1
|
Kandolf L, Peris K, Malvehy J, Mosterd K, Heppt MV, Fargnoli MC, Berking C, Arenberger P, Bylaite-Bučinskiene M, Del Marmol V, Dirschka T, Dreno B, Forsea AM, Harwood CA, Hauschild A, Heerfordt IM, Kauffman R, Kelleners-Smeets N, Lallas A, Lebbe C, Leiter U, Longo C, Mijušković Ž, Pellacani G, Puig S, Saiag P, Šitum M, Stockfleth E, Salavastru C, Stratigos A, Zalaudek I, Garbe C. European consensus-based interdisciplinary guideline for diagnosis, treatment and prevention of actinic keratoses, epithelial UV-induced dysplasia and field cancerization on behalf of European Association of Dermato-Oncology, European Dermatology Forum, European Academy of Dermatology and Venereology and Union of Medical Specialists (Union Européenne des Médecins Spécialistes). J Eur Acad Dermatol Venereol 2024; 38:1024-1047. [PMID: 38451047 DOI: 10.1111/jdv.19897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/23/2024] [Indexed: 03/08/2024]
Abstract
A collaboration of multidisciplinary experts from the European Association of Dermato-Oncology, the European Dermatology Forum, the European Academy of Dermatology and Venereology, and the European Union of Medical Specialists was formed to develop European recommendations on AK diagnosis and treatment, based on current literature and expert consensus. This guideline addresses the epidemiology, diagnostics, risk stratification and treatments in immunocompetent as well as immunosuppressed patients. Actinic keratoses (AK) are potential precursors of cutaneous squamous cell carcinoma (cSCC) and display typical histopathologic and immunohistochemical features of this malignancy in an early stage. They can develop into cSSC in situ and become invasive in a low percentage of cases. AK is the most frequent neoplasia in white populations, frequently occurring within a cancerous field induced by ultraviolet radiation. Since it cannot be predicted, which lesion will progress to cSCC and when treatment is usually recommended. The diagnosis of AK and field cancerization is made by clinical examination. Dermatoscopy, confocal microscopy, optical coherence tomography or line-field confocal-OCT can help in the differential diagnosis of AK and other skin neoplasms. A biopsy is indicated in clinically and/or dermatoscopically suspicious and/or treatment-refractory lesions. The choice of treatment depends on patients' and lesion characteristics. For single non-hyperkeratotic lesions, the treatment can be started upon patient's request with destructive treatments or topical treatments. For multiple lesions, field cancerization treatment is advised with topical treatments and photodynamic therapy. Preventive measures such as sun protection, self-examination and repeated field cancerization treatments of previously affected skin areas in high-risk patients are advised.
Collapse
Affiliation(s)
- Lidija Kandolf
- Department of Dermatology, Faculty of Medicine, University of Defence, Military Medical Academy, Belgrade, Serbia
| | - Ketty Peris
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endrocrino Metaboliche, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
- Dermatologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Josep Malvehy
- Dermatology Department of Hospital Clinic of Barcelona, IDIBAPS, CIBER de Enfermedades Raras, Instituto Carlos III, University of Barcelona, Barcelona, Spain
| | - Klara Mosterd
- Department of Dermatology, Maastricht University Medical Centre+ Comprehensive Cancer Centre, Maastricht, The Netherlands
- GROW-School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Markus V Heppt
- Department of Dermatology, Uniklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CC ER-EMN), Erlangen, Germany
| | - Maria Concetta Fargnoli
- Dermatology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Carola Berking
- Department of Dermatology, Uniklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CC ER-EMN), Erlangen, Germany
| | - Petr Arenberger
- Department of Dermatovenereology, Third Faculty of Medicine, Charles University and University Hospital of Kralovske Vinohrady, Prague, Czech Republic
| | - Matilda Bylaite-Bučinskiene
- Clinic of Infectious Diseases and Dermatovenereology, Centre of Dermatovenereology, Vilnius University, Vilnius, Lithuania
| | - Veronique Del Marmol
- Department of Dermatology, University Hospital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Thomas Dirschka
- Faculty of Health, University Witten-Herdecke, Witten, Germany
- CentroDerm Clinic, Wuppertal, Germany
| | - Brigitte Dreno
- Nantes Université, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302/EMR6001, Nantes, France
| | - Ana-Maria Forsea
- Department of Oncologic Dermatology, Elias University Hospital Bucharest, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Catherine A Harwood
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Axel Hauschild
- Department of Dermatology, University Hospital (UKSH), Kiel, Germany
| | - Ida Marie Heerfordt
- Department of Dermatology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Roland Kauffman
- Department of Dermatology, Venereology and Allergology, Frankfurt University Hospital, Frankfurt, Germany
| | - Nicole Kelleners-Smeets
- Department of Dermatology, Maastricht University Medical Centre+ Comprehensive Cancer Centre, Maastricht, The Netherlands
- GROW-School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Aimilios Lallas
- First Department of Dermatology, Aristotle University, Thessaloniki, Greece
| | - Celeste Lebbe
- Université Paris Cite, AP-HP Dermato-oncology, Cancer institute APHP, Nord Paris cité, INSERM U976, Saint Louis Hospital, Paris, France
| | - Ulrike Leiter
- Centre for Dermatooncology, Department of Dermatology, Eberhard Karls University, Tuebingen, Germany
| | - Caterina Longo
- Skin Cancer Center, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Željko Mijušković
- Department of Dermatology, Faculty of Medicine, University of Defence, Military Medical Academy, Belgrade, Serbia
| | - Giovanni Pellacani
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| | - Susana Puig
- Dermatology Department of Hospital Clinic of Barcelona, IDIBAPS, CIBER de Enfermedades Raras, Instituto Carlos III, University of Barcelona, Barcelona, Spain
| | - Philippe Saiag
- Department of General and Oncologic Dermatology, Ambroise Paré Hospital, APHP, & EA 4340 "Biomarkers in Cancerology and Hemato-Oncology", UVSQ, Université Paris-Saclay, Boulogne-Billancourt, France
| | - Mirna Šitum
- Department of Dermatology and Venereology, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Eggert Stockfleth
- Skin Cancer Center, Department of Dermatology, Ruhr-University Bochum, Bochum, Germany
| | - Carmen Salavastru
- Department of Pediatric Dermatology, Colentina Clinical Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Alexander Stratigos
- 1st Department of Dermatology-Venereology, National and Kapodistrian University of Athens, Andreas Sygros Hospital, Athens, Greece
| | - Iris Zalaudek
- Dermatology Clinic, Maggiore Hospital, Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Claus Garbe
- Centre for Dermatooncology, Department of Dermatology, Eberhard Karls University, Tuebingen, Germany
| |
Collapse
|
2
|
De Silva WGM, Sequeira VB, Yang C, Dixon KM, Holland AJA, Mason RS, Rybchyn MS. 1,25-Dihydroxyvitamin D 3 Suppresses UV-Induced Poly(ADP-Ribose) Levels in Primary Human Keratinocytes, as Detected by a Novel Whole-Cell ELISA. Int J Mol Sci 2024; 25:5583. [PMID: 38891771 PMCID: PMC11171802 DOI: 10.3390/ijms25115583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Photoprotective properties of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) to reduce UV-induced DNA damage have been established in several studies. UV-induced DNA damage in skin such as single or double strand breaks is known to initiate several cellular mechanisms including activation of poly(ADP-ribose) (pADPr) polymerase-1 (PARP-1). DNA damage from UV also increases extracellular signal-related kinase (ERK) phosphorylation, which further increases PARP activity. PARP-1 functions by using cellular nicotinamide adenine dinucleotide (NAD+) to synthesise pADPr moieties and attach these to target proteins involved in DNA repair. Excessive PARP-1 activation following cellular stress such as UV irradiation may result in excessive levels of cellular pADPr. This can also have deleterious effects on cellular energy levels due to depletion of NAD+ to suboptimal levels. Since our previous work indicated that 1,25(OH)2D3 reduced UV-induced DNA damage in part through increased repair via increased energy availability, the current study investigated the effect of 1,25(OH)2D3 on UV-induced PARP-1 activity using a novel whole-cell enzyme- linked immunosorbent assay (ELISA) which quantified levels of the enzymatic product of PARP-1, pADPr. This whole cell assay used around 5000 cells per replicate measurement, which represents a 200-400-fold decrease in cell requirement compared to current commercial assays that measure in vitro pADPr levels. Using our assay, we observed that UV exposure significantly increased pADPr levels in human keratinocytes, while 1,25(OH)2D3 significantly reduced levels of UV-induced pADPr in primary human keratinocytes to a similar extent as a known PARP-1 inhibitor, 3-aminobenzamide (3AB). Further, both 1,25(OH)2D3 and 3AB as well as a peptide inhibitor of ERK-phosphorylation significantly reduced DNA damage in UV-exposed keratinocytes. The current findings support the proposal that reduction in pADPr levels may be critical for the function of 1,25(OH)2D3 in skin to reduce UV-induced DNA damage.
Collapse
Affiliation(s)
| | - Vanessa Bernadette Sequeira
- Department of Physiology, School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Chen Yang
- Department of Physiology, School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Katie Marie Dixon
- Department of Anatomy and Histology and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Andrew J. A. Holland
- Douglas Cohen Department of Paediatric Surgery, The Children’s Hospital at Westmead Clinical School, The Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rebecca Sara Mason
- Department of Physiology, School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Mark Stephen Rybchyn
- Department of Physiology, School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
3
|
De Silva WGM, McCarthy BY, Han J, Yang C, Holland AJA, Stern H, Dixon KM, Tang EKY, Tuckey RC, Rybchyn MS, Mason RS. The Over-Irradiation Metabolite Derivative, 24-Hydroxylumister-ol 3, Reduces UV-Induced Damage in Skin. Metabolites 2023; 13:775. [PMID: 37512482 PMCID: PMC10383208 DOI: 10.3390/metabo13070775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
The hormonal form of vitamin D3, 1,25(OH)2D3, reduces UV-induced DNA damage. UV exposure initiates pre-vitamin D3 production in the skin, and continued UV exposure photoisomerizes pre-vitamin D3 to produce "over-irradiation products" such as lumisterol3 (L3). Cytochrome P450 side-chain cleavage enzyme (CYP11A1) in skin catalyzes the conversion of L3 to produce three main derivatives: 24-hydroxy-L3 [24(OH)L3], 22-hydroxy-L3 [22(OH)L3], and 20,22-dihydroxy-L3 [20,22(OH)L3]. The current study investigated the photoprotective properties of the major over-irradiation metabolite, 24(OH)L3, in human primary keratinocytes and human skin explants. The results indicated that treatment immediately after UV with either 24(OH)L3 or 1,25(OH)2D3 reduced UV-induced cyclobutane pyrimidine dimers and oxidative DNA damage, with similar concentration response curves in keratinocytes, although in skin explants, 1,25(OH)2D3 was more potent. The reductions in DNA damage by both compounds were, at least in part, the result of increased DNA repair through increased energy availability via increased glycolysis, as well as increased DNA damage recognition proteins in the nucleotide excision repair pathway. Reductions in UV-induced DNA photolesions by either compound occurred in the presence of lower reactive oxygen species. The results indicated that under in vitro and ex vivo conditions, 24(OH)L3 provided photoprotection against UV damage similar to that of 1,25(OH)2D3.
Collapse
Affiliation(s)
| | - Bianca Yuko McCarthy
- School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jeremy Han
- School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Chen Yang
- School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Andrew J A Holland
- Douglas Cohen Department of Paediatric Surgery, The Children's Hospital at Westmead Clinical School, The Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Harvey Stern
- Department of Plastic and Constructive Surgery, The Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
- Strathfield Private Hospital, Sydney, NSW 2042, Australia
| | - Katie Marie Dixon
- School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Edith Kai Yan Tang
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Robert Charles Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Mark Stephen Rybchyn
- School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rebecca Sara Mason
- School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
- School of Life and Environmental Sciences, Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
4
|
Wang T, Rho O, Eguiarte-Solomon F, DiGiovanni J. Twist1 as a target for prevention of cutaneous squamous cell carcinoma. Mol Carcinog 2023; 62:62-76. [PMID: 36373194 PMCID: PMC9772054 DOI: 10.1002/mc.23482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022]
Abstract
Cutaneous squamous cell carcinoma (cSCC) represents an important clinical problem requiring novel approaches for both prevention and treatment. The transcription factor, Twist-related protein 1 (Twist1), has been identified as having a key mechanistic role in the development and progression of cSCC. Studies in relevant mouse models of cSCC have shown that Twist1 regulates epithelial-mesenchymal transition (EMT) and stemness driving progression and metastasis of cSCC. In addition, further research has shown that Twist1 regulates the balance between keratinocyte proliferation and differentiation and therefore impacts earlier stages of cSCC development. Through use of keratinocyte specific Twist1 knockout models, a role for this gene in keratinocyte stem cell homeostasis has been revealed. As a transcription factor, Twist1 regulates a large number of genes both in a positive, as well as a negative manner across several interdependent pathways. Studies in keratinocyte specific knockout models have shown that Twist1 upregulates the expression of genes involved in proliferation, stemness, and EMT while downregulating the expression of genes associated with differentiation. Furthermore, a number of compounds, including naturally occurring compounds, have been identified that target Twist1 and can block its effects in cancer cells and in keratinocytes in vivo. Collectively, the current understanding of Twist1 function in cSCC development and progression suggests that it represents a potential target for prevention and treatment of cSCC.
Collapse
Affiliation(s)
- Tingzeng Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78723, United States
| | - Okkyung Rho
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78723, United States
| | - Fernando Eguiarte-Solomon
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78723, United States
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78723, United States
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX 78723, United States
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, United States
| |
Collapse
|
5
|
Mavrogonatou E, Angelopoulou M, Rizou SV, Pratsinis H, Gorgoulis VG, Kletsas D. Activation of the JNKs/ATM-p53 axis is indispensable for the cytoprotection of dermal fibroblasts exposed to UVB radiation. Cell Death Dis 2022; 13:647. [PMID: 35879280 PMCID: PMC9314411 DOI: 10.1038/s41419-022-05106-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 01/21/2023]
Abstract
Although UVB radiation is mainly absorbed by the epidermis, ~5-10% of its photons reach and affect the upper part of the dermis. Physiologically relevant UVB doses, able to provoke erythema, induce apoptosis in human dermal fibroblasts in vitro, as well as in the dermis of SKH-1 mice. Given the sparse and even contradictory existing information on the effect of UVB radiation on dermal fibroblasts' viability, aim of this work was to unravel the crucial signaling pathways regulating the survival of UVB-treated human dermal fibroblasts. We found that UVB radiation immediately stimulates the phosphorylation of MAPK family members, as well as Akt, and is genotoxic leading to the delayed ATM-p53 axis activation. Akt phosphorylation after UVB radiation is EGFR-mediated and EGFR inhibition leads to a further decrease of viability, while the Akt activator SC79 rescues fibroblasts to an extent by a mechanism involving Nrf2 activation. The known Nrf2 activator sulforaphane also exerts a partial protective effect, although by acting in a distinct mechanism from SC79. On the other hand, inhibition of JNKs or of the ATM-p53 axis leads to a complete loss of viability after UVB irradiation. Interestingly, JNKs activation is necessary for p53 phosphorylation, while the ATM-p53 pathway is required for the long-term activation of JNKs and Akt, reassuring the protection from UVB. Although UVB radiation results in intense and prolonged increase of intracellular ROS levels, classical anti-oxidants, such as Trolox, are unable to affect Akt, JNKs, or p53 phosphorylation and to reverse the loss of fibroblasts' viability. Collectively, here we provide evidence that the main viability-regulating UVB-triggered biochemical pathways act synergistically towards the protection of human dermal fibroblasts, with EGFR/Akt and Nrf2 serving as auxiliary anti-apoptotic machineries, while JNKs/ATM-p53 activation and interplay being overriding and indispensable for the perpetuation of cellular defense and the maintenance of cell viability.
Collapse
Affiliation(s)
- Eleni Mavrogonatou
- grid.6083.d0000 0004 0635 6999Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, 15341 Athens, Greece
| | - Maria Angelopoulou
- grid.6083.d0000 0004 0635 6999Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, 15341 Athens, Greece
| | - Sophia V. Rizou
- grid.5216.00000 0001 2155 0800Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Harris Pratsinis
- grid.6083.d0000 0004 0635 6999Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, 15341 Athens, Greece
| | - Vassilis G. Gorgoulis
- grid.5216.00000 0001 2155 0800Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece ,grid.417593.d0000 0001 2358 8802Biomedical Research Foundation, Academy of Athens, Athens, Greece ,grid.5379.80000000121662407Faculty of Biology, Medicine and Health Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK ,grid.5216.00000 0001 2155 0800Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece ,grid.8241.f0000 0004 0397 2876Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Dimitris Kletsas
- grid.6083.d0000 0004 0635 6999Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, 15341 Athens, Greece
| |
Collapse
|
6
|
Hyperoside and Quercitrin in Houttuynia cordata Extract Attenuate UVB-Induced Human Keratinocyte Cell Damage and Oxidative Stress via Modulation of MAPKs and Akt Signaling Pathway. Antioxidants (Basel) 2022; 11:antiox11020221. [PMID: 35204104 PMCID: PMC8868276 DOI: 10.3390/antiox11020221] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Ultraviolet radiation is a major environmental harmful factor on human skin. In this paper, we investigate the potential mechanism of Houttuynia cordata extract on UVB-induced HaCaT keratinocyte cell death and inflammation. We found that Houttuynia cordata ethyl acetate extract fraction (HC-EA) protected against UVB-induced cell damage. The HPLC results indicate that quercitrin and hyperoside are the major polyphenolics in HC-EA and are responsible for providing protection against UVB-induced cell death. These responses were associated with the regulation of caspase-9 and caspase-3 activation, which rescued HaCaT cells from UVB-induced apoptosis. In addition, HC-EA, quercitrin, and hyperoside attenuated UVB-induced inflammatory mediators, including IL-6, IL-8, COX-2, and iNOS. Furthermore, the treatment of cells with HC-EA and its active compounds abolished intracellular ROS and increased levels of heme oxygenase-1 and superoxide dismutase. UVB-induced ROS production mediated Akt and mitogen activated protein kinases (MAPKs) pathways, including p38, ERK, and JNK. Our results show HC-EA, quercitrin, and hyperoside decreased UVB-induced p38 and JNK phosphorylation, while increasing ERK and Akt phosphorylation. MAPKs and Akt mediated cell survival and death were confirmed by specific inhibitors to Akt and MAPKs. Thus, HC-EA, which contains quercitrin and hyperoside, protected keratinocyte from UVB-induced oxidative damage and inflammation through the modulation of MAPKs and Akt signaling.
Collapse
|
7
|
De Silva WGM, Han JZR, Yang C, Tongkao-On W, McCarthy BY, Ince FA, Holland AJA, Tuckey RC, Slominski AT, Abboud M, Dixon KM, Rybchyn MS, Mason RS. Evidence for Involvement of Nonclassical Pathways in the Protection From UV-Induced DNA Damage by Vitamin D-Related Compounds. JBMR Plus 2021; 5:e10555. [PMID: 34950826 PMCID: PMC8674768 DOI: 10.1002/jbm4.10555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/29/2021] [Accepted: 09/07/2021] [Indexed: 01/26/2023] Open
Abstract
The vitamin D hormone, 1,25dihydroxyvitamin D3 (1,25(OH)2D3), and related compounds derived from vitamin D3 or lumisterol as a result of metabolism via the enzyme CYP11A1, have been shown, when applied 24 hours before or immediately after UV irradiation, to protect human skin cells and skin from DNA damage due to UV exposure, by reducing both cyclobutane pyrimidine dimers (CPD) and oxidative damage in the form of 8‐oxo‐7,8‐dihydro‐2′‐deoxyguanosine (8‐OHdG). We now report that knockdown of either the vitamin D receptor or the endoplasmic reticulum protein ERp57 by small, interfering RNA (siRNA) abolished the reductions in UV‐induced DNA damage with 20‐hydroxyvitamin D3 or 24‐hydroxylumisterol3, as previously shown for 1,25(OH)2D3. Treatment with 1,25(OH)2D3 reduced oxygen consumption rates in UV‐exposed and sham‐exposed human keratinocytes and reduced phosphorylation of cyclic AMP response binding element protein (CREB). Both these actions have been shown to inhibit skin carcinogenesis after chronic UV exposure, consistent with the anticarcinogenic activity of 1,25(OH)2D3. The requirement for a vitamin D receptor for the photoprotective actions of 1,25(OH)2D3 and of naturally occurring CYP11A1‐derived vitamin D–related compounds may explain why mice lacking the vitamin D receptor in skin are more susceptible to UV‐induced skin cancers, whereas mice lacking the 1α‐hydroxylase and thus unable to make 1,25(OH)2D3 are not more susceptible. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | - Jeremy Zhuo Ru Han
- Physiology, School of Medical Sciences and Bosch Institute University of Sydney Sydney NSW Australia
| | - Chen Yang
- Physiology, School of Medical Sciences and Bosch Institute University of Sydney Sydney NSW Australia
| | - Wannit Tongkao-On
- Physiology, School of Medical Sciences and Bosch Institute University of Sydney Sydney NSW Australia
| | - Bianca Yuko McCarthy
- Physiology, School of Medical Sciences and Bosch Institute University of Sydney Sydney NSW Australia
| | - Furkan Akif Ince
- Anatomy & Histology, School of Medical Sciences and Bosch Institute University of Sydney Sydney NSW Australia
| | - Andrew J A Holland
- Department of Paediatric Surgery, The Children's Hospital at Westmead University of Sydney Sydney NSW Australia
| | | | - Andrzej T Slominski
- Department of Dermatology University of Alabama at Birmingham Birmingham AL USA
| | | | - Katie Marie Dixon
- Anatomy & Histology, School of Medical Sciences and Bosch Institute University of Sydney Sydney NSW Australia
| | - Mark Stephen Rybchyn
- Physiology, School of Medical Sciences and Bosch Institute University of Sydney Sydney NSW Australia.,School of Chemical Engineering University of NSW Sydney NSW Australia
| | - Rebecca Sara Mason
- Physiology, School of Medical Sciences and Bosch Institute University of Sydney Sydney NSW Australia.,School of Life and Environmental Sciences University of Sydney Sydney NSW Australia
| |
Collapse
|
8
|
Yan S, Ripamonti R, Kawabe H, Ben-Yehuda Greenwald M, Werner S. NEDD4-1 is a key regulator of epidermal homeostasis and wound repair. J Invest Dermatol 2021; 142:1703-1713.e11. [PMID: 34756879 DOI: 10.1016/j.jid.2021.09.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022]
Abstract
The ubiquitin ligase Nedd4-1 plays key roles in organ development, tissue homeostasis and cancer, but its functions in the skin are largely unknown. Here we show perturbations in keratinocyte proliferation and terminal differentiation, epidermal barrier function, and hair follicle cycling as well as increased UV-induced apoptosis in mice lacking Nedd4-1 in keratinocytes. In particular, re-epithelialization of full-thickness excisional wounds was delayed in the mutant mice. This was caused by severely impaired migration and proliferation of Nedd4-1-deficient keratinocytes. Therefore, a few keratinocytes, which had escaped recombination and expressed Nedd4-1, obtained a growth advantage and contributed to re-epithelialization. Mechanistically, Nedd4-1-deficient keratinocytes failed to efficiently activate the Erk1/2 mitogen-activated kinases and the YAP transcriptional co-activator. These results identify Nedd4-1 as an essential player in wound repair through its effect on mitogenic and motogenic signaling pathways in keratinocytes.
Collapse
Affiliation(s)
- Shen Yan
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Raphael Ripamonti
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Hiroshi Kawabe
- Department of Molecular Neurobiology, Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany; Department of Pharmacology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 317-8511, Japan
| | - Maya Ben-Yehuda Greenwald
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland.
| |
Collapse
|
9
|
Umar SA, Shahid NH, Nazir LA, Tanveer MA, Divya G, Archoo S, Raghu SR, Tasduq SA. Pharmacological Activation of Autophagy Restores Cellular Homeostasis in Ultraviolet-(B)-Induced Skin Photodamage. Front Oncol 2021; 11:726066. [PMID: 34408986 PMCID: PMC8366585 DOI: 10.3389/fonc.2021.726066] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/15/2021] [Indexed: 01/18/2023] Open
Abstract
Ultraviolet (UV) exposure to the skin causes photo-damage and acts as the primary etiological agent in photo-carcinogenesis. UV-B exposure induces cellular damage and is the major factor challenging skin homeostasis. Autophagy allows the fundamental adaptation of cells to metabolic and oxidative stress. Cellular dysfunction has been observed in aged tissues and in toxic insults to cells undergoing stress. Conversely, promising anti-aging strategies aimed at inhibiting the mTOR pathway have been found to significantly improve the aging-related disorders. Recently, autophagy has been found to positively regulate skin homeostasis by enhancing DNA damage recognition. Here, we investigated the geno-protective roles of autophagy in UV-B-exposed primary human dermal fibroblasts (HDFs). We found that UV-B irradiation to HDFs impairs the autophagy response in a time- and intensity-independent manner. However, improving autophagy levels in HDFs with pharmacological activators regulates the UV-B-induced cellular stress by decreasing the induction of DNA photo-adducts, promoting the DNA repair process, alleviating oxidative and ER stress responses, and regulating the expression levels of key cell cycle regulatory proteins. Autophagy also prevents HDFs from UV-B-induced nuclear damage as is evident in TUNEL assay and Acridine Orange/Ethidium Bromide co-staining. Salubrinal (an eIF2α phosphatase inhibitor) relieves ER stress response in cells and also significantly alleviates DNA damage and promotes the repair process in UV-B-exposed HDFs. P62-silenced HDFs show enhanced DNA damage response and also disturb the tumor suppressor PTEN/pAKT signaling axis in UV-B-exposed HDFs whereas Atg7-silenced HDFs reveal an unexpected consequence by decreasing the UV-B-induced DNA damage. Taken together, these results suggest that interventional autophagy offers significant protection against UV-B radiation-induced photo-damage and holds great promise in devising it as a suitable therapeutic strategy against skin pathological disorders.
Collapse
Affiliation(s)
- Sheikh Ahmad Umar
- Biological Sciences, Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
- Pharmacokinetics-Pharmacodynamics (PK-PD) and Toxicology Division, Council of Scientific & Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu Tawi, India
| | - Naikoo Hussain Shahid
- Biological Sciences, Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
- Pharmacokinetics-Pharmacodynamics (PK-PD) and Toxicology Division, Council of Scientific & Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu Tawi, India
| | - Lone Ahmad Nazir
- Biological Sciences, Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
- Pharmacokinetics-Pharmacodynamics (PK-PD) and Toxicology Division, Council of Scientific & Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu Tawi, India
| | - Malik Ahmad Tanveer
- Biological Sciences, Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
- Pharmacokinetics-Pharmacodynamics (PK-PD) and Toxicology Division, Council of Scientific & Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu Tawi, India
| | - Gupta Divya
- Biological Sciences, Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
- Pharmacokinetics-Pharmacodynamics (PK-PD) and Toxicology Division, Council of Scientific & Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu Tawi, India
| | - Sajida Archoo
- Biological Sciences, Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
- Pharmacokinetics-Pharmacodynamics (PK-PD) and Toxicology Division, Council of Scientific & Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu Tawi, India
| | - Sharma Rai Raghu
- Biological Sciences, Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
- Pharmacokinetics-Pharmacodynamics (PK-PD) and Toxicology Division, Council of Scientific & Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu Tawi, India
| | - Sheikh Abdullah Tasduq
- Biological Sciences, Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
- Pharmacokinetics-Pharmacodynamics (PK-PD) and Toxicology Division, Council of Scientific & Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu Tawi, India
| |
Collapse
|
10
|
Walczak K, Kazimierczak P, Szalast K, Plech T. UVB Radiation and Selected Tryptophan-Derived AhR Ligands-Potential Biological Interactions in Melanoma Cells. Int J Mol Sci 2021; 22:ijms22147500. [PMID: 34299117 PMCID: PMC8307169 DOI: 10.3390/ijms22147500] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 12/12/2022] Open
Abstract
Excessive UV exposure is considered the major environmental factor in melanoma progression. Human skin is constantly exposed to selected tryptophan-derived aryl hydrocarbon receptor (AhR) ligands, including kynurenine (KYN) and kynurenic acid (KYNA), as they are endogenously produced and present in various tissues and body fluids. Importantly, recent studies confirmed the biological activity of KYN and KYNA toward melanoma cells in vitro. Thus, in this study, the potential biological interactions between UVB and tryptophan metabolites KYN and KYNA were studied in melanoma A375, SK-MEL-3, and RPMI-7951 cells. It was shown that UVB enhanced the antiproliferative activity of KYN and KYNA in melanoma cells. Importantly, selected tryptophan-derived AhR ligands did not affect the invasiveness of A375 and RPMI-7951 cells; however, the stimulatory effect was observed in SK-MEL-3 cells exposed to UVB. Thus, the effect of tryptophan metabolites on metabolic activity, cell cycle regulation, and cell death in SK-MEL-3 cells exposed to UVB was assessed. In conclusion, taking into account that both UVB radiation and tryptophan-derived AhR ligands may have a crucial effect on skin cancer formation and progression, these results may have a significant impact, revealing the potential biological interactions in melanoma cells in vitro.
Collapse
Affiliation(s)
- Katarzyna Walczak
- Department of Pharmacology, Medical University of Lublin, Chodźki 4a, 20093 Lublin, Poland; (K.S.); (T.P.)
- Correspondence: ; Tel.: +48-814-486-774
| | - Paulina Kazimierczak
- Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodźki 1, 20093 Lublin, Poland;
| | - Karolina Szalast
- Department of Pharmacology, Medical University of Lublin, Chodźki 4a, 20093 Lublin, Poland; (K.S.); (T.P.)
| | - Tomasz Plech
- Department of Pharmacology, Medical University of Lublin, Chodźki 4a, 20093 Lublin, Poland; (K.S.); (T.P.)
| |
Collapse
|
11
|
MicroRNA-141-3p and microRNA-200a-3p regulate α-melanocyte stimulating hormone-stimulated melanogenesis by directly targeting microphthalmia-associated transcription factor. Sci Rep 2020; 10:2149. [PMID: 32034251 PMCID: PMC7005774 DOI: 10.1038/s41598-020-58911-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/20/2020] [Indexed: 12/17/2022] Open
Abstract
In recent years, it has been reported that non-coding RNAs, especially microRNAs (miRNAs) and long non-coding RNAs, act as melanogenesis-regulating molecules in melanocytes. We found that the expression levels of miR-141-3p and miR-200a-3p were decreased significantly by α-melanocyte-stimulating hormone (α-MSH) stimulation in mouse melanocyte B16-4A5 cells, as demonstrated by a miRNA array. Overexpression of miR-141-3p and miR-200a-3p in B16-4A5 cells suppressed melanogenesis and tyrosinase activity. Moreover, both miR-141-3p and miR-200a-3p showed direct targeting of microphthalmia-associated transcription factor using a luciferase reporter assay. Furthermore, topical transfection of miR-141-3p and miR-200a-3p to three-dimensional reconstructed human skin tissue inhibited α-MSH-stimulated melanin biosynthesis. Taken together, our findings indicate that downregulation of miR-141-3p and miR-200a-3p during the α-MSH-stimulated melanogenesis process acts as an important intrinsic signal. This result is expected to lead to the development of miRNA-based whitening therapeutics.
Collapse
|
12
|
Targeting Angiogenesis by Blocking the ATM-SerRS-VEGFA Pathway for UV-Induced Skin Photodamage and Melanoma Growth. Cancers (Basel) 2019; 11:cancers11121847. [PMID: 31766690 PMCID: PMC6966470 DOI: 10.3390/cancers11121847] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 12/17/2022] Open
Abstract
Retinoic acid (RA) has been widely used to protect skin from photo damage and skin carcinomas caused by solar ultraviolet (UV) irradiation, yet the mechanism remains elusive. Here, we report that all-trans retinoic acid (tRA) can directly induce the expression of a newly identified potent anti-angiogenic factor, seryl tRNA synthetase (SerRS), whose angiostatic role can, however, be inhibited by UV-activated ataxia telangiectasia mutated (ATM) kinase. In both a human epidermal cell line, HaCaT, and a mouse melanoma B16F10 cell line, we found that tRA could activate SerRS transcription through binding with the SerRS promoter. However, UV irradiation induced activation of ATM-phosphorylated SerRS, leading to the inactivation of SerRS as a transcriptional repressor of vascular endothelial growth factor A (VEGFA), which dampened the effect of tRA. When combined with ATM inhibitor KU-55933, tRA showed a greatly enhanced efficiency in inhibiting VEGFA expression and a much better protection of mouse skin from photo damage. Also, we found the combination greatly inhibited tumor angiogenesis and growth in mouse melanoma xenograft in vivo. Taken together, tRA combined with an ATM inhibitor can greatly enhance the anti-angiogenic activity of SerRS under UV irradiation and could be a better strategy in protecting skin from angiogenesis-associated skin damage and melanoma caused by UV radiation.
Collapse
|
13
|
Yang Y, Yin R, Wu R, Ramirez CN, Sargsyan D, Li S, Wang L, Cheng D, Wang C, Hudlikar R, Kuo HC, Lu Y, Kong AN. DNA methylome and transcriptome alterations and cancer prevention by triterpenoid ursolic acid in UVB-induced skin tumor in mice. Mol Carcinog 2019; 58:1738-1753. [PMID: 31237383 PMCID: PMC6722003 DOI: 10.1002/mc.23046] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
Abstract
Nonmelanoma skin cancers (NMSCs) are the most common type of skin cancers. Major risk factors for NMSCs include exposure to ultraviolet (UV) irradiation. Ursolic acid (UA) is a natural triterpenoid enriched in blueberries and herbal medicinal products, and possess anticancer activities. This study focuses on the impact of UA on epigenomic, genomic mechanisms and prevention of UVB-mediated NMSC. CpG methylome and RNA transcriptome alterations of early, promotion and late stages of UA treated on UVB-induced NMSC in SKH-1 hairless mice were conducted using CpG methyl-seq and RNA-seq. Samples were collected at weeks 2, 15, and 25, and integrated bioinformatic analyses were performed to identify key pathways and genes modified by UA against UVB-induced NMSC. Morphologically, UA significantly reduced NMSC tumor volume and tumor number. DNA methylome showed inflammatory pathways IL-8, NF-κB, and Nrf2 pathways were highly involved. Antioxidative stress master regulator Nrf2, cyclin D1, DNA damage, and anti-inflammatory pathways were induced by UA. Nrf2, cyclin D1, TNFrsf1b, and Mybl1 at early (2 weeks) and late (25 weeks) stages were identified and validated by quantitative polymerase chain reaction. In summary, integration of CpG methylome and RNA transcriptome studies show UA alters antioxidative, anti-inflammatory, and anticancer pathways in UVB-induced NMSC carcinogenesis. Particularly, UA appears to drive Nrf2 and its upstream/downstream genes, anti-inflammatory (at early stages) and cell cycle regulatory (both early and late stages) genes, of which might contribute to the overall chemopreventive effects of UVB-induced MNSC. This study may provide potential biomarkers/targets for chemoprevention of early stage of UVB-induced NMSC in human.
Collapse
Affiliation(s)
- Yuqing Yang
- Graduate Program in Pharmaceutical Science, Ernest Mario
School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ
08854, USA
- Department of Pharmaceutics, Ernest Mario School of
Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854,
USA
| | - Ran Yin
- Department of Pharmaceutics, Ernest Mario School of
Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854,
USA
| | - Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of
Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854,
USA
| | - Christina N. Ramirez
- Center for Phytochemicals Epigenome Studies, Ernest Mario
School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ
08854, USA
- Cellular and Molecular Pharmacology Program, Rutgers Robert
Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Davit Sargsyan
- Department of Pharmaceutics, Ernest Mario School of
Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854,
USA
| | - Shanyi Li
- Department of Pharmaceutics, Ernest Mario School of
Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854,
USA
| | - Lujing Wang
- Graduate Program in Pharmaceutical Science, Ernest Mario
School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ
08854, USA
- Department of Pharmaceutics, Ernest Mario School of
Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854,
USA
| | - David Cheng
- Graduate Program in Pharmaceutical Science, Ernest Mario
School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ
08854, USA
- Department of Pharmaceutics, Ernest Mario School of
Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854,
USA
| | - Chao Wang
- Department of Pharmaceutics, Ernest Mario School of
Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854,
USA
| | - Rasika Hudlikar
- Department of Pharmaceutics, Ernest Mario School of
Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854,
USA
| | - Hsiao-Chen Kuo
- Graduate Program in Pharmaceutical Science, Ernest Mario
School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ
08854, USA
- Department of Pharmaceutics, Ernest Mario School of
Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854,
USA
| | - Yaoping Lu
- Center for Phytochemicals Epigenome Studies, Ernest Mario
School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ
08854, USA
- Department of Chemical Biology, Ernest Mario School of
Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854,
USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of
Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854,
USA
| |
Collapse
|
14
|
Shah P, Zhao B, Qiang L, He YY. Phosphorylation of xeroderma pigmentosum group C regulates ultraviolet-induced DNA damage repair. Nucleic Acids Res 2019; 46:5050-5060. [PMID: 29660033 PMCID: PMC6007576 DOI: 10.1093/nar/gky239] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/21/2018] [Indexed: 12/18/2022] Open
Abstract
Nucleotide excision repair (NER) is the most versatile DNA repair system that removes bulky DNA damage induced by various endogenous and exogenous factors, including UV radiation. Defects in NER can lead to the xeroderma pigmentosum (XP) syndrome, mainly characterized by increased carcinogenesis in the skin. The function of NER factors, including xeroderma pigmentosum group C (XPC), can be regulated by post-translational modifications such as ubiquitination. However, the role of phosphorylation in XPC function remains unknown. Here, we show that phosphorylation of XPC acts as a novel post-translational regulatory mechanism of the NER pathway. We show that XPC is phosphorylated at serine 94. Moreover, after UVB irradiation, XPC phosphorylation regulates recruitment of ubiquitinated XPC and its downstream NER factors to the chromatin. In addition, upon evaluating the predicted kinases for XPC phosphorylation, we found that casein kinase II (CK2) promotes NER. Furthermore, CK2 kinase mediates XPC phosphorylation at serine 94, and also promotes recruitment of ubiquitinated XPC to the chromatin after UVB irradiation. Our findings have identified XPC phosphorylation as a new mechanism for regulating NER following UV-induced DNA damage.
Collapse
Affiliation(s)
- Palak Shah
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL 60637, USA.,Committee on Molecular Pathogenesis and Molecular Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Baozhong Zhao
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL 60637, USA
| | - Lei Qiang
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL 60637, USA.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210008, China
| | - Yu-Ying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL 60637, USA.,Committee on Molecular Pathogenesis and Molecular Medicine, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
15
|
Yang Y, Wu R, Sargsyan D, Yin R, Kuo HC, Yang I, Wang L, Cheng D, Wang C, Li S, Hudlikar R, Lu Y, Kong AN. UVB drives different stages of epigenome alterations during progression of skin cancer. Cancer Lett 2019; 449:20-30. [PMID: 30771437 PMCID: PMC6411449 DOI: 10.1016/j.canlet.2019.02.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/04/2019] [Accepted: 02/08/2019] [Indexed: 01/02/2023]
Abstract
Exposure to ultraviolet B (UVB) irradiation results in multitude of cellular responses including generation of reactive oxygen species and DNA damage and is responsible for non-melanoma skin cancers (NMSCs). Although genetic mutation is well documented, the epi-mutation, the alteration in epigenetics, remains elusive. In this study, we utilized CpG Methyl-seq to identify a genome-wide DNA CpG methylation, to profile the DNA methylation in UVB-irradiated SKH-1 mouse skin epidermis and non-melanoma skin papillomas at various stages. Methyl-seq and RNA-seq were performed to examine the methylation and corresponding transcriptome alterations. The methylation profiles in mouse epidermis were altered by UVB-irradiation as time progresses. Ingenuity Pathways Analysis (IPA) identified many cancer related pathways including PTEN, p53, Nrf2 and inflammatory signaling in UVB-irradiation induced carcinogenesis. Additionally, some novel genes involved in skin carcinogenesis that were not previously reported were differentially methylated, including Enf2, Mgst2, Vegfa, and Cdk4. Taken together, the current study provides novel profiles and insights of methylation and transcriptomic changes at different stages of carcinogenesis in UVB-irradiation induced NMSC and offers potential targets for prevention and treatment of NMSC at different stages of human skin cancer.
Collapse
Affiliation(s)
- Yuqing Yang
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Davit Sargsyan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Ran Yin
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Hsiao-Chen Kuo
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Irene Yang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Lujing Wang
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - David Cheng
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Chao Wang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Shanyi Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Rasika Hudlikar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Yaoping Lu
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
16
|
Feehan RP, Nelson AM, Shantz LM. Inhibition of mTORC2 enhances UVB-induced apoptosis in keratinocytes through a mechanism dependent on the FOXO3a transcriptional target NOXA but independent of TRAIL. Cell Signal 2018; 52:35-47. [PMID: 30172026 DOI: 10.1016/j.cellsig.2018.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/22/2018] [Accepted: 08/28/2018] [Indexed: 01/06/2023]
Abstract
The primary cause of non-melanoma skin cancer (NMSC) is ultraviolet B (UVB) radiation. We have shown previously that mTORC2 inhibition sensitizes keratinocytes to UVB-induced apoptosis mediated by the transcription factor FOXO3a. FOXO3a is a key regulator of apoptosis and a tumor suppressor in several cancer types. Activation of FOXO3a promotes apoptosis through the coordinated expression of a variety of target genes, including TRAIL and NOXA. We hypothesized that in the setting of mTORC2 inhibition, the UVB-induced expression of these factors would lead to apoptosis in a FOXO3a-dependent manner. Using spontaneously immortalized human keratinocytes (HaCaT cells), we observed that both TRAIL and NOXA expression increased in cells exposed to UVB and the TOR kinase inhibitor Torin 2. Similar to knockdown of FOXO3a, NOXA knockdown reversed the sensitization to UVB-induced apoptosis caused by mTORC2 inhibition. In contrast, loss of TRAIL by either knockdown or knockout actually enhanced expression of nuclear FOXO3a, which maintained apoptosis. These surprising results are not due to faulty death receptor signaling in HaCaT cells, as we found that the cells undergo extrinsic apoptosis in response to treatment with recombinant TRAIL. Even more striking, TRAIL knockout cells were sensitized to recombinant TRAIL-induced apoptosis compared to wild-type HaCaT cells, with the largest increase occurring in the presence of mTORC2 inhibition. Taken together, these studies provide strong evidence that mTORC2 controls UVB-induced apoptosis by regulating NOXA expression downstream of FOXO3a. Moreover, FOXO3a transcriptional activation by mTORC2 inhibitors may be a valuable target for prevention or therapy of NMSC, especially in cases with low endogenous TRAIL.
Collapse
Affiliation(s)
- Robert P Feehan
- Department of Cellular & Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, United States.
| | - Amanda M Nelson
- Department of Dermatology, Penn State College of Medicine, Hershey, PA 17033, United States.
| | - Lisa M Shantz
- Department of Cellular & Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, United States.
| |
Collapse
|
17
|
Enhanced Repair of UV-Induced DNA Damage by 1,25-Dihydroxyvitamin D 3 in Skin Is Linked to Pathways that Control Cellular Energy. J Invest Dermatol 2017; 138:1146-1156. [PMID: 29258892 DOI: 10.1016/j.jid.2017.11.037] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/03/2017] [Accepted: 11/13/2017] [Indexed: 01/22/2023]
Abstract
Inadequately repaired post-UV DNA damage results in skin cancers. DNA repair requires energy but skin cells have limited capacity to produce energy after UV insult. We examined whether energy supply is important for DNA repair after UV exposure, in the presence of 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), which reduces UV-induced DNA damage and photocarcinogenesis in a variety of models. After UV exposure of primary human keratinocytes, the addition of 1,25(OH)2D3 increased unscheduled DNA synthesis, a measure of DNA repair. Oxidative phosphorylation was depleted in UV-irradiated keratinocytes to undetectable levels within an hour of UV irradiation. Treatment with 1,25(OH)2D3 but not vehicle increased glycolysis after UV. 2-Deoxyglucose-dependent inhibition of glycolysis abolished the reduction in cyclobutane pyrimidine dimers by 1,25(OH)2D3, whereas inhibition of oxidative phosphorylation had no effect. 1,25(OH)2D3 increased autophagy and modulated PINK1/Parkin consistent with enhanced mitophagy. These data confirm that energy availability is limited in keratinocytes after exposure to UV. In the presence of 1,25(OH)2D3, glycolysis is enhanced along with energy-conserving processes such as autophagy and mitophagy, resulting in increased repair of cyclobutane pyrimidine dimers and decreased oxidative DNA damage. Increased energy availability in the presence of 1,25(OH)2D3 is an important contributor to DNA repair in skin after UV exposure.
Collapse
|
18
|
Figueras Nart I, Cerio R, Dirschka T, Dréno B, Lear JT, Pellacani G, Peris K, Ruiz de Casas A. Defining the actinic keratosis field: a literature review and discussion. J Eur Acad Dermatol Venereol 2017; 32:544-563. [PMID: 29055153 DOI: 10.1111/jdv.14652] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Despite the chronic and increasingly prevalent nature of actinic keratosis (AK) and existing evidence supporting assessment of the entire cancerization field during clinical management, a standardized definition of the AK field to aid in the understanding and characterization of the disease is lacking. The objective of this review was to present and appraise the available evidence describing the AK cancerization field, with the aim of determining a precise definition of the AK field in terms of its molecular (including genetic and immunological), histological and clinical characteristics. Eight European dermatologists collaborated to conduct a review and expert appraisal of articles detailing the characteristics of the AK field. Articles published in English before August 2016 were identified using PubMed and independently selected for further assessment according to predefined preliminary inclusion and exclusion criteria. In addition, a retrospective audit of patients with AK was performed to define the AK field in clinical terms. A total of 32 review articles and 47 original research articles provided evidence of sun-induced molecular (including genetic and immunological) and histological skin changes in the sun-exposed area affected by AK. However, the available literature was deemed insufficient to inform a clinical definition of the AK field. During the retrospective audit, visible signs of sun damage in 40 patients with AK were assessed. Telangiectasia, atrophy and pigmentation disorders emerged as 'reliable or very reliable' indicators of AK field based on expert opinion, whereas 'sand paper' was deemed a 'moderately reliable' indicator. This literature review has revealed a significant gap of evidence to inform a clinical definition of the AK field. Therefore, the authors instead propose a clinical definition of field cancerization based on the identification of visible signs of sun damage that are reliable indicators of field cancerization based on expert opinion.
Collapse
Affiliation(s)
- I Figueras Nart
- Department of Dermatology, Bellvitge Hospital, Barcelona, Spain
| | - R Cerio
- Department of Cutaneous Medicine and Surgery, The Royal London Hospital and QMUL, Bart's Health NHS Trust, London, UK
| | - T Dirschka
- CentroDerm® Clinic, Wuppertal, Germany.,Faculty of Health, University Witten-Herdecke, Witten, Germany
| | - B Dréno
- Department of Dermato-Cancerology, University of Nantes, Nantes, France
| | - J T Lear
- Manchester Academic Health Science Centre, MAHSC, Manchester University and Salford Royal NHS Foundation Trust, Royal Infirmary, The University of Manchester, Manchester, UK
| | - G Pellacani
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| | - K Peris
- Department of Dermatology, Catholic University of Rome, Rome, Italy
| | - A Ruiz de Casas
- Dermatology Unit, Virgen Macarena University Hospital, Seville, Spain
| | | |
Collapse
|
19
|
Shah P, Qiang L, Yang S, Soltani K, He YY. Regulation of XPC deubiquitination by USP11 in repair of UV-induced DNA damage. Oncotarget 2017; 8:96522-96535. [PMID: 29228550 PMCID: PMC5722502 DOI: 10.18632/oncotarget.22105] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/13/2017] [Indexed: 12/31/2022] Open
Abstract
Nucleotide excision repair (NER) is the most versatile DNA repair pathway for removing DNA damage caused by UV radiation and many environmental carcinogens. NER is essential for suppressing tumorigenesis in the skin, lungs and brain. Although the core NER proteins have been identified and characterized, molecular regulation of NER remains poorly understood. Here we show that ubiquitin-specific peptidase 11 (USP11) positively regulates NER by deubiquitinating xeroderma pigmentosum complementation group C (XPC) and promoting its retention at the DNA damage sites. In addition, UV irradiation induces both USP11 recruitment to the chromatin and USP11 interaction with XPC in an XPC-ubiquitination-dependent manner. Furthermore, we found that USP11 is down-regulated in chronically UV-exposed mouse skin and in skin tumors from mice and humans. Our findings indicate that USP11 plays an important role in maintaining NER capacity, and suggest that USP11 acts as a tumor suppressor via its role in DNA repair.
Collapse
Affiliation(s)
- Palak Shah
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
- Committee on Molecular Pathogenesis and Molecular Medicine, University of Chicago, Chicago, IL, USA
| | - Lei Qiang
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| | - Seungwon Yang
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| | - Keyoumars Soltani
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| | - Yu-Ying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
- Committee on Molecular Pathogenesis and Molecular Medicine, University of Chicago, Chicago, IL, USA
| |
Collapse
|
20
|
Phosphoinositide 3-Kinase-Dependent Signalling Pathways in Cutaneous Squamous Cell Carcinomas. Cancers (Basel) 2017; 9:cancers9070086. [PMID: 28696382 PMCID: PMC5532622 DOI: 10.3390/cancers9070086] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/26/2017] [Accepted: 07/03/2017] [Indexed: 01/11/2023] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) derives from keratinocytes in the epidermis and accounts for 15–20% of all cutaneous malignancies. Although it is usually curable by surgery, 5% of these tumours metastasise leading to poor prognosis mostly because of a lack of therapies and validated biomarkers. As the incidence rate is rising worldwide it has become increasingly important to better understand the mechanisms involved in cSCC development and progression in order to develop therapeutic strategies. Here we discuss some of the evidence indicating that activation of phosphoinositide 3-kinases (PI3Ks)-dependent signalling pathways (in particular the PI3Ks targets Akt and mTOR) has a key role in cSCC. We further discuss available data suggesting that inhibition of these pathways can be beneficial to counteract the disease. With the growing number of different inhibitors currently available, it would be important to further investigate the specific contribution of distinct components of the PI3Ks/Akt/mTOR pathways in order to identify the most promising molecular targets and the best strategy to inhibit cSCC.
Collapse
|
21
|
Sample A, He YY. Autophagy in UV Damage Response. Photochem Photobiol 2017; 93:943-955. [PMID: 27935061 PMCID: PMC5466513 DOI: 10.1111/php.12691] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/22/2016] [Indexed: 12/14/2022]
Abstract
UV radiation exposure from sunlight and artificial tanning beds is the major risk factor for the development of skin cancer and skin photoaging. UV-induced skin damage can trigger a cascade of DNA damage response signaling pathways, including cell cycle arrest, DNA repair and, if damage is irreparable, apoptosis. Compensatory proliferation replaces the apoptotic cells to maintain skin barrier integrity. Disruption of these processes can be exploited to promote carcinogenesis by allowing the survival and proliferation of damaged cells. UV radiation also induces autophagy, a catabolic process that clears unwanted or damaged proteins, lipids and organelles. The mechanisms by which autophagy is activated following UV exposure, and the functions of autophagy in UV response, are only now being clarified. Here, we summarize the current understanding of the mechanisms governing autophagy regulation by UV, the roles of autophagy in regulating cellular response to UV-induced photodamage and the implications of autophagy modulation in the treatment and prevention of photoaging and skin cancer.
Collapse
Affiliation(s)
- Ashley Sample
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL
- Committee on Cancer Biology, University of Chicago, Chicago, IL
| | - Yu-Ying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL
- Committee on Cancer Biology, University of Chicago, Chicago, IL
| |
Collapse
|
22
|
Chen P, Xu S, Qu J. Lycopene Protects Keratinocytes Against UVB Radiation‐Induced Carcinogenesis via Negative Regulation of FOXO3a Through the mTORC2/AKT Signaling Pathway. J Cell Biochem 2017; 119:366-377. [DOI: 10.1002/jcb.26189] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/05/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Ping Chen
- Department of PharmacyAffiliated Hospital of Shandong Medical CollegeLinyi276000Shandong ProvinceChina
| | - Shina Xu
- Department of PharmacyAffiliated Hospital of Shandong Medical CollegeLinyi276000Shandong ProvinceChina
| | - Jinlong Qu
- Department of DermatologyLinyi Central HospitalYishui CountyLinyi276400Shandong ProvinceChina
| |
Collapse
|
23
|
Zhao B, Shah P, Qiang L, He TC, Budanov A, He YY. Distinct Role of Sesn2 in Response to UVB-Induced DNA Damage and UVA-Induced Oxidative Stress in Melanocytes. Photochem Photobiol 2016; 93:375-381. [PMID: 27463837 DOI: 10.1111/php.12624] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/12/2016] [Indexed: 02/06/2023]
Abstract
Ultraviolet (UV) radiation, including both UVB and UVA irradiation, is the major risk factor for causing skin cancer including melanoma. Recently, we have shown that Sesn2, a member of the evolutionarily conserved stress-inducible protein family Sestrins (Sesn), is upregulated in human melanomas as compared to melanocytes in normal human skin, suggesting an oncogenic role of Sesn2. However, the role of Sesn2 in UVB and UVA response is unknown. Here, we demonstrated that both UVB and UVA induce Sesn2 upregulation in melanocytes and melanoma cells. UVB induces Sesn2 expression through the p53 and AKT3 pathways. Sesn2 negatively regulates UVB-induced DNA damage repair. In comparison, UVA induces Sesn2 upregulation through mitochondria but not Nrf2. Sesn2 ablation increased UVA-induced Nrf2 induction and inhibits UVA-induced ROS production, indicating that Sesn2 acts as an upstream regulator of Nrf2. These findings suggest previously unrecognized mechanisms in melanocyte response to UVB and UVA irradiation and potentially in melanoma formation.
Collapse
Affiliation(s)
- Baozhong Zhao
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL
| | - Palak Shah
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL
| | - Lei Qiang
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL
| | - Tong-Chuan He
- Department of Orthopaedic Surgery & Rehabilitation Medicine, University of Chicago, Chicago, IL
| | - Andrey Budanov
- Department of Human Molecular Genetics, Virginia Commonwealth University, Richmond, VA
| | - Yu-Ying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL
| |
Collapse
|
24
|
Gyöngyösi N, Lőrincz K, Keszeg A, Haluszka D, Bánvölgyi A, Tátrai E, Kárpáti S, Wikonkál NM. Photosensitivity of murine skin greatly depends on the genetic background: clinically relevant dose as a new measure to replace minimal erythema dose in mouse studies. Exp Dermatol 2016; 25:519-25. [DOI: 10.1111/exd.12984] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Nóra Gyöngyösi
- Department of Dermatology, Dermatooncology and Venerology; Semmelweis University School of Medicine; Budapest Hungary
| | - Kende Lőrincz
- Department of Dermatology, Dermatooncology and Venerology; Semmelweis University School of Medicine; Budapest Hungary
| | - András Keszeg
- Department of Dermatology, Dermatooncology and Venerology; Semmelweis University School of Medicine; Budapest Hungary
| | - Dóra Haluszka
- Department of Dermatology, Dermatooncology and Venerology; Semmelweis University School of Medicine; Budapest Hungary
| | - András Bánvölgyi
- Department of Dermatology, Dermatooncology and Venerology; Semmelweis University School of Medicine; Budapest Hungary
| | - Erika Tátrai
- Department of Ophthalmology; Semmelweis University School of Medicine; Budapest Hungary
| | - Sarolta Kárpáti
- Department of Dermatology, Dermatooncology and Venerology; Semmelweis University School of Medicine; Budapest Hungary
| | - Norbert M. Wikonkál
- Department of Dermatology, Dermatooncology and Venerology; Semmelweis University School of Medicine; Budapest Hungary
| |
Collapse
|
25
|
Negative regulation of the FOXO3a transcription factor by mTORC2 induces a pro-survival response following exposure to ultraviolet-B irradiation. Cell Signal 2016; 28:798-809. [PMID: 27058291 DOI: 10.1016/j.cellsig.2016.03.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/16/2016] [Accepted: 03/28/2016] [Indexed: 12/30/2022]
Abstract
Exposure to ultraviolet-B (UVB) irradiation, the principal cause of non-melanoma skin cancer (NMSC), activates both the rapamycin-sensitive mammalian target of rapamycin complex 1 (mTORC1) and the rapamycin-resistant mTORC2. We have previously reported that UVB-induced keratinocyte survival is dependent on mTORC2, though the specific mechanism is not well understood. FOXO3a is an important transcription factor involved in regulating cell survival. The activity of FOXO3a is reduced as a result of protein kinase B (AKT/PKB) activation, which is downstream of mTORC2; however, the specific function of FOXO3a during UVB-induced apoptosis is unclear. In this study, we establish that in cells with wild-type mTORC2 activity, FOXO3a is quickly phosphorylated in response to UVB and sequestered in the cytoplasm. In contrast, loss of mTORC2 causes FOXO3a to be localized to the nucleus and sensitizes cells to UVB-induced apoptosis. Furthermore, this sensitization is rescued by knockdown of FOXO3a. Taken together, these studies provide strong evidence that inhibition of mTORC2 enhances UVB-induced apoptosis in a FOXO3a-dependent manner, and suggest that FOXO3a activation by mTORC2 inhibitors may be a valuable chemopreventive target in NMSC.
Collapse
|
26
|
An J, Zheng L, Xie S, Yin F, Huo X, Guo J, Zhang X. Regulatory Effects and Mechanism of Adenovirus-Mediated PTEN Gene on Hepatic Stellate Cells. Dig Dis Sci 2016; 61:1107-20. [PMID: 26660904 DOI: 10.1007/s10620-015-3976-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 11/23/2015] [Indexed: 01/26/2023]
Abstract
BACKGROUND Tension homology deleted on chromosome ten (PTEN) is important in liver fibrosis. AIMS The purpose of this study was to evaluate the PTEN gene effects and mechanism of action on hepatic stellate cells (HSCs). METHODS The rat primary HSCs and human LX-2 cells were transfected by an adenovirus containing cDNA constructs encoding the wild-type PTEN (Ad-PTEN), the PTEN mutant G129E gene (Ad-G129E) and RNA interference targeting the PTEN sequence PTEN short hairpin RNA (PTEN shRNA), to up-regulate and down-regulate PTEN expression, respectively. The HSCs were assayed with a fluorescent microscope, real time PCR, Western blot, MTT, flow cytometry and Terminal-deoxynucleoitidyl transferase mediated nick end labeling. In addition, the CCl4 induced rat hepatic fibrosis model was also established to check the in vivo effects of the recombinant adenovirus with various levels of PTEN expression. RESULTS The data have shown that the over-expressed PTEN gene led to reduced HSCs activation and viability, caspase-3 activity and cell cycle arrest in the G0/G1 and G2/M phases, as well as negative regulation of the PI3K/Akt and FAK/ERK signaling pathways in vitro. The over-expressed PTEN gene improved liver function, inhibited proliferation and promoted apoptosis of HSCs both in vitro and in vivo. CONCLUSIONS These data have shown that gene therapy using the recombinant adenovirus encoding wild-type PTEN inhibits proliferation and induces apoptosis of HSCs, which is a potential treatment option for hepatic fibrosis.
Collapse
Affiliation(s)
- Junyan An
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, 215 West Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Libo Zheng
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, 215 West Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Shurui Xie
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, 215 West Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Fengrong Yin
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, 215 West Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Xiaoxia Huo
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, 215 West Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Jian Guo
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, 215 West Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Xiaolan Zhang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, 215 West Heping Road, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
27
|
Zhao B, Qiang L, Joseph J, Kalyanaraman B, Viollet B, He YY. Mitochondrial dysfunction activates the AMPK signaling and autophagy to promote cell survival. Genes Dis 2016; 3:82-87. [PMID: 28066797 PMCID: PMC5215801 DOI: 10.1016/j.gendis.2015.12.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 12/21/2015] [Indexed: 12/25/2022] Open
Abstract
Autophagy is a cellular self-eating process essential for stress response and maintaining tissue homeostasis by lysosomal degradation of unwanted or damaged proteins and organelles. Here, we show that cells with defective mitochondria induce autophagy to promote cell survival through activating the AMPK pathway. Loss of mitochondrial complex III protein cytochrome b activates the AMPK signaling and induced autophagy. Inhibiting mitochondria energetics by mitochondria-targeted agents activates the AMPK signaling and induced autophagy. Genetic inhibition of AMPK inhibits autophagy induction in cells with defective mitochondria, while genetic inhibition of autophagy has no effect on AMPK activation. Mitochondria dysfunction has no effect of DNA repair of UV-induced DNA damage. However, mitochondria dysfunction sensitizes cells to apoptosis induced by UV radiation. Genetic inhibition of autophagy or AMPK sensitized cells to apoptosis in cells with defective mitochondria. Our results demonstrate that AMPK and autophagy senses mitochondria dysfunction and serves as a mechanism for survival. Our findings may provide new insights into the interplay between mitochondria function and autophagy process in maintaining tissue homeostasis, and suggest that this interaction may play important roles in diseases such as cancer and neurodegeneration.
Collapse
Affiliation(s)
- Baozhong Zhao
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| | - Lei Qiang
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| | - Joy Joseph
- Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Benoit Viollet
- INSERM U567, CNRS UMR8104, Department of Endocrinology, Metabolism and Cancer, Institut Cochin, Université Paris 5, 75014 Paris, France
| | - Yu-Ying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
28
|
A systems-biological study on the identification of safe and effective molecular targets for the reduction of ultraviolet B-induced skin pigmentation. Sci Rep 2015; 5:10305. [PMID: 25980672 PMCID: PMC4434836 DOI: 10.1038/srep10305] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 04/08/2015] [Indexed: 12/12/2022] Open
Abstract
Melanogenesis is the process of melanin synthesis through keratinocytes-melanocytes interaction, which is triggered by the damaging effect of ultraviolet-B (UVB) rays. It is known that melanogenesis influences diverse cellular responses, including cell survival and apoptosis, via complex mechanisms of feedback and crosstalk. Therefore, an attempt to suppress melanin production by modulating the melanogenesis pathway may induce perturbations in the apoptotic balance of the cells in response to UVB irradiation, which results in various skin diseases such as melasma, vitiligo, and skin cancer. To identify such appropriate target strategies for the reduction of UVB-induced melanin synthesis, we reconstructed the melanogenesis signaling network and developed a Boolean network model. Mathematical simulations of the melanogenesis network model revealed that the inhibition of beta-catenin in the melanocytes effectively reduce melanin production while having minimal influence on the apoptotic balance of the cells. Exposing cells to a beta-catenin inhibitor decreased pigmentation but did not significantly change the B-cell Chronic lymphocytic leukemia/lymphoma 2 expression, a potent regulator of apoptotic balance. Thus, our systems analysis suggests that the inhibition of beta-catenin may be the most appropriate target strategy for the reduction of UVB-induced skin pigmentation.
Collapse
|
29
|
Kumar R, Deep G, Agarwal R. An Overview of Ultraviolet B Radiation-Induced Skin Cancer Chemoprevention by Silibinin. ACTA ACUST UNITED AC 2015; 1:206-215. [PMID: 26097804 DOI: 10.1007/s40495-015-0027-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Skin cancer incidences are rising worldwide, and one of the major causative factors is excessive exposure to solar ultraviolet radiation (UVR). Annually, ~5 million skin cancer patients are treated in United States, mostly with nonmelanoma skin cancer (NMSC), which is also frequent in other Western countries. As sunscreens do not provide adequate protection against deleterious effects of UVR, additional and alternative chemoprevention strategies are urgently needed to reduce skin cancer burden. Over the last couple of decades, extensive research has been conducted to understand the molecular basis of skin carcinogenesis, and to identifying novel agents which could be useful in the chemoprevention of skin cancer. In this regard, several natural non-toxic compounds have shown promising efficacy in preventing skin carcinogenesis at initiation, promotion and progression stages, and are considered important in better management of skin cancer. Consistent with this, we and others have studied and established the notable efficacy of natural flavonolignan silibinin against UVB-induced skin carcinogenesis. Extensive pre-clinical animal and cell culture studies report strong anti-inflammatory, anti-oxidant, DNA damage repair, immune-modulatory and anti-proliferative properties of silibinin. Molecular studies have identified that silibinin targets pleotropic signaling pathways including mitogenic, cell cycle, apoptosis, autophagy, p53, NF-κB, etc. Overall, the skin cancer chemopreventive potential of silibinin is well supported by comprehensive mechanistic studies, suggesting its greater use against UV-induced cellular damages and photocarcinogenesis.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences
| | - Gagan Deep
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences ; University of Colorado Cancer Center, University of Colorado Denver, Aurora, Colorado 80045, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences ; University of Colorado Cancer Center, University of Colorado Denver, Aurora, Colorado 80045, USA
| |
Collapse
|
30
|
Ming M, Han W, Zhao B, Sundaresan NR, Deng CX, Gupta MP, He YY. SIRT6 promotes COX-2 expression and acts as an oncogene in skin cancer. Cancer Res 2014; 74:5925-33. [PMID: 25320180 DOI: 10.1158/0008-5472.can-14-1308] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
SIRT6 is a SIR2 family member that regulates multiple molecular pathways involved in metabolism, genomic stability, and aging. It has been proposed previously that SIRT6 is a tumor suppressor in cancer. Here, we challenge this concept by presenting evidence that skin-specific deletion of SIRT6 in the mouse inhibits skin tumorigenesis. SIRT6 promoted expression of COX-2 by repressing AMPK signaling, thereby increasing cell proliferation and survival in the skin epidermis. SIRT6 expression in skin keratinocytes was increased by exposure to UVB light through activation of the AKT pathway. Clinically, we found that SIRT6 was upregulated in human skin squamous cell carcinoma. Taken together, our results provide evidence that SIRT6 functions as an oncogene in the epidermis and suggest greater complexity to its role in epithelial carcinogenesis.
Collapse
Affiliation(s)
- Mei Ming
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, Illinois
| | - Weinong Han
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, Illinois
| | - Baozhong Zhao
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, Illinois
| | - Nagalingam R Sundaresan
- Department of Surgery, Committee on Cellular and Molecular Physiology, University of Chicago, Chicago, Illinois. Division of Biological Sciences, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Chu-Xia Deng
- National Institute of Diabetes, Digestive and Kidney Diseases, US NIH, Bethesda, Maryland
| | - Mahesh P Gupta
- Department of Surgery, Committee on Cellular and Molecular Physiology, University of Chicago, Chicago, Illinois
| | - Yu-Ying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, Illinois.
| |
Collapse
|
31
|
Hill NT, Gracia-Maldonado GH, Leonard MK, Harper AR, Tober KL, Oberyszyn TM, Kadakia MP. Role of vitamin D3 in modulation of ΔNp63α expression during UVB induced tumor formation in SKH-1 mice. PLoS One 2014; 9:e107052. [PMID: 25191969 PMCID: PMC4156396 DOI: 10.1371/journal.pone.0107052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 08/07/2014] [Indexed: 12/31/2022] Open
Abstract
ΔNp63α, a proto-oncogene, is up-regulated in non-melanoma skin cancers and directly regulates the expression of both Vitamin D receptor (VDR) and phosphatase and tensin homologue deleted on chromosome ten (PTEN). Since ΔNp63α has been shown to inhibit cell invasion via regulation of VDR, we wanted to determine whether dietary Vitamin D3 protected against UVB induced tumor formation in SKH-1 mice, a model for squamous cell carcinoma development. We examined whether there was a correlation between dietary Vitamin D3 and ΔNp63α, VDR or PTEN expression in vivo in SKH-1 mice chronically exposed to UVB radiation and fed chow containing increasing concentrations of dietary Vitamin D3. Although we observed differential effects of the Vitamin D3 diet on ΔNp63α and VDR expression in chronically irradiated normal mouse skin as well as UVB induced tumors, Vitamin D3 had little effect on PTEN expression in vivo. While low-grade papillomas in mice exposed to UV and fed normal chow displayed increased levels of ΔNp63α, expression of both ΔNp63α and VDR was reduced in invasive tumors. Interestingly, in mice fed high Vitamin D3 chow, elevated levels of ΔNp63α were observed in both local and invasive tumors but not in normal skin suggesting that oral supplementation with Vitamin D3 may increase the proliferative potential of skin tumors by increasing ΔNp63α levels.
Collapse
Affiliation(s)
- Natasha T. Hill
- Department of Biochemistry and Molecular Biology; Boonshoft School of Medicine; Wright State University; Dayton, Ohio, United States of America
| | - Gabriel H. Gracia-Maldonado
- Department of Biochemistry and Molecular Biology; Boonshoft School of Medicine; Wright State University; Dayton, Ohio, United States of America
| | - Mary K. Leonard
- Department of Biochemistry and Molecular Biology; Boonshoft School of Medicine; Wright State University; Dayton, Ohio, United States of America
| | - Amanda R. Harper
- Department of Pathology, The Ohio State University, Columbus, Ohio, United States of America
| | - Kathleen L. Tober
- Department of Pathology, The Ohio State University, Columbus, Ohio, United States of America
| | - Tatiana M. Oberyszyn
- Department of Pathology, The Ohio State University, Columbus, Ohio, United States of America
| | - Madhavi P. Kadakia
- Department of Biochemistry and Molecular Biology; Boonshoft School of Medicine; Wright State University; Dayton, Ohio, United States of America
- * E-mail:
| |
Collapse
|
32
|
Ciuffreda L, Falcone I, Incani UC, Del Curatolo A, Conciatori F, Matteoni S, Vari S, Vaccaro V, Cognetti F, Milella M. PTEN expression and function in adult cancer stem cells and prospects for therapeutic targeting. Adv Biol Regul 2014; 56:66-80. [PMID: 25088603 DOI: 10.1016/j.jbior.2014.07.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 07/11/2014] [Indexed: 06/03/2023]
Abstract
Phosphatase and tensin homolog deleted on chromosome ten (PTEN) is a non-redundant lipid phosphatase that restrains and fine tunes the phosphatidylinositol-3-kinase (PI3K) signaling pathway. PTEN is involved in inherited syndromes, which predispose to different types of cancers and is among the most frequently inactivated tumor suppressor genes in sporadic cancers. Indeed, loss of PTEN function occurs in a wide spectrum of human cancers through a variety of mechanisms, including mutations, deletions, transcriptional silencing, or protein instability. PTEN prevents tumorigenesis through multiple mechanisms and regulates a plethora of cellular processes, including survival, proliferation, energy metabolism and cellular architecture. Moreover, recent studies have demonstrated that PTEN is able to exit, exist, and function outside the cell, allowing for inhibition of the PI3K pathway in neighboring cells in a paracrine fashion. Most recently, studies have shown that PTEN is also critical for stem cell maintenance and that PTEN loss can lead to the emergence and proliferation of cancer stem cell (CSC) clones. Depending on the cellular and tissue context of origin, PTEN deletion may result in increased self-renewal capacity or normal stem cell exhaustion and PTEN-defìcient stem and progenitor cells have been reported in prostate, lung, intestinal, and pancreatic tissues before tumor formation; moreover, reversible or irreversible PTEN loss is frequently observed in CSC from a variety of solid and hematologic malignancies, where it may contribute to the functional phenotype of CSC. In this review, we will focus on the role of PTEN expression and function and downstream pathway activation in cancer stem cell biology and regulation of the tumorigenic potential; the emerging role of PTEN in mediating the crosstalk between the PI3K and MAPK pathways will also be discussed, together with prospects for the therapeutic targeting of tumors lacking PTEN expression.
Collapse
Affiliation(s)
- Ludovica Ciuffreda
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Italia Falcone
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Ursula Cesta Incani
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Anais Del Curatolo
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Fabiana Conciatori
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Silvia Matteoni
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Sabrina Vari
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Vanja Vaccaro
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Francesco Cognetti
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Michele Milella
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| |
Collapse
|
33
|
Ming M, Zhao B, Qiang L, He YY. Effect of immunosuppressants tacrolimus and mycophenolate mofetil on the keratinocyte UVB response. Photochem Photobiol 2014; 91:242-7. [PMID: 25039758 DOI: 10.1111/php.12318] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/11/2014] [Indexed: 01/10/2023]
Abstract
Nonmelanoma skin cancer, derived from epidermal keratinocytes, is the most common malignancy in organ transplant recipients, causes serious morbidity and mortality, and is strongly associated with solar ultraviolet (UV) exposure. Preventing and treating skin cancer in these individuals has been extraordinarily challenging. Following organ transplantation, the immunosuppressants are used to prevent graft rejection. Until now, immunosuppression has been assumed to be the major factor leading to skin cancer in this setting. However, the mechanism of skin carcinogenesis in organ transplant recipients has not been understood to date; specifically, it remains unknown whether these cancers are immunosuppression-dependent or -independent. In particular, it remains poorly understood what is the mechanistic carcinogenic action of the newer generation of immunosuppressants including tacrolimus and mycophenolate mofetil (MMF). Here, we show that tacrolimus and MMF impairs UVB-induced DNA damage repair and apoptosis in human epidermal keratinocytes. In addition, tacrolimus inhibits UVB-induced checkpoint signaling. However, MMF had no effect. Our findings have demonstrated that tacrolimus and MMF compromises proper UVB response in keratinocytes, suggesting an immunosuppression-independent mechanism in the tumor-promoting action of these immunosuppressants.
Collapse
Affiliation(s)
- Mei Ming
- Section of Dermatology, Department of Medicine, University of Chicago, Chicago, IL
| | | | | | | |
Collapse
|
34
|
Lương KVQ, Nguyễn LTH. The roles of vitamin D in seborrhoeic keratosis: possible genetic and cellular signalling mechanisms. Int J Cosmet Sci 2013; 35:525-31. [DOI: 10.1111/ics.12080] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 07/07/2013] [Indexed: 12/22/2022]
Affiliation(s)
- K. v. q. Lương
- Vietnamese American Medical Research Foundation; 14971 Brookhurst St. Westminster CA 92683 U.S.A
| | - L. T. H. Nguyễn
- Vietnamese American Medical Research Foundation; 14971 Brookhurst St. Westminster CA 92683 U.S.A
| |
Collapse
|
35
|
Strozyk E, Kulms D. The role of AKT/mTOR pathway in stress response to UV-irradiation: implication in skin carcinogenesis by regulation of apoptosis, autophagy and senescence. Int J Mol Sci 2013; 14:15260-85. [PMID: 23887651 PMCID: PMC3759859 DOI: 10.3390/ijms140815260] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 06/27/2013] [Accepted: 07/01/2013] [Indexed: 02/06/2023] Open
Abstract
Induction of DNA damage by UVB and UVA radiation may generate mutations and genomic instability leading to carcinogenesis. Therefore, skin cells being repeatedly exposed to ultraviolet (UV) light have acquired multilayered protective mechanisms to avoid malignant transformation. Besides extensive DNA repair mechanisms, the damaged skin cells can be eliminated by induction of apoptosis, which is mediated through the action of tumor suppressor p53. In order to prevent the excessive loss of skin cells and to maintain the skin barrier function, apoptotic pathways are counteracted by anti-apoptotic signaling including the AKT/mTOR pathway. However, AKT/mTOR not only prevents cell death, but is also active in cell cycle transition and hyper-proliferation, thereby also counteracting p53. In turn, AKT/mTOR is tuned down by the negative regulators being controlled by the p53. This inhibition of AKT/mTOR, in combination with transactivation of damage-regulated autophagy modulators, guides the p53-mediated elimination of damaged cellular components by autophagic clearance. Alternatively, p53 irreversibly blocks cell cycle progression to prevent AKT/mTOR-driven proliferation, thereby inducing premature senescence. Conclusively, AKT/mTOR via an extensive cross talk with p53 influences the UV response in the skin with no black and white scenario deciding over death or survival.
Collapse
Affiliation(s)
- Elwira Strozyk
- Experimental Dermatology, Department of Dermatology, TU Dresden, 01307 Dresden, Germany; E-Mail:
| | - Dagmar Kulms
- Experimental Dermatology, Department of Dermatology, TU Dresden, 01307 Dresden, Germany; E-Mail:
| |
Collapse
|
36
|
UVB suppresses PTEN expression by upregulating miR-141 in HaCaT cells. J Biomed Res 2013; 25:135-40. [PMID: 23554681 PMCID: PMC3596705 DOI: 10.1016/s1674-8301(11)60017-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 02/26/2011] [Accepted: 03/03/2011] [Indexed: 11/21/2022] Open
Abstract
MicroRNAs (miRNAs) are 21 to 24 nucleotide, non-coding RNA molecules that post-transcriptionally regulate the expression of target genes. Ultraviolet B (UVB) radiation has been shown to inhibit phosphatase and tensin homolog deleted on chromosome 10 (PTEN) expression in HaCaT cells through an unknown mechanism. In this study, we investigated whether miR-141 can regulate UVB exposure-mediated inhibition of PTEN expression. Real-time RT-PCR, annexin V/fluorescein isothiocyanate staining, Western blotting and anti-miRNA oligonucleotide transfection were employed in this study. We found that upregulation of miR-141 expression after UVB irradiation was inversely correlated with PTEN expression levels in HaCaT cells. Furthermore, miR-141 expression increased apoptosis, while anti-miR-141 partly restored PTEN expression and reversed the pro-apoptosis effect of UVB. UVB suppresses the expression of PTEN by upregulating miR-141 in HaCaT cells. Therefore, miR-141 is a potential gene therapy target for UVB-induced photodamage.
Collapse
|
37
|
Zhao B, Ming M, He YY. Suppression of PTEN transcription by UVA. J Biochem Mol Toxicol 2012; 27:184-91. [PMID: 23129115 DOI: 10.1002/jbt.21451] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 09/10/2012] [Accepted: 09/18/2012] [Indexed: 01/10/2023]
Abstract
Although ultraviolet A (UVA; 315-400 nm) has different physical and biological targets than ultraviolet B (UVB; 280-315 nm), the contribution of UVA to skin cancer susceptibility and its molecular basis remain largely unknown. Here we show that chronic UVA radiation suppresses phosphatase and tensin homolog (PTEN) expression at the mRNA level. Subchronic and acute UVA radiation also downregulated PTEN in normal human epidermal keratinocytes, skin culture, and mouse skin. At the molecular level, chronic UVA radiation decreased the transcriptional activity of the PTEN promoter in a methylation-independent manner, whereas it had no effect on the protein stability or mRNA stability of PTEN. In contrast, we found that UVA-induced activation of the Ras/ERK/AKT and NF-кB pathways plays an important role in UV-induced PTEN downregulation. Inhibiting extracellular signal-regulated kinases (ERK) or protein pinase B (AKT) increases PTEN expression. Our findings may provide unique insights into PTEN downregulation as a critical component of UVA's molecular impact during keratinocyte transformation.
Collapse
Affiliation(s)
- Baozhong Zhao
- Section of Dermatology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
38
|
Kim TH, Kim YK, Woo JS. The adenosine A3 receptor agonist Cl-IB-MECA induces cell death through Ca²⁺/ROS-dependent down regulation of ERK and Akt in A172 human glioma cells. Neurochem Res 2012; 37:2667-77. [PMID: 22878643 DOI: 10.1007/s11064-012-0855-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 07/19/2012] [Accepted: 07/25/2012] [Indexed: 02/06/2023]
Abstract
Adenosine A(3) receptor (A3AR) is coupled to G proteins that are involved in a variety of intracellular signaling pathways and physiological functions. 2-Chloro-N(6)-(3-iodobenzyl) adenosine-5'-N-methylcarboxamide (Cl-IB-MECA), an agonist of A3AR, has been reported to induce cell death in various cancer cells. However, the effect of CI-IB-MECA on glioma cell growth is not clear. This study was undertaken to examine the effect of CI-IB-MECA on glioma cell viability and to determine its molecular mechanism. CI-IB-MECA inhibited cell proliferation and induced cell death in a dose- and time-dependent manner. Treatment of CI-IB-MECA resulted in an increase in intracellular Ca(2+) followed by enhanced reactive oxygen species (ROS) generation. EGTA and N-acetylcysteine (NAC) blocked the cell death induced by CI-IB-MECA, suggesting that Ca(2+) and ROS are involved in the Cl-IB-MECA-induced cell death. Western blot analysis showed that CI-IB-MECA induced the down-regulation of extracellular signal-regulated kinases (ERK) and Akt, which was prevented by EGTA, NAC, and the A3AR antagonist MRS1191. Transfection of constitutively active forms of MEK, the upstream kinase of ERK, and Akt prevented the cell death. CI-IB-MECA induced caspase-3 activation and the CI-IB-MECA-induced cell death was blocked by the caspase inhibitors DEVD-CHO and z-VAD-FMK. In addition, expression of XIAP and Survivin were decreased in cells treated with Cl-IB-MECA. Collectively, these findings demonstrate that CI-IB-MECA induce a caspase-dependent cell death through suppression of ERK and Akt mediated by an increase in intracellular Ca(2+) and ROS generation in human glioma cells. These suggest that A3AR agonists may be a potential therapeutic agent for induction of apoptosis in human glioma cells.
Collapse
Affiliation(s)
- Thae Hyun Kim
- Department of Physiology, School of Medicine, Pusan National University, Beomeo-ri, Mulgeum-eup, Yangsan 626-870, Gyungsangnam-do, Republic of Korea
| | | | | |
Collapse
|
39
|
Ligand-activated PPARδ inhibits UVB-induced senescence of human keratinocytes via PTEN-mediated inhibition of superoxide production. Biochem J 2012; 444:27-38. [PMID: 22335598 DOI: 10.1042/bj20111832] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
UV radiation-mediated photodamage to the skin has been implicated in premature aging and photoaging-related skin cancer and melanoma. Little is known about the cellular events that underlie premature senescence, or how to impede these events. In the present study we demonstrate that PPARδ (peroxisome-proliferator-activated receptor δ) regulates UVB-induced premature senescence of normal keratinocytes. Activation of PPARδ by GW501516, a specific ligand of PPARδ, significantly attenuated UVB-mediated generation of ROS (reactive oxygen species) and suppressed senescence of human keratinocytes. Ligand-activated PPARδ up-regulated the expression of PTEN (phosphatase and tensin homologue deleted on chromosome 10) and suppressed the PI3K (phosphatidylinositol 3-kinase)/Akt pathway. Concomitantly, translocation of Rac1 to the plasma membrane, which leads to the activation of NADPH oxidases and generation of ROS, was significantly attenuated. siRNA (small interfering RNA)-mediated knockdown of PTEN abrogated the effects of PPARδ on cellular senescence, on PI3K/Akt/Rac1 signalling and on generation of ROS in keratinocytes exposed to UVB. Finally, when HR-1 hairless mice were treated with GW501516 before exposure to UVB, the number of senescent cells in the skin was significantly reduced. Thus ligand-activated PPARδ confers resistance to UVB-induced cellular senescence by up-regulating PTEN and thereby modulating PI3K/Akt/Rac1 signalling to reduce ROS generation in keratinocytes.
Collapse
|
40
|
Abstract
Skin cancer is the most common cancer in the U.S., while DNA-damaging UVB radiation from the sun remains the major environmental risk factor. Reducing skin cancer incidence is becoming an urgent issue. The energy-sensing enzyme 5’-AMP-activated protein kinase (AMPK) plays a key role in the regulation of cellular lipid and protein metabolism in response to stimuli such as exercise and changes in fuel availability. However, the role AMPK in the response of skin cells to UVB damage and in skin cancer prevention remains unknown. Here we show that AMPK activation is reduced in human and mouse squamous cell carcinoma as compared with normal skin, and by UVB irradiation, suggesting that AMPK is a tumor suppressor. At the molecular level, AMPK deletion reduced the expression of the DNA repair protein xeroderma pigmentosum C (XPC) and UVB-induced DNA repair. AMPK activation by its activators AICAR (5-aminoimidazole-4-carboxamide ribonucleoside) and metformin (N’,N’-dimethylbiguanide), the most widely used anti-diabetic drug, increased the expression of XPC expression and UVB-induced DNA repair in mouse skin, normal human epidermal keratinocytes, and AMPK wild-type cells but not in AMPK deficient cells, indicating an AMPK-dependent mechanism. Topical treatment with AICAR and metformin not only delayed onset of UVB-induced skin tumorigenesis but also reduced tumor multiplicity. Furthermore, AMPK deletion increased ERK activation and cell proliferation, while AICAR and metformin inhibited ERK activation and cell proliferation in keratinocytes, mouse skin, AMPK wild-type and AMPK deficient cells, suggesting an AMPK-independent mechanism. Finally, in UVB-damaged tumor-bearing mice, both topical and systemic metformin prevented the formation of new tumors and suppressed growth of established tumors. Our findings not only suggest that AMPK is a tumor suppressor in the skin by promoting DNA repair and controlling cell proliferation, but also demonstrate previously unknown mechanisms by which the AMPK activators prevent UVB-induced skin tumorigenesis.
Collapse
|
41
|
Boyer JZ, Jandova J, Janda J, Vleugels FR, Elliott DA, Sligh JE. Resveratrol-sensitized UVA induced apoptosis in human keratinocytes through mitochondrial oxidative stress and pore opening. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2012; 113:42-50. [PMID: 22673012 DOI: 10.1016/j.jphotobiol.2012.04.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 04/20/2012] [Accepted: 04/27/2012] [Indexed: 11/18/2022]
Abstract
Resveratrol (3,5,4'-trihydroxy-trans-stilbene), a polyphenol compound, is derived from natural products such as the skin of red grapes, blueberries and cranberries. Resveratrol not only exhibits antioxidant, cardioprotection, and anti-aging properties, but can also inhibit cancer cell growth and induce apoptosis. It has been shown that resveratrol inhibits the activation of Nf-κB and subsequently down regulates the expression of Nf-κB regulated genes such as interleukin-2 and Bcl-2, leading to cell cycle arrest and increased apoptosis in multiple myeloma cells. In the skin, resveratrol has been reported to sensitize keratinocytes to UVA induced apoptosis. However, the effect of resveratrol on opening of the mitochondrial permeability transition pore has not been previously examined. Our data show that UVA (14 J/cm(2)) along with resveratrol causes massive oxidative stress in mitochondria. As a consequence of oxidative stress, the mitochondrial membrane potential decreases which results in opening of the mitochondrial pores ultimately leading to apoptosis in human keratinocytes. These results may have clinical implications for development of future chemotherapeutic treatment for tumors of the skin.
Collapse
Affiliation(s)
- Jean Z Boyer
- Southern Arizona VA Health Care System, Tucson, AZ 85724, USA
| | | | | | | | | | | |
Collapse
|
42
|
Nys K, Agostinis P. Bcl-2 family members: essential players in skin cancer. Cancer Lett 2012; 320:1-13. [PMID: 22281242 DOI: 10.1016/j.canlet.2012.01.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 01/17/2012] [Accepted: 01/18/2012] [Indexed: 12/11/2022]
Abstract
Skin cancer has reached epidemic proportions and is considered to be a direct consequence of ultraviolet (UV) radiation exposure. Excessive exposure of epidermal cells to UV results in apoptosis of irreparably damaged cells to avoid malignant transformation. The Bcl-2 family of proteins is emerging as a crucial regulator of epidermal homeostasis and cell's fate in the stressed skin. Not surprisingly, deregulation of Bcl-2 family members is also chiefly involved in skin carcinogenesis and response to cancer therapy. Here we discuss the physiopathological role of epidermal Bcl-2 family members, their implications in skin carcinogenesis and as potential targets in cancer therapy.
Collapse
Affiliation(s)
- Kris Nys
- Cell Death Research & Therapy Unit, Department for Molecular Cell Biology, Catholic University of Leuven, Leuven, Belgium
| | | |
Collapse
|
43
|
Ciuffreda L, Di Sanza C, Cesta Incani U, Eramo A, Desideri M, Biagioni F, Passeri D, Falcone I, Sette G, Bergamo P, Anichini A, Sabapathy K, McCubrey JA, Ricciardi MR, Tafuri A, Blandino G, Orlandi A, De Maria R, Cognetti F, Del Bufalo D, Milella M. The mitogen-activated protein kinase (MAPK) cascade controls phosphatase and tensin homolog (PTEN) expression through multiple mechanisms. J Mol Med (Berl) 2012; 90:667-79. [DOI: 10.1007/s00109-011-0844-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 11/16/2011] [Accepted: 11/17/2011] [Indexed: 10/14/2022]
|
44
|
Far infrared ray irradiation attenuates apoptosis and cell death of cultured keratinocytes stressed by dehydration. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2012; 106:61-8. [DOI: 10.1016/j.jphotobiol.2011.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 10/05/2011] [Accepted: 10/11/2011] [Indexed: 01/21/2023]
|
45
|
Ming M, Feng L, Shea CR, Soltani K, Zhao B, Han W, Smart RC, Trempus CS, He YY. PTEN positively regulates UVB-induced DNA damage repair. Cancer Res 2011; 71:5287-95. [PMID: 21771908 DOI: 10.1158/0008-5472.can-10-4614] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nonmelanoma skin cancer is the most common cancer in the United States, where DNA-damaging ultraviolet B (UVB) radiation from the sun remains the major environmental risk factor. However, the critical genetic targets of UVB radiation are undefined. Here we show that attenuating PTEN in epidermal keratinocytes is a predisposing factor for UVB-induced skin carcinogenesis in mice. In skin papilloma and squamous cell carcinoma (SCC), levels of PTEN were reduced compared with skin lacking these lesions. Likewise, there was a reduction in PTEN levels in human premalignant actinic keratosis and malignant SCCs, supporting a key role for PTEN in human skin cancer formation and progression. PTEN downregulation impaired the capacity of global genomic nucleotide excision repair (GG-NER), a critical mechanism for removing UVB-induced mutagenic DNA lesions. In contrast to the response to ionizing radiation, PTEN downregulation prolonged UVB-induced growth arrest and increased the activation of the Chk1 DNA damage pathway in an AKT-independent manner, likely due to reduced DNA repair. PTEN loss also suppressed expression of the key GG-NER protein xeroderma pigmentosum C (XPC) through the AKT/p38 signaling axis. Reconstitution of XPC levels in PTEN-inhibited cells restored GG-NER capacity. Taken together, our findings define PTEN as an essential genomic gatekeeper in the skin through its ability to positively regulate XPC-dependent GG-NER following DNA damage.
Collapse
Affiliation(s)
- Mei Ming
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Byrne SN, Beaugie C, O'Sullivan C, Leighton S, Halliday GM. The immune-modulating cytokine and endogenous Alarmin interleukin-33 is upregulated in skin exposed to inflammatory UVB radiation. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:211-22. [PMID: 21703403 DOI: 10.1016/j.ajpath.2011.03.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 02/08/2011] [Accepted: 03/14/2011] [Indexed: 10/18/2022]
Abstract
The cellular and molecular mechanisms by which UV radiation modulates inflammation and immunity while simultaneously maintaining skin homeostasis is complex and not completely understood. Similar to the effects of UV, IL-33 has potent immune-modulating properties that are mediated by the downstream induction of cytokines and chemokines. We have discovered that exposure of mice in vivo or human skin samples ex vivo to inflammatory doses of UVB induced IL-33 expression within the epidermal and dermal skin layers. Using a combination of murine cell lines and primary human cells, we demonstrate that both UV and the oxidized lipid platelet activating factor induce IL-33 expression in keratinocytes and dermal fibroblasts. Highlighting the significance of these results, we found that administering IL-33 to mice in vivo suppressed the induction of Th1-mediated contact hypersensitivity responses. This may have consequences for skin cancer growth because UV-induced squamous cell carcinomas that evade immunological destruction were found to express significantly higher levels of IL-33. Finally, we demonstrate that dermal mast cells and skin-infiltrating neutrophils closely associate with UV-induced IL-33-expressing fibroblasts. Our results therefore identify and support a role for IL-33 as an important early danger signal produced in response to inflammation-inducing UV radiation.
Collapse
Affiliation(s)
- Scott Napier Byrne
- Cellular Immunology Group, Department of Infectious Diseases and Immunology, Sydney Medical School, University of Sydney, New South Wales, Australia.
| | | | | | | | | |
Collapse
|
47
|
Han W, Ming M, He YY. Caffeine promotes ultraviolet B-induced apoptosis in human keratinocytes without complete DNA repair. J Biol Chem 2011; 286:22825-32. [PMID: 21561856 DOI: 10.1074/jbc.m111.222349] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In response to ultraviolet B damage, keratinocytes undergo apoptosis to eliminate damaged cells, thereby preventing tumorigenic transformation. Caffeine, the most widely consumed psychoactive substance, produces complex pharmacological actions; it has been shown to be chemopreventive in non-melamona skin cancer in mice through increasing apoptosis. Here we have investigated the molecular and cellular mechanisms in the pro-apoptotic effect of caffeine on UVB-irradiated human HaCaT keratinocytes. Pretreatment with caffeine increased UVB-induced apoptosis in HaCaT cells. Caffeine blocked UVB-induced Chk1 phosphorylation. In addition, similar to the effect of the PI3K inhibitor LY294002, caffeine also inhibited phosphorylation of AKT and up-regulation of COX-2, two critical oncogenic pathways in skin tumorigenesis. However, phosphorylation of EGFR or ERK was unaffected. Inhibiting ATR pathways by siRNA targeting ATR had little effect on UVB-induced apoptosis or AKT activation, indicating that the inhibitory effect of caffeine on apoptosis and the AKT pathway does not require the ATR pathway. Inhibiting AKT by caffeine blocked UVB-induced COX-2 up-regulation. Expression of constitutively active AKT that was not inhibited by caffeine was found to protect cells from caffeine-promoted apoptosis post-UVB irradiation, indicating that AKT is an essential inhibitory target for caffeine to promote apoptosis. Caffeine specifically sensitized cells with unrepaired DNA damage to UVB-induced apoptosis. These findings indicate that in HaCaT keratinocytes, inhibiting the AKT/COX-2 pathways through an ATR-independent pathway is a critical molecular mechanism by which caffeine promotes UVB-induced apoptosis of unrepaired keratinocytes for elimination.
Collapse
Affiliation(s)
- Weinong Han
- Section of Dermatology, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
48
|
Anandharaj A, Cinghu S, Kim WD, Yu JR, Park WY. Fused Toes Homolog modulates radiation cytotoxicity in uterine cervical cancer cells. Mol Biol Rep 2011; 38:5361-70. [PMID: 21424602 DOI: 10.1007/s11033-011-0688-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 02/25/2011] [Indexed: 02/05/2023]
Abstract
Radiotherapy is the major treatment modality for uterine cervical cancer, but in some cases, the disease is radioresistant. Defining the molecular events that contribute to radioresistance and progression of cancer are of critical importance. Here we evaluated the role of Fused Toes Homolog (FTS) in radiation resistance of cervical carcinoma. Immunostaning of cervical cancer cells and tissues revealed that FTS localization and expression was changed after radiation. Targeted stable knockdown of FTS in HeLa cells led to the growth inhibition after radiation. Radiation induced AKT mediated cytoprotective effect was countered by FTS knockdown which leads to PARP cleavage and caspase-3 activation leading to cell death. FTS knockdown promotes radiation induced cell cycle arrest at G0/G1 and apoptosis of HeLa cells with concurrent alterations in the display of cell cycle regulatory proteins. This study revealed FTS is involved in radioresistance of cervical cancer. Targeted inhibition of FTS led to the shutdown of key elemental characteristics of cervical cancer and could lead to an effective therapeutic strategy.
Collapse
Affiliation(s)
- Arunkumar Anandharaj
- Department of Radiation Oncology, Chungbuk National University College of Medicine, Cheongju 361-763, Republic of Korea
| | | | | | | | | |
Collapse
|
49
|
Ming M, Shea CR, Feng L, Soltani K, He YY. UVA induces lesions resembling seborrheic keratoses in mice with keratinocyte-specific PTEN downregulation. J Invest Dermatol 2011; 131:1583-6. [PMID: 21390050 DOI: 10.1038/jid.2011.33] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
50
|
Afaq F, Khan N, Syed DN, Mukhtar H. Oral feeding of pomegranate fruit extract inhibits early biomarkers of UVB radiation-induced carcinogenesis in SKH-1 hairless mouse epidermis. Photochem Photobiol 2010; 86:1318-26. [PMID: 20946358 DOI: 10.1111/j.1751-1097.2010.00815.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pomegranate from the plant Punica granatum L. possesses strong antioxidant and anti-inflammatory properties. Recently, we have demonstrated that treatment of normal human epidermal keratinocytes with pomegranate fruit extract (PFE) inhibited UVB-mediated activation of nuclear factor kappa B (NF-κB) and mitogen activated protein kinases pathways. Here, we evaluated the effect of PFE on early biomarkers of photocarcinogenesis employing SKH-1 hairless mice. PFE was provided in drinking water (0.2%, wt/vol) to SKH-1 hairless mice for 14 days before a single UVB (180 mJ cm(-2)) irradiation. We found that oral feeding of PFE inhibited UVB-induced: (1) skin edema; (2) hyperplasia; (3) infiltration of leukocytes; (4) lipid peroxidation; (5) hydrogen peroxide generation; (6) ornithine decarboxylase (ODC) activity; and (7) ODC, cyclooxygenase-2 and proliferating cell nuclear antigen protein expression. Oral feeding of PFE enhanced repair of UVB-mediated formation of cyclobutane pyrimidine dimers (CPDs) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG). Importantly, PFE treatment further enhanced UVB-mediated increase in tumor suppressor p53 and cyclin kinase inhibitor p21. Furthermore, oral feeding of PFE inhibited UVB-mediated: (1) nuclear translocation of NF-κB; (2) activation of IKKα; and (3) phosphorylation and degradation of IκBα. Taken together, we provide evidence that oral feeding of PFE to mice affords substantial protection from the adverse effects of UVB radiation via modulation in early biomarkers of photocarcinogenesis and provide suggestion for its photochemopreventive potential.
Collapse
Affiliation(s)
- Farrukh Afaq
- Department of Dermatology, University of Wisconsin, Madison, WI, USA.
| | | | | | | |
Collapse
|