1
|
Perotti D, Williams RD, Wegert J, Brzezinski J, Maschietto M, Ciceri S, Gisselsson D, Gadd S, Walz AL, Furtwaengler R, Drost J, Al-Saadi R, Evageliou N, Gooskens SL, Hong AL, Murphy AJ, Ortiz MV, O'Sullivan MJ, Mullen EA, van den Heuvel-Eibrink MM, Fernandez CV, Graf N, Grundy PE, Geller JI, Dome JS, Perlman EJ, Gessler M, Huff V, Pritchard-Jones K. Hallmark discoveries in the biology of Wilms tumour. Nat Rev Urol 2024; 21:158-180. [PMID: 37848532 DOI: 10.1038/s41585-023-00824-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2023] [Indexed: 10/19/2023]
Abstract
The modern study of Wilms tumour was prompted nearly 50 years ago, when Alfred Knudson proposed the 'two-hit' model of tumour development. Since then, the efforts of researchers worldwide have substantially expanded our knowledge of Wilms tumour biology, including major advances in genetics - from cloning the first Wilms tumour gene to high-throughput studies that have revealed the genetic landscape of this tumour. These discoveries improve understanding of the embryonal origin of Wilms tumour, familial occurrences and associated syndromic conditions. Many efforts have been made to find and clinically apply prognostic biomarkers to Wilms tumour, for which outcomes are generally favourable, but treatment of some affected individuals remains challenging. Challenges are also posed by the intratumoural heterogeneity of biomarkers. Furthermore, preclinical models of Wilms tumour, from cell lines to organoid cultures, have evolved. Despite these many achievements, much still remains to be discovered: further molecular understanding of relapse in Wilms tumour and of the multiple origins of bilateral Wilms tumour are two examples of areas under active investigation. International collaboration, especially when large tumour series are required to obtain robust data, will help to answer some of the remaining unresolved questions.
Collapse
Affiliation(s)
- Daniela Perotti
- Predictive Medicine: Molecular Bases of Genetic Risk, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | - Richard D Williams
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Section of Genetics and Genomics, Faculty of Medicine, Imperial College London, London, UK
| | - Jenny Wegert
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Wuerzburg University, Wuerzburg, Germany
| | - Jack Brzezinski
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Mariana Maschietto
- Research Center, Boldrini Children's Hospital, Campinas, São Paulo, Brazil
| | - Sara Ciceri
- Predictive Medicine: Molecular Bases of Genetic Risk, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - David Gisselsson
- Cancer Cell Evolution Unit, Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Clinical Genetics, Pathology and Molecular Diagnostics, Office of Medical Services, Skåne, Sweden
| | - Samantha Gadd
- Department of Pathology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Amy L Walz
- Division of Hematology,Oncology, Neuro-Oncology, and Stem Cell Transplant, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Rhoikos Furtwaengler
- Division of Pediatric Oncology and Hematology, Department of Pediatrics, Inselspital Bern University, Bern, Switzerland
| | - Jarno Drost
- Princess Máxima Center for Paediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Reem Al-Saadi
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Histopathology, Great Ormond Street Hospital for Children, London, UK
| | - Nicholas Evageliou
- Divisions of Hematology and Oncology, Children's Hospital of Philadelphia, CHOP Specialty Care Center, Vorhees, NJ, USA
| | - Saskia L Gooskens
- Princess Máxima Center for Paediatric Oncology, Utrecht, Netherlands
| | - Andrew L Hong
- Aflac Cancer and Blood Disorders Center, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Andrew J Murphy
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael V Ortiz
- Department of Paediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maureen J O'Sullivan
- Histology Laboratory, Children's Health Ireland at Crumlin, Dublin, Ireland
- Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland
| | - Elizabeth A Mullen
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | | | - Conrad V Fernandez
- Division of Paediatric Hematology Oncology, IWK Health Centre and Dalhousie University, Halifax, Nova Scotia, Canada
| | - Norbert Graf
- Department of Paediatric Oncology and Hematology, Saarland University Hospital, Homburg, Germany
| | - Paul E Grundy
- Department of Paediatrics Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - James I Geller
- Division of Oncology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Jeffrey S Dome
- Division of Oncology, Center for Cancer and Blood Disorders, Children's National Hospital and the Department of Paediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Elizabeth J Perlman
- Department of Pathology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Manfred Gessler
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Wuerzburg University, Wuerzburg, Germany
- Comprehensive Cancer Center Mainfranken, Wuerzburg, Germany
| | - Vicki Huff
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kathy Pritchard-Jones
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
2
|
Su X, Lu X, Bazai SK, Dainese L, Verschuur A, Dumont B, Mouawad R, Xu L, Cheng W, Yan F, Irtan S, Lindner V, Paillard C, Le Bouc Y, Coulomb A, Malouf GG. Delineating the interplay between oncogenic pathways and immunity in anaplastic Wilms tumors. Nat Commun 2023; 14:7884. [PMID: 38036539 PMCID: PMC10689851 DOI: 10.1038/s41467-023-43290-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
Wilms tumors are highly curable in up to 90% of cases with a combination of surgery and radio-chemotherapy, but treatment-resistant types such as diffuse anaplastic Wilms tumors pose significant therapeutic challenges. Our multi-omics profiling unveils a distinct desert-like diffuse anaplastic Wilms tumor subtype marked by immune/stromal cell depletion, TP53 alterations, and cGAS-STING pathway downregulation, accounting for one-third of all diffuse anaplastic cases. This subtype, also characterized by reduced CD8 and CD3 infiltration and active oncogenic pathways involving histone deacetylase and DNA repair, correlates with poor clinical outcomes. These oncogenic pathways are found to be conserved in anaplastic Wilms tumor cell models. We identify histone deacetylase and/or WEE1 inhibitors as potential therapeutic vulnerabilities in these tumors, which might also restore tumor immunogenicity and potentially enhance the effects of immunotherapy. These insights offer a foundation for predicting outcomes and personalizing treatment strategies for aggressive pediatric Wilms tumors, tailored to individual immunological landscapes.
Collapse
Affiliation(s)
- Xiaoping Su
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaofan Lu
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, Illkirch, France
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Sehrish Khan Bazai
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, Illkirch, France
| | - Linda Dainese
- Department of Pathology, Hôpital Armand Trousseau, Assistance-Publique Hôpitaux de Paris, Sorbonne Université, Paris, France
- UF Tumorothèque HUEP, Hôpital Armand Trousseau, Assistance-Publique Hôpitaux de Paris, Sorbonne Université, Paris, France
- Centre de Recherche Saint-Antoine (CRSA), INSERM, Sorbonne Université, UMR_S .938, Paris, France
| | - Arnauld Verschuur
- Department of Pediatric Oncology, Hôpital d'Enfants de La Timone, F-13005, Marseille, France
| | - Benoit Dumont
- Centre Léon Bérard, Institut d'Hématologie et d'Oncologie Pédiatrique (IHOPe), Lyon, France
| | - Roger Mouawad
- Department of Medical Oncology, Groupe Hospitalier Pitié-Salpêtrière, Assistance-Publique Hôpitaux de Paris, Paris, France
| | - Li Xu
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wenxuan Cheng
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Fangrong Yan
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Sabine Irtan
- Department of Pediaric Surgery, AP-HP, Hôpital Armand Trousseau, Sorbonne Université, Paris, France
| | | | - Catherine Paillard
- Department of Pediatric Onco-hematology, CHRU Strasbourg, Strasbourg Université, Strasbourg, France
| | - Yves Le Bouc
- Centre de Recherche Saint-Antoine (CRSA), INSERM, Sorbonne Université, UMR_S .938, Paris, France
| | - Aurore Coulomb
- Department of Pathology, Hôpital Armand Trousseau, Assistance-Publique Hôpitaux de Paris, Sorbonne Université, Paris, France.
- UF Tumorothèque HUEP, Hôpital Armand Trousseau, Assistance-Publique Hôpitaux de Paris, Sorbonne Université, Paris, France.
- Centre de Recherche Saint-Antoine (CRSA), INSERM, Sorbonne Université, UMR_S .938, Paris, France.
| | - Gabriel G Malouf
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, Illkirch, France.
- Department of Medical Oncology, Institut de Cancérologie de Strasbourg, Strasbourg University, Strasbourg, France.
| |
Collapse
|
3
|
Quarello P, Perotti D, Carli D, Giorgio E, Sirchia F, Brusco A, Ferrero GB, Mussa A, Spadea M, Ciceri S, Spreafico F, Fagioli F. Wilms tumour occurring in a patient with osteopathia striata with cranial sclerosis: A still unsolved biological question. Pediatr Blood Cancer 2021; 68:e29132. [PMID: 34028980 DOI: 10.1002/pbc.29132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Paola Quarello
- Paediatric Onco-Haematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children's Hospital, Turin, Italy.,Department of Public Health and Paediatric Sciences, University of Torino, Turin, Italy
| | - Daniela Perotti
- Molecular Bases of Genetic Risk and Genetic Testing Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Diana Carli
- Paediatric Onco-Haematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children's Hospital, Turin, Italy.,Department of Public Health and Paediatric Sciences, University of Torino, Turin, Italy
| | - Elisa Giorgio
- Department of Medical Sciences, University of Torino, Turin, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy.,IRCCS Mondino Foundation, Pavia, Italy
| | - Fabio Sirchia
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,IRCCS Mondino Foundation, Pavia, Italy.,IRCCS Materno Infantile 'Burlo Garofolo', Trieste, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Turin, Italy.,Medical Genetics Unit, 'Città della Salute e della Scienza' Hospital, Turin, Italy
| | - Giovanni Battista Ferrero
- Department of Clinical and Biological Sciences, School of Medicine, University of Torino, Orbassano, Turin, Italy
| | - Alessandro Mussa
- Department of Public Health and Paediatric Sciences, University of Torino, Turin, Italy.,Pediatric Clinical Genetics Unit, Regina Margherita Children's Hospital, Turin, Italy
| | - Manuela Spadea
- Paediatric Onco-Haematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children's Hospital, Turin, Italy
| | - Sara Ciceri
- Molecular Bases of Genetic Risk and Genetic Testing Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo Spreafico
- Pediatric Oncology Unit, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Franca Fagioli
- Paediatric Onco-Haematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children's Hospital, Turin, Italy.,Department of Public Health and Paediatric Sciences, University of Torino, Turin, Italy
| |
Collapse
|
4
|
Cheng J, Zhuo Z, Yang L, Zhao P, Zhang J, Zhou H, He J, Li P. HMGA2 gene polymorphisms and Wilms tumor susceptibility in Chinese children: a four-center case-control study. Biotechnol Appl Biochem 2020; 67:939-945. [PMID: 31746066 DOI: 10.1002/bab.1857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 11/14/2019] [Indexed: 02/05/2023]
Abstract
Wilms tumor is a kidney malignancy that typically occurs in children. Aberrant expression of HMGA2 gene is commonly seen in many malignant tumors. Yet, HMGA2 gene polymorphisms on Wilms tumor risk are not established. We carried out the first four-center case-control study with 355 patients and 1,070 controls to assess the association of HMGA2 polymorphisms (rs6581658 A>G, rs8756 A>C, and rs968697 T>C) with Wilms tumor risk. All of these three polymorphisms in single could not impact Wilms tumor risk. Stratified analysis revealed a contributing Wilms tumor risk role of rs968697 TC/CC in subgroup of male (TC/CC vs. TT: adjusted odds ratio [OR] = 1.46, 95% confidence interval [CI] = 1.03-2.08, P = 0.035). However, we found that presence of 1-3 protective genotypes were less likely to develop tumor in subgroup of female (adjusted OR = 0.69, 95% CI = 0.48-0.99, P = 0.045). Our findings suggest that HMGA2 gene polymorphisms might influence Wilms tumor predisposition in a weak manner, under certain circumstances.
Collapse
Affiliation(s)
- Jiwen Cheng
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Liu Yang
- Clinical Laboratory Medicine Center of PLA, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Pu Zhao
- Department of Neonatology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Jiao Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haixia Zhou
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Peng Li
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
5
|
Mir-20a-5p induced WTX deficiency promotes gastric cancer progressions through regulating PI3K/AKT signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:212. [PMID: 33032635 PMCID: PMC7545863 DOI: 10.1186/s13046-020-01718-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The X-linked gene WTX (also called AMER1) has been reported to function as a tumour suppressor gene in Wilms' tumour. In our previous study, WTX expression was shown to be significantly reduced in gastric cancer (GC), but the function and mechanism associated with WTX loss had yet to be fully elucidated. METHODS WTX expression and clinical significance were father analyzed in GC and control normal gastric tissues, and validated in public databases. The candidate pathway which was regulated by WTX during GC progression was searched by KEGG pathway analysis. The miRNA which monitored WTX expression was screened by miRNA microarray. After verified the pathway and miRNA both in vitro and in vivo, the relationship of miRNA, WTX and the downstream pathway were analyzed by Western blot, immunohistochemistry, RT-PCR, Co-immunoprecipitation (Co-IP), and luciferase analyses. RESULTS The results showed that WTX serves as a tumour suppressor gene in GC. The loss of WTX which is associated with the aggressiveness of GC by promoting GC cell proliferation in vitro and high metastasis in vivo. Furthermore, WTX expression was positively correlated with the overall survival of GC patients. Microarray assays, bioinformatics analysis, and verification experiments showed that WTX loss activates the PI3K/AKT/mTOR pathway and promotes GC cell proliferation and invasion. And the aberrant miR-20a-5p upregulation contributes to WTX loss in GC, which stimulates PI3K phosphorylation to activate PI3K/AKT/mTOR signaling pathway and promoted GC progression. CONCLUSIONS The results of the present study elucidated the mechanism of GC progression, which is at least partially caused by aberrant miR-20a-5p upregulation leading to the inhibition of WTX expression and PI3K/AKT/mTOR signaling pathway activation. These findings provide a comprehensive understanding of the action of the miR-20a-5p/WTX/PI3K/AKT/mTOR signaling pathway in the progression and metastasis of GC.
Collapse
|
6
|
Große A, Perner B, Naumann U, Englert C. Zebrafish Wtx is a negative regulator of Wnt signaling but is dispensable for embryonic development and organ homeostasis. Dev Dyn 2019; 248:866-881. [PMID: 31290212 DOI: 10.1002/dvdy.84] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 06/20/2019] [Accepted: 06/28/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The X-chromosomally linked gene WTX is a human disease gene and a member of the AMER family. Mutations in WTX are found in Wilms tumor, a form of pediatric kidney cancer and in patients suffering from OSCS (Osteopathia striata with cranial sclerosis), a sclerosing bone disorder. Functional data suggest WTX to be an inhibitor of the Wnt/β-catenin signaling pathway. Deletion of Wtx in mouse leads to perinatal death, impeding the analysis of its physiological role. RESULTS To gain insights into the function of Wtx in development and homeostasis we have used zebrafish as a model and performed both knockdown and knockout studies using morpholinos and transcription activator-like effector nucleases (TALENs), respectively. Wtx knockdown led to increased Wnt activity and embryonic dorsalization. Also, wtx mutants showed a transient upregulation of Wnt target genes in the context of caudal fin regeneration. Surprisingly, however, wtx as well as wtx/amer2/amer3 triple mutants developed normally, were fertile and did not show any anomalies in organ maintenance. CONCLUSIONS Our data show that members of the zebrafish wtx/amer gene family, while sharing a partially overlapping expression pattern do not compensate for each other. This observation demonstrates a remarkable robustness during development and regeneration in zebrafish.
Collapse
Affiliation(s)
- Andreas Große
- Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | - Birgit Perner
- Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | - Uta Naumann
- Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | - Christoph Englert
- Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany.,Institute of Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
7
|
Zhu GF, Xu YW, Li J, Niu HL, Ma WX, Xu J, Zhou PR, Liu X, Ye DL, Liu XR, Yan T, Zhai WK, Xu ZJ, Liu C, Wang L, Wang H, Luo JM, Liu L, Li XQ, Guo S, Jiang HP, Shen P, Lin HK, Yu DH, Ding YQ, Zhang QL. Mir20a/106a-WTX axis regulates RhoGDIa/CDC42 signaling and colon cancer progression. Nat Commun 2019; 10:112. [PMID: 30631060 PMCID: PMC6328557 DOI: 10.1038/s41467-018-07998-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/12/2018] [Indexed: 02/07/2023] Open
Abstract
Wilms tumor gene on the X chromosome (WTX) is a putative tumor suppressor gene in Wilms tumor, but its expression and functions in other tumors are unclear. Colorectal cancer (CRC) is the third leading cause of cancer-related deaths in women and the second leading cause in men in the United States. We demonstrated that WTX frequently lost in CRC which was highly correlated with cell proliferation, tumor invasion and metastasis. Mechanistically, WTX loss disrupts the interaction between RhoGDIα and CDC42 by losing of the binding with RhoGDIα and triggers the activation of CDC42 and its downstream cascades, which promotes CRC development and liver metastasis. The aberrant upregulation of miR-20a/miR-106a were identified as the reason of WTX loss in CRC both in vivo and in vitro. These study defined the mechanism how miR-20a/miR-106a-mediated WTX loss regulates CRC progression and metastasis, and provided a potential therapeutic target for preventing CRC progression.
Collapse
Affiliation(s)
- Gui-Fang Zhu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Key Laboratory of Molecular Tumor Pathology of Guangdong Province, Guangzhou, GuangDong, 510515, China
| | - Yang-Wei Xu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Key Laboratory of Molecular Tumor Pathology of Guangdong Province, Guangzhou, GuangDong, 510515, China
| | - Jian Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Key Laboratory of Molecular Tumor Pathology of Guangdong Province, Guangzhou, GuangDong, 510515, China
| | - Hui-Lin Niu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Key Laboratory of Molecular Tumor Pathology of Guangdong Province, Guangzhou, GuangDong, 510515, China
| | - Wen-Xia Ma
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Key Laboratory of Molecular Tumor Pathology of Guangdong Province, Guangzhou, GuangDong, 510515, China
| | - Jia Xu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Pei-Rong Zhou
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Nanfang Hospital/First clinical Medical School, Southern Medical University, Guangzhou, GuangDong, 510515, China
| | - Xia Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Key Laboratory of Molecular Tumor Pathology of Guangdong Province, Guangzhou, GuangDong, 510515, China
| | - Dan-Li Ye
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Key Laboratory of Molecular Tumor Pathology of Guangdong Province, Guangzhou, GuangDong, 510515, China
| | - Xiao-Rong Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Key Laboratory of Molecular Tumor Pathology of Guangdong Province, Guangzhou, GuangDong, 510515, China
| | - Tao Yan
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Nanfang Hospital/First clinical Medical School, Southern Medical University, Guangzhou, GuangDong, 510515, China
| | - Wei-Ke Zhai
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Key Laboratory of Molecular Tumor Pathology of Guangdong Province, Guangzhou, GuangDong, 510515, China
| | - Zhi-Jun Xu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Nanfang Hospital/First clinical Medical School, Southern Medical University, Guangzhou, GuangDong, 510515, China
| | - Chun Liu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Nanfang Hospital/First clinical Medical School, Southern Medical University, Guangzhou, GuangDong, 510515, China
| | - Lei Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China
| | - Hao Wang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Nanfang Hospital/First clinical Medical School, Southern Medical University, Guangzhou, GuangDong, 510515, China
| | - Jia-Mao Luo
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China
- Nanfang Hospital/First clinical Medical School, Southern Medical University, Guangzhou, GuangDong, 510515, China
| | - Li Liu
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong, 510515, China
| | - Xuan-Qi Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China
| | - Suiqun Guo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, GuangDong, 510630, China
| | - Hui-Ping Jiang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, GuangDong, 510630, China
| | - Peng Shen
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong, 510515, China
| | - Hui-Kuan Lin
- Cancer Biology Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston-Salem, NC, 27157, USA
| | - Di-Hua Yu
- Department of Molecular & Cellular Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yan-Qing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong, 510515, China.
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China.
- Key Laboratory of Molecular Tumor Pathology of Guangdong Province, Guangzhou, GuangDong, 510515, China.
| | - Qing-Ling Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong, 510515, China.
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GuangDong, 510515, China.
- Key Laboratory of Molecular Tumor Pathology of Guangdong Province, Guangzhou, GuangDong, 510515, China.
| |
Collapse
|
8
|
Ciceri S, Gamba B, Corbetta P, Mondini P, Terenziani M, Catania S, Nantron M, Bianchi M, D'Angelo P, Torri F, Macciardi F, Collini P, Di Martino M, Melchionda F, Di Cataldo A, Spreafico F, Radice P, Perotti D. Genetic and epigenetic analyses guided by high resolution whole-genome SNP array reveals a possible role of CHEK2 in Wilms tumour susceptibility. Oncotarget 2018; 9:34079-34089. [PMID: 30344923 PMCID: PMC6183341 DOI: 10.18632/oncotarget.26123] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/01/2018] [Indexed: 01/25/2023] Open
Abstract
Wilms tumour (WT), the most frequent malignant childhood renal tumour, shows a high degree of genetic and epigenetic heterogeneity. Loss of imprinting on chromosome 11p15 is found in a large fraction of cases and mutations in a few genes, including WT1, CTNNB1, WTX, TP53 and, more recently, SIX1, SIX2 and micro RNA processing genes (miRNAPGs), have been observed. However, these alterations are not sufficient to describe the entire spectrum of genetic defects underlying WT development. We inspected data obtained from a previously performed genome-wide single nucleotide polymorphism (SNP) array analysis on 96 WT samples. By selecting focal regions commonly involved in chromosomal anomalies, we identified genes with a possible role in WT development, based on the prior knowledge of their biological relevance, including MYCN, DIS3L2, MIR562, HACE1, GLI3, CDKN2A and CDKN2B, PALB2, and CHEK2. The MYCN hotspot mutation c.131C>T was detected in seven cases (7.3%). Full sequencing of the remaining genes disclosed 16 rare missense variants and a splicing mutation. Most of these were present at the germline level. Promoter analysis of HACE1, CDKN2A and CDKN2B disclosed partial methylation affecting HACE1 in a consistent fraction of cases (85%). Interestingly, of the four missense variants identified in CHEK2, three were predicted to be deleterious by in silico analyses, while an additional variant was observed to alter mRNA splicing, generating a functionally defective protein. Our study adds additional information on putative WT genes, and adds evidences involving CHEK2 in WT susceptibility.
Collapse
Affiliation(s)
- Sara Ciceri
- Molecular Bases of Genetic Risk and Genetic Testing Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Beatrice Gamba
- Molecular Bases of Genetic Risk and Genetic Testing Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Paola Corbetta
- Molecular Bases of Genetic Risk and Genetic Testing Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Patrizia Mondini
- Molecular Bases of Genetic Risk and Genetic Testing Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Monica Terenziani
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Serena Catania
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Marilina Nantron
- Department of Hematology and Oncology, Istituto G. Gaslini, Genova, Italy
| | - Maurizio Bianchi
- Pediatric Onco-Hematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children's Hospital, Torino, Italy
| | - Paolo D'Angelo
- Pediatric Oncology Unit, A.R.N.A.S. Ospedali Civico, Di Cristina e Benfratelli, Palermo, Italy
| | - Federica Torri
- Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA
| | - Fabio Macciardi
- Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA
| | - Paola Collini
- Soft Tissue and Bone Pathology, Histopathology, and Pediatric Pathology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Martina Di Martino
- Pediatric Oncology Unit, Pediatric Department, II University, Naples, Italy
| | - Fraia Melchionda
- Pediatric Hematology and Oncology Unit, Bologna University, Bologna, Italy
| | - Andrea Di Cataldo
- Pediatric Hematology and Oncology Unit, Catania University, Catania, Italy
| | - Filippo Spreafico
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Paolo Radice
- Molecular Bases of Genetic Risk and Genetic Testing Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Daniela Perotti
- Molecular Bases of Genetic Risk and Genetic Testing Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | | |
Collapse
|
9
|
Boutet A, Comai G, Charlet A, Jian Motamedi F, Dhib H, Bandiera R, Schedl A. A knock-in mouse line conditionally expressing the tumor suppressor WTX/AMER1. Genesis 2017; 55. [PMID: 28960679 DOI: 10.1002/dvg.23074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/13/2017] [Accepted: 09/23/2017] [Indexed: 01/02/2023]
Abstract
WTX/AMER1 is an important developmental regulator, mutations in which have been identified in a proportion of patients suffering from the renal neoplasm Wilms' tumor and in the bone malformation syndrome Osteopathia Striata with Cranial Sclerosis (OSCS). Its cellular functions appear complex and the protein can be found at the membrane, within the cytoplasm and the nucleus. To understand its developmental and cellular function an allelic series for Wtx in the mouse is crucial. Whereas mice carrying a conditional knock out allele for Wtx have been previously reported, a gain-of-function mouse model that would allow studying the molecular, cellular and developmental role of Wtx is still missing. Here we describe the generation of a novel mouse strain that permits the conditional activation of WTX expression. Wtx fused to GFP was introduced downstream a stop cassette flanked by loxP sites into the Rosa26 locus by gene targeting. Ectopic WTX expression is reported after crosses with several Cre transgenic mice in different embryonic tissues. Further, functionality of the fusion protein was demonstrated in the context of a Wtx null allele.
Collapse
Affiliation(s)
- Agnès Boutet
- Université Côte d'Azur, Inserm U1091, CNRS UMR 7277, iBV, France
| | - Glenda Comai
- Université Côte d'Azur, Inserm U1091, CNRS UMR 7277, iBV, France
| | - Aurélie Charlet
- Université Côte d'Azur, Inserm U1091, CNRS UMR 7277, iBV, France
| | | | - Haroun Dhib
- Université Côte d'Azur, Inserm U1091, CNRS UMR 7277, iBV, France
| | - Roberto Bandiera
- Université Côte d'Azur, Inserm U1091, CNRS UMR 7277, iBV, France
| | - Andreas Schedl
- Université Côte d'Azur, Inserm U1091, CNRS UMR 7277, iBV, France
| |
Collapse
|
10
|
Polosukhina D, Love HD, Moses HL, Lee E, Zent R, Clark PE. Pharmacologic Inhibition of β-Catenin With Pyrvinium Inhibits Murine and Human Models of Wilms Tumor. Oncol Res 2017; 25:1653-1664. [PMID: 28695795 PMCID: PMC5670010 DOI: 10.3727/096504017x14992942781895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Wilms tumor (WT) is the most common renal malignancy in children and the fourth most common pediatric solid malignancy in the US. Although the mechanisms underlying the WT biology are complex, these tumors most often demonstrate activation of the canonical Wnt/β-catenin pathway. We and others have shown that constitutive activation of β-catenin restricted to the renal epithelium is sufficient to induce primitive renal epithelial tumors, which resemble human WT. Here we demonstrate that pharmacologic inhibition of β-catenin gene transcription with pyrvinium inhibits tumor growth and metastatic progression in a murine model of WT. Cellular invasion is significantly inhibited in both murine WT-like and human WT cells and is accompanied by downregulation of the oncogenes Myc and Birc5 (survivin). Our studies provide proof of the concept that the canonical Wnt/β-catenin pathway may be a novel therapeutic target in the management of WT.
Collapse
|
11
|
Amarante MK, de Oliveira CEC, Ariza CB, Sakaguchi AY, Ishibashi CM, Watanabe MAE. The predictive value of transforming growth factor-β in Wilms tumor immunopathogenesis. Int Rev Immunol 2017; 36:233-239. [PMID: 28481647 DOI: 10.1080/08830185.2017.1291639] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Wilms tumor is the most common kidney malignancy in children, especially in children aged less than 6 years. Although therapeutic approach has reached successful rates, there is still room for improvement. Considering the tumor microenvironment, cytokines represent important elements of interaction and communication between tumor cells, stroma, and immune cells. In this regard, the transforming growth factor beta (TGF-β) family members play significant functions in physiological and pathological conditions, particularly in cancer. By regulating cell growth, death, and immortalization, TGF-β signaling pathways exert tumor suppressor effects in normal and early tumor cells. Thus, it is not surprising that a high number of human tumors arise due to alterations in genes coding for various TGF-β signaling components. Understanding the ambiguous role of TGF-β in human cancer is of paramount importance for the development of new therapeutic strategies to specifically block the metastatic signaling pathway of TGF-β without affecting its tumor suppressive effect. In this context, this review attempt to summarize the involvement of TGF-β in Wilms tumor.
Collapse
Affiliation(s)
- Marla Karine Amarante
- a Laboratory of Study and Application of DNA Polymorphisms, Department of Pathological Sciences , Biological Sciences Center, State University of Londrina , Londrina-Paraná , Brazil
| | - Carlos Eduardo Coral de Oliveira
- a Laboratory of Study and Application of DNA Polymorphisms, Department of Pathological Sciences , Biological Sciences Center, State University of Londrina , Londrina-Paraná , Brazil
| | - Carolina Batista Ariza
- a Laboratory of Study and Application of DNA Polymorphisms, Department of Pathological Sciences , Biological Sciences Center, State University of Londrina , Londrina-Paraná , Brazil
| | - Alberto Yoichi Sakaguchi
- a Laboratory of Study and Application of DNA Polymorphisms, Department of Pathological Sciences , Biological Sciences Center, State University of Londrina , Londrina-Paraná , Brazil
| | - Cintya Mayumi Ishibashi
- a Laboratory of Study and Application of DNA Polymorphisms, Department of Pathological Sciences , Biological Sciences Center, State University of Londrina , Londrina-Paraná , Brazil
| | - Maria Angelica Ehara Watanabe
- a Laboratory of Study and Application of DNA Polymorphisms, Department of Pathological Sciences , Biological Sciences Center, State University of Londrina , Londrina-Paraná , Brazil
| |
Collapse
|
12
|
Polosukhina D, Love HD, Correa H, Su Z, Dahlman KB, Pao W, Moses HL, Arteaga CL, Lovvorn HN, Zent R, Clark PE. Functional KRAS mutations and a potential role for PI3K/AKT activation in Wilms tumors. Mol Oncol 2017; 11:405-421. [PMID: 28188683 PMCID: PMC5378659 DOI: 10.1002/1878-0261.12044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/18/2017] [Accepted: 02/02/2017] [Indexed: 12/18/2022] Open
Abstract
Wilms tumor (WT) is the most common renal neoplasm of childhood and affects 1 in 10 000 children aged less than 15 years. These embryonal tumors are thought to arise from primitive nephrogenic rests that derive from the metanephric mesenchyme during kidney development and are characterized partly by increased Wnt/β-catenin signaling. We previously showed that coordinate activation of Ras and β-catenin accelerates the growth and metastatic progression of a murine WT model. Here, we show that activating KRAS mutations can be found in human WT. In addition, high levels of phosphorylated AKT are present in the majority of WT. We further show in a mouse model and in renal epithelial cells that Ras cooperates with β-catenin to drive metastatic disease progression and promotes in vitro tumor cell growth, migration, and colony formation in soft agar. Cellular transformation and metastatic disease progression of WT cells are in part dependent on PI3K/AKT activation and are inhibited via pharmacological inhibition of this pathway. Our studies suggest both KRAS mutations and AKT activation are present in WT and may represent novel therapeutic targets for this disease.
Collapse
Affiliation(s)
- Dina Polosukhina
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Harold D Love
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hernan Correa
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zengliu Su
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Kimberly B Dahlman
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA.,Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - William Pao
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA.,Department of Medicine (Hematology-Oncology), Vanderbilt University Medical Center, Nashville, TN, USA
| | - Harold L Moses
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt-Ingram Cancer Center, Nashville, TN, USA.,Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Medicine (Hematology-Oncology), Vanderbilt University Medical Center, Nashville, TN, USA
| | - Carlos L Arteaga
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA.,Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Medicine (Hematology-Oncology), Vanderbilt University Medical Center, Nashville, TN, USA
| | - Harold N Lovvorn
- Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Roy Zent
- Department of Medicine, Nephrology & Cancer Biology Division, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Peter E Clark
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| |
Collapse
|
13
|
The General Expression Analysis of WTX Gene in Normal and Cancer Tissues. Pathol Oncol Res 2016; 23:439-446. [PMID: 28032309 DOI: 10.1007/s12253-016-0168-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 12/15/2016] [Indexed: 01/18/2023]
Abstract
WTX (Wilms' tumor suppressor X chromosome) is a novel putative tumor suppressor gene in Wilms' tumor of kidney, its expression and function in other human cancers had not been explored. This study detected the expression of WTX in 459 cases of 15 organs of cancers and adjacent normal tissues by using immunohistochemical staining (IHC), and validated them by in situ hybridization (ISH) and quantitative real-time reverse transcription PCR (qRT-PCR). IHC and ISH data showed that WTX protein was generally expressed in normal tissues, but reduced expression in corresponding cancers. This study demonstrated that WTX downregulation is a common phenomenon in human cancers, WTX might be a general tumor-suppressor gene and biological marker of multiple cancer tissues. Apart from kidney, stomach is another target tissue of WTX gene. The germline and somatic mutations of WTX were screened in 12 gastric cancer patients and identified in one cases (8.3%). Mutation in the WTX gene might be one of the reasons of WTX loss in gastric cancer patients.
Collapse
|
14
|
Deng C, Dai R, Li X, Liu F. Genetic variation frequencies in Wilms' tumor: A meta-analysis and systematic review. Cancer Sci 2016; 107:690-9. [PMID: 26892980 PMCID: PMC4970837 DOI: 10.1111/cas.12910] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 12/11/2022] Open
Abstract
Over the last few decades, numerous biomarkers in Wilms' tumor have been confirmed and shown variations in prevalence. Most of these studies were based on small sample sizes. We carried out a meta-analysis of the research published from 1992 to 2015 to obtain more precise and comprehensive outcomes for genetic tests. In the present study, 70 out of 5175 published reports were eligible for the meta-analysis, which was carried out using Stata 12.0 software. Pooled prevalence for gene mutations WT1, WTX, CTNNB1, TP53, MYCN, DROSHA, and DGCR8 was 0.141 (0.104, 0.178), 0.147 (0.110, 0.184), 0.140 (0.100, 0.190), 0.410 (0.214, 0.605), 0.071 (0.041, 0.100), 0.082 (0.048, 0.116), and 0.036 (0.026, 0.046), respectively. Pooled prevalence of loss of heterozygosity at 1p, 11p, 11q, 16q, and 22q was 0.109 (0.084, 0.133), 0.334 (0.295, 0.373), 0.199 (0.146, 0.252), 0.151 (0.129, 0.172), and 0.148 (0.108, 0.189), respectively. Pooled prevalence of 1q and chromosome 12 gain was 0.218 (0.161, 0.275) and 0.273 (0.195, 0.350), respectively. The limited prevalence of currently known genetic alterations in Wilms' tumors indicates that significant drivers of initiation and progression remain to be discovered. Subgroup analyses indicated that ethnicity may be one of the sources of heterogeneity. However, in meta-regression analyses, no study-level characteristics of indicators were found to be significant. In addition, the findings of our sensitivity analysis and possible publication bias remind us to interpret results with caution.
Collapse
Affiliation(s)
- Changkai Deng
- Department of Urology Surgery, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorder, Key Laboratory of Pediatrics in Chongqing (CSTC2009CA5002), Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China.,Chengdu Women and Children's Central Hospital, Chengdu, China
| | - Rong Dai
- Chengdu Center for Disease Control and Prevention, Chengdu, China
| | - Xuliang Li
- Department of Urology Surgery, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorder, Key Laboratory of Pediatrics in Chongqing (CSTC2009CA5002), Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Feng Liu
- Department of Urology Surgery, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorder, Key Laboratory of Pediatrics in Chongqing (CSTC2009CA5002), Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| |
Collapse
|
15
|
Berry RL, Ozdemir DD, Aronow B, Lindström NO, Dudnakova T, Thornburn A, Perry P, Baldock R, Armit C, Joshi A, Jeanpierre C, Shan J, Vainio S, Baily J, Brownstein D, Davies J, Hastie ND, Hohenstein P. Deducing the stage of origin of Wilms' tumours from a developmental series of Wt1-mutant mice. Dis Model Mech 2015; 8:903-17. [PMID: 26035382 PMCID: PMC4527280 DOI: 10.1242/dmm.018523] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 05/07/2015] [Indexed: 12/28/2022] Open
Abstract
Wilms' tumours, paediatric kidney cancers, are the archetypal example of tumours caused through the disruption of normal development. The genetically best-defined subgroup of Wilms' tumours is the group caused by biallelic loss of the WT1 tumour suppressor gene. Here, we describe a developmental series of mouse models with conditional loss of Wt1 in different stages of nephron development before and after the mesenchymal-to-epithelial transition (MET). We demonstrate that Wt1 is essential for normal development at all kidney developmental stages under study. Comparison of genome-wide expression data from the mutant mouse models with human tumour material of mutant or wild-type WT1 datasets identified the stage of origin of human WT1-mutant tumours, and emphasizes fundamental differences between the two human tumour groups due to different developmental stages of origin. Summary: The comparison of different nephron-specific Wt1-knockout mouse models identifies the stage of origin of human WT1-mutant Wilms' tumours.
Collapse
Affiliation(s)
- Rachel L Berry
- MRC Human Genetics Unit, MRC Institute for Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Derya D Ozdemir
- MRC Human Genetics Unit, MRC Institute for Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Bruce Aronow
- Department of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Nils O Lindström
- MRC Human Genetics Unit, MRC Institute for Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Tatiana Dudnakova
- MRC Human Genetics Unit, MRC Institute for Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Anna Thornburn
- MRC Human Genetics Unit, MRC Institute for Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Paul Perry
- MRC Human Genetics Unit, MRC Institute for Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Richard Baldock
- MRC Human Genetics Unit, MRC Institute for Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Chris Armit
- MRC Human Genetics Unit, MRC Institute for Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Anagha Joshi
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Cécile Jeanpierre
- INSERM, UMR 1163, Laboratory of Inherited Kidney Diseases, Paris 75015, France Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris 75015, France
| | - Jingdong Shan
- Biocenter Oulu, InfoTech Oulu, Faculty of Biochemistry and Molecular Medicine, Aapistie 5A, University of Oulu, PO Box 5000, Oulu 90014, Finland
| | - Seppo Vainio
- Biocenter Oulu, InfoTech Oulu, Faculty of Biochemistry and Molecular Medicine, Aapistie 5A, University of Oulu, PO Box 5000, Oulu 90014, Finland
| | - James Baily
- Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - David Brownstein
- Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Jamie Davies
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh, EH8 9XD, UK
| | - Nicholas D Hastie
- MRC Human Genetics Unit, MRC Institute for Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Peter Hohenstein
- MRC Human Genetics Unit, MRC Institute for Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| |
Collapse
|
16
|
Silva JG, Corrales-Medina FF, Maher OM, Tannir N, Huh WW, Rytting ME, Subbiah V. Clinical next generation sequencing of pediatric-type malignancies in adult patients identifies novel somatic aberrations. Oncoscience 2015; 2:187-92. [PMID: 25859559 PMCID: PMC4381709 DOI: 10.18632/oncoscience.131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/18/2015] [Indexed: 12/20/2022] Open
Abstract
Pediatric malignancies in adults, in contrast to the same diseases in children are clinically more aggressive, resistant to chemotherapeutics, and carry a higher risk of relapse. Molecular profiling of tumor sample using next generation sequencing (NGS) has recently become clinically available. We report the results of targeted exome sequencing of six adult patients with pediatric-type malignancies : Wilms tumor(n=2), medulloblastoma(n=2), Ewing's sarcoma( n=1) and desmoplastic small round cell tumor (n=1) with a median age of 28.8 years. Detection of druggable somatic aberrations in tumors is feasible. However, identification of actionable target therapies in these rare adult patients with pediatric-type malignancies is challenging. Continuous efforts to establish a rare disease registry are warranted.
Collapse
Affiliation(s)
- Jorge Galvez Silva
- Division of Pediatrics, The University of Texas MD Anderson Children's Cancer Hospital, Houston, TX
| | - Fernando F Corrales-Medina
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of Miami-Miller School of Medicine, Miami, FL
| | - Ossama M Maher
- Division of Pediatrics, The University of Texas MD Anderson Children's Cancer Hospital, Houston, TX
| | - Nizar Tannir
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Winston W Huh
- Division of Pediatrics, The University of Texas MD Anderson Children's Cancer Hospital, Houston, TX
| | - Michael E Rytting
- Division of Pediatrics, The University of Texas MD Anderson Children's Cancer Hospital, Houston, TX
| | - Vivek Subbiah
- Division of Pediatrics, The University of Texas MD Anderson Children's Cancer Hospital, Houston, TX ; Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
17
|
Maschietto M, Charlton J, Perotti D, Radice P, Geller JI, Pritchard-Jones K, Weeks M. The IGF signalling pathway in Wilms tumours--a report from the ENCCA Renal Tumours Biology-driven drug development workshop. Oncotarget 2014; 5:8014-26. [PMID: 25478630 PMCID: PMC4226664 DOI: 10.18632/oncotarget.2485] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 09/15/2014] [Indexed: 12/13/2022] Open
Abstract
It is hypothesised that Wilms tumour (WT) results from aberrant renal development due to its embryonic morphology, associated undifferentiated precursor lesions (termed nephrogenic rests) and embryonic kidney-like chromatin and gene expression profiles. From the study of overgrowth syndrome-associated WT, germline dysregulation was identified in the imprinted region at 11p15 affecting imprinted genes IGF2 and H19. This is also detected in ~70% sporadic cases, making this the most common somatic molecular aberration in WT. This review summarises the critical discussion at an international workshop held under the auspices of The European Network for Cancer Research in Children and Adolescents (ENCCA) consortium, where the potential for drug development to target IGF2 and the WT epigenome was debated. Here, we consider current cancer treatments which include targeting the IGF pathway and the use of methylation agents alone or in combination with other drugs in clinical trials of paediatric cancers. Finally, we discuss the possibility of the use of these drugs to treat patients with WT.
Collapse
Affiliation(s)
- Mariana Maschietto
- Cancer Section, Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Jocelyn Charlton
- Cancer Section, Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Daniela Perotti
- Molecular Bases of Genetic Risk and Genetic Testing Unit, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paolo Radice
- Molecular Bases of Genetic Risk and Genetic Testing Unit, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - James I Geller
- UC department of paediatrics, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Kathy Pritchard-Jones
- Cancer Section, Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Mark Weeks
- Cancer Section, Institute of Child Health, University College London, London WC1N 1EH, UK
| |
Collapse
|
18
|
Cattaneo E, Ciceri S, Liberati N, Radice P, Tarani L, Selicorni A, Perotti D. Osteopathia striata with cranial sclerosis, Wilms’ tumor and the WTX gene. World J Med Genet 2014; 4:34-38. [DOI: 10.5496/wjmg.v4.i2.34] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/10/2014] [Accepted: 02/18/2014] [Indexed: 02/06/2023] Open
Abstract
Osteopathia striata with cranial sclerosis (OSCS, OMIM#300373) is an X-linked dominant sclerosing bone dysplasia that shows a distinct phenotype in females and males. In 2009, Zandra Jenkins et al found that germline mutations in the FAM123B/WTX/AMER1 gene, mapped to chromosome Xq11.2, cause both the familial and sporadic forms of OSCS. Intriguingly, the WTX gene was already known as a putative tumor suppressor gene, since in 2007 Rivera et al had reported inactivating WTX mutations in Wilms’ tumor (WT), the most frequent renal tumor of childhood. Here we review the heterogeneous clinical presentation of OSCS patients and the involvement of WTX anomalies in OSCS and in WT.
Collapse
|
19
|
Perotti D, Hohenstein P, Bongarzone I, Maschietto M, Weeks M, Radice P, Pritchard-Jones K. Is Wilms tumor a candidate neoplasia for treatment with WNT/β-catenin pathway modulators?--A report from the renal tumors biology-driven drug development workshop. Mol Cancer Ther 2013; 12:2619-27. [PMID: 24258344 DOI: 10.1158/1535-7163.mct-13-0335] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The European Network for Cancer Research in Children and Adolescents consortium organized a workshop in Rome, in June 2012, on "Biology-Driven Drug Development Renal Tumors Workshop" to discuss the current knowledge in pediatric renal cancers and to recommend directions for further research. Wilms tumor is the most common renal tumor of childhood and represents a success of pediatric oncology, with cure rates of more than 85% of cases. However, a substantial minority (∼25%) responds poorly to current therapies and requires "high-risk" treatment or relapse. Moreover, the successfully treated majority are vulnerable to the late effects of treatment, with nearly one quarter reporting severe chronic health conditions by 25 years of follow-up. Main purposes of this meeting were to advance our understanding on the molecular drivers in Wilms tumor, their heterogeneity and interdependencies; to provide updates on the clinical-pathologic associations with biomarkers; to identify eligible populations for targeted drugs; and to model opportunities to use preclinical model systems and prioritize targeted agents for early phase clinical trials. At least three different pathways are involved in Wilms tumor; this review represents the outcome of the workshop discussion on the WNT/β-catenin pathway in Wilms tumorigenesis.
Collapse
Affiliation(s)
- Daniela Perotti
- Corresponding Author: Kathy Pritchard-Jones, Hugh and Catherine Stevenson Professor of Pediatric Oncology, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
20
|
Ciceri S, Cattaneo E, Fossati C, Radice P, Selicorni A, Perotti D. First evidence of vertical paternal transmission of osteopatia striata with cranial sclerosis. Am J Med Genet A 2013; 161A:1173-6. [PMID: 23494899 DOI: 10.1002/ajmg.a.35813] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/14/2012] [Indexed: 12/15/2022]
Affiliation(s)
- Sara Ciceri
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | | | | | | | | | | |
Collapse
|
21
|
Clinically relevant subsets identified by gene expression patterns support a revised ontogenic model of Wilms tumor: a Children's Oncology Group Study. Neoplasia 2013; 14:742-56. [PMID: 22952427 DOI: 10.1593/neo.12714] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 06/28/2012] [Accepted: 07/04/2012] [Indexed: 01/23/2023] Open
Abstract
Wilms tumors (WT) have provided broad insights into the interface between development and tumorigenesis. Further understanding is confounded by their genetic, histologic, and clinical heterogeneity, the basis of which remains largely unknown. We evaluated 224 WT for global gene expression patterns; WT1, CTNNB1, and WTX mutation; and 11p15 copy number and methylation patterns. Five subsets were identified showing distinct differences in their pathologic and clinical features: these findings were validated in 100 additional WT. The gene expression pattern of each subset was compared with published gene expression profiles during normal renal development. A novel subset of epithelial WT in infants lacked WT1, CTNNB1, and WTX mutations and nephrogenic rests and displayed a gene expression pattern of the postinduction nephron, and none recurred. Three subsets were characterized by a low expression of WT1 and intralobar nephrogenic rests. These differed in their frequency of WT1 and CTNNB1 mutations, in their age, in their relapse rate, and in their expression similarities with the intermediate mesoderm versus the metanephric mesenchyme. The largest subset was characterized by biallelic methylation of the imprint control region 1, a gene expression profile of the metanephric mesenchyme, and both interlunar and perilobar nephrogenic rests. These data provide a biologic explanation for the clinical and pathologic heterogeneity seen within WT and enable the future development of subset-specific therapeutic strategies. Further, these data support a revision of the current model of WT ontogeny, which allows for an interplay between the type of initiating event and the developmental stage in which it occurs.
Collapse
|
22
|
Spreafico F, Gamba B, Mariani L, Collini P, D'Angelo P, Pession A, Di Cataldo A, Indolfi P, Nantron M, Terenziani M, Morosi C, Radice P, Perotti D. Loss of heterozygosity analysis at different chromosome regions in Wilms tumor confirms 1p allelic loss as a marker of worse prognosis: a study from the Italian Association of Pediatric Hematology and Oncology. J Urol 2012; 189:260-6. [PMID: 23174227 DOI: 10.1016/j.juro.2012.09.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Indexed: 01/24/2023]
Abstract
PURPOSE The specific aims of the AIEOP-TW-2003 protocol included prospectively investigating a possible association of tumor loss of heterozygosity with outcomes in children treated for Wilms tumor. MATERIALS AND METHODS We analyzed 125 unilateral favorable histology Wilms tumors registered between 2003 and 2008 in the Italian cooperative protocol for microsatellite markers mapped to chromosomes 1p, 7p, 11q, 16q and 22q. RESULTS The 3-year disease-free survival and overall survival probabilities were 0.87 (95% CI 0.81-0.93) and 0.98 (95% CI 0.96-1.0), respectively. Loss of heterozygosity at 1p was significantly associated with a worse disease-free survival (probability 0.67 for patients with and 0.92 for those without 1p loss of heterozygosity, p = 0.0009), as confirmed also by multivariate analysis adjusting for tumor stage and patient age at diagnosis. There was no difference in disease-free survival probability among children with loss of heterozygosity in the other chromosomal regions tested. The worse outlook for children older than 2 years at diagnosis did not seem to be influenced by the loss of heterozygosity patterns considered. CONCLUSIONS Chromosome 1p loss of heterozygosity seems to be a risk factor for nonanaplastic Wilms tumor, possibly regardless of other clinical factors. Our findings were uninformative regarding loss of heterozygosity in the other chromosomal regions tested.
Collapse
Affiliation(s)
- Filippo Spreafico
- Pediatric Unit, Molecular Bases of Genetic Risk and Genetic Testing, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Cardoso LCA, De Souza KRL, De O Reis AH, Andrade RC, Britto AC, De Lima MAFD, Dos Santos ACE, De Faria PS, Ferman S, Seuánez HN, Vargas FR. WT1, WTX and CTNNB1 mutation analysis in 43 patients with sporadic Wilms' tumor. Oncol Rep 2012; 29:315-20. [PMID: 23117548 DOI: 10.3892/or.2012.2096] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 08/28/2012] [Indexed: 11/05/2022] Open
Abstract
Wilms' tumor (WT) is a heterogeneous neoplasia characterized by a number of genetic abnormalities, involving tumor suppressor genes, oncogenes and genes related to the Wnt signaling pathway. Somatic biallelic inactivation of WT1 is observed in 5-10% of sporadic WT. Somatic mutations in exon 3 of CTNNB1, which encodes β-catenin, were initially observed in 15% of WT. WTX encodes a protein that negatively regulates the Wnt/β-catenin signaling pathway and mediates the binding of WT1. In this study, we screened germline and somatic mutations in selected regions of WT1, WTX and CTNNB1 in 43 WT patients. Mutation analysis of WT1 identified two single-nucleotide polymorphisms, one recurrent nonsense mutation (p.R458X) in a patient with proteinuria but without genitourinary findings of Denys-Drash syndrome (DDS) and one novel missense mutation, p.C428Y, in a patient with Denys-Drash syndrome phenotype. WT1 SNP rs16754A>G (R369R) was observed in 17/43 patients, and was not associated with significant difference in age at diagnosis distribution, or with 60-month overall survival rate. WTX mutation analysis identified five sequence variations, two synonymous substitutions (p.Q1019Q and p.D379D), a non-synonymous mutation (p.F159L), one frameshift mutation (p.157X) and a novel missense mutation, p.R560W. Two sequence variations in CTNNB1 were identified, p.T41A and p.S45C. Overall survival of bilateral cases was significantly lower (p=0.005). No difference was observed when survival was analyzed among patients with WT1 or with WTX mutations. On the other hand, the survival of two patients with the CTNNB1 p.T41A mutation was significantly lower (p=0.000517) than the average.
Collapse
Affiliation(s)
- Leila C A Cardoso
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21944‑970, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zicari AM, Tarani L, Perotti D, Papetti L, Nicita F, Liberati N, Spalice A, Salvatori G, Guaraldi F, Duse M. WTX R353X mutation in a family with osteopathia striata and cranial sclerosis (OS-CS): case report and literature review of the disease clinical, genetic and radiological features. Ital J Pediatr 2012; 38:27. [PMID: 22716240 PMCID: PMC3416731 DOI: 10.1186/1824-7288-38-27] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Accepted: 06/20/2012] [Indexed: 12/22/2022] Open
Abstract
Osteopathia striata with cranial sclerosis (OS-CS) or Horan-Beighton syndrome is a rare X-linked dominant inherited bone dysplasia, characterized by longitudinal striations of long bones and cranial sclerosis. Patients can be asymptomatic or present with typical facial dysmorphism, sensory defects, internal organs anomalies, growth and mental retardation, depending on the severity of the disease. WTX gene (Xq11) has been recently identified as the disease causing gene. Aim of this article is to present the case of a 6 year old girl initially evaluated for bilateral hearing loss. Patient's head CT scan pointed out sclerosis of skull base and mastoid cells, and abnormal middle-ear ossification. Clinical examination of the patient and her mother were suspicious for OS-CS. The diagnosis was confirmed by X-rays examination showing typical longitudinal striation. Genetic analysis allowed the identification of maternally transmitted heterozygous nonsense c.1057C>T (p.R353X) WTX gene mutation. We also provide a systematic review of currently available knowledge about clinical, radiologic and genetic features typical of the OS-CS.
Collapse
Affiliation(s)
- Anna Maria Zicari
- Department of Pediatrics, Policlinico Umberto I, Sapienza University, Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Haruta M, Arai Y, Watanabe N, Fujiwara Y, Honda S, Ohshima J, Kasai F, Nakadate H, Horie H, Okita H, Hata JI, Fukuzawa M, Kaneko Y. Different incidences of epigenetic but not genetic abnormalities between Wilms tumors in Japanese and Caucasian children. Cancer Sci 2012; 103:1129-35. [PMID: 22409817 DOI: 10.1111/j.1349-7006.2012.02269.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 02/28/2012] [Accepted: 03/07/2012] [Indexed: 11/27/2022] Open
Abstract
Epidemiological studies show that the incidence of Wilms tumor (WT) in East-Asian children is half of that in Caucasian children. Abnormalities of WT1, CTNNB1, WTX, and IGF2 were reported to be involved in Wilms tumorigenesis in Caucasians, although none of the studies simultaneously evaluated the four genes. WTX forms the β-catenin degradation complex; however, the relationship between WTX abnormality and CTNNB1 mutation was uncertain in WTs. We examined abnormalities of the four genes in 114 Japanese with WTs to clarify the relationship between genetic and epigenetic factors and the incidence of WTs. We found that abnormalities of WTX and CTNNB1 were mutually exclusive, and that although CTNNB1 mutation was frequent in WTs with WT1 abnormality, but rare in WTs without, the incidences of WTX abnormality were similar between WTs with or without WT1 abnormality. These findings were consistent with those reported in Caucasian populations, and indicate multiple roles of WTX abnormality. Abnormalities of WT1, WTX and CTNNB1, and loss of IGF2 imprinting (LOI) were detected in 31.6%, 22.8%, 26.3%, and 21.1% of the 114 WTs, respectively. When we selected 101 sporadic WTs, the incidences of WT1, CTNNB1, or WTX abnormality were generally comparable between the two populations, whereas the incidence of IGF2 LOI was lower in Japanese than that of IGF2 LOI reported in Caucasians (P = 0.04). This is the first comprehensive study of the four genes, and the results supported the hypothesis that the lower incidence of IGF2 LOI contributes to the lower incidence of WTs in Japanese children.
Collapse
Affiliation(s)
- Masayuki Haruta
- Department of Cancer Diagnosis, Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Cancer cells silence autosomal tumor suppressor genes by Knudson's two-hit mechanism in which loss-of-function mutations and then loss of heterozygosity occur at the tumor suppressor gene loci. However, the identification of X-linked tumor suppressor genes has challenged the traditional theory of 'two-hit inactivation' in tumor suppressor genes, introducing the novel concept that a single genetic hit can cause loss of tumor suppressor function. The mechanism through which these genes are silenced in human cancer is unclear, but elucidating the details will greatly enhance our understanding of the pathogenesis of human cancer. Here, we review the identification of X-linked tumor suppressor genes and discuss the potential mechanisms of their inactivation. In addition, we also discuss how the identification of X-linked tumor suppressor genes can potentially lead to new approaches in cancer therapy.
Collapse
Affiliation(s)
- Runhua Liu
- Division of Immunotherapy, Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Department of Genetics, School of Medicine, University of Alabama at Birmingham and Comprehensive Cancer Center, Birmingham, AL, USA
| | - Mandy Kain
- Division of Immunotherapy, Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Lizhong Wang
- Division of Immunotherapy, Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Department of Genetics, School of Medicine, University of Alabama at Birmingham and Comprehensive Cancer Center, Birmingham, AL, USA
| |
Collapse
|
27
|
Zin R, Pham K, Ashleigh M, Ravine D, Waring P, Charles A. SNP-based arrays complement classic cytogenetics in the detection of chromosomal aberrations in Wilms’ tumor. Cancer Genet 2012; 205:80-93. [DOI: 10.1016/j.cancergen.2011.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Revised: 12/09/2011] [Accepted: 12/16/2011] [Indexed: 12/11/2022]
|
28
|
Camp ND, James RG, Dawson DW, Yan F, Davison JM, Houck SA, Tang X, Zheng N, Major MB, Moon RT. Wilms tumor gene on X chromosome (WTX) inhibits degradation of NRF2 protein through competitive binding to KEAP1 protein. J Biol Chem 2012; 287:6539-50. [PMID: 22215675 PMCID: PMC3307315 DOI: 10.1074/jbc.m111.316471] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
WTX is a tumor suppressor protein that is lost or mutated in up to 30% of cases of Wilms tumor. Among its known functions, WTX interacts with the β-transducin repeat containing family of ubiquitin ligase adaptors and promotes the ubiquitination and degradation of the transcription factor β-catenin, a key control point in the WNT/β-catenin signaling pathway. Here, we report that WTX interacts with a second ubiquitin ligase adaptor, KEAP1, which functions to regulate the ubiquitination of the transcription factor NRF2, a key control point in the antioxidant response. Surprisingly, we find that unlike its ability to promote the ubiquitination of β-catenin, WTX inhibits the ubiquitination of NRF2. WTX and NRF2 compete for binding to KEAP1, and thus loss of WTX leads to rapid ubiquitination and degradation of NRF2 and a reduced response to cytotoxic insult. These results expand our understanding of the molecular mechanisms of WTX and reveal a novel regulatory mechanism governing the antioxidant response.
Collapse
Affiliation(s)
- Nathan D Camp
- Howard Hughes Medical Institute, Department of Pharmacology, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Clark PE, Polosukhina D, Love H, Correa H, Coffin C, Perlman EJ, de Caestecker M, Moses HL, Zent R. β-Catenin and K-RAS synergize to form primitive renal epithelial tumors with features of epithelial Wilms' tumors. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:3045-55. [PMID: 21983638 DOI: 10.1016/j.ajpath.2011.08.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 07/27/2011] [Accepted: 08/10/2011] [Indexed: 12/19/2022]
Abstract
Wilms' tumor (WT) is the most common childhood renal cancer. Although mutations in known tumor-associated genes (WT1, WTX, and CATNB) occur only in a third of tumors, many tumors show evidence of activated β-catenin-dependent Wnt signaling, but the molecular mechanism by which this occurs is unknown. A key obstacle to understanding the pathogenesis of WT is the paucity of mouse models that recapitulate its features in humans. Herein, we describe a transgenic mouse model of primitive renal epithelial neoplasms that have high penetrance and mimic the epithelial component of human WT. Introduction of a stabilizing β-catenin mutation restricted to the kidney is sufficient to induce primitive renal epithelial tumors; however, when compounded with activation of K-RAS, the mice develop large, bilateral, metastatic, multifocal primitive renal epithelial tumors that have the histologic and staining characteristics of the epithelial component of human WT. These highly malignant tumors have increased activation of the phosphatidylinositol 3-kinase-AKT and extracellular signal-regulated kinase pathways, increased expression of total and nuclear β-catenin, and increased downstream targets of this pathway, such as c-Myc and survivin. Thus, we developed a novel mouse model in which activated K-RAS synergizes with canonical Wnt/β-catenin signaling to form metastatic primitive renal epithelial tumors that mimic the epithelial component of human WT.
Collapse
Affiliation(s)
- Peter E Clark
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2765, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Wilms' tumour (WT) is an embryonal cancer of childhood and is thought to be derived from embryonic kidney precursor cells. The Knudson two hit model was initially thought to occur in WT, but findings emerging from genetic and cytogenetic studies in the past two decades have implicated several genetic events. Recent techniques in genetic analysis have improved our ability to characterise changes in genes involved in WT which include WT1, CTNNB1, IGF2 and WTX. These genetic events have not only provided insight into the pathobiology of this malignancy, but the recognition of these candidate genes may offer potential targets for novel therapies. In this review, we will provide an overview of the pathological, genetic and cytogenetic characteristics of WT.
Collapse
|
31
|
Spreafico F, Notarangelo LD, Schumacher RF, Savoldi G, Gamba B, Terenziani M, Collini P, Fasoli S, Giordano L, Luisa B, Porta F, Massimino M, Radice P, Perotti D. Clinical and molecular description of a Wilms tumor in a patient with tuberous sclerosis complex. Am J Med Genet A 2011; 155A:1419-24. [PMID: 21567926 DOI: 10.1002/ajmg.a.34001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 02/25/2011] [Indexed: 12/20/2022]
Abstract
We report on a girl affected with tuberous sclerosis, carrying a germline de novo TSC2 mutation, c.4934-4935delTT, leading to a p.F1645CfsX7, who developed a unilateral Wilms tumor (WT). Molecular investigation of the tumor biopsy at diagnosis revealed the loss of the constitutional wild-type TSC2 allele, and loss of heterozygosity for the WT1 gene. Deletion of the WTX gene was also present, but it involved the functionally inactive X chromosome. No mutation affecting the remaining WT1 and WTX alleles, as well as the CTNNB1 gene was found. Pathological examination of the surgical specimen documented the presence of diffuse anaplasia and p53 immunoreactivity. To the best of our knowledge, this is the second report of a patient with tuberous sclerosis who developed a WT, and it represents the first case in which a detailed clinical and molecular description is provided.
Collapse
Affiliation(s)
- Filippo Spreafico
- Pediatric Oncology Unit, Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tanneberger K, Pfister AS, Kriz V, Bryja V, Schambony A, Behrens J. Structural and functional characterization of the Wnt inhibitor APC membrane recruitment 1 (Amer1). J Biol Chem 2011; 286:19204-14. [PMID: 21498506 DOI: 10.1074/jbc.m111.224881] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amer1/WTX binds to the tumor suppressor adenomatous polyposis coli and acts as an inhibitor of Wnt signaling by inducing β-catenin degradation. We show here that Amer1 directly interacts with the armadillo repeats of β-catenin via a domain consisting of repeated arginine-glutamic acid-alanine (REA) motifs, and that Amer1 assembles the β-catenin destruction complex at the plasma membrane by recruiting β-catenin, adenomatous polyposis coli, and Axin/Conductin. Deletion or specific mutations of the membrane binding domain of Amer1 abolish its membrane localization and abrogate negative control of Wnt signaling, which can be restored by artificial targeting of Amer1 to the plasma membrane. In line, a natural splice variant of Amer1 lacking the plasma membrane localization domain is deficient for Wnt inhibition. Knockdown of Amer1 leads to the activation of Wnt target genes, preferentially in dense compared with sparse cell cultures, suggesting that Amer1 function is regulated by cell contacts. Amer1 stabilizes Axin and counteracts Wnt-induced degradation of Axin, which requires membrane localization of Amer1. The data suggest that Amer1 exerts its negative regulatory role in Wnt signaling by acting as a scaffold protein for the β-catenin destruction complex and promoting stabilization of Axin at the plasma membrane.
Collapse
Affiliation(s)
- Kristina Tanneberger
- Nikolaus-Fiebiger-Center, Biology Department, University Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Genes identified as being mutated in Wilms' tumour include TP53, a classic tumour suppressor gene (TSG); CTNNB1 (encoding β-catenin), a classic oncogene; WTX, which accumulating data indicate is a TSG; and WT1, which is inactivated in some Wilms' tumours, similar to a TSG. However, WT1 does not always conform to the TSG label, and some data indicate that WT1 enhances cell survival and proliferation, like an oncogene. Is WT1 a chameleon, functioning as either a TSG or an oncogene, depending on cellular context? Are these labels even appropriate for describing and understanding the function of WT1?
Collapse
Affiliation(s)
- Vicki Huff
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| |
Collapse
|
34
|
Gaujoux S, Pinson S, Gimenez-Roqueplo AP, Amar L, Ragazzon B, Launay P, Meatchi T, Libé R, Bertagna X, Audebourg A, Zucman-Rossi J, Tissier F, Bertherat J. Inactivation of the APC gene is constant in adrenocortical tumors from patients with familial adenomatous polyposis but not frequent in sporadic adrenocortical cancers. Clin Cancer Res 2010; 16:5133-41. [PMID: 20978149 DOI: 10.1158/1078-0432.ccr-10-1497] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE In adrenocortical tumors (ACT), Wnt/β-catenin pathway activation can be explained by β-catenin somatic mutations only in a subset of tumors. ACT is observed in patients with familial adenomatous polyposis (FAP) with germline APC mutations, as well as in patients with Beckwith-Wiedemann syndrome with Wilms' tumors reported to have WTX somatic mutations. Both APC and WTX are involved in Wnt/β-catenin pathway regulation and may play a role in ACT tumorigenesis. The aim of this study was to report if APC and WTX may be associated with FAP-associated and sporadic ACT. EXPERIMENTAL DESIGN ACTs from patients with FAP and sporadic adrenocortical carcinomas (ACC) with abnormal β-catenin localization on immunohistochemistry but no somatic β-catenin mutations were studied. APC was analyzed by denaturing high-performance liquid chromatography followed by direct sequencing and by multiplex ligation-dependent probe amplification when allelic loss was suspected. WTX was studied by direct sequencing. RESULTS Four ACTs were observed in three patients with FAP and were ACC, adrenocortical adenoma, and bilateral macronodular adrenocortical hyperplasia, all with abnormal β-catenin localization. Biallelic inactivation of APC was strongly suggested by the simultaneous existence of somatic and germline alterations in all ACTs. In the 20 sporadic ACCs, a silent heterozygous somatic mutation as well as a rare heterozygous polymorphism in APC was found. No WTX mutations were observed. CONCLUSIONS ACT should be considered a FAP tumor. Biallelic APC inactivation mediates activation of the Wnt/β-catenin pathway in the ACTs of patients with FAP. In contrast, APC and WTX genetic alterations do not play a significant role in sporadic ACC.
Collapse
Affiliation(s)
- Sébastien Gaujoux
- Institut Cochin, Université Paris Descartes-Faculté de médecine, CNRS (UMR 8104), Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Functional characterization of Wilms tumor-suppressor WTX and tumor-associated mutants. Oncogene 2010; 30:832-42. [PMID: 20956941 DOI: 10.1038/onc.2010.452] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The WTX, Wilms tumor-associated tumor-suppressor gene, is present on the X chromosome and a single WTX mutation may be sufficient to promote carcinogenesis. Unlike the WT1 tumor suppressor, a transcription factor, WTX lacks conserved functional protein domains. To study the function of WTX, we constructed inducible cell lines expressing WTX and tumor-associated WTX mutants. Induction of WTX inhibited cell growth and caused G(1)/G(0) arrest. In contrast, a short, tumor-associated truncation mutant of WTX358 only slightly inhibited cell growth without a significant cell-cycle arrest, although expression of a longer truncation mutant WTX565 led to the growth inhibition and cell-cycle arrest to a similar extent as wild-type WTX. Like WT1, WTX slowed growth and caused cell-cycle arrest through p21 induction. Gene expression profiling showed that these two tumor-suppressors regulated genes in similar pathways, including those implicated in control of the cellular growth, cell cycle, cell death, cancer and cardiovascular system development. When gene expression changes mediated by wild-type WTX were compared with those affected by mutant forms, WTX565 showed a 55% overlap (228 genes) in differentially regulated genes, whereas WTX358 regulated only two genes affected by wild-type WTX, implying that amino-acid residues 358-561 are critical for WTX function.
Collapse
|
36
|
Chu A, Heck JE, Ribeiro KB, Brennan P, Boffetta P, Buffler P, Hung RJ. Wilms' tumour: a systematic review of risk factors and meta-analysis. Paediatr Perinat Epidemiol 2010; 24:449-69. [PMID: 20670226 DOI: 10.1111/j.1365-3016.2010.01133.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Wilms' tumour comprises 95% of all renal cancers among children less than 15 years of age. The purpose of this review is to examine the existing literature on perinatal and environmental risk factors for Wilms' tumour. A search for epidemiological studies that examined risk factors for Wilms' tumour was undertaken in Medline, LILACS, ISI Web of Science and Dissertation Abstracts. A total of 37 studies, including 14 cohort, 21 case-control and 2 case-cohort studies, were identified that examined environmental and perinatal risk factors. Most studies were from Western Europe and North America, and among case-control studies, 16 used randomly selected population-based controls. We observed a significantly increased risk of Wilms' tumour with maternal exposure to pesticides prior to the child's birth (OR = 1.37 [95% CI 1.09, 1.73]), high birthweight (OR = 1.36 [95% CI 1.12, 1.64]) and preterm birth (OR = 1.44 [95% CI 1.14, 1.81]), although the results regarding pesticide exposure may be subject to publication bias (Egger's test, P = 0.09). Further analyses to adjust for the heterogeneity in the results for high birthweight and preterm birth did not statistically change the significance of the results. Additionally, an increased though not statistically significant risk of Wilms' tumour was associated with maternal hypertension (OR = 1.30 [95% CI 0.99, 1.72]), and, compared with the first born, being a second or later birth was associated with a significantly decreased risk (OR = 0.82 [95% CI 0.71, 0.95]). This review suggests a role for several perinatal and environmental risk factors in the aetiology of Wilms' tumour.
Collapse
Affiliation(s)
- Anna Chu
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
37
|
Scheel SK, Porzner M, Pfeiffer S, Ormanns S, Kirchner T, Jung A. Mutations in the WTX-gene are found in some high-grade microsatellite instable (MSI-H) colorectal cancers. BMC Cancer 2010; 10:413. [PMID: 20696052 PMCID: PMC2928794 DOI: 10.1186/1471-2407-10-413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 08/09/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genetically, colorectal cancers (CRCs) can be subdivided into tumors with chromosomal instability (CIN) or microsatellite instability (MSI). In both types of CRCs genes that are involved in the degradation of beta-CATENIN are frequently mutated. Whereas in CIN CRCs APC (Adenomatous Polyposis Coli) is affected in most cases, high grade MSI (MSI-H) CRCs frequently display mutations in various genes, like the APC-, AXIN2- or CTNNBI (beta-CATENIN) gene itself. Recently in Wilms tumors, WTX (Wilms tumor gene on the X-chromosome) was discovered as another gene involved in the destruction of beta-CATENIN. As the WTX-gene harbors a short T6-microsatellite in its N-terminal coding region, we hypothesized that frameshift-mutations might occur in MSI-H CRCs in the WTX gene, thus additionally contributing to the stabilization of beta-CATENIN in human CRCs. METHODS DNA was extracted from 632 formalin-fixed, paraffin-embedded metastatic CRCs (UICCIV) and analyzed for MSI-H by investigating the stability of the highly sensitive microsatellite markers BAT25 and BAT26 applying fluorescence capillary electrophoresis (FCE). Then, in the MSI-H cases, well described mutational hot spot regions from the APC-, AXIN2- and CTNNBI genes were analyzed for genomic alterations by didesoxy-sequencing while the WTX T6-microsatellite was analyzed by fragment analysis. Additionally, the PCR products of T5-repeats were subcloned and mutations were validated using didesoxy-sequencing. Furthermore, the KRAS and the BRAF proto-oncogenes were analyzed for the most common activating mutations applying pyro-sequencing. mRNA expression of WTX from MSI-H and MSS cases and a panel of colorectal cancer cell lines was investigated using reverse transcription (RT-) PCR and FCE. RESULTS In our cohort of 632 metastatic CRCs (UICCIV) we identified 41 MSI-H cases (6.5%). Two of the 41 MSI-H cases (4.8%) displayed a frameshift mutation in the T6-repeat resulting in a T5 sequence. Only one case, a male patient, expressed the mutated WTX gene while being wild type for all other investigated genes. CONCLUSION Mutations in the WTX-gene might compromise the function of the beta-CATENIN destruction complex in only a small fraction of MSI-H CRCs thus contributing to the process of carcinogenesis.
Collapse
Affiliation(s)
- Silvio K Scheel
- Pathologisches Institut der Ludwig-Maximilians-Universität München, Thalkirchner Strasse 36, 80337 Munich, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Sangkhathat S, Kanngurn S, Chaiyapan W, Gridist P, Maneechay W. Wilms' tumor 1 gene (WT1) is overexpressed and provides an oncogenic function in pediatric nephroblastomas harboring the wild-type WT1. Oncol Lett 2010; 1:615-619. [PMID: 22966353 DOI: 10.3892/ol_00000109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 05/20/2010] [Indexed: 12/19/2022] Open
Abstract
Wilms' tumor 1 gene (WT1) is known to be a tumor suppressor gene in the subset of nephroblastomas that harbors WT1 mutations. However, its role in nephroblastomas without mutations remains unclear. This study aimed to evaluate the expression of WT1 and its potential oncogenic role in pediatric nephroblastoma with wild-type WT1. A total of 24 nephroblastomas were studied for WT1 mRNA expression by quantitative reverse-transcription polymerase chain reaction. The expression levels were compared between nephro-blastomas with and without WT1 mutations, as well as to normal kidney tissue, other pediatric renal tumors and neuroblastomas. Immunohistochemistry was used to evaluate expression patterns at the tissue level. Post-transcriptional inhibition of WT1 was performed in primary cultures of wild-type nephroblastoma using WT1 siRNA. The average WT1 expression level in nephroblastoma tissue was significantly higher than that in normal kidney tissue and neuroblastomas. Expression at the mRNA level was not different between nephroblastomas with WT1 mutations (4 cases) and those with wild-type WT1 (20 cases). However, while WT1 immunoreactivity was positive in all of the nephroblastoma components in the tumors with wild-type WT1, the protein expression was weaker and limited to stromal components in the tumors with mutated WT1, where it co-localized with β-catenin nuclear accumulation. The post-transcriptional inhibition of WT1 resulted in growth retardation and a significantly increased apoptotic fraction. Our study found overexpression of the WT1 gene in pediatric nephroblastomas with wild-type WT1. Moreover, the study suggests an oncogenic role of WT1 in this tumor subset.
Collapse
Affiliation(s)
- Surasak Sangkhathat
- Tumor Biology Research Unit, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | | | | | | | | |
Collapse
|
39
|
Carella M, Spreafico F, Palumbo O, Storlazzi CT, Tabano S, Miozzo M, Miglionico L, Calvano S, Sindici G, Gamba B, Impera L, Collini P, Zelante L, Radice P, Perotti D. Constitutional ring chromosome 11 mosaicism in a Wilms tumor patient: Cytogenetic, molecular and clinico-pathological studies. Am J Med Genet A 2010; 152A:1756-63. [DOI: 10.1002/ajmg.a.33420] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Liu Y, Wang L, Zheng P. X-linked tumor suppressors: perplexing inheritance, a unique therapeutic opportunity. Trends Genet 2010; 26:260-5. [PMID: 20434787 DOI: 10.1016/j.tig.2010.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 03/29/2010] [Accepted: 03/30/2010] [Indexed: 01/03/2023]
Abstract
Unlike autosomal genes, the majority of X-linked genes are subject to dosage compensation. As a result, female tissues comprise cells exclusively expressing X-linked genes from one or other parent. The implication of having only one allele of active X-linked genes in cancer pathogenesis, i.e. somatic single-hit inactivation and dominant inheritance, has not been extensively explored. Recent studies have identified FOXP3 and WTX as two X-linked tumor suppressor genes that are somatically inactivated by single genetic hits. Because the predicted dominant inheritance of cancer risk has not been demonstrated in humans, we will discuss the possible conditions that might prevent such dominant inheritance. We also argue that the existence of a genetically intact allele in cancer cells in women, together with apparent abnormal X inactivation in cancer cells, might provide an opportunity to selectively reactivate tumor suppressor genes for cancer therapy.
Collapse
Affiliation(s)
- Yang Liu
- Divisions of Immunotherapy, Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI 48105, USA.
| | | | | |
Collapse
|
41
|
Abstract
Osteopathia striata with cranial sclerosis (OSCS) is an X-linked dominant condition marked by linear striations mainly affecting the metaphyseal region of the long bones and pelvis in combination with cranial sclerosis. Recently, the disease-causing gene was identified as the WTX gene (FAM123B), an inhibitor of WNT signaling. A correlation was suggested between the position of the mutation and male lethality. We performed genotype and phenotype studies using 18 patients from eight families with possible WTX gene defects and expanded the clinical spectrum of the affected females. All investigated families diagnosed with OSCS had WTX gene defects. One family had a WTX gene deletion; three of four point mutations were novel. The earlier reported WTX c.1072C>T was detected in four sporadic patients and appears to be a hotspot for mutations. Based on the nature of the mutation present in a surviving male patient, our data do not support the hypothesis raised by Jenkins et al. (2009) regarding a genotype-phenotype correlation for male lethality. The finding of a gene involved in WNT signaling as the cause of this sclerosing bone phenotype is not unexpected, but further functional studies are needed to explain the specific features. The WTX gene is mutated in different types of cancer, and it remains to be explained why osteopathia striata patients appear not to have an increased risk of cancer.
Collapse
|
42
|
Ohshima J, Haruta M, Arai Y, Kasai F, Fujiwara Y, Ariga T, Okita H, Fukuzawa M, Hata JI, Horie H, Kaneko Y. Two candidate tumor suppressor genes, MEOX2 and SOSTDC1, identified in a 7p21 homozygous deletion region in a Wilms tumor. Genes Chromosomes Cancer 2009; 48:1037-50. [PMID: 19760604 DOI: 10.1002/gcc.20705] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A SNP-based array analysis of 100 Wilms tumors (WT) from 97 patients identified 7p alterations (hemizygous and homozygous deletions and uniparental disomy) in nine tumors. The homozygous deletion (HD) region of 7p21 found in one tumor partially overlapped with another HD region reported previously, and was narrowed down to a 2.1-Mb region. Based on an expression analysis of 10 genes located in the HD region in 3 WT lines and previous studies on tumorigenic roles of MEOX2 and SOSTDC1, we further analyzed these two genes. Sequencing showed no mutation in MEOX2, but two missense mutations (L50F and Q129L) in SOSTDC1 in four tumors; L50F in two tumors was of germline origin. Expression levels (0, 1+ and 2+) of MEOX2 were lower in four tumors with 7p alterations than in 18 tumors with no 7p alterations (P = 0.017), and those of SOSTDC1 tended to be lower in five tumors with 7p alterations or SOSTDC1 mutation than in 17 tumors with no 7p alterations or SOSTDC1 mutation (P = 0.056). There were no significant differences in clinical characteristics between nine patients with 7p alterations and 88 patients with no 7p alterations; however, there was a difference in the status of IGF2 (uniparental disomy, loss of imprinting, or retention of imprinting) between the two patient groups (P = 0.028). Losses of MEOX2 and SOSTDC1 may accelerate angiogenesis and augment signals in the Wnt pathway, respectively. Both genes may be prime candidates for 7p tumor suppressor genes, which may have a role in the progression of Wilms tumorigenesis.
Collapse
Affiliation(s)
- Junjiro Ohshima
- Research Institute for Clinical Oncology, Saitama Cancer Center, Ina, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wegert J, Wittmann S, Leuschner I, Geissinger E, Graf N, Gessler M. WTX inactivation is a frequent, but late event in Wilms tumors without apparent clinical impact. Genes Chromosomes Cancer 2009; 48:1102-11. [PMID: 19760609 DOI: 10.1002/gcc.20712] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Wilms tumor (WT) is one of the most common solid tumors in childhood. Mutations in WT1 and CTNNB1 are well established as causal alterations in about 10-15% of cases. Recently, WTX (WT gene on the X-chromosome), a gene implicated in WNT signaling, has been identified as a third WT gene. We determined the mutation status of WTX, CTNNB1, and WT1 in a large set of 429 tumors. Genomic WTX alterations were identified in 17% of WTs, equally distributed between males and females. Analysis of 104 WT samples for WTX point mutations revealed a rate of only 2%. An additional 11.5% of tumor samples lacked expression of WTX mRNA. These WTX alterations can occur in parallel to WT1 or CTNNB1 mutations. However, we could not find a significant correlation between WTX deletion status or expression level and clinical parameters suggesting that WTX mutations apparently have little direct impact on tumor behavior and presentation. Incomplete deletions of WTX in several cases suggested heterogeneity in tumors. In a small number of cases, we could analyze separate tumor fragments or microdissected regions with different histology of tumors with heterozygous point mutations. Despite complete allele losses at other sites in the genome, we detected varying degrees of WTX mutation. This suggests that WTX alteration is not an essential and early mutation needed to drive tumorigenesis, but rather a later event that may affect only a fraction of cells with unclear clinical relevance.
Collapse
Affiliation(s)
- Jenny Wegert
- Developmental Biochemistry, Biocenter, University of Wuerzburg, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Drake KM, Ruteshouser EC, Natrajan R, Harbor P, Wegert J, Gessler M, Pritchard-Jones K, Grundy P, Dome J, Huff V, Jones C, Aldred MA. Loss of heterozygosity at 2q37 in sporadic Wilms' tumor: putative role for miR-562. Clin Cancer Res 2009; 15:5985-92. [PMID: 19789318 DOI: 10.1158/1078-0432.ccr-09-1065] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE Wilms' tumor is a childhood cancer of the kidney with an incidence of approximately 1 in 10,000. Cooccurrence of Wilms' tumor with 2q37 deletion syndrome, an uncommon constitutional chromosome abnormality, has been reported previously in three children. Given these are independently rare clinical entities, we hypothesized that 2q37 harbors a tumor suppressor gene important in Wilms' tumor pathogenesis. EXPERIMENTAL DESIGN To test this, we performed loss of heterozygosity analysis in a panel of 226 sporadic Wilms' tumor samples and mutation analysis of candidate genes. RESULTS Loss of heterozygosity was present in at least 4% of cases. Two tumors harbored homozygous deletions at 2q37.1, supporting the presence of a tumor suppressor gene that follows a classic two-hit model. However, no other evidence of second mutations was found, suggesting that heterozygous deletion alone may be sufficient to promote tumorigenesis in concert with other genomic abnormalities. We show that miR-562, a microRNA within the candidate region, is expressed only in kidney and colon and regulates EYA1, a critical gene for renal development. miR-562 expression is reduced in Wilms' tumor and may contribute to tumorigenesis by deregulating EYA1. Two other candidate regions were localized at 2q37.3 and 2qter, but available data from patients with constitutional deletions suggest that these probably do not confer a high risk for Wilms' tumor. CONCLUSIONS Our data support the presence of a tumor suppressor gene at 2q37.1 and suggest that, in individuals with constitutional 2q37 deletions, any increased risk for developing Wilms' tumor likely correlates with deletions encompassing 2q37.1.
Collapse
Affiliation(s)
- Kylie M Drake
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Guertl B, Leuschner I, Guelly C, Ebner B, Kronberger C, Hoefler G. Is predisposition for nephroblastoma linked to polymorphisms of the WTX gene? Pathol Oncol Res 2009; 16:189-91. [PMID: 19757195 DOI: 10.1007/s12253-009-9205-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 08/31/2009] [Indexed: 12/13/2022]
Abstract
Inactivation of Wilms tumor X (WTX) gene has been linked to the pathogenesis of a varying percentage of nephroblastomas. In contrast, germline mutations of WTX were identified to cause bone dysplasia, but not to induce the development of nephroblastomas. In our study we investigated whether tumor promotion of nephroblastoma by inactivation of WTX gene is linked to certain single nucleotide polymorphisms (SNPs). Therefore 8 SNPs-distributed over the whole length of the WTX gene-were investigated by high resolution melting curve analysis (HRMA) and sequencing of genomic DNA from nephroblastoma patients (NB) and controls. No difference was detected in the 8 SNPs investigated, which were distributed over the whole length of the gene. Additionally, sequence analysis of the coding part of the WTX gene of the tumor samples revealed no chromosomal aberration. Our study indicates, that inactivation of WTX appears to be a late event in tumorigenesis of nephroblastoma in a subgroup of nephroblastomas.
Collapse
Affiliation(s)
- Barbara Guertl
- Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, A-8036, Graz, Austria.
| | | | | | | | | | | |
Collapse
|
46
|
Corbin M, de Reyniès A, Rickman DS, Berrebi D, Boccon-Gibod L, Cohen-Gogo S, Fabre M, Jaubert F, Faussillon M, Yilmaz F, Sarnacki S, Landman-Parker J, Patte C, Schleiermacher G, Antignac C, Jeanpierre C. WNT/β-catenin pathway activation in Wilms tumors: A unifying mechanism with multiple entries? Genes Chromosomes Cancer 2009; 48:816-27. [DOI: 10.1002/gcc.20686] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
47
|
Abstract
Wilms tumours (WTs) have two distinct types of histology with or without ectopic mesenchymal elements, suggesting that WTs arise from either the mesenchymal or epithelial nephrogenic lineages. Regardless of the presence or absence of CTNNB1 mutations, nuclear accumulation of beta-catenin is often observed in WTs with ectopic mesenchymal elements. Here, we addressed the relationship between the WNT-signalling pathway and lineage in WTs by examining CTNNB1 and WT1 mutations, nuclear accumulation of beta-catenin, tumour histology and gene expression profiles. In addition, we screened for mutations in WTX, which has been proposed to be a negative regulator of the canonical WNT-signalling pathway. Unsupervised clustering analysis identified two classes of tumours: mesenchymal lineage WNT-dependent tumours, and epithelial lineage WNT-independent tumours. In contrast to the mesenchymal lineage specificity of CTNNB1 mutations, WTX mutations were surprisingly observed in both lineages. WTX-mutant WTs with ectopic mesenchymal elements had nuclear accumulation of beta-catenin, upregulation of WNT target genes and an association with CTNNB1 mutations in exon 7 or 8. However, epithelial lineage WTs with WTX mutations had no indications of active WNT signalling, suggesting that the involvement of WTX in the WNT-signalling pathway may be lineage dependent, and that WTX may have an alternative function to its role in the canonical WNT-signalling pathway.
Collapse
|
48
|
Germline mutations in WTX cause a sclerosing skeletal dysplasia but do not predispose to tumorigenesis. Nat Genet 2008; 41:95-100. [DOI: 10.1038/ng.270] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 09/23/2008] [Indexed: 12/28/2022]
|