1
|
Zhang L, Zhu D, Jiang J, Min Z, Fa Z. The ubiquitin E3 ligase MDM2 induces chemoresistance in colorectal cancer by degradation of ING3. Carcinogenesis 2023; 44:562-575. [PMID: 37279970 DOI: 10.1093/carcin/bgad040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/12/2023] [Accepted: 06/06/2023] [Indexed: 06/08/2023] Open
Abstract
Chemoresistance is an obstacle for colorectal cancer (CRC) treatment. This study investigates the role of the ubiquitin E3 ligase MDM2 in affecting cell growth and chemosensitivity in CRC cells by modifying the transcription factor inhibitor of growth protein 3 (ING3). The expression of MDM2 and ING3 in CRC tissues was predicted by bioinformatics analysis, followed by expression validation and their interaction in CRC HCT116 and LS180 cells. Ectopic overexpression or knockdown of MDM2/ING3 was performed to test their effect on proliferation and apotptosis as well as chemosensitivity of CRC cells. Finally, the effect of MDM2/ING3 expression on the in vivo tumorigenesis of CRC cells was examined through subcutaneous tumor xenograft experiment in nude mice. MDM2 promoted ubiquitin-proteasome pathway degradation of ING3 through ubiquitination and diminished its protein stability. Overexpression of MDM2 downregulated ING3 expression, which promoted CRC cell proliferation and inhibited the apoptosis. The enhancing role of MDM2 in tumorigenesis and resistance to chemotherapeutic drugs was also confirmed in vivo. Our findings highlight that MDM2 modifies the transcription factor ING3 by ubiquitination-proteasome pathway degradation, thus reducing ING3 protein stability, which finally promotes CRC cell growth and chemoresistance.
Collapse
Affiliation(s)
- Liangliang Zhang
- General Surgery Department, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou 213004, P. R. China
| | - Dagang Zhu
- General Surgery Department, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou 213004, P. R. China
| | - Jiwen Jiang
- General Surgery Department, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou 213004, P. R. China
| | - Zhenyu Min
- General Surgery Department, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou 213004, P. R. China
| | - Zhenzhong Fa
- General Surgery Department, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou 213004, P. R. China
| |
Collapse
|
2
|
Zhou H, Zhou L, Guan Q, Hou X, Wang C, Liu L, Wang J, Yu X, Li W, Liu H. Skp2-mediated MLKL degradation confers cisplatin-resistant in non-small cell lung cancer cells. Commun Biol 2023; 6:805. [PMID: 37532777 PMCID: PMC10397346 DOI: 10.1038/s42003-023-05166-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 07/24/2023] [Indexed: 08/04/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most prevalent type of cancer and the leading cause of cancer-related death. Chemotherapeutic resistance is a major obstacle in treating NSCLC patients. Here, we discovered that the E3 ligase Skp2 is overexpressed, accompanied by the downregulation of necroptosis-related regulator MLKL in human NSCLC tissues and cell lines. Knockdown of Skp2 inhibited viability, anchorage-independent growth, and in vivo tumor development of NSCLC cells. We also found that the Skp2 protein is negatively correlated with MLKL in NSCLC tissues. Moreover, Skp2 is increased and accompanied by an upregulation of MLKL ubiquitination and degradation in cisplatin-resistant NSCLC cells. Accordingly, inhibition of Skp2 partially restores MLKL and sensitizes NSCLC cells to cisplatin in vitro and in vivo. Mechanistically, Skp2 interacts and promotes ubiquitination-mediated degradation of MLKL in cisplatin-resistant NSCLC cells. Our results provide evidence of an Skp2-dependent mechanism regulating MLKL degradation and cisplatin resistance, suggesting that targeting Skp2-ubiquitinated MLKL degradation may overcome NSCLC chemoresistance.
Collapse
Affiliation(s)
- Huiling Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Li Zhou
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, The Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qing Guan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xuyang Hou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Cong Wang
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lijun Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jian Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xinfang Yu
- Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Haidan Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
3
|
Zhou J, Lei Z, Chen J, Liao S, Chen Y, Liu C, Huang S, Li L, Zhang Y, Wang P, Huang Y, Li J, Liang H. Nuclear export of BATF2 enhances colorectal cancer proliferation through binding to CRM1. Clin Transl Med 2023; 13:e1260. [PMID: 37151195 PMCID: PMC10165233 DOI: 10.1002/ctm2.1260] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/09/2023] Open
Abstract
BACKGROUND During the tumourigenesis and development of colorectal cancer (CRC), the inactivation of tumour suppressor genes is closely involved, although detailed molecular mechanisms remain elusive. Accumulating studies, including ours, have demonstrated that basic leucine zipper transcription factor ATF (activating transcription factor)-like 2 (BATF2) is a capable tumour suppressor that localises in the nucleus. However, its different subcellular localisation, potential functions and underlying mechanisms are unclear. METHODS The translocation of BATF2 and its clinical relevance were detected using CRC samples, cell lines and xenograft nude mice. Candidate BATF2-binding proteins were screened using co-immunoprecipitation, quantitative label-free liquid chromatography-tandem mass spectrometry proteomic analysis, Western blotting and immunofluorescence. Recombinant plasmids, point mutations and siRNAs were applied to clarify the binding sites between BATF2 and chromosome region maintenance 1 (CRM1). RESULTS The present study found that BATF2 was mainly localised in the cytoplasm, rather than nucleus, of CRC cells in vitro and in vivo, while cytoplasmic BATF2 expression was inversely correlated with the prognosis of CRC patients. Furthermore, we identified the nuclear export and subsequent ubiquitin-mediated degradation of BATF2 in CRC cells. Mechanistically, a functional nuclear export sequence (any amino acid) was characterised in BATF2 protein, through which BATF2 bound to CRM1 and translocated out of nucleus, ultimately enhancing CRC growth via inducing activator protein 1 (AP-1)/cyclin D1/phosphorylated retinoblastoma protein (pRb) signalling pathway. Additionally, nuclear export of BATF2 can be retarded by the mutation of NES in BATF2 or the knockdown of CRM1, whereas CRM1 expression was negatively associated with nuclear BATF2 expression and the prognosis of CRC patients. CONCLUSION These findings revealed the biological effects and underlying mechanisms of cytoplasmic localisation of BATF2. Furthermore, suppressing nuclear export of BATF2 via mutating its NES region or inhibiting CRM1 expression may serve as a promising therapeutic strategy against CRC.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Oncology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Zengjie Lei
- Department of Medical OncologyAffiliated Jinling HospitalMedical School of Nanjing UniversityNanjingChina
| | - Jianfang Chen
- Department of Oncology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Shengbo Liao
- Department of OtolaryngologyPeople's Hospital of Xishui CountyGuizhouChina
| | - Yanrong Chen
- Department of Oncology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Chengxiang Liu
- Department of Oncology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Shuo Huang
- Department of Oncology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Liuli Li
- Department of Oncology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Yan Zhang
- Department of Oncology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Pei Wang
- Department of Oncology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Yinghui Huang
- Department of NephrologyKey Laboratory for the Prevention and Treatment of Chronic Kidney Disease of ChongqingChongqing Clinical Research Center of Kidney and Urology DiseasesXinqiao HospitalArmy Medical UniversityChongqingChina
| | - Jianjun Li
- Department of Oncology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Houjie Liang
- Department of Oncology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| |
Collapse
|
4
|
Li H, Zhang H, Tan X, Liu D, Guo R, Wang M, Tang Y, Zheng K, Chen W, Li H, Tan M, Wang K, Liu R, Tang S. Overexpression of ING3 is associated with attenuation of migration and invasion in breast cancer. Exp Ther Med 2021; 22:699. [PMID: 34007308 PMCID: PMC8120550 DOI: 10.3892/etm.2021.10131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
Inhibitor of growth 3 (ING3) has been identified as a potential cancer drug target, but little is known about its role in breast cancer. Thus, the present study aimed to investigate ING3 expression in breast cancer, its clinical value, and how ING3 influences the migration and invasion of breast cancer cells. The Cancer Genome Atlas and UALCAN databases were used to analyze ING3 expression in cancer tissues and normal tissues. Survival analysis was performed using the UALCAN, UCSC Xena and KM-plot databases. In addition, reverse transcription-quantitative PCR and western blot analyses were performed to detect ING3 mRNA and protein expression levels. ING3 was overexpressed via lentiviral vector transfection, while the Transwell and wound healing assays were performed to assess the cell migratory and invasive abilities. Protein interaction and pathway analyses were performed using the GeneMANIA and Kyoto Encyclopedia of Genes and Genomes databases, respectively. The results demonstrated that ING3 expression was significantly lower in cancer tissues compared with normal tissues (P<0.05). In addition, luminal A and human epidermal growth factor receptor 2 (HER2)-enriched breast cancer tissues expressed lower levels of ING3 compared with normal breast tissues. Notably, statistically significant differences were observed in long-term survival between patients with luminal A (P=0.04) and HER2-enriched (P=0.008) breast cancer, with high and low expression levels of ING3. The results of the Transwell migration and invasion assays demonstrated that overexpression of ING3 significantly inhibited the migratory and invasive abilities of MCF7 (P<0.05) and HCC1937 (P<0.05) cells. The results of the wound healing assay demonstrated that the percentage wound closure significantly decreased in cells transfected with LV5-ING3 compared with the negative control group at 12 h (P<0.05) and 24 h (P<0.01). The PI3K/AKT, JAK/STAT, NF-κB and Wnt/β-catenin pathways are the potential pathways regulated by ING3. Notably, overexpression of ING3 inhibited migration and invasion in vitro. However, further studies are required to determine whether ING3 regulates the biological behavior of breast cancer via tumor-related pathways.
Collapse
Affiliation(s)
- Huimeng Li
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Hengyu Zhang
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Xin Tan
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Dequan Liu
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Rong Guo
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Maohua Wang
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Yiyin Tang
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Kai Zheng
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Wenlin Chen
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Hongwan Li
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Mingjian Tan
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Ke Wang
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Rui Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Shicong Tang
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| |
Collapse
|
5
|
Wu X, Chen C, Luo B, Yan D, Yan H, Chen F, Guan F, Wu H, Yuan J. Nuclear ING3 Expression Is Correlated With a Good Prognosis of Breast Cancer. Front Oncol 2021; 10:589009. [PMID: 33469513 PMCID: PMC7813678 DOI: 10.3389/fonc.2020.589009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/26/2020] [Indexed: 12/23/2022] Open
Abstract
The inhibitor of growth (ING) family was discovered as the type II tumor suppressors, which regulated the proliferation, apoptosis, differentiation, angiogenesis, metastasis, and invasion of tumor cells through multiple pathways. ING3, a new member of ING family, has been reported to be downregulated in several types of tumors. However, few studies on ING3 in breast cancer have been reported. In this study, we investigated the expression of ING3 and determined its prognostic value in breast cancer. The immunohistochemistry was performed to evaluate the expression of ING3 in tissue microarrays (TMA) including breast cancer tissues (n=211) and normal breast tissues (n=50). In normal breast tissues, ING3 protein was detected in both the cytoplasm and nucleus. In breast cancer tissues, ING3 protein was principally detected in the cytoplasm. Compared with normal breast tissues, the expression of ING3 in nucleus was remarkably reduced in breast cancer tissues. The downregulated ING3 in nucleus was significantly correlated with clinicopathological characteristics including histological grade, lymph node metastasis, and the status of ER and PR. In HER2 positive-type and triple-negative breast cancer (TNBC) patients, it had the lower rate of nuclear ING3 with high expression than that in luminal-type. Moreover, Kaplan-Meier curves demonstrated that the reduced expression of ING3 in nucleus was correlated with a poorer 5-DFS and 5-OS of breast cancer patients. Importantly, multivariate Cox regression analysis suggested that the reduced expression of ING3 in nucleus was an independent prognostic factor in breast cancer. Our study comprehensively described the expression of ING3 in breast cancer for the first time and proved that it was an independent prognostic predictor of breast cancer, as well as a new idea for study of breast cancer.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bin Luo
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dandan Yan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Honglin Yan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fangfang Chen
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Feng Guan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hao Wu
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Zhou R, Rotte A, Li G, Chen X, Chen G, Bhandaru M. Nuclear localization of ING3 is required to suppress melanoma cell migration, invasion and angiogenesis. Biochem Biophys Res Commun 2020; 527:418-424. [PMID: 32334834 DOI: 10.1016/j.bbrc.2020.04.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 04/12/2020] [Indexed: 02/08/2023]
Abstract
Inhibitor of growth family member 3 (ING3), a tumor suppressor, plays crucial roles in cell cycle regulation, apoptosis and transcription. Previous studies suggest important roles of nuclear ING3, however, the nuclear localization sequence (NLS) of ING3 is not defined and its biological functions remain to be elucidated. In this study, various ING3 mutants were generated to identify its NLS. The NLS of ING3 was determined as KKFK between 164 and 167 amino acids. More intriguingly, replacement of Lysine 164 residue of ING3 with alanine (K164A) resulted in retention of ING3 in the cytoplasm. Overexpression of ING3 led to inhibition of melanoma cell migration, invasion, and angiogenesis respectively, however, this inhibition was abrogated in cells with overexpression of ING3-K164A mutant. In conclusion, this study identified the NLS of ING3 and demonstrated the significance of ING3 nuclear localization for tumor suppressive functions of ING3, and future studies await to elucidate the role of ING3 (K164) post-modificaton in its nuclear transportation and cancer development.
Collapse
Affiliation(s)
- Ruiyao Zhou
- Department of General Surgery, The Third Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Anand Rotte
- Department of Dermatology and Skin Science, Jack Bell Research Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Gang Li
- Department of Dermatology and Skin Science, Jack Bell Research Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Xiaolei Chen
- Department of General Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Guangdi Chen
- Department of Dermatology and Skin Science, Jack Bell Research Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Bioelectromagnetics Laboratory, Department of Public Health, Zhejiang University School of Medicine, China.
| | - Madhuri Bhandaru
- Department of Dermatology and Skin Science, Jack Bell Research Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
7
|
Archambeau J, Blondel A, Pedeux R. Focus-ING on DNA Integrity: Implication of ING Proteins in Cell Cycle Regulation and DNA Repair Modulation. Cancers (Basel) 2019; 12:cancers12010058. [PMID: 31878273 PMCID: PMC7017203 DOI: 10.3390/cancers12010058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 12/16/2022] Open
Abstract
The ING family of tumor suppressor genes is composed of five members (ING1-5) involved in cell cycle regulation, DNA damage response, apoptosis and senescence. All ING proteins belong to various HAT or HDAC complexes and participate in chromatin remodeling that is essential for genomic stability and signaling pathways. The gatekeeper functions of the INGs are well described by their role in the negative regulation of the cell cycle, notably by modulating the stability of p53 or the p300 HAT activity. However, the caretaker functions are described only for ING1, ING2 and ING3. This is due to their involvement in DNA repair such as ING1 that participates not only in NERs after UV-induced damage, but also in DSB repair in which ING2 and ING3 are required for accumulation of ATM, 53BP1 and BRCA1 near the lesion and for the subsequent repair. This review summarizes evidence of the critical roles of ING proteins in cell cycle regulation and DNA repair to maintain genomic stability.
Collapse
|
8
|
Regulat-INGs in tumors and diseases: Focus on ncRNAs. Cancer Lett 2019; 447:66-74. [PMID: 30673590 DOI: 10.1016/j.canlet.2019.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/21/2018] [Accepted: 01/08/2019] [Indexed: 12/11/2022]
Abstract
ING family genes (Inhibitor of Growth) are tumor suppressor genes that play a vital role in cell homeostasis. It has been shown that their expression is lost or diminished in many cancers and other diseases. The main mechanisms by which they are regulated in oncogenesis have not yet been fully elucidated. The involvement of non-coding RNAs (ncRNAs) and in particular microRNAs (miRNAs) in post-transcriptional gene regulation is well established. miRNAs are short sequences (18-25 nucleotides) that can bind to the 3 'UTR sequence of the targeted messenger RNA (mRNA), leading to its degradation or translational repression. Interactions between the ING family and miRNAs have been described in some cancers but also in other diseases. The involvement of miRNAs in ING family regulation opens up new fields of investigation, particularly for targeted therapies. In this review, we will summarize the regulatory mechanisms at the RNA and protein level of the ING family and focus on the interactions with ncRNAs.
Collapse
|
9
|
Yang XF, Shen DF, Zhao S, Ren TR, Gao Y, Shi S, Wu JC, Sun HZ, Zheng HC. Expression pattern and level of ING5 protein in normal and cancer tissues. Oncol Lett 2018; 17:63-68. [PMID: 30655738 PMCID: PMC6313139 DOI: 10.3892/ol.2018.9581] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 02/13/2017] [Indexed: 11/16/2022] Open
Abstract
Inhibitor of growth family 5 (ING5) functions as a type-II tumor suppressor gene and exerts an important role in DNA repair, apoptotic induction, proliferative inhibition, chromatin remodeling and the invasion process. In the present study, immunohistochemistry was performed to characterize the expression profile of ING5 protein on a tissue microarray containing mouse and human normal tissues, and human cancer tissues, including hepatocellular (n=62), renal clear cell (n=62), pancreatic (n=62), esophageal squamous cell (n=45), cervical squamous cell (n=31), breast (n=144), gastric (n=196), colorectal (n=96), endometrial (n=96) and lung carcinoma (n=192). In the mouse tissues, ING5 expression was detected in the cytoplasm of neurons, the nephric tubule and glomerulus, alveolar epithelium, gastrointestinal glands, squamous epithelium of the skin and skeletal muscles. By contrast, ING5 was localized to the cell nucleus in breast tissues. In human tissues, ING5 protein was primarily localized in the cytoplasm. However, ING5 was detected in the cytoplasm and nucleus in various types of normal tissues, including the tongue, stomach, intestine, lung and breast. In total, ING5 expression was detected in 400/986 cancer tissues (40.6%). In the majority of cases, ING5 expression was observed to be restricted to the cytoplasm. However, ING5 was also detected in the nucleus in a number of cancer tissues, including gastric, colorectal and lung carcinoma. Notably, ING5 was more frequently expressed in breast (79.9%), colorectal (56.3%) and endometrial carcinoma (50.0%). The incidence of ING5 expression in hepatocellular carcinoma (14.5%) and pancreatic carcinoma (22.6%) was low. These findings indicate that ING5 may be involved in cell regeneration and be associated with colorectal carcinogenesis.
Collapse
Affiliation(s)
- Xue-Feng Yang
- Cancer Center and Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Dao-Fu Shen
- Cancer Center and Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Shuang Zhao
- Cancer Center and Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Tian-Ren Ren
- Jilin Province Forestry Bureau, Linjiang, Jilin 134600, P.R. China
| | - Yang Gao
- Cancer Center and Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Shuai Shi
- Cancer Center and Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Ji-Cheng Wu
- Cancer Center and Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Hong-Zhi Sun
- Cancer Center and Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Hua-Chuan Zheng
- Cancer Center and Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China.,Institute of Life Sciences, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|
10
|
McClurg UL, Nabbi A, Ricordel C, Korolchuk S, McCracken S, Heer R, Wilson L, Butler LM, Irving-Hooper BK, Pedeux R, Robson CN, Riabowol KT, Binda O. Human ex vivo prostate tissue model system identifies ING3 as an oncoprotein. Br J Cancer 2018; 118:713-726. [PMID: 29381681 PMCID: PMC5846061 DOI: 10.1038/bjc.2017.447] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/09/2017] [Accepted: 11/14/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Although the founding members of the INhibitor of Growth (ING) family of histone mark readers, ING1 and ING2, were defined as tumour suppressors in animal models, the role of other ING proteins in cellular proliferation and cancer progression is unclear. METHODS We transduced ex vivo benign prostate hyperplasia tissues with inducible lentiviral particles to express ING proteins. Proliferation was assessed by H3S10phos immunohistochemistry (IHC). The expression of ING3 was assessed by IHC on a human prostate cancer tissue microarray (TMA). Gene expression was measured by DNA microarray and validated by real-time qPCR. RESULTS We found that ING3 stimulates cellular proliferation in ex vivo tissues, suggesting that ING3 could be oncogenic. Indeed, ING3 overexpression transformed normal human dermal fibroblasts. We observed elevated levels of ING3 in prostate cancer samples, which correlated with poorer patient survival. Consistent with an oncogenic role, gene-silencing experiments revealed that ING3 is required for the proliferation of breast, ovarian, and prostate cancer cells. Finally, ING3 controls the expression of an intricate network of cell cycle genes by associating with chromatin modifiers and the H3K4me3 mark at transcriptional start sites. CONCLUSIONS Our investigations create a shift in the prevailing view that ING proteins are tumour suppressors and redefine ING3 as an oncoprotein.
Collapse
Affiliation(s)
- Urszula L McClurg
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne NE2 4HH, England
| | - Arash Nabbi
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Oncology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Charles Ricordel
- Université Rennes 1, CLCC Eugène Marquis, INSERM ERL440-OSS, Rue Bataille Flandres Dunkerque, Batiment D, 1er étage, Rennes 35042, France
| | - Svitlana Korolchuk
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne NE2 4HH, England
| | - Stuart McCracken
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne NE2 4HH, England
| | - Rakesh Heer
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne NE2 4HH, England
| | - Laura Wilson
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne NE2 4HH, England
| | - Lisa M Butler
- School of Medicine and Freemasons Foundation Centre for Men’s Health, University of Adelaide, South Australian Health and Medical Research Institute, Adelaide, SA 5005, Australia
| | - Bronwyn Kate Irving-Hooper
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne NE2 4HH, England
| | - Rémy Pedeux
- Université Rennes 1, CLCC Eugène Marquis, INSERM ERL440-OSS, Rue Bataille Flandres Dunkerque, Batiment D, 1er étage, Rennes 35042, France
| | - Craig N Robson
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne NE2 4HH, England
| | - Karl T Riabowol
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Oncology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Olivier Binda
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne NE2 4HH, England
| |
Collapse
|
11
|
Zhang Z, Fu C, Xu Q, Wei X. Long non-coding RNA CASC7 inhibits the proliferation and migration of colon cancer cells via inhibiting microRNA-21. Biomed Pharmacother 2017; 95:1644-1653. [DOI: 10.1016/j.biopha.2017.09.052] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/10/2017] [Accepted: 09/10/2017] [Indexed: 10/18/2022] Open
|
12
|
Liu Q, Zhang S, Chen G, Zhou H. E3 ubiquitin ligase Nedd4 inhibits AP-1 activity and TNF-α production through targeting p38α for polyubiquitination and subsequent degradation. Sci Rep 2017; 7:4521. [PMID: 28674435 PMCID: PMC5495757 DOI: 10.1038/s41598-017-04072-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/09/2017] [Indexed: 11/16/2022] Open
Abstract
p38α plays an important role in many inflammatory diseases, such as skin inflammation, endotoxic shock and arthritis. Ubiquitination is a vital posttranslational modification of proteins and plays a crucial regulatory role in inflammatory cells. It has been reported that ubiquitination of Tak1 and TAB1 upstream of p38α can regulate p38α activation respectively. However, p38α ubiquitination is not yet clear. In this paper, we showed that E3 ubiquitin ligase Nedd4 is a regulatory component of the p38α pathway and is responsible for polyubiquitination of p38α through K48-linked and K63-linked polyubiquitination. The levels of p38α and its downstream target TNF-α were increased in Nedd4 deficient macrophages response to LPS compared with wild-type cells. AP-1 activity and degradation of p38α were induced by Nedd4 in a dose-dependent manner. Furthermore, we found that phosphorylation of p38α is involved in the interactions between p38α and Nedd4 and subsequently promotes polyubiquitination of p38α, especially K48-linked polyubiquitination by Nedd4. The different conformation of two p38α isoforms (p38αV1 and p38αV2) might be the cause of their different interactions with Nedd4 and their polyubiquitination sites by Nedd4. Thus, NEDD4 is a previously unknown component of the p38α signaling complex necessary for TNF-α activation.
Collapse
Affiliation(s)
- Qingjun Liu
- Beijing Institute of Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, Taiping Road 27, 100850, Beijing, P.R. China.
| | - Shihui Zhang
- Beijing Institute of Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, Taiping Road 27, 100850, Beijing, P.R. China
| | - Gan Chen
- Beijing Institute of Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, Taiping Road 27, 100850, Beijing, P.R. China
| | - Hong Zhou
- Beijing Institute of Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, Taiping Road 27, 100850, Beijing, P.R. China.
| |
Collapse
|
13
|
Gou WF, Yang XF, Shen DF, Zhao S, Sun HZ, Luo JS, Zheng HC. Immunohistochemical profile of ING3 protein in normal and cancerous tissues. Oncol Lett 2017; 13:1631-1636. [PMID: 28454301 PMCID: PMC5403501 DOI: 10.3892/ol.2017.5632] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 12/14/2015] [Indexed: 12/14/2022] Open
Abstract
The inhibitor of growth family, member 3 (ING3) protein may be capable of blocking the cell cycle via activating p53-transactivated promoters of p21 and Bcl2-associated X protein, and may induce apoptosis via a Fas/caspase-8-dependent signaling pathway. In the present study, immunohistochemistry was performed in order to characterize the expression profile of ING3 protein in tissue microarrays containing mouse and human normal tissue, human hepatocellular (n=62), renal clear cell (n=62), pancreatic (n=62), esophageal squamous cell (n=45), cervical squamous cell (n=31), breast (n=144), gastric (n=196), colorectal (n=96), ovarian (n=208), endometrial (n=96) and lung carcinoma (n=192). In mouse tissue, ING3 protein was positively detected in the cytoplasm of cardiomyocytes, kidney and skeletal muscle cells, and was additionally detected in the cytoplasm and nucleus of bronchial and alveolar epithelium, gastric and intestinal gland, and mammary gland cells. In human tissues, ING3 protein was principally distributed in the cytoplasm, but was observed in the cytoplasm and nucleus of tongue, esophagus, stomach, intestine, lung, skin, appendix, bladder, cervix and breast cells. ING3 immunoreactivity was strongly detected in the stomach, skin and cervical tissues, whereas a weak signal was detected in the cerebellum, brain stem, thymus, liver, skeletal muscle, testis and prostate. In total, ING3-positive specimens were identified in 424 of 1,194 tested cancer entities (35.5%). In a number of cases, ING3 expression was observed to be restricted to the cytoplasm and nucleus, excluding the cytoplasmic distribution identified in breast and hepatocellular carcinoma. Among these cases, ING3 was more frequently expressed in breast and gynecological types of cancer, including ovarian (59.2%), endometrial (47.9%), breast (38.9%) and cervical (35.5%) cancer. ING3-positive cases were more rare in renal clear cell (17.7%), hepatocellular (16.1%) and esophageal carcinoma (17.8%). It is suggested that ING3 may be involved in the repair and regeneration of organs or tissues, and may be closely associated with gynecological carcinogenesis.
Collapse
Affiliation(s)
- Wen-Feng Gou
- Cancer Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Xue-Feng Yang
- Cancer Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Dao-Fu Shen
- Cancer Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Shuang Zhao
- Cancer Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Hong-Zhi Sun
- Cancer Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Jun-Sheng Luo
- Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Hua-Chuan Zheng
- Cancer Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China.,Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|
14
|
Yang C, Gao J, Yan N, Wu B, Ren Y, Li H, Liang J. Propofol inhibits the growth and survival of gastric cancer cells in vitro through the upregulation of ING3. Oncol Rep 2016; 37:587-593. [DOI: 10.3892/or.2016.5218] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/17/2016] [Indexed: 12/28/2022] Open
|
15
|
Zhang R, Jin J, Shi J, Hou Y. INGs are potential drug targets for cancer. J Cancer Res Clin Oncol 2016; 143:189-197. [PMID: 27544390 DOI: 10.1007/s00432-016-2219-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/09/2016] [Indexed: 12/11/2022]
Abstract
PURPOSE The inhibitor of growth (ING) family consists of ING1, ING2, ING3, ING4 and ING5, which function as the type II tumor suppressors. INGs regulate cell proliferation, senescence, apoptosis, differentiation, angiogenesis, DNA repair, metastasis, and invasion by multiple pathways. In addition, INGs increase cancer cell sensitivity for chemotherapy and radiotherapy, while clinical observations show that INGs are frequently lost in some types of cancers. The aim of the study was to summarize the recent progress regarding INGs regulating tumor progression. METHODS The literatures of INGs regulating tumor progression were searched and assayed. RESULTS The regulating signaling pathways of ING1, ING2, ING3 or ING4 on tumor progression were shown. The mechanisms of INGs on tumor suppression were also assayed. CONCLUSIONS This review better summarized the signaling mechanism of INGs on tumor suppression, which provides a candidate therapy strategy for cancers.
Collapse
Affiliation(s)
- Runyun Zhang
- Department of Oncology, Affiliated Wujin People's Hospital, Jiangsu University, Changzhou, 212017, People's Republic of China.,Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Jianhua Jin
- Department of Oncology, Affiliated Wujin People's Hospital, Jiangsu University, Changzhou, 212017, People's Republic of China
| | - Juanjuan Shi
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| | - Yongzhong Hou
- Department of Oncology, Affiliated Wujin People's Hospital, Jiangsu University, Changzhou, 212017, People's Republic of China. .,Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
16
|
Bhatia S, Pavlick AC, Boasberg P, Thompson JA, Mulligan G, Pickard MD, Faessel H, Dezube BJ, Hamid O. A phase I study of the investigational NEDD8-activating enzyme inhibitor pevonedistat (TAK-924/MLN4924) in patients with metastatic melanoma. Invest New Drugs 2016; 34:439-49. [PMID: 27056178 PMCID: PMC4919369 DOI: 10.1007/s10637-016-0348-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/18/2016] [Indexed: 12/31/2022]
Abstract
Purpose The therapeutic index of proteasome inhibitors may be improved through selective inhibition of a sub-component of the ubiquitin-proteasome system, such as the NEDD8-conjugation pathway. This multicenter, phase I, dose-escalation study assessed safety and the maximum tolerated dose (MTD), pharmacokinetics, pharmacodynamics, and antitumor activity of pevonedistat, an investigational NEDD8-activating enzyme (NAE) inhibitor, in patients with metastatic melanoma. Methods Patients received intravenous pevonedistat on Days 1, 4, 8, 11 (schedule A) or 1, 8, 15 (schedule B) of 21-day cycles. Results 26 patients received pevonedistat 50–278 mg/m2 on schedule A; 11 patients received pevonedistat 157 mg/m2 on schedule B. The schedule A MTD was 209 mg/m2: dose-limiting toxicities (DLTs) included grade 3 hypophosphatemia and grade 3 increased blood creatinine (associated with grade 3 hyperbilirubinemia). Two schedule A patients experienced acute organ failure toxicities, one of whom experienced grade 5 acute renal failure. Dose escalation did not occur in schedule B: DLTs included grade 3 myocarditis, grade 2 acute renal failure, and grade 2 hyperbilirubinemia in a single patient. Pevonedistat pharmacokinetics were approximately dose-proportional across the dose range studied, with a biphasic disposition profile characterized by a short elimination half-life (~10 h). Pharmacodynamic studies showed increases in NAE-regulated transcripts post-treatment; all post-dose biopsy samples were positive for pevonedistat-NEDD8 adduct. One schedule A patient achieved a partial response; 15 patients had stable disease (4 lasting ≥6.5 months). Conclusions Pevonedistat was generally well tolerated at the MTD. Anticipated pharmacodynamic effects of NAE inhibition were observed with single-agent pevonedistat in peripheral blood and tumor tissue.
Collapse
Affiliation(s)
- Shailender Bhatia
- Department of Medicine/Medical Oncology, University of Washington Medical Center/Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance, 825 Eastlake Ave W, G4-830, Seattle, WA, 98109-1023, USA.
| | - Anna C Pavlick
- Departments of Medicine (Perlmutter Cancer Center) and Dermatology, NYU Langone Medical Center, New York, NY, USA
| | - Peter Boasberg
- The Angeles Clinic and Research Institute, Translational Research & Cutaneous Oncology, Los Angeles, CA, USA
| | - John A Thompson
- Department of Medicine/Medical Oncology, University of Washington Medical Center/Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance, 825 Eastlake Ave W, G4-830, Seattle, WA, 98109-1023, USA
| | - George Mulligan
- Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| | - Michael D Pickard
- Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| | - Hélène Faessel
- Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| | - Bruce J Dezube
- Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| | - Omid Hamid
- The Angeles Clinic and Research Institute, Translational Research & Cutaneous Oncology, Los Angeles, CA, USA
| |
Collapse
|
17
|
Chen L, Liu T, Tu Y, Rong D, Cao Y. Cul1 promotes melanoma cell proliferation by promoting DEPTOR degradation and enhancing cap-dependent translation. Oncol Rep 2015; 35:1049-56. [PMID: 26717892 DOI: 10.3892/or.2015.4442] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 09/15/2015] [Indexed: 11/06/2022] Open
Abstract
Cullin1 (Cul1) serves as a rigid scaffold in the SCF (Skp1/Cullin/Rbx1/F-box protein) E3 ubiquitin ligase complex and has been found to be overexpressed in melanoma and to enhance melanoma cell proliferation by promoting G1-S phase transition. However, the underlying mechanisms involved in the regulation of melanoma cell proliferation by Cul1 remain poorly understood. In the present study, we found that Cul1 promoted mTORC1 activity and cap-dependent translation by enhancing the ubiquitination and degradation of DEPTOR. We further showed that suppression of the eIF4F complex assembly profoundly inhibited the promoting effect of Cul1 on melanoma cell proliferation, while enhancement of the eIF4F complex activity reversed the inhibitory effect of Cul1 depletion on melanoma cell proliferation, indicating that Cul1 contributes to melanoma cell proliferation by activating cap‑dependent translation. These data elucidate the role of Cul1 in cap-dependent translation and improves our understanding of the underlying mechanisms involved in the regulation of melanoma cell proliferation by Cul1.
Collapse
Affiliation(s)
- Lan Chen
- Department of Dermatology, The Affiliated Hospital of Guiyang Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Tianyu Liu
- Department of Dermatology, The Affiliated Hospital of Guiyang Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yunhua Tu
- Department of Dermatology, The Affiliated Hospital of Guiyang Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Dongyun Rong
- Department of Dermatology, The Affiliated Hospital of Guiyang Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yu Cao
- Department of Dermatology, The Affiliated Hospital of Guiyang Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
18
|
Liu Y, Mallampalli RK. Small molecule therapeutics targeting F-box proteins in cancer. Semin Cancer Biol 2015; 36:105-19. [PMID: 26427329 DOI: 10.1016/j.semcancer.2015.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 12/12/2022]
Abstract
The ubiquitin proteasome system (UPS) plays vital roles in maintaining protein equilibrium mainly through proteolytic degradation of targeted substrates. The archetypical SCF ubiquitin E3 ligase complex contains a substrate recognition subunit F-box protein that recruits substrates to the catalytic ligase core for its polyubiquitylation and subsequent proteasomal degradation. Several well-characterized F-box proteins have been demonstrated that are tightly linked to neoplasia. There is mounting information characterizing F-box protein-substrate interactions with the rationale to develop unique therapeutics for cancer treatment. Here we review that how F-box proteins function in cancer and summarize potential small molecule inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Medicine, The Acute Lung Injury, Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Rama K Mallampalli
- Department of Medicine, The Acute Lung Injury, Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, United States; Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240, United States.
| |
Collapse
|
19
|
Qi M, Liu D, Zhang S, Hu P, Sang T. Inhibition of S-phase kinase-associated protein 2-mediated p27 degradation suppresses tumorigenesis and the progression of hepatocellular carcinoma. Mol Med Rep 2015; 11:3934-40. [PMID: 25572801 DOI: 10.3892/mmr.2015.3156] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 10/01/2014] [Indexed: 11/06/2022] Open
Abstract
In order to determine the protein expression of S‑phase kinase‑associated protein 2 (Skp2) and p27kip1, and to evaluate their possible prognostic values in malignant liver cancer, tissue samples from 50 patients and 40 controls were assessed and analyzed by immunohistochemistry and western blot analysis. Positive expression of Skp2 was observed in 35 (70.0%) of the hepatocellular carcinoma samples; however, the positive expression of p27kip1 was observed in 6 (15.0%) of the hepatocellular carcinoma samples. The expression of Skp2 was significantly negatively correlated with the expression of p27 (P<0.01). The results from Annexin V‑propidium iodide staining and MTT assays indicated that interference of Skp2 significantly induced apoptosis and inhibited the proliferation of SSMC‑7721 cells. In addition, the levels of endogenous p27 increased in the HepG2 and SSMC‑7721 cells following transfection with siRNA specific to Skp2, suggesting that the Skp2‑mediated degradation of p27kip1 was important in the proliferation of tumor cells. The present study, therefore, provided a molecular reference for the treatment of liver cancer.
Collapse
Affiliation(s)
- Ming Qi
- Department of Digestive System, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Dongmei Liu
- Department of Transfusion Center, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Shuhong Zhang
- Department of Digestive System, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Peixin Hu
- Department of Digestive System, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Tan Sang
- Department of Hematology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
20
|
Guérillon C, Bigot N, Pedeux R. The ING tumor suppressor genes: Status in human tumors. Cancer Lett 2014; 345:1-16. [DOI: 10.1016/j.canlet.2013.11.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/27/2013] [Accepted: 11/29/2013] [Indexed: 12/18/2022]
|
21
|
Keep-ING balance: tumor suppression by epigenetic regulation. FEBS Lett 2014; 588:2728-42. [PMID: 24632289 DOI: 10.1016/j.febslet.2014.03.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/06/2014] [Indexed: 12/26/2022]
Abstract
Cancer cells accumulate genetic and epigenetic changes that alter gene expression to drive tumorigenesis. Epigenetic silencing of tumor suppressor, cell cycle, differentiation and DNA repair genes contributes to neoplastic transformation. The ING (inhibitor of growth) proteins (ING1-ING5) have emerged as a versatile family of growth regulators, phospholipid effectors, histone mark sensors and core components of HDAC1/2 - and several HAT chromatin-modifying complexes. This review will describe the characteristic pathways by which ING family proteins differentially affect the Hallmarks of Cancer and highlight the various epigenetic mechanisms by which they regulate gene expression. Finally, we will discuss their potentials as biomarkers and therapeutic targets in epigenetic treatment strategies.
Collapse
|
22
|
RegulatING chromatin regulators: post-translational modification of the ING family of epigenetic regulators. Biochem J 2013; 450:433-42. [DOI: 10.1042/bj20121632] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The five human ING genes encode at least 15 splicing isoforms, most of which affect cell growth, differentiation and apoptosis through their ability to alter gene expression by epigenetic mechanisms. Since their discovery in 1996, ING proteins have been classified as type II tumour suppressors on the basis of reports describing their down-regulation and mislocalization in a variety of cancer types. In addition to their regulation by transcriptional mechanisms, understanding the range of PTMs (post-translational modifications) of INGs is important in understanding how ING functions are fine-tuned in the physiological setting and how they add to the repertoire of activities affected by the INGs. In the present paper we review the different PTMs that have been reported to occur on INGs. We discuss the PTMs that modulate ING function under normal conditions and in response to a variety of stresses. We also describe the ING PTMs that have been identified by several unbiased MS-based PTM enrichment techniques and subsequent proteomic analysis. Among the ING PTMs identified to date, a subset has been characterized for their biological significance and have been shown to affect processes including subcellular localization, interaction with enzymatic complexes and ING protein half-life. The present review aims to highlight the emerging role of PTMs in regulating ING function and to suggest additional pathways and functions where PTMs may effect ING function.
Collapse
|
23
|
Arumemi F, Bayles I, Paul J, Milcarek C. Shared and discrete interacting partners of ELL1 and ELL2 by yeast two-hybrid assay. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abb.2013.47101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Chen G, Cheng Y, Tang Y, Martinka M, Li G. Role of Tip60 in human melanoma cell migration, metastasis, and patient survival. J Invest Dermatol 2012; 132:2632-41. [PMID: 22673729 DOI: 10.1038/jid.2012.193] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The tumor suppressor Tip60 regulates gene transcription, DNA damage response, apoptosis, and cancer development, but its role in melanoma is unknown. In this study, we investigated the expression pattern of Tip60 in melanoma and assessed its prognostic value. Using tissue microarrays consisting of 448 cases of melanomas (201 for the training set and 247 for the validation set) and 105 cases of nevi, we found that Tip60 expression was significantly reduced in metastatic melanoma compared to common nevi (P=0.045), dysplastic nevi (P=0.047), and primary melanoma (P=0.001). Kaplan-Meier survival curve and univariate Cox regression analyses showed that reduced Tip60 expression was associated with a poorer 5-year disease-specific survival in primary melanoma (P=0.016) and metastatic melanoma patients (P=0.027). Multivariate Cox regression analyses indicated that Tip60 expression was an independent prognostic marker for primary (P=0.024) and metastatic melanomas (P=0.035). In vitro wound healing assay showed that enforced Tip60 expression inhibited but Tip60 knockdown enhanced melanoma cell migration, suggesting that Tip60 might regulate melanoma metastasis. Finally, we showed that overexpression of Tip60 in melanoma cells resulted in significantly increased chemosensitivity. Our data indicate that Tip60 may serve as a potential biomarker for melanoma patient outcome as well as a potential therapeutic target.
Collapse
Affiliation(s)
- Guangdi Chen
- Department of Dermatology and Skin Science, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
25
|
Lu M, Chen F, Wang Q, Wang K, Pan Q, Zhang X. Downregulation of inhibitor of growth 3 is correlated with tumorigenesis and progression of hepatocellular carcinoma. Oncol Lett 2012; 4:47-52. [PMID: 22807958 DOI: 10.3892/ol.2012.685] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 03/30/2012] [Indexed: 11/06/2022] Open
Abstract
ING3, a member of the inhibitor of growth (ING) family, has been reported to be involved in transcription modulation, cell cycle control and the induction of apoptosis. Previous studies have demonstrated that the expression of ING3 decreased in melanoma and head and neck squamous cell carcinoma (HNSCC). The aim of this study was to investigate the role of ING3 in hepatocellular carcinoma (HCC) tumorigenesis and progression. The correlation between ING3 expression and clinicopathological variables of HCC was analyzed. Using the real-time reverse transcription-polymerase chain reaction (RT-PCR), it was found that ING3 was downregulated in HCC tissues compared with adjacent non-cancerous tissues (p<0.05). The immunohistochemical staining of tissue microarray data indicated a significant reduction of ING3 expression in 57.14% of HCC cases (64/112). In addition, the downregulation of ING3 was associated with the tumor differentiation stage. Most HCC samples of Edmondson-Steiner grades II to III exhibited inhibition of ING3 expression. The overexpression of ING3 in HCC cells was found to suppress cell proliferation, colony formation and cell migration, suggesting that ING3 acts as a tumor suppressor in HCC cells. Taken together, the data revealed that ING3 may serve as a suppression factor during tumorigenesis and progression of HCC.
Collapse
Affiliation(s)
- Meiling Lu
- The Central Laboratory, People's 10th Hospital, Shanghai 200072
| | | | | | | | | | | |
Collapse
|
26
|
Yang HY, Liu HL, Tian LT, Song RP, Song X, Yin DL, Liang YJ, Qu LD, Jiang HC, Liu JR, Liu LX. Expression and prognostic value of ING3 in human primary hepatocellular carcinoma. Exp Biol Med (Maywood) 2012; 237:352-61. [PMID: 22550337 DOI: 10.1258/ebm.2011.011346] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The tumor-suppressor ING3 has been shown to be involved in tumor transcriptional regulation, apoptosis and the cell cycle. Some studies have demonstrated that ING3 is dysregulated in several types of cancers. However, the expression and function of ING3 in human hepatocellular carcinoma (HCC) remains unclear. The aim of this study is to investigate ING3 expression in hepatic tumors and its clinical relevance in hepatic cancer. The expression of ING3 protein was examined in 120 dissected HCC tissues and 47 liver tissues adjacent to the tumor by immunohistochemical assays and confirmed by Western blot analysis in 20 paired frozen tumor and non-tumor liver tissues. The relationship between ING3 staining and clinico-pathological characteristics of HCC was further analyzed. The mRNA expression of ING3 in the dissected tissues was also analyzed by reverse transcriptase polymerase chain reaction (RT-PCR) and realtime PCR. Both mRNA and protein concentrations of ING3 were found to be downregulated in the majority of HCC tumors in comparison with matched non-tumor hepatic tissues. Analysis of the relationship between ING3 staining and clinico-pathological characteristics of HCC showed that the low expression of ING3 protein is correlated with more aggressive behavior of the tumor. Kaplan–Meier curves demonstrated that patients with a low expression of ING3 have a significantly increased risk of shortened survival time. In addition, multivariate analysis suggested that the level of ING3 expression may be an independent prognostic factor. Our findings indicate that ING3 may be an important marker for human hepatocellular carcinoma progression and prognosis, as well as a potential therapeutic target.
Collapse
Affiliation(s)
- Hai-Yan Yang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education
| | - Hao-Ling Liu
- Department of Endocrinology, The First Clinical College of Harbin Medical University, 23 Youzheng Street, Nangang District
| | - Lan-Tian Tian
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education
| | - Rui-Peng Song
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education
| | - Xuan Song
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education
| | - Da-Long Yin
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education
| | - Ying-Jian Liang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education
| | - Lian-Dong Qu
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Experimental Animal Center, 427 Ma Duan Street, Harbin 150001, PR China
| | - Hong-Chi Jiang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education
| | - Jia-Ren Liu
- Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
| | - Lian-Xin Liu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education
| |
Collapse
|
27
|
Brohem CA, Massaro RR, Tiago M, Marinho CE, Jasiulionis MG, de Almeida RL, Rivelli DP, Albuquerque RC, de Oliveira TF, de Melo Loureiro AP, Okada S, Soengas MS, de Moraes Barros SB, Maria-Engler SS. Proteasome inhibition and ROS generation by 4-nerolidylcatechol induces melanoma cell death. Pigment Cell Melanoma Res 2012; 25:354-69. [PMID: 22372875 DOI: 10.1111/j.1755-148x.2012.00992.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Carla A Brohem
- Department of Clinical Chemistry & Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The cullin family of ubiquitin ligases can potentially assemble hundreds of RING-type E3 complexes (CRLs) by utilizing different substrate receptors that share common interaction domains. Cullin receptors dictate substrate specificity, and cullin-mediated substrate degradation controls a wide range of cellular processes, including proliferation, differentiation, and apoptosis. Dysregulation of cullin activity has been shown to contribute to oncogenesis through the accumulation of oncoproteins or the excessive degradation of tumor suppressors. In this review, we will discuss cullin complexes and their substrates, the regulatory pathways that affect cullin activity, and the mechanisms by which cullins may facilitate or inhibit carcinogenesis.
Collapse
Affiliation(s)
- Jennifer Lee
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College and Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | | |
Collapse
|
29
|
Cytoplasmic Skp2 expression is increased in human melanoma and correlated with patient survival. PLoS One 2011; 6:e17578. [PMID: 21386910 PMCID: PMC3046256 DOI: 10.1371/journal.pone.0017578] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 02/09/2011] [Indexed: 12/05/2022] Open
Abstract
Background S-phase kinase protein 2 (Skp2), an F-box protein, targets cell cycle regulators via ubiquitin-mediated degradation. Skp2 is frequently overexpressed in a variety of cancers and associated with patient survival. In melanoma, however, the prognostic significance of subcellular Skp2 expression remains controversial. Methods To investigate the role of Skp2 in melanoma development, we constructed tissue microarrays and examined Skp2 expression in melanocytic lesions at different stages, including 30 normal nevi, 61 dysplastic nevi, 290 primary melanomas and 146 metastatic melanomas. The TMA was assessed for cytoplasmic and nuclear Skp2 expression by immunohistochemistry. The Kaplan-Meier method was used to evaluate the patient survival. The univariate and multivariate Cox regression models were performed to estimate the harzard ratios (HR) at five-year follow-up. Results Cytoplasmic but not nuclear Skp2 expression was gradually increased from normal nevi, dysplastic nevi, primary melanomas to metastatic melanomas. Cytoplasmic Skp2 expression correlated with AJCC stages (I vs II–IV, P<0.001), tumor thickness (≤2.00 vs >2.00 mm, P<0.001) and ulceration (P = 0.005). Increased cytoplasmic Skp2 expression was associated with a poor five-year disease-specific survival of patients with primary melanoma (P = 0.018) but not metastatic melanoma (P>0.05). Conclusion This study demonstrates that cytoplasmic Skp2 plays an important role in melanoma pathogenesis and its expression correlates with patient survival. Our data indicate that cytoplasmic Skp2 may serve as a potential biomarker for melanoma progression and a therapeutic target for this disease.
Collapse
|
30
|
Moreno A, Palacios A, Orgaz JL, Jimenez B, Blanco FJ, Palmero I. Functional impact of cancer-associated mutations in the tumor suppressor protein ING4. Carcinogenesis 2010; 31:1932-8. [PMID: 20705953 DOI: 10.1093/carcin/bgq171] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Inhibitor of growth 4 (ING4) is a member of the ING family of tumor suppressor proteins. In this study, we have analyzed the impact of two mutations in ING4 associated with human tumors (Y121N and N214D), testing their behavior in a series of functional, biochemical and structural analyses. We report that the N214D mutation dramatically dampened the ability of ING4 to inhibit proliferation, anchorage-independent growth or cell migration or to sensitize to cell death. In turn, the Y121N mutant did not differ significantly from wild-type ING4 in our assays. Neither of the mutations altered the normal subcellular localization of ING4, showing predominantly nuclear accumulation. We investigated the molecular basis of the defect in the activity of the N214D mutant. The folding and ability to bind histone marks of ING4 was not significantly altered by this mutation. Instead, we found that the functional impairment of the N214D mutant correlates with reduced protein stability due to increased proteasome-mediated degradation. In summary, our data demonstrates that a point mutation of ING4 associated to human tumors leads to the loss of several essential functions of ING4 pertinent to tumor protection and highlight the importance of ING4 function to prevent tumorigenesis.
Collapse
Affiliation(s)
- Alberto Moreno
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Arturo Duperier 4, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
31
|
Piche B, Li G. Inhibitor of growth tumor suppressors in cancer progression. Cell Mol Life Sci 2010; 67:1987-99. [PMID: 20195696 PMCID: PMC11115670 DOI: 10.1007/s00018-010-0312-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 01/11/2010] [Accepted: 01/29/2010] [Indexed: 12/27/2022]
Abstract
The inhibitor of growth (ING) family of tumor suppressors has five members and is implicated in the control of apoptosis, senescence, DNA repair, and cancer progression. However, little is known about ING activity in the regulation of cancer progression. ING members and splice variants seem to behave differently with respect to cancer invasion and metastasis. Interaction with histone trimethylated at lysine 4 (H3K4me3), hypoxia inducible factor-1 (HIF-1), p53, and nuclear factor kappa-B (NF-kappaB) are potential mechanisms by which ING members exert effects on invasion and metastasis. Subcellular mislocalization, rapid protein degradation, and to a lesser extent ING gene mutation are among the mechanisms responsible for inappropriate ING levels in cancer cells. The aim of this review is to summarize the different roles of ING family tumor suppressors in cancer progression and the molecular mechanisms involved.
Collapse
Affiliation(s)
- Brad Piche
- Department of Dermatology and Skin Science, Jack Bell Research Centre, Vancouver Coastal Health Research Institute, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6 Canada
| | - Gang Li
- Department of Dermatology and Skin Science, Jack Bell Research Centre, Vancouver Coastal Health Research Institute, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6 Canada
| |
Collapse
|
32
|
Nie J, Liu L, Wu M, Xing G, He S, Yin Y, Tian C, He F, Zhang L. HECT ubiquitin ligase Smurf1 targets the tumor suppressor ING2 for ubiquitination and degradation. FEBS Lett 2010; 584:3005-12. [DOI: 10.1016/j.febslet.2010.05.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Revised: 05/12/2010] [Accepted: 05/14/2010] [Indexed: 01/10/2023]
|