs that may explain additional warfarin dose variability. PATIENTS & METHODS Analysis was performed after adjustment for clinical variables and genetic factors known to influence warfarin dose among 1680 warfarin users (838 European-Americans and 842 African-Americans). Replication was performed in an independent sample. RESULTS We confirmed the influence of known genetic variants on warfarin dose variability. Our study is the first to show the association between rs12772169 and warfarin dose in African-Americans. In addition, genes COX15 and FGF5 showed significant association in European-Americans. CONCLUSION We identified some novel genes/SNPs that underpin warfarin dose response. Further replication is needed to confirm our findings.
Collapse
Affiliation(s)
- Nianjun Liu
- Department of Epidemiology & Biostatistics, School of Public Health - Bloomington, Indiana University, Bloomington, IN 47405, USA
| | - Marguerite R Irvin
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Degui Zhi
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Amit Patki
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - T Mark Beasley
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Deborah A Nickerson
- Department of Genome Sciences, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Charles E Hill
- Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jinbo Chen
- Department of Biostatistics & Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen E Kimmel
- Department of Biostatistics & Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nita A Limdi
- Department of Neurology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
46
|
Lowdon RF, Wang T. Epigenomic annotation of noncoding mutations identifies mutated pathways in primary liver cancer. PLoS One 2017; 12:e0174032. [PMID: 28333948 PMCID: PMC5363827 DOI: 10.1371/journal.pone.0174032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/02/2017] [Indexed: 11/19/2022] Open
Abstract
Evidence that noncoding mutation can result in cancer driver events is mounting. However, it is more difficult to assign molecular biological consequences to noncoding mutations than to coding mutations, and a typical cancer genome contains many more noncoding mutations than protein-coding mutations. Accordingly, parsing functional noncoding mutation signal from noise remains an important challenge. Here we use an empirical approach to identify putatively functional noncoding somatic single nucleotide variants (SNVs) from liver cancer genomes. Annotation of candidate variants by publicly available epigenome datasets finds that 40.5% of SNVs fall in regulatory elements. When assigned to specific regulatory elements, we find that the distribution of regulatory element mutation mirrors that of nonsynonymous coding mutation, where few regulatory elements are recurrently mutated in a patient population but many are singly mutated. We find potential gain-of-binding site events among candidate SNVs, suggesting a mechanism of action for these variants. When aggregating noncoding somatic mutation in promoters, we find that genes in the ERBB signaling and MAPK signaling pathways are significantly enriched for promoter mutations. Altogether, our results suggest that functional somatic SNVs in cancer are sporadic, but occasionally occur in regulatory elements and may affect phenotype by creating binding sites for transcriptional regulators. Accordingly, we propose that noncoding mutation should be formally accounted for when determining gene- and pathway-mutation burden in cancer.
Collapse
Affiliation(s)
- Rebecca F. Lowdon
- Center for Genome Sciences and Systems Biology, Department of Genetics, Washington University in St. Louis, Saint Louis, Missouri, United States of America
| | - Ting Wang
- Center for Genome Sciences and Systems Biology, Department of Genetics, Washington University in St. Louis, Saint Louis, Missouri, United States of America
| |
Collapse
|
47
|
Therapeutics Targeting FGF Signaling Network in Human Diseases. Trends Pharmacol Sci 2016; 37:1081-1096. [DOI: 10.1016/j.tips.2016.10.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/06/2016] [Accepted: 10/06/2016] [Indexed: 12/14/2022]
|
48
|
Park GC, Song JS, Park HY, Shin SC, Jang JY, Lee JC, Wang SG, Lee BJ, Jung JS. Role of Fibroblast Growth Factor-5 on the Proliferation of Human Tonsil-Derived Mesenchymal Stem Cells. Stem Cells Dev 2016; 25:1149-60. [PMID: 27224250 DOI: 10.1089/scd.2016.0061] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Human mesenchymal stem cells (MSCs) are a promising tool for therapeutic applications in cell-based therapy and regenerative medicine, and MSCs from the human palatine tonsils have recently been used as a new tissue source. However, the understanding of the proliferation and differentiation capacity of tonsil-derived MSCs (T-MSCs) is limited. In this study, we compared the proliferative potential of T-MSCs with those of bone marrow MSCs (BM-MSCs) and adipose tissue-derived MSCs (A-MSCs). Additionally, we investigated the underlying mechanism of T-MSC function. We showed that T-MSCs proliferated faster than A-MSCs and BM-MSCs in methylthiazolyl diphenyl-tetrazolium (MTT) assays, cell count assays, and cell cycle distribution analyses. DNA microarray and real-time PCR analyses revealed that the expression of fibroblast growth factor-5 (FGF5) was significantly elevated in T-MSCs compared with those in A-MSCs and BM-MSCs. Cell growth curves showed a difference in cell growth between untreated cells and siFGF5-treated T-MSCs. The administration of recombinant human FGF5 (rhFGF5) to the cells transfected with siFGF5 led to a significant increase in the proliferation rates. The administration of rhFGF5 to T-MSCs led to an increase in the levels of phosphorylated ERK1/2. However, treatment with siFGF5 resulted in an overall decrease in the level of phosphorylated ERK1/2. The osteogenic differentiation of T-MSCs was reduced following siFGF5 transfection, and it recovered to near-normal levels when rhFGF5 was added. These findings indicate that T-MSCs show significantly higher proliferative potential compared with those of BM-MSCs and A-MSCs. FGF5 facilitates cell proliferation through ERK1/2 activation, and it influences the osteogenic differentiation of T-MSCs.
Collapse
Affiliation(s)
- Gi Cheol Park
- 1 Department of Otolaryngology-Head and Neck Surgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine , Changwon, Korea
| | - Ji Sun Song
- 2 Department of Otorhinolaryngology-Head and Neck Surgery, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University , Busan, Korea
| | - Hee-Young Park
- 2 Department of Otorhinolaryngology-Head and Neck Surgery, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University , Busan, Korea
| | - Sung-Chan Shin
- 2 Department of Otorhinolaryngology-Head and Neck Surgery, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University , Busan, Korea
| | - Jeon Yeob Jang
- 2 Department of Otorhinolaryngology-Head and Neck Surgery, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University , Busan, Korea
| | - Jin-Choon Lee
- 3 Department of Otorhinolaryngology-Head and Neck Surgery, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University , Yangsan Hospital, Yangsan, Korea
| | - Soo-Geun Wang
- 2 Department of Otorhinolaryngology-Head and Neck Surgery, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University , Busan, Korea
| | - Byung-Joo Lee
- 2 Department of Otorhinolaryngology-Head and Neck Surgery, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University , Busan, Korea
| | - Jin-Sup Jung
- 4 Department of Physiology, School of Medicine, Pusan National University , Yangsan, Korea
| |
Collapse
|
49
|
Künstlinger H, Fassunke J, Schildhaus HU, Brors B, Heydt C, Ihle MA, Mechtersheimer G, Wardelmann E, Büttner R, Merkelbach-Bruse S. FGFR2 is overexpressed in myxoid liposarcoma and inhibition of FGFR signaling impairs tumor growth in vitro. Oncotarget 2016; 6:20215-30. [PMID: 26036639 PMCID: PMC4652999 DOI: 10.18632/oncotarget.4046] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 04/22/2015] [Indexed: 01/14/2023] Open
Abstract
Myxoid liposarcomas account for more than one third of liposarcomas and about 10% of all adult soft tissue sarcomas. The tumors are characterized by specific chromosomal translocations leading to the chimeric oncogenes FUS-DDIT3 or EWS1R-DDIT3. The encoded fusion proteins act as aberrant transcription factors. Therefore, we implemented comparative expression analyses using whole-genome microarrays in tumor and fat tissue samples. We aimed at identifying differentially expressed genes which may serve as diagnostic or prognostic biomarkers or as therapeutic targets. Microarray analyses revealed overexpression of FGFR2 and other members of the FGF/FGFR family. Overexpression of FGFR2 was validated by qPCR, immunohistochemistry and western blot analysis in primary tumor samples. Treatment of the myxoid liposarcoma cell lines MLS 402 and MLS 1765 with the FGFR inhibitors PD173074, TKI258 (dovitinib) and BGJ398 as well as specific siRNAs reduced cell proliferation, induced apoptosis and delayed cell migration. Combination of FGFR inhibitors with trabectedin further increased the effect. Our study demonstrates overexpression of FGFR2 and a functional role of FGFR signaling in myxoid liposarcoma. As FGFR inhibition showed effects on proliferation and cell migration and induced apoptosis in vitro, our data indicate the potential use of FGFR inhibitors as a targeted therapy for these tumors.
Collapse
Affiliation(s)
- Helen Künstlinger
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Jana Fassunke
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | | | - Benedikt Brors
- Computational Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carina Heydt
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | | | | | - Eva Wardelmann
- Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Reinhard Büttner
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | | |
Collapse
|
50
|
Fang F, Chang RM, Yu L, Lei X, Xiao S, Yang H, Yang LY. MicroRNA-188-5p suppresses tumor cell proliferation and metastasis by directly targeting FGF5 in hepatocellular carcinoma. J Hepatol 2015; 63:874-85. [PMID: 25998163 DOI: 10.1016/j.jhep.2015.05.008] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 04/26/2015] [Accepted: 05/11/2015] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. However, the detailed molecular mechanisms underlying HCC progression are still not completely clear. Given the crucial role of microRNAs (miRNAs) in cancer metastasis, we aimed to analyze the expression and function of a metastasis-associated miRNA named miR-188-5p in HCC. METHODS miRNA array analysis was performed to search for metastasis-associated miRNAs in HCC. miR-188-5p expressions in tumor tissues and adjacent non-tumorous liver tissues of HCC patients and cell lines were evaluated by real-time PCR. The protein expression levels were analyzed by Western blot and immunohistochemistry. Luciferase reporter assays was used to validate the target of miR-188-5p. The effect of miR-188-5p on HCC progression was studied in vitro and in vivo. RESULTS miR-188-5p was significantly decreased in HCC and its expression levels were highly correlated with multiple nodules, microvascular invasion, overall and disease-free survival of HCC. Ectopic expression of miR-188-5p suppressed HCC cell proliferation and metastasis in vitro and in vivo. Fibroblast growth factor 5 (FGF5) was identified as a major target of miR-188-5p. Enforced expression of miR-188-5p inhibited the expression of FGF5 significantly and the restoration of FGF5 expression reversed the inhibitory effects of miR-188-5p on HCC cell proliferation and metastasis. CONCLUSIONS These findings collectively demonstrate a tumor suppressor role of miR-188-5p in HCC progression via targeting FGF5, suggesting that miR-188-5p could serve as a potential prognostic biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Feng Fang
- Liver Cancer Laboratory, Department of Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Rui-min Chang
- Liver Cancer Laboratory, Department of Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lei Yu
- Liver Cancer Laboratory, Department of Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiong Lei
- Liver Cancer Laboratory, Department of Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuai Xiao
- Liver Cancer Laboratory, Department of Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Yang
- Liver Cancer Laboratory, Department of Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lian-Yue Yang
- Liver Cancer Laboratory, Department of Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|