1
|
Mumlek I, Ozretić P, Sabol M, Leović M, Glavaš-Obrovac L, Leović D, Musani V. BIRC5 Gene Polymorphisms Are Associated with a Higher Stage of Local and Regional Disease in Oral and Oropharyngeal Squamous Cell Carcinomas. Int J Mol Sci 2023; 24:17490. [PMID: 38139318 PMCID: PMC10743484 DOI: 10.3390/ijms242417490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) and oropharyngeal squamous cell carcinoma (OPSCC) are the most common types of cancers in the head and neck region (HNSCC). Despite very aggressive treatment modalities, the five-year survival rate has not changed for decades and is still around 60%. The search for potential specific biomarkers of aggressiveness or outcome indicators could be of great benefit in improving the treatment of these patients. One of the potential biomarkers is survivin, the protein product of the BIRC5 gene. In this study, we investigated the occurrence of BIRC5 gene polymorphisms in 48 patients with OSCC and OPSCC compared with healthy controls. A total of 18 polymorphisms were found, 11 of which occurred in HNSCC with a minor allele frequency (MAF) of more than 5%. Five polymorphisms (rs3764383, rs9904341, rs2071214, rs2239680, rs2661694) were significantly associated with tumor size, tumor stage, and advanced regional disease, but had no impact on survival.
Collapse
Affiliation(s)
- Ivan Mumlek
- Department of Maxillofacial and Oral Surgery, University Hospital Centre Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia;
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia;
| | - Petar Ozretić
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (P.O.); (M.S.)
| | - Maja Sabol
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (P.O.); (M.S.)
| | - Matko Leović
- Clinical Hospital Centre Zagreb, Kišpatićeva 12, 10000 Zagreb, Croatia;
| | - Ljubica Glavaš-Obrovac
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia;
| | - Dinko Leović
- Maxillofacial Surgery Unit, Department of Otorhinolaryngology and Head and Neck Surgery, Clinical Hospital Centre Zagreb, Kišpatićeva Ulica 12, 10000 Zagreb, Croatia
| | - Vesna Musani
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (P.O.); (M.S.)
| |
Collapse
|
2
|
Maharati A, Moghbeli M. PI3K/AKT signaling pathway as a critical regulator of epithelial-mesenchymal transition in colorectal tumor cells. Cell Commun Signal 2023; 21:201. [PMID: 37580737 PMCID: PMC10424373 DOI: 10.1186/s12964-023-01225-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/12/2023] [Indexed: 08/16/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most frequent gastrointestinal malignancies that are considered as a global health challenge. Despite many progresses in therapeutic methods, there is still a high rate of mortality rate among CRC patients that is associated with poor prognosis and distant metastasis. Therefore, investigating the molecular mechanisms involved in CRC metastasis can improve the prognosis. Epithelial-mesenchymal transition (EMT) process is considered as one of the main molecular mechanisms involved in CRC metastasis, which can be regulated by various signaling pathways. PI3K/AKT signaling pathway has a key role in CRC cell proliferation and migration. In the present review, we discussed the role of PI3K/AKT pathway CRC metastasis through the regulation of the EMT process. It has been shown that PI3K/AKT pathway can induce the EMT process by down regulation of epithelial markers, while up regulation of mesenchymal markers and EMT-specific transcription factors that promote CRC metastasis. This review can be an effective step toward introducing the PI3K/AKT/EMT axis to predict prognosis as well as a therapeutic target among CRC patients. Video Abstract.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Lin Z, Sui X, Jiao W, Chen C, Zhang X, Zhao J. Mechanism investigation and experiment validation of capsaicin on uterine corpus endometrial carcinoma. Front Pharmacol 2022; 13:953874. [PMID: 36210802 PMCID: PMC9532580 DOI: 10.3389/fphar.2022.953874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Using bioinformatics analysis and experimental operations, we intend to analyze the potential mechanism of action of capsaicin target gene GATA1 in the treatment of uterine corpus endometrial carcinoma (UCEC) and develop a prognostic model for the disease to validate this model. Methods: By obtaining capsaicin and UCEC-related DR-DEGs, the prognosis-related gene GATA1 was screened. The survival analysis was conducted via establishing high and low expression groups of GATA1. Whether the GATA1 could be an independent prognostic factor for UCEC, it was also validated. The therapeutic mechanism of capsaicin-related genes in UCEC was further investigated using enrichment analysis and immune methods as well as in combination with single-cell sequencing data. Finally, it was validated by cell experiments. Results: GATA1, a high-risk gene associated with prognosis, was obtained by screening. Kaplan-Meier analysis showed that the survival of the high expression group was lower than that of low expression group. ROC curves showed that the prediction effect of the model was good and stable (1-year area under curve (AUC): 0.601; 2-years AUC: 0.575; 3-years AUC: 0.610). Independent prognosis analysis showed that the GATA1 can serve as an independent prognostic factor for UCEC. Enrichment analysis showed that “neuroactive Ligand - receptor interaction and TYPE I DIABETES MELLITUS” had a significant enrichment effect. Single-cell sequencing showed that the GATA1 was significantly expressed in mast cells. Cell experiments showed that the capsaicin significantly reduced the UCEC cell activity and migration ability, as well as inhibited the expression of GATA1. Conclusion: This study suggests that the capsaicin has potential value and application prospect in the treatment of UCEC. It provides new genetic markers for the prognosis of UCEC patients.
Collapse
Affiliation(s)
- Zhiheng Lin
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaohui Sui
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenjian Jiao
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chong Chen
- Obstetrics Department of Affiliated Hospital of Weifang Medical College, Weifang, China
| | - Xiaodan Zhang
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, China
- *Correspondence: Junde Zhao, ; Xiaodan Zhang,
| | - Junde Zhao
- Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong University Cheeloo College of Medicine Laboratory of Basic Medical Sciences, Jinan, China
- *Correspondence: Junde Zhao, ; Xiaodan Zhang,
| |
Collapse
|
4
|
Polymorphism of Baculoviral Inhibitor of Apoptosis Repeat-Containing 5 (BIRC5) Can Be Associated with Clinical Outcome of Non-Small Cell Lung Cancer. Cells 2022; 11:cells11060956. [PMID: 35326407 PMCID: PMC8946487 DOI: 10.3390/cells11060956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 01/04/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) comprises about 85% of all lung cancers. Currently, NSCLC therapy is based on the analysis of specific predictors, whose presence qualifies patients for appropriate treatment. Baculoviral inhibitor of apoptosis repeat-containing 5 (BIRC5), also known as “survivin”, is a protein whose expression is characteristic for most malignant tumors and fetal tissue, while absent in mature cells. The biological role of BIRC5 is to counteract apoptosis by inhibiting the initiating and effector activities of caspases and binding to microtubules of the mitotic spindle. In our study, we looked for a relationship between BIRC5 gene polymorphism and the effectiveness of platinum-based chemotherapy. The study group consisted of 104 patients with newly diagnosed locally advanced or metastatic NSCLC. DNA was isolated from pretreatment blood samples, and SNPs of BIRC5 gene were analyzed. All patients received first-line platinum-based chemotherapy. Univariate analysis showed that a specific BIRC5 genotype was significantly associated with a higher risk of early progression (homozygous GG vs. heterozygous CG or CC: 28.9% vs. 11.9%). The presence of a homozygous GG genotype of the BIRC5 gene was insignificantly related to PFS shortening and TTP shortening. Moreover, significantly higher risk of overall survival shortening was associated with the BIRC5 homozygous GG genotype. Thus, studies on polymorphisms of selected genes affecting apoptosis may have a practical benefit for clinicians who monitor and treat NSCLC.
Collapse
|
5
|
Abstract
INTRODUCTION Sertoli cells play central roles in the development of testis formation in fetuses and the initiation and maintenance of spermatogenesis in puberty and adulthood, and disorders of Sertoli cell proliferation and/or functional maturation can cause male reproductive disorders at various life stages. It's well documented that various genes are either overexpressed or absent in Sertoli cells during the conversion of an immature, proliferating Sertoli cell to a mature, non-proliferating Sertoli cell, which are considered as Sertoli cell stage-specific markers. Thus, it is paramount to choose an appropriate Sertoli cell marker that will be used not only to identify the developmental, proliferative, and maturation of Sertoli cell status in the testis during the fetal period, prepuberty, puberty, or in the adult, but also to diagnose the mechanisms underlying spermatogenic dysfunction. AREAS COVERED In this review, we principally enumerated 5 categories of testicular Sertoli cell markers - including immature Sertoli cell markers, mature Sertoli cell markers, immature/mature Sertoli cell markers, Sertoli cell functional markers, and others. EXPERT OPINION By delineating the characteristics and applications of more than 20 Sertoli cell markers, this review provided novel Sertoli cell markers for the more accurate diagnosis and mechanistic evaluation of male reproductive disorders.
Collapse
Affiliation(s)
- Xu You
- College of Medicine, China Three Gorges University, Yichang, China.,Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang China
| | - Qian Chen
- College of Medicine, China Three Gorges University, Yichang, China.,Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang China.,The Second People's Hospital of Yichang, China Three Gorges University, Yichang China
| | - Ding Yuan
- College of Medicine, China Three Gorges University, Yichang, China
| | - Changcheng Zhang
- College of Medicine, China Three Gorges University, Yichang, China.,Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang China
| | - Haixia Zhao
- College of Medicine, China Three Gorges University, Yichang, China.,Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang China
| |
Collapse
|
6
|
Anticancer potential of metformin: focusing on gastrointestinal cancers. Cancer Chemother Pharmacol 2021; 87:587-598. [PMID: 33744985 DOI: 10.1007/s00280-021-04256-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 03/08/2021] [Indexed: 12/15/2022]
Abstract
Gastrointestinal cancers are one of the most common types of cancer that have high annual mortality; therefore, identification and introduction of safe drugs in the control and prevention of these cancers are of particular importance. Metformin, a lipophilic biguanide, is the most commonly prescribed agent for type 2 diabetes management. In addition to its great effects on lowering the blood glucose concentrations, the anti-cancer properties of this drug have been reported in many types of cancers such as gastrointestinal cancers. Hence the effects of this agent as a safe drug on the reduction of gastrointestinal cancer risk and suppression of these types of cancers have been studied in different clinical trials. Furthermore, the proposed mechanisms of metformin in preventing the growth of these cancers have been investigated in several studies. In this review, we discuss recent advances in elucidating the molecular mechanisms that are relevant for metformin use in gastrointestinal cancer treatment.
Collapse
|
7
|
Yang J, Niu H, Chen X. GATA1-Activated HNF1A-AS1 Facilitates the Progression of Triple-Negative Breast Cancer via Sponging miR-32-5p to Upregulate RNF38. Cancer Manag Res 2021; 13:1357-1369. [PMID: 33603481 PMCID: PMC7886384 DOI: 10.2147/cmar.s274204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Background Triple-negative breast cancer (TNBC) is a highly invasive subtype of breast cancer with a high mortality rate. Recently, long non-coding RNAs (lncRNAs) are confirmed to modulate the progression of assorted cancers, including TNBC. However, the functions of lncRNA HNF1 homeobox A antisense RNA 1 (HNF1A-AS1) in TNBC are still unclear. Aim We aimed to investigate the function and mechanism of HNF1A-AS1 in TNBC. Methods The expression of genes in TNBC cells was tested by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. In vitro loss-of-function assays and in vivo xenograft experiments were conducted for evaluating the impact of HNF1A-AS1 on TNBC progression. RNA pull-down, luciferase reporter and RNA immunoprecipitation (RIP) assays were utilized for assessing the correlations between molecules. Results We discovered that HNF1A-AS1 was highly expressed in TNBC tissues and cells. Knockdown of HNF1A-AS1 restrained cell proliferation but accelerated cell apoptosis. Besides, GATA-binding protein 1 (GATA1) activated HNF1A-AS1 transcription in TNBC. MicroRNA-32-5p (miR-32-5p) was slowly expressed in TNBC cells and sponged by HNF1A-AS1, and its overexpression hinders TNBC cell growth. Ring finger protein 38 (RNF38) was verified as the target of miR-32-5p, and HNF1A-AS1 was a competing endogenous RNA (ceRNA) of RNF38 through sponging miR-32-5p. Rescue experiments indicated that upregulation of RNF38 reversed the inhibited impacts of silencing HNF1A-AS1 on TNBC cell growth. Conclusion GATA1-activated HNF1A-AS1 facilitated TNBC progression via miR-32-5p/RNF38 axis. The findings may provide new roads for developing targeted therapies of TNBC.
Collapse
Affiliation(s)
- Jingyu Yang
- Department of Breast Thyroid Surgery, The First People's Hospital of Yunnan Province, Kunming, 650032, People's Republic of China
| | - Heng Niu
- Department of Breast Thyroid Surgery, The First People's Hospital of Yunnan Province, Kunming, 650032, People's Republic of China
| | - Xin Chen
- Department of Breast Thyroid Surgery, The First People's Hospital of Yunnan Province, Kunming, 650032, People's Republic of China
| |
Collapse
|
8
|
Hu L, Chen Q, Wang Y, Zhang N, Meng P, Liu T, Bu Y. Sp1 Mediates the Constitutive Expression and Repression of the PDSS2 Gene in Lung Cancer Cells. Genes (Basel) 2019; 10:E977. [PMID: 31783675 PMCID: PMC6947312 DOI: 10.3390/genes10120977] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/14/2019] [Accepted: 11/19/2019] [Indexed: 01/29/2023] Open
Abstract
Prenyl diphosphate synthase subunit 2 (PDSS2) is the first key enzyme in the CoQ10 biosynthesis pathway, and contributes to various metabolic and nephritic diseases. It has been reported that PDSS2 is downregulated in several types of tumors and acts as a potential tumor suppressor gene to inhibit the proliferation and migration of cancer cells. However, the regulatory mechanism of PDSS2 expression remains elusive. In the present study, we first identified and characterized the PDSS2 promoter region. We established four different luciferase reporter constructs which mainly cover the 2 kb region upstream of the PDSS2 gene transcription initiation site. Series luciferase reporter assay demonstrated that all four constructs have prominent promoter activity, and the core promoter of PDSS2 is mainly located within the 202 bp region near its transcription initiation site. Transcription factor binding site analysis revealed that the PDSS2 promoter contains binding sites for canonical transcription factors such as Sp1 and GATA-1. Overexpression of Sp1 significantly inhibited PDSS2 promoter activity, as well as its endogenous expression, at both mRNA and protein levels in lung cancer cells. Site-directed mutagenesis assay further confirmed that the Sp1 binding sites are essential for proximal prompter activity of PDSS2. Consistently, a selective Sp1 inhibitor, mithramycin A, treatment repressed the PDSS2 promoter activity, as well as its endogenous expression. Chromatin immunoprecipitation (ChIP) assay revealed that Sp1 binds to the PDSS2 promoter in vivo. Of note, the expression of Sp1 and PDSS2 are negatively correlated, and higher Sp1 expression with low PDSS2 expression is significantly associated with poor prognosis in lung cancer. Taken together, our results strongly suggest the essential role of Sp1 in maintaining the basic constitutive expression of PDSS2, and the pathogenic implication of Sp1-mediated PDSS2 transcriptional repression in lung cancer cells.
Collapse
Affiliation(s)
- Lanyue Hu
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; (L.H.); (Q.C.); (Y.W.); (N.Z.); (P.M.); (T.L.)
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Quanmei Chen
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; (L.H.); (Q.C.); (Y.W.); (N.Z.); (P.M.); (T.L.)
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Yitao Wang
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; (L.H.); (Q.C.); (Y.W.); (N.Z.); (P.M.); (T.L.)
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Na Zhang
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; (L.H.); (Q.C.); (Y.W.); (N.Z.); (P.M.); (T.L.)
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Peixin Meng
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; (L.H.); (Q.C.); (Y.W.); (N.Z.); (P.M.); (T.L.)
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Tong Liu
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; (L.H.); (Q.C.); (Y.W.); (N.Z.); (P.M.); (T.L.)
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; (L.H.); (Q.C.); (Y.W.); (N.Z.); (P.M.); (T.L.)
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
9
|
Shi G, Zhang H, Yu Q, Hu C, Ji Y. GATA1 gene silencing inhibits invasion, proliferation and migration of cholangiocarcinoma stem cells via disrupting the PI3K/AKT pathway. Onco Targets Ther 2019; 12:5335-5354. [PMID: 31456644 PMCID: PMC6620705 DOI: 10.2147/ott.s198750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/12/2019] [Indexed: 12/14/2022] Open
Abstract
Background/aims: Intrahepatic cholangiocarcinoma (CCA) is the second most prevalent type primary liver malignancy, accompanied by an increasing global incidence and mortality rate. Research has documented the contribution of the GATA binding protein-1 (GATA1) in the progression of liver cancer. Here, we aim to investigate the role of GATA1 in CCA stem cells via the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway. Methods: Initially, microarray-based gene expression profiling was employed to identify the differentially expressed genes associated with CCA. Subsequently, an investigation was conducted to explore the potential biological significance behind the silencing of GATA1 and the regulatory mechanism between GATA1 and PI3K/AKT pathway. CCA cell lines QBC-939 and RBE were selected and treated with siRNA against GATA1 or/and a PI3K/AKT pathway inhibitor LY294002. In vivo experiment was also conducted to confirm in vitro findings. Results: GATA1 exhibited higher expression in CCA samples and was predicted to affect the progression of CCA through blockade of the PI3K/AKT pathway. siRNA-mediated downregulation of GATA1 and LY294002 treatment resulted in reduced proliferation, migration and invasion abilities of CCA stem cells, together with impeded tumor growth, and led to increased cell apoptosis and primary cilium expression. Additionally, the siRNA-mediated GATA1 downregulation had an inhibitory effect on the PI3K/AKT pathway. LY294002 was manifested to enhance the inhibitory effects of GATA1 inhibition on CCA progression. These in vitro findings were reproduced in vivo on siRNA against GATA1 or LY294002 injected nude mice. Conclusion: Altogether, the present study highlighted that downregulation of GATA1 via blockade of the PI3K/AKT pathway could inhibit the CCA stem cell proliferation, migration and invasion, and tumor growth, and promote cell apoptosis, primary cilium expression.
Collapse
Affiliation(s)
- Guang Shi
- Department of Hematology and Oncology, the Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Hong Zhang
- Department of Clinical Medicine, Changchun Medical College, Changchun 130031, People's Republic of China
| | - Qiong Yu
- Department of Hematology and Oncology, the Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Chunmei Hu
- Department of Hematology and Oncology, the Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Youbo Ji
- Department of Pain, the Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| |
Collapse
|
10
|
Yu J, Liu M, Liu H, Zhou L. GATA1 promotes colorectal cancer cell proliferation, migration and invasion via activating AKT signaling pathway. Mol Cell Biochem 2019; 457:191-199. [PMID: 31069596 DOI: 10.1007/s11010-019-03523-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/15/2019] [Indexed: 01/20/2023]
Abstract
GATA1, a member of the GATA transcription factor family, was reported to play a role in development and progression of erythroid cells and breast cancer cells. However, the role of GATA1 in colorectal cancer (CRC) is unknown. Here, we demonstrate that GATA1 was upregulated in CRC tissues compared with normal tissues, and predicted poor clinical outcome in CRC. Biological functional analyses showed that GATA1 knockdown decreased CRC cells proliferation, migration and invasion, and regulated the process of epithelial-mesenchymal transition (EMT). Moreover, silencing of GATA1 suppressed colorectal tumor growth in nude mice. Mechanistically, GATA1 overexpression significantly increased the activity of PI3K/AKT signaling pathway in CRC cells. These data provide insight into the important role of GATA1 in CRC progression and suggest that GATA1 is a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Junhui Yu
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Ming Liu
- Department of Surgery, Beijing Zhanlanlu Hospital, Beijing, 100044, People's Republic of China
| | - Hui Liu
- Department of Oncology, Huguosi Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100035, People's Republic of China
| | - Lei Zhou
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, No 10 Tieyi Road, Yangfangdian Street, Haidian District, Beijing, 100038, People's Republic of China.
| |
Collapse
|
11
|
GATA1 Promotes Gemcitabine Resistance in Pancreatic Cancer through Antiapoptotic Pathway. JOURNAL OF ONCOLOGY 2019; 2019:9474273. [PMID: 31093285 PMCID: PMC6481023 DOI: 10.1155/2019/9474273] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 02/01/2023]
Abstract
Gemcitabine-based chemotherapy is the first-line treatment for pancreatic cancer. However, chemoresistance is a major obstacle to drug efficacy, leading to poor prognosis. Little progress has been achieved although multiple mechanisms are investigated. Therefore, effective strategies are urgently needed to overcome drug resistance. Here, we demonstrate that the transcription factor GATA binding protein 1 (GATA1) promotes gemcitabine resistance in pancreatic cancer through antiapoptotic pathway. GATA1 is highly expressed in pancreatic ductal adenocarcinoma (PDAC) tissues, and GATA1 status is an independent predictor of prognosis and response to gemcitabine therapy. Further investigation demonstrates GATA1 is involved in both intrinsic and acquired gemcitabine resistance in PDAC cells. Mechanistically, we find that GATA1 upregulates Bcl-XL expression by binding to its promoter and thus induces gemcitabine resistance through enhancing Bcl-XL mediated antiapoptosis in vitro and in vivo. Moreover, in PDAC patients, Bcl-XL expression is positively correlated with GATA1 level and predicts clinical outcomes and gemcitabine response. Taken together, our results indicate that GATA1 is a novel marker and potential target for pancreatic cancer. Targeting GATA1 combined with Bcl-XL may be a promising strategy to enhance gemcitabine response.
Collapse
|
12
|
Sušac I, Ozretić P, Gregorić M, Levačić Cvok M, Sabol M, Levanat S, Trnski D, Eljuga D, Seiwerth S, Aralica G, Stanec M, Musani V. Polymorphisms in Survivin ( BIRC5 Gene) Are Associated with Age of Onset in Breast Cancer Patients. JOURNAL OF ONCOLOGY 2019; 2019:3483192. [PMID: 31467536 PMCID: PMC6699404 DOI: 10.1155/2019/3483192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 06/07/2019] [Accepted: 06/25/2019] [Indexed: 02/08/2023]
Abstract
Survivin, encoded by BIRC5 gene (baculoviral IAP repeat containing 5), belongs to the family of inhibitors of apoptosis proteins (IAPs). In mammalian cells it participates in the control of mitosis, apoptosis regulation, and cellular stress response. Its expression is increased in almost all types of cancers. The aim of this study was to investigate the role of BIRC5 polymorphisms in breast cancer (BC) and to connect survivin expression with various clinicopathological characteristics of BC patients. Blood and archival tumour tissue samples were collected from 26 BC patients from Croatia. Survivin expression was determined immunohistochemically. BIRC5 promoter, coding region, and 3'UTR were genotyped. DNA from 74 healthy women was used as control. BIRC5 polymorphisms and survivin expression were tested against age of onset, histological grade, tumour type and size, lymph node status, oestrogen, progesterone, Her2, and Ki67 status. Numbers of samples with weak, moderate, and strong survivin expression were 9 (33.3%), 11 (40.7%), and 7 (25.9%), respectively. Most patients had nuclear survivin staining (92.6%). High survivin expression was significantly associated with negative oestrogen receptor status (p=0.007) and positive Ki67 expression (p=0.032). Ki67 expression was also positively correlated with histological grade (p=0.0009). Fourteen polymorphisms were found in BC samples, located mostly in promoter and 3'UTR of BIRC5. There was no significant difference in the distribution of polymorphisms between BC and control samples. Among clinicopathological characteristics of BC patients, alleles of five BIRC5 polymorphisms were associated with younger age of onset: c.-644T>C (55.8 years [y] vs. 48.1 y; p=0.006), c.-241C>T (54.2 y vs. 45.0; p=0.029), c.9809T>C (55.8 y vs. 48.1 y; p=0.006), c.-1547C>T (58.3 y vs. 50.9 y; p=0.011), and c.9386T>C (50.8 y vs. 59.5 y; p=0.004). To assess the significance of BIRC5 polymorphisms and survivin expression as predictive and prognostic biomarkers for BC further research with a larger sample size is needed.
Collapse
Affiliation(s)
| | - Petar Ozretić
- 2Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | | | - Mirela Levačić Cvok
- 2Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
- 4Kardinal Alojzije Stepinac Krašić Primary School, 10454 Krašić, Croatia
| | - Maja Sabol
- 2Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Sonja Levanat
- 2Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Diana Trnski
- 2Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Domagoj Eljuga
- 1Eljuga Polyclinic, 10000 Zagreb, Croatia
- 5Department for Oncoplastic and Reconstructive Surgery, University Hospital for Tumors, 10000 Zagreb, Croatia
| | - Sven Seiwerth
- 6Institute of Pathology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- 7Clinical Department of Pathology and Cytology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Gorana Aralica
- 6Institute of Pathology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- 8Department of Pathology, Clinical Hospital Dubrava, 10000 Zagreb, Croatia
| | - Mladen Stanec
- 5Department for Oncoplastic and Reconstructive Surgery, University Hospital for Tumors, 10000 Zagreb, Croatia
| | - Vesna Musani
- 2Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
13
|
Martínez-García D, Manero-Rupérez N, Quesada R, Korrodi-Gregório L, Soto-Cerrato V. Therapeutic strategies involving survivin inhibition in cancer. Med Res Rev 2018; 39:887-909. [PMID: 30421440 DOI: 10.1002/med.21547] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/13/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023]
Abstract
Survivin is a small protein that belongs to the inhibitor of apoptosis protein family. It is abundantly expressed in tumors compared with adult differentiated tissues, being associated with poor prognosis in many human neoplasms. This apoptotic inhibitor has a relevant role in both the promotion of cancer cell survival and in the inhibition of cell death. Consequently, aberrant survivin expression stimulates tumor progression and confers resistance to several therapeutic strategies in a variety of tumors. In fact, efficient survivin downregulation or inhibition results in spontaneous apoptosis or sensitization to chemotherapy and radiotherapy. Therefore, all these features make survivin an attractive therapeutic target to treat cancer. Currently, there are several survivin inhibitors under clinical evaluation, although more specific and efficient survivin inhibitors are being developed. Moreover, novel combination regimens targeting survivin together with other therapeutic approaches are currently being designed and assessed. In this review, recent progress in the therapeutic options targeting survivin for cancer treatment is analyzed. Direct survivin inhibitors and their current development status are explored. Besides, the major signaling pathways implicated in survivin regulation are described and different therapeutic approaches involving survivin indirect inhibition are evaluated. Finally, promising novel inhibitors under preclinical or clinical evaluation as well as challenges of developing survivin inhibitors as a new therapy for cancer treatment are discussed.
Collapse
Affiliation(s)
- David Martínez-García
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona, Barcelona, Spain.,Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Noemí Manero-Rupérez
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona, Barcelona, Spain.,Hospital del Mar Medical Research Institute, Barcelona Biomedical Research Park, Barcelona, Spain
| | - Roberto Quesada
- Department of Chemistry, Universidad de Burgos, Burgos, Spain
| | - Luís Korrodi-Gregório
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Vanessa Soto-Cerrato
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona, Barcelona, Spain.,Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| |
Collapse
|
14
|
Venkatesh T, Shetty A, Chakraborti S, Suresh PS. PTPH1 immunohistochemical expression and promoter methylation in breast cancer patients from India: A retrospective study. J Cell Physiol 2018; 234:1071-1079. [DOI: 10.1002/jcp.27211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/12/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Thejaswini Venkatesh
- Department of Biochemistry and Molecular Biology Central University of Kerala, Paddanakkad Campus Kasargod Kerala India
| | - Abhishek Shetty
- Department of Biosciences Mangalore University Mangalore Karnataka India
| | | | | |
Collapse
|
15
|
Feng Y, Spezia M, Huang S, Yuan C, Zeng Z, Zhang L, Ji X, Liu W, Huang B, Luo W, Liu B, Lei Y, Du S, Vuppalapati A, Luu HH, Haydon RC, He TC, Ren G. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis 2018; 5:77-106. [PMID: 30258937 PMCID: PMC6147049 DOI: 10.1016/j.gendis.2018.05.001] [Citation(s) in RCA: 605] [Impact Index Per Article: 100.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 05/08/2018] [Indexed: 12/14/2022] Open
Abstract
As the most commonly occurring cancer in women worldwide, breast cancer poses a formidable public health challenge on a global scale. Breast cancer consists of a group of biologically and molecularly heterogeneous diseases originated from the breast. While the risk factors associated with this cancer varies with respect to other cancers, genetic predisposition, most notably mutations in BRCA1 or BRCA2 gene, is an important causative factor for this malignancy. Breast cancers can begin in different areas of the breast, such as the ducts, the lobules, or the tissue in between. Within the large group of diverse breast carcinomas, there are various denoted types of breast cancer based on their invasiveness relative to the primary tumor sites. It is important to distinguish between the various subtypes because they have different prognoses and treatment implications. As there are remarkable parallels between normal development and breast cancer progression at the molecular level, it has been postulated that breast cancer may be derived from mammary cancer stem cells. Normal breast development and mammary stem cells are regulated by several signaling pathways, such as estrogen receptors (ERs), HER2, and Wnt/β-catenin signaling pathways, which control stem cell proliferation, cell death, cell differentiation, and cell motility. Furthermore, emerging evidence indicates that epigenetic regulations and noncoding RNAs may play important roles in breast cancer development and may contribute to the heterogeneity and metastatic aspects of breast cancer, especially for triple-negative breast cancer. This review provides a comprehensive survey of the molecular, cellular and genetic aspects of breast cancer.
Collapse
Affiliation(s)
- Yixiao Feng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Departments of General Surgery, Clinical Laboratory Medicine, Orthopaedic Surgery, Plastic Surgery and Burn, and Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Mia Spezia
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Shifeng Huang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Departments of General Surgery, Clinical Laboratory Medicine, Orthopaedic Surgery, Plastic Surgery and Burn, and Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Chengfu Yuan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Biochemistry and Molecular Biology, China Three Gorges University School of Medicine, Yichang 443002, China
| | - Zongyue Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Linghuan Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xiaojuan Ji
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Wei Liu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Departments of General Surgery, Clinical Laboratory Medicine, Orthopaedic Surgery, Plastic Surgery and Burn, and Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Bo Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Wenping Luo
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing 401147, China
| | - Bo Liu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Departments of General Surgery, Clinical Laboratory Medicine, Orthopaedic Surgery, Plastic Surgery and Burn, and Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yan Lei
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Departments of General Surgery, Clinical Laboratory Medicine, Orthopaedic Surgery, Plastic Surgery and Burn, and Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Scott Du
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Student Inquiry Research Program, Illinois Mathematics and Science Academy (IMSA), Aurora, IL 60506, USA
| | - Akhila Vuppalapati
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Student Inquiry Research Program, Illinois Mathematics and Science Academy (IMSA), Aurora, IL 60506, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Departments of General Surgery, Clinical Laboratory Medicine, Orthopaedic Surgery, Plastic Surgery and Burn, and Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
16
|
Deng N, Zhou H, Fan H, Yuan Y. Single nucleotide polymorphisms and cancer susceptibility. Oncotarget 2017; 8:110635-110649. [PMID: 29299175 PMCID: PMC5746410 DOI: 10.18632/oncotarget.22372] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/03/2017] [Indexed: 12/12/2022] Open
Abstract
A large number of genes associated with various cancer types contain single nucleotide polymorphisms (SNPs). SNPs are located in gene promoters, exons, introns as well as 5'- and 3'- untranslated regions (UTRs) and affect gene expression by different mechanisms. These mechanisms depend on the role of the genetic elements in which the individual SNPs are located. Moreover, alterations in epigenetic regulation due to gene polymorphisms add to the complexity underlying cancer susceptibility related to SNPs. In this systematic review, we discuss the various genetic and epigenetic mechanisms involved in determining cancer susceptibility related to various SNPs located in different genetic elements. We also discuss the diagnostic potential of these SNPs and the focus for future studies.
Collapse
Affiliation(s)
- Na Deng
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China.,Department of Hematology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Heng Zhou
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Hua Fan
- Department of Hematology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China.,National Clinical Research Center for Digestive Diseases, Xi'an 110001, China
| |
Collapse
|
17
|
Shaashua L, Shabat-Simon M, Haldar R, Matzner P, Zmora O, Shabtai M, Sharon E, Allweis T, Barshack I, Hayman L, Arevalo J, Ma J, Horowitz M, Cole S, Ben-Eliyahu S. Perioperative COX-2 and β-Adrenergic Blockade Improves Metastatic Biomarkers in Breast Cancer Patients in a Phase-II Randomized Trial. Clin Cancer Res 2017; 23:4651-4661. [PMID: 28490464 DOI: 10.1158/1078-0432.ccr-17-0152] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/14/2017] [Accepted: 05/03/2017] [Indexed: 01/11/2023]
Abstract
Purpose: Translational studies suggest that excess perioperative release of catecholamines and prostaglandins may facilitate metastasis and reduce disease-free survival. This trial tested the combined perioperative blockade of these pathways in breast cancer patients.Experimental Design: In a randomized placebo-controlled biomarker trial, 38 early-stage breast cancer patients received 11 days of perioperative treatment with a β-adrenergic antagonist (propranolol) and a COX-2 inhibitor (etodolac), beginning 5 days before surgery. Excised tumors and sequential blood samples were assessed for prometastatic biomarkers.Results: Drugs were well tolerated with adverse event rates comparable with placebo. Transcriptome profiling of the primary tumor tested a priori hypotheses and indicated that drug treatment significantly (i) decreased epithelial-to-mesenchymal transition, (ii) reduced activity of prometastatic/proinflammatory transcription factors (GATA-1, GATA-2, early-growth-response-3/EGR3, signal transducer and activator of transcription-3/STAT-3), and (iii) decreased tumor-infiltrating monocytes while increasing tumor-infiltrating B cells. Drug treatment also significantly abrogated presurgical increases in serum IL6 and C-reactive protein levels, abrogated perioperative declines in stimulated IL12 and IFNγ production, abrogated postoperative mobilization of CD16- "classical" monocytes, and enhanced expression of CD11a on circulating natural killer cells.Conclusions: Perioperative inhibition of COX-2 and β-adrenergic signaling provides a safe and effective strategy for inhibiting multiple cellular and molecular pathways related to metastasis and disease recurrence in early-stage breast cancer. Clin Cancer Res; 23(16); 4651-61. ©2017 AACR.
Collapse
Affiliation(s)
- Lee Shaashua
- Sagol School of Neuroscience and School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Maytal Shabat-Simon
- Sagol School of Neuroscience and School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Rita Haldar
- Sagol School of Neuroscience and School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Pini Matzner
- Sagol School of Neuroscience and School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Oded Zmora
- Department of Surgery and Transplantation, Sheba Medical Center, Ramat Gan, Israel
| | - Moshe Shabtai
- Department of Surgery and Transplantation, Sheba Medical Center, Ramat Gan, Israel
| | - Eran Sharon
- Department of Surgery, Rabin Medical Center, Beilinson Hospital, Petach-Tikva, Israel
| | - Tanir Allweis
- Department of Surgery, Kaplan Medical Center, Rehovot, Israel
| | - Iris Barshack
- Department of Pathology, Sheba Medical Center, Ramat Gan, Israel
| | - Lucile Hayman
- Department of Pathology, Rabin Medical Center, Petah Tikva, Israel
| | - Jesusa Arevalo
- Departments of Medicine and Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Jeffrey Ma
- Departments of Medicine and Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Maya Horowitz
- Sagol School of Neuroscience and School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Steven Cole
- Departments of Medicine and Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Shamgar Ben-Eliyahu
- Sagol School of Neuroscience and School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
18
|
The interaction of miR-34b/c polymorphisms and negative life events increases susceptibility to major depressive disorder in Han Chinese population. Neurosci Lett 2017; 651:65-71. [PMID: 28461137 DOI: 10.1016/j.neulet.2017.04.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 04/26/2017] [Accepted: 04/28/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND Previous studies have shown that microRNAs(miRNAs) are involved in the pathogenesis of MDD; in particular, miR-34b/c has been implicated in MDD risk and found to exert antidepressant effects. However, the effects of miR-34b/c polymorphisms on MDD risk have not been investigated. METHODS In this study, we evaluated the effect of miR-34b/c gene polymorphisms and their interaction with negative life events in relation to MDD, using data from 381 Han Chinese patients with MDD and 291 healthy volunteers. Allelic, genotypic, haplotypic, and gene-environment associations were analyzed using UNPHASED and SPSS software. RESULTS After discarding data with extremely severe negative life events in our study population, we found an association between rs4938723, rs2187473 polymorphisms and MDD in the dominant models (TC/CC vs. TT, OR=1.45, P=0.027; TC/CC vs. TT, OR=3.32, P=0.030). In haplotype analysis, the C-G haplotype (rs4938723/rs28757623) showed the strongest association with MDD (OR=1.95, P=0.026). Additionally, we found significant gene-environment combination rs4938723 C allele, rs28757623 G allele and high level of negative life events (C-G-HN) was significantly associated with MDD (OR, 3.85; 95% CI, 1.62-9.13). In addition, the combination of (C-C-HN) is of significance (OR, 2.99; 95% CI, 1.36-6.60), indicating that the rs28757623 C allele may contribute to the risk of MDD as well. LIMITATIONS The sample size was small and the role of miR-34b/c polymorphisms for MDD should be assessed using independent samples from other ethnic populations. CONCLUSIONS Our results suggest that miR-34b/c is a susceptibility factor for MDD stratified by negative life events and that rs4938723 is a significant association locus for gene-environment interaction in relation to MDD risk.
Collapse
|
19
|
Conley A, Minciacchi VR, Lee DH, Knudsen BS, Karlan BY, Citrigno L, Viglietto G, Tewari M, Freeman MR, Demichelis F, Di Vizio D. High-throughput sequencing of two populations of extracellular vesicles provides an mRNA signature that can be detected in the circulation of breast cancer patients. RNA Biol 2017; 14:305-316. [PMID: 27858503 PMCID: PMC5367334 DOI: 10.1080/15476286.2016.1259061] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/13/2016] [Accepted: 11/04/2016] [Indexed: 12/26/2022] Open
Abstract
Extracellular vesicles (EVs) contain a wide range of RNA types with a reported prevalence of non-coding RNA. To date a comprehensive characterization of the protein coding transcripts in EVs is still lacking. We performed RNA-Sequencing (RNA-Seq) of 2 EV populations and identified a small fraction of transcripts that were expressed at significantly different levels in large oncosomes and exosomes, suggesting they may mediate specialized functions. However, these 2 EV populations exhibited a common mRNA signature that, in comparison to their donor cells, was significantly enriched in mRNAs encoding E2F transcriptional targets and histone proteins. These mRNAs are primarily expressed in the S-phase of the cell cycle, suggesting that they may be packaged into EVs during S-phase. In silico analysis using subcellular compartment transcriptome data from the ENCODE cell line compendium revealed that EV mRNAs originate from a cytoplasmic RNA pool. The EV signature was independently identified in plasma of patients with breast cancer by RNA-Seq. Furthermore, several transcripts differentially expressed in EVs from patients versus controls mirrored differential expression between normal and breast cancer tissues. Altogether, this largest high-throughput profiling of EV mRNA demonstrates that EVs carry tumor-specific alterations and can be interrogated as a source of cancer-derived cargo.
Collapse
Affiliation(s)
- Andrew Conley
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Valentina R. Minciacchi
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Surgery, Division of Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dhong Hyun Lee
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Surgery, Division of Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Beatrice S. Knudsen
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Beth Y. Karlan
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Women's Cancer Program and Division of Gynecologic Oncology Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Luigi Citrigno
- Department of Surgery, Division of Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | - Muneesh Tewari
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Michael R. Freeman
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Surgery, Division of Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- The Urological Diseases Research Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, University of California, Los Angeles, USA
| | - Francesca Demichelis
- Centre for Integrative Biology, University of Trento, Trento, Italy
- Institute for Precision Medicine, Weill Cornell Medicine, New York NY, USA
| | - Dolores Di Vizio
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Surgery, Division of Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- The Urological Diseases Research Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, University of California, Los Angeles, USA
| |
Collapse
|
20
|
Zhang Y, Liu J, Lin J, Zhou L, Song Y, Wei B, Luo X, Chen Z, Chen Y, Xiong J, Xu X, Ding L, Ye Q. The transcription factor GATA1 and the histone methyltransferase SET7 interact to promote VEGF-mediated angiogenesis and tumor growth and predict clinical outcome of breast cancer. Oncotarget 2016; 7:9859-75. [PMID: 26848522 PMCID: PMC4891089 DOI: 10.18632/oncotarget.7126] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/18/2016] [Indexed: 01/26/2023] Open
Abstract
Angiogenesis is essential for tumor growth. Vascular endothelial growth factor (VEGF) is the most important regulator of tumor angiogenesis. However, how transcription factors interact with histone-modifying enzymes to regulate VEGF transcription and tumor angiogenesis remains unclear. Here, we show that transcription factor GATA1 associates with the histone methyltransferase SET7 to promote VEGF transcription and breast tumor angiogenesis. Using chromatin immunoprecipitation assay, we found that GATA1 was required for recruitment of SET7, RNA polymerase II and transcription factor II B to VEGF core promoter. GATA1 enhanced breast cancer cell (MCF7, ZR75-1 and MDA-MB-231)-secreted VEGF via SET7, which promoted vascular endothelial cell (HUVEC) proliferation, migration and tube formation. SET7 was required for GATA1-induced breast tumor angiogenesis and growth in nude mice. Immunohistochemical staining showed that expression of GATA1 and SET7 was upregulated and positively correlated with VEGF expression and microvessel number in 80 breast cancer patients. GATA1 and SET7 are independent poor prognostic factors in breast cancer. Our data provide novel insights into VEGF transcriptional regulation and suggest GATA1/SET7 as cancer therapeutic targets.
Collapse
Affiliation(s)
- Yanan Zhang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China.,Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Liaoning, People's Republic of China
| | - Jie Liu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China
| | - Jing Lin
- First Affiliated Hospital, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Lei Zhou
- Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yuhua Song
- The Affiliated Hospital of Qing Dao University, Qingdao, People's Republic of China
| | - Bo Wei
- Department of General Surgery, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Xiaoli Luo
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China
| | - Zhida Chen
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China.,Department of General Surgery, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Yingjie Chen
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China.,The Affiliated Hospital of Qing Dao University, Qingdao, People's Republic of China
| | - Jiaxiu Xiong
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China.,Department of General Surgery, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Xiaojie Xu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China
| | - Lihua Ding
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China.,Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Liaoning, People's Republic of China
| |
Collapse
|
21
|
Unexpected role for p19INK4d in posttranscriptional regulation of GATA1 and modulation of human terminal erythropoiesis. Blood 2016; 129:226-237. [PMID: 27879259 DOI: 10.1182/blood-2016-09-739268] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 11/14/2016] [Indexed: 12/13/2022] Open
Abstract
Terminal erythroid differentiation is tightly coordinated with cell-cycle exit, which is regulated by cyclins, cyclin-dependent kinases, and cyclin-dependent kinase inhibitors (CDKI), yet their roles in erythropoiesis remain to be fully defined. We show here that p19INK4d, a member of CDKI family, is abundantly expressed in erythroblasts and that p19INK4d knockdown delayed erythroid differentiation, inhibited cell growth, and led to increased apoptosis and generation of abnormally nucleated late-stage erythroblasts. Unexpectedly, p19INK4d knockdown did not affect cell cycle. Rather, it led to decreased expression of GATA1 protein. Importantly, the differentiation and nuclear defects were rescued by ectopic expression of GATA1. Because the GATA1 protein is protected by nuclear heat shock protein family (HSP) member HSP70, we examined the effects of p19INK4d knockdown on HSP70 and found that p19INK4d knockdown led to decreased expression of HSP70 and its nuclear localization. The reduced levels of HSP70 are the result of reduced extracellular signal-regulated kinase (ERK) activation. Further biochemical analysis revealed that p19INK4d directly binds to Raf kinase inhibitor PEBP1 and that p19INK4d knockdown increased the expression of PEBP1, which in turn led to reduced ERK activation. Thus we have identified an unexpected role for p19INK4d via a novel PEBP1-p-ERK-HSP70-GATA1 pathway. These findings are likely to have implications for improved understanding of disordered erythropoiesis.
Collapse
|
22
|
Li Y, Ke Q, Shao Y, Zhu G, Li Y, Geng N, Jin F, Li F. GATA1 induces epithelial-mesenchymal transition in breast cancer cells through PAK5 oncogenic signaling. Oncotarget 2015; 6:4345-56. [PMID: 25726523 PMCID: PMC4414194 DOI: 10.18632/oncotarget.2999] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/21/2014] [Indexed: 11/25/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a key process in tumor metastatic cascade that is characterized by the loss of cell-cell junctions, resulting in the acquisition of migratory and invasive properties. E-cadherin is a major component of intercellular junctions and the reduction or loss of its expression is a hallmark of EMT. Transcription factor GATA1 has a critical anti-apoptotic role in breast cancer, but its function for metastasis has not been investigated. Here, we found that GATA1, as a novel E-cadherin repressor, promotes EMT in breast cancer cells. GATA1 binds to E-cadherin promoter, down-regulates E-cadherin expression, disrupts intercellular junction and promotes metastasis of breast cancer cell in vivo. Moreover, GATA1 is a new substrate of p21-activated kinase 5 (PAK5), which is phosphorylated on serine 161 and 187 (S161 and S187). GATA1 recruits HDAC3/4 to E-cadherin promoter, which is reduced by GATA1 S161A S187A mutant. These data indicate that phosphorylated GATA1 recruits more HDAC3/4 to promote transcriptional repression of E-cadherin, leading to the EMT of breast cancer cells. Our findings provide insights into the novel function of GATA1, contributing to a better understanding of the EMT, indicating that GATA1 and its phosphorylation may play an important role in the metastasis of breast cancer.
Collapse
Affiliation(s)
- Yang Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Qiang Ke
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Yangguang Shao
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Ge Zhu
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Yanshu Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Nanxi Geng
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Feng Jin
- Department of Breast Surgery, Department of Surgical Oncology, Research Unit of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Feng Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
23
|
Vasudevan D, Hickok JR, Bovee RC, Pham V, Mantell LL, Bahroos N, Kanabar P, Cao XJ, Maienschein-Cline M, Garcia BA, Thomas DD. Nitric Oxide Regulates Gene Expression in Cancers by Controlling Histone Posttranslational Modifications. Cancer Res 2015; 75:5299-308. [PMID: 26542213 DOI: 10.1158/0008-5472.can-15-1582] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/11/2015] [Indexed: 01/05/2023]
Abstract
Altered nitric oxide (•NO) metabolism underlies cancer pathology, but mechanisms explaining many •NO-associated phenotypes remain unclear. We have found that cellular exposure to •NO changes histone posttranslational modifications (PTM) by directly inhibiting the catalytic activity of JmjC-domain containing histone demethylases. Herein, we describe how •NO exposure links modulation of histone PTMs to gene expression changes that promote oncogenesis. Through high-resolution mass spectrometry, we generated an extensive map of •NO-mediated histone PTM changes at 15 critical lysine residues on the core histones H3 and H4. Concomitant microarray analysis demonstrated that exposure to physiologic •NO resulted in the differential expression of over 6,500 genes in breast cancer cells. Measurements of the association of H3K9me2 and H3K9ac across genomic loci revealed that differential distribution of these particular PTMs correlated with changes in the level of expression of numerous oncogenes, consistent with epigenetic code. Our results establish that •NO functions as an epigenetic regulator of gene expression mediated by changes in histone PTMs.
Collapse
Affiliation(s)
- Divya Vasudevan
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois
| | - Jason R Hickok
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois
| | - Rhea C Bovee
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois
| | - Vy Pham
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois
| | - Lin L Mantell
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Neil Bahroos
- Center for Research Informatics, University of Illinois at Chicago, Chicago, Illinois
| | - Pinal Kanabar
- Center for Research Informatics, University of Illinois at Chicago, Chicago, Illinois
| | - Xing-Jun Cao
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Benjamin A Garcia
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Douglas D Thomas
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
24
|
Aesoy R, Clyne CD, Chand AL. Insights into Orphan Nuclear Receptors as Prognostic Markers and Novel Therapeutic Targets for Breast Cancer. Front Endocrinol (Lausanne) 2015; 6:115. [PMID: 26300846 PMCID: PMC4528200 DOI: 10.3389/fendo.2015.00115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/11/2015] [Indexed: 12/11/2022] Open
Abstract
There is emerging evidence asserting the importance of orphan nuclear receptors (ONRs) in cancer initiation and progression. In breast cancer, there is a lot unknown about ONRs in terms of their expression profile and their transcriptional targets in the various stages of tumor progression. With the classification of breast tumors into distinct molecular subtypes, we assess ONR expression in the different breast cancer subtypes and with patient outcomes. Complementing this, we review evidence implicating ONR-dependent molecular pathways in breast cancer progression to identify candidate ONRs as potential prognostic markers and/or as therapeutic targets.
Collapse
Affiliation(s)
- Reidun Aesoy
- Cancer Drug Discovery, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Colin D. Clyne
- Cancer Drug Discovery, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Ashwini L. Chand
- Cancer Drug Discovery, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
- *Correspondence: Ashwini L. Chand,
| |
Collapse
|
25
|
Peters I, Dubrowinskaja N, Tezval H, Kramer MW, von Klot CA, Hennenlotter J, Stenzl A, Scherer R, Kuczyk MA, Serth J. Decreased mRNA expression of GATA1 and GATA2 is associated with tumor aggressiveness and poor outcome in clear cell renal cell carcinoma. Target Oncol 2014; 10:267-75. [PMID: 25230694 DOI: 10.1007/s11523-014-0335-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/29/2014] [Indexed: 11/30/2022]
Abstract
GATA-binding proteins 1 (GATA1) and 2 (GATA2) are zinc-finger transcription factors and belong to the GATA family proteins 1-6. GATA1 interacts with the TP53 tumor suppressor gene, and both GATAs have been shown to be involved in cell growth, apoptosis, and tumorigenesis of several solid tumors. GATA1 and GATA2 expression alterations are associated with poor survival and adverse clinicopathology in prostate and colorectal cancer, while the significance and prognostic value in clear cell renal cell carcinoma (ccRCC) has not been investigated as yet. We investigated relative messenger RNA (mRNA) expression levels of GATA1 and GATA2 in 77 ccRCC and 58 paired adjacent noncancerous renal tissues by quantitative real-time reverse-transcribed PCR. Relative mRNA expression levels were determined using the ΔΔCt method. GATA1 and GATA2 expression levels were significantly decreased in tumor tissues compared with normal tissues (p < 0.001, paired t test). In univariate logistic regression analysis, decreased GATA1 and GATA2 expression levels were associated with advanced tumor disease (p = 0.005 and 0.008), positive distant metastasis (p = 0.03 and 0.001), and lymph node metastasis status (p = 0.011 and 0.038). Reduced expression levels of GATA1 and GATA2 were associated with an increased risk of disease recurrence (p = 0.005 and 0.006; hazard ratio = 0.05 and 0.21). Pairwise bivariate analysis after adjusting for clinicopathological parameters revealed relative mRNA expression of GATA1, but not GATA2, as an independent candidate prognosticator for ccRCC. Our results support that GATA1 and GATA2 are involved in ccRCC tumor biology possibly affecting tumor development and aggressiveness.
Collapse
Affiliation(s)
- Inga Peters
- Department of Urology and Urologic Oncology, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Induction of apoptosis through ER stress and TP53 in MCF-7 cells by the nanoparticle [Gd@C82(OH)22]n: A systems biology study. Methods 2014; 67:394-406. [DOI: 10.1016/j.ymeth.2014.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/10/2013] [Accepted: 01/05/2014] [Indexed: 01/20/2023] Open
|
27
|
Takagi K, Moriguchi T, Miki Y, Nakamura Y, Watanabe M, Ishida T, Yamamoto M, Sasano H, Suzuki T. GATA4 immunolocalization in breast carcinoma as a potent prognostic predictor. Cancer Sci 2014; 105:600-7. [PMID: 24862985 PMCID: PMC4317835 DOI: 10.1111/cas.12382] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 12/23/2022] Open
Abstract
Transcriptional GATA factors are known lineage selector genes and regulate a variety of biological processes including specification and differentiation of tissues. In the present study, we examined expression profiles of six GATA factor genes in invasive ductal carcinomas (IDC) of the breast using microarray analysis (n = 20) and found that GATA4 expression was closely correlated with recurrence in patients. Because the significance of GATA4 has remained largely unknown in breast carcinoma, we further immunolocalized GATA4 in ductal carcinoma in situ (DCIS) of the breast (n = 48) and IDC (n = 163). GATA4 immunoreactivity was detected in the nuclei of carcinoma cells and was positive in 27% of DCIS and 31% of IDC cases. GATA4 status was significantly associated with nuclear grade and van Nuys classification in DCIS and was positively associated with distant metastasis, histological grade and HER2 status, but negatively correlated with progesterone receptor labeling index in IDC. Subsequent multivariate analysis demonstrated that GATA4 status was an independent prognostic factor for both disease-free and breast cancer-specific survival of IDC patients. All of these results indicate that GATA4 plays important roles in the progression of breast carcinoma from an early stage and that immunohistochemical GATA4 status is considered a potent prognostic factor in human breast cancer patients.
Collapse
Affiliation(s)
- Kiyoshi Takagi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhang S, Qian J, Cao Q, Li P, Wang M, Wang J, Ju X, Meng X, Lu Q, Shao P, Zhang Z, Qin C, Yin C. A potentially functional polymorphism in the promoter region of miR-34b/c is associated with renal cell cancer risk in a Chinese population. Mutagenesis 2014; 29:149-54. [PMID: 24503183 DOI: 10.1093/mutage/geu001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Members of the miR-34 family have been shown to be transcriptional targets of the tumour suppressor gene P53. Aberration expression of miR-34 impairs p53-mediated cell cycle arrest and apoptosis. A single nucleotide polymorphism T > C (rs4938723) located within the CpG island in the promoter region of pri-miR-34b/c may affect its expression and has been suggested to influence cancer risk. In this study, we genotyped rs4938723 using the TaqMan method to explore the relationship between this polymorphism and the risk of renal cell cancer (RCC) in a case-control study of 710 RCC patients and 760 control subjects. We found that individuals carrying the CC genotype had a significantly increased RCC risk compared with those with TT or TT/TC genotypes [odds ratio (OR) = 1.53, 95% confidence interval (CI) = 1.06-2.21 for CC vs. TT and OR = 1.48, 95% CI = 1.05-2.10 for CC vs. TT/TC). Furthermore, the increased risk was more evident in the subgroups of older subjects (OR = 1.80, 95% CI = 1.08-3.01), males (OR = 1.64, 95% CI = 1.08-2.51), smokers (OR = 2.07, 95% CI = 1.16-3.69) and drinkers (OR = 1.94, 95% CI = 1.01-3.73), although no interaction between rs4938723 and these characteristics was observed. Twenty-seven normal tissues adjacent to tumour were used to evaluate the association between the expression level of miR-34b/c and the polymorphism, which revealed higher expression levels of miR-34b/c in normal renal tissues with TT+TC genotypes than in those with CC genotypes (P < 0.01). Furthermore, a luciferase gene assay in 293-T cells showed that the luciferase activities with rs4938723 T allele are higher than that with C allele (P < 0.05). These results suggest that the miR-34b/c rs4938723 C allele may increase susceptibility to RCC by decreasing the activity of pri-miR-34b/c promoter.
Collapse
|
29
|
Transcriptional regulation of the survivin gene. Mol Biol Rep 2013; 41:233-40. [PMID: 24197699 DOI: 10.1007/s11033-013-2856-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 10/30/2013] [Indexed: 02/05/2023]
Abstract
Survivin, a small member of the inhibitors of the apoptosis protein family, is highly deregulated in cancer. It is weakly expressed in normal tissues but very strongly expressed in malignant lesions. Survivin is involved in cell-cycle progression, especially in the G2/M transition, and has anti-apoptotic activity, which correlates with its strong expression in cases with a poor cancer treatment response and poor outcomes. Several therapies that target the survivin transcript or protein are currently being tested in clinical trials. However, focusing new therapies on the origins of survivin overexpression and targeting these upstream deregulations could be more effective. For this reason, it seems important to make an inventory of the transcriptional (de)regulation of survivin. This review will gather the important points concerning the regulation of survivin mRNA expression: structure of the survivin promoter, epigenetic modifications and genetic abnormalities, transcription factors, and signalling pathways that affect survivin mRNA expression.
Collapse
|
30
|
Polypurine reverse Hoogsteen hairpins as a gene therapy tool against survivin in human prostate cancer PC3 cells in vitro and in vivo. Biochem Pharmacol 2013; 86:1541-54. [PMID: 24070653 DOI: 10.1016/j.bcp.2013.09.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/12/2013] [Accepted: 09/12/2013] [Indexed: 11/22/2022]
Abstract
As a new approach for gene therapy, we recently developed a new type of molecule called polypurine reverse Hoogsteen hairpins (PPRHs). We decided to explore the in vitro and in vivo effect of PPRHs in cancer choosing survivin as a target since it is involved in apoptosis, mitosis and angiogenesis, and overexpressed in different tumors. We designed four PPRHs against the survivin gene, one of them directed against the template strand and three against different regions of the coding strand. These PPRHs were tested in PC3 prostate cancer cells in an in vitro screening of cell viability and apoptosis. PPRHs against the promoter sequence were the most effective and caused a decrease in survivin mRNA and protein levels. We confirmed the binding between the selected PPRHs and their target sequences in the survivin gene. In addition we determined that both the template- and the coding-PPRH targeting the survivin promoter were interfering with the binding of transcription factors Sp1 and GATA-3, respectively. Finally, we conducted two in vivo efficacy assays using the Coding-PPRH against the survivin promoter and performing two routes of administration, namely intratumoral and intravenous, in a subcutaneous xenograft tumor model of PC3 prostate cancer cells. The results showed that the chosen Coding-PPRH proved to be effective in decreasing tumor volume, and reduced the levels of survivin protein and the formation of blood vessels. These findings represent the preclinical proof of principle of PPRHs as a new silencing tool for cancer gene therapy.
Collapse
|
31
|
Végran F, Mary R, Gibeaud A, Mirjolet C, Collin B, Oudot A, Charon-Barra C, Arnould L, Lizard-Nacol S, Boidot R. Survivin-3B potentiates immune escape in cancer but also inhibits the toxicity of cancer chemotherapy. Cancer Res 2013; 73:5391-401. [PMID: 23856250 DOI: 10.1158/0008-5472.can-13-0036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dysregulation in patterns of alternative RNA splicing in cancer cells is emerging as a significant factor in cancer pathophysiology. In this study, we investigated the little known alternative splice isoform survivin-3B (S-3B) that is overexpressed in a tumor-specific manner. Ectopic overexpression of S-3B drove tumorigenesis by facilitating immune escape in a manner associated with resistance to immune cell toxicity. This resistance was mediated by interaction of S-3B with procaspase-8, inhibiting death-inducing signaling complex formation in response to Fas/Fas ligand interaction. We found that S-3B overexpression also mediated resistance to cancer chemotherapy, in this case through interactions with procaspase-6. S-3B binding to procaspase-6 inhibited its activation despite mitochondrial depolarization and caspase-3 activation. When combined with chemotherapy, S-3B targeting in vivo elicited a nearly eradication of tumors. Mechanistic investigations identified a previously unrecognized 7-amino acid region as responsible for the procancerous properties of survivin proteins. Taken together, our results defined S-3B as an important functional actor in tumor formation and treatment resistance.
Collapse
Affiliation(s)
- Frédérique Végran
- Departments of Tumor Biology and Pathology, Unit of Molecular Biology, Radiotherapy, and Tumor Biology and Pathology, Unit of Pathology, Preclinical Imaging Platform, Centre Georges-François Leclerc, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Survivin promoter polymorphisms and autoantibodies in endometriosis. J Reprod Immunol 2012; 96:95-100. [PMID: 23131769 DOI: 10.1016/j.jri.2012.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 10/10/2012] [Indexed: 12/30/2022]
Abstract
Expression of survivin, an inhibitor of apoptosis, is increased in endometriotic lesions and probably favors the survival of endometrial fragments in the peritoneal cavity. The aim of this study was to evaluate associations between survivin promoter polymorphisms and the risk of endometriosis, as well as to compare the immunoreactivity to survivin in sera of patients with and without endometriosis. We studied 149 women with endometriosis, 196 fertile women from the general population (control group A) and 47 women who had undergone diagnostic laparoscopy and had no evidence of endometriosis (control group B). There were no significant differences in the genotypic distribution of the survivin gene promoter region -241C/T, -235G/A and -31G/C single nucleotide polymorphisms (SNP) between endometriosis patients and the two control groups. In addition, also median anti-survivin autoantibody levels were similar among patients and controls (group B). However, anti-survivin antibody concentrations seemed to be influenced by cigarette smoking, being significantly lower in sera of actively smoking women compared to non-smokers (median OD: 0.019 vs. 0.155, respectively, P<0.001), and by the -235G/A SNP, as A allele carriers were significantly more frequent among women with a high antibody level (OD≥2.0) compared to those with lower concentrations (OD<2.0) (23.1% vs. 4.1%, respectively, P=0.008). Based on these results, we conclude that survivin promoter polymorphisms are not associated with susceptibility to endometriosis in the Estonian population, and though the expression of survivin is increased in endometriotic lesions, autoimmune reactivity against it is similar in women with and without the disease.
Collapse
|
33
|
Association between survivin -31G > C promoter polymorphism and cancer risk: a meta-analysis. Eur J Hum Genet 2012; 20:790-5. [PMID: 22274581 DOI: 10.1038/ejhg.2011.276] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Survivin is an inhibitor of apoptosis protein and has a crucial role in the development of cancer. The survivin -31G>C (rs9904341) promoter polymorphism influences survivin expression and has been implicated in cancer risk. However, conflicting results have been published from studies on the association between survivin -31G>C polymorphism and the risk of cancer. To clarify the role of this polymorphism in cancer, we performed a meta-analysis of all available and relevant published studies, involving a total of 3485 cancer patients and 3964 control subjects. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to assess the strength of the associations. The overall results indicated that the variant genotypes were associated with a significantly increased cancer risk (CC vs GG: OR=1.58, 95% CI=1.20-2.10; CC/GC vs GG: OR=1.23, 95% CI=1.00-1.51; CC vs GG/GC: OR=1.51, 95% CI=1.23-1.85). In the stratified analyses, significantly increased risk was associated with the Asian populations (CC vs GG: OR=1.67, 95% CI=1.16-2.40; CC vs GG/GC: OR=1.50, 95% CI=1.17-1.91). We also performed the analyses by cancer type, and no statistical association was observed. The results suggest that the survivin -31G>C promoter polymorphism might be associated with an increased risk of cancer, especially in the Asian populations.
Collapse
|
34
|
Hsieh YS, Tsai CM, Yeh CB, Yang SF, Hsieh YH, Weng CJ. Survivin T9809C, an SNP located in 3'-UTR, displays a correlation with the risk and clinicopathological development of hepatocellular carcinoma. Ann Surg Oncol 2011; 19 Suppl 3:S625-33. [PMID: 22052111 DOI: 10.1245/s10434-011-2123-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Indexed: 02/06/2023]
Abstract
BACKGROUND Early detection of hepatocellular carcinoma (HCC) is seldom available because of the lack of reliable markers. Survivin is an anti-apoptotic protein that is implicated in the regulation of apoptosis and cell cycle, and it is undetectable in normal adult tissues but is overexpressed in various types of cancers. Survivin is thus commonly considered to be a marker of malignancy. The aim of this study was to explore the association between survivin gene polymorphisms and the risk and diagnostic progress of HCC. METHODS A total of 135 patients with HCC and 496 healthy control subjects were recruited. Five single nucleotide polymorphisms (SNPs) of survivin genes were determined by real-time polymerase chain reaction (real-time PCR) and further analyzed statistically. RESULTS We first found that the -241 C/T and -235 G/A genetic polymorphisms of survivin did not occur frequently enough or even lacked in Taiwanese population. The +9809 C/C polymorphism exhibited a significant (P < .05) low risk of 0.525-fold (95% confidence interval [95% CI] = 0.297-0.930) to have HCC compared with the wild-type homozygotes and a low ratio of 0.214-fold (95% CI = 0.051-0.890) for positive anti-HCV was shown in the individuals with survivin +9809 polymorphic CC allele compared with the TT/TC genotypic subgroup. CONCLUSIONS Survivin +9809 polymorphic genotype is associated with the risk of HCC, and the HCC patients with survivin +9809 CC homozygotes might have a low risk of developing infected HCV-dependent HCC. The results suggest that the survivin T9809C SNP might contribute to the prediction of susceptibility and pathological development to HCC.
Collapse
Affiliation(s)
- Yih-Shou Hsieh
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
35
|
Shi H, Bevier M, Johansson R, Enquist-Olsson K, Henriksson R, Hemminki K, Lenner P, Försti A. Prognostic impact of polymorphisms in the MYBL2 interacting genes in breast cancer. Breast Cancer Res Treat 2011; 131:1039-47. [PMID: 22037783 DOI: 10.1007/s10549-011-1826-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 10/07/2011] [Indexed: 11/25/2022]
Abstract
MYBL2 is a transcription factor, which regulates the expression of genes involved in cancer progression. In this study, we investigated whether putative functional variants in genes regulating MYBL2 (E2F1, E2F3 and E2F4) or in genes, which are regulated by MYBL2 (BCL2, BIRC5, COL1A1, COL1A2, COL5A2, ERBB2, CLU, LIN9 and TOP2A) affect breast cancer (BC) susceptibility and clinical outcome. Twenty-eight SNPs were genotyped in a population-based series of 782 Swedish BC cases and 1,559 matched controls. BC-specific survival analysis of BIRC5 suggested that carriers of the minor allele of rs8073069 and rs1042489 have a worse survival compared with the major homozygotes (HR 2.46, 95% CI 1.39-4.36 and HR 1.81, 95% CI 1.01-3.25, respectively). The poor survival was observed especially in women with aggressive tumours. Multivariate analysis supported the role of rs8073069 as an independent prognostic marker. For BCL2, minor allele carriers of rs1564483 were more likely to have hormone receptor-positive tumours than the major homozygotes. Another SNP in BCL2, rs4987852, was associated with tumour stages II-IV and histologic grade 3. In CLU, the minor allele carriers of rs9331888 were more likely to have tumours with regional lymph node metastasis and stages II-IV than the major homozygotes. In conclusion, our study suggests a role of genetic variation in BIRC5, BCL2 and CLU as progression and prognostic markers for BC, supporting previous studies based on the expression of the genes.
Collapse
Affiliation(s)
- Hong Shi
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Wang Y, He X, Ngeow J, Eng C. GATA2 negatively regulates PTEN by preventing nuclear translocation of androgen receptor and by androgen-independent suppression of PTEN transcription in breast cancer. Hum Mol Genet 2011; 21:569-76. [PMID: 22021428 DOI: 10.1093/hmg/ddr491] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The tumor suppressor gene PTEN (phosphatase and tensin homolog deleted on chromosome 10) plays important roles in tumor development and progression. Among many functions, PTEN negatively regulates the AKT anti-apoptotic signaling pathway, while nuclear PTEN affects the cell cycle by repressing the mitogen-activated protein kinase pathway. However, the regulation of PTEN expression is still not well understood. We previously reported that androgen receptor (AR) activates PTEN transcription in breast cancer cells. Here, we found that the transcription factor GATA2 (GATA binding protein 2) is overexpressed in non-cultured human breast carcinomas and is negatively correlated with PTEN expression. We then showed GATA2 promotes breast cancer cell growth and stimulates AKT phosphorylation by inhibiting PTEN transcription. We mapped a GATA2-binding site in the PTEN promoter, whereby GATA2 not only blocks AR-induced PTEN expression by preventing AR nuclear translocation, but also directly represses PTEN transcription independent of AR. Most importantly, for the first time, we have discovered a novel reverse regulation within the traditional PTEN/AKT signaling pathway, whereby AKT induces GATA2 with consequent decreased PTEN transcription, likely germane in tumor invasion and metastases but not initiation.
Collapse
Affiliation(s)
- Yu Wang
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|
37
|
Jha K, Shukla M, Pandey M. Survivin expression and targeting in breast cancer. Surg Oncol 2011; 21:125-31. [PMID: 21334875 DOI: 10.1016/j.suronc.2011.01.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 12/27/2010] [Accepted: 01/08/2011] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Survivin a multifunctional protein that controls cell division, inhibition of apoptosis and promotion of angiogenesis. It is expressed in most human neoplasm, but is absent in normal and differentiated tissues. The purpose of this article is to overview the expression of survivin, effect of its expression in response to treatment, correlation with other markers and newer advancement in targeting survivin. METHODS A detailed search of Medline was carried out using the following search strategy: "((survivin) OR ((apoptosis) AND (inhibitor OR inhibitors))) AND ((breast) AND (neoplasm OR neoplasms OR tumor OR tumor OR cancer OR carcinoma))". Abstract of all articles thus identified were reviewed to identify the relevant studies, full articles of studies thus identified were then obtained and reviewed. All relevant data was extracted and tabulated. RESULTS Survivin expression by Immunohistochemistry was identified in 65.3% (55.2-90.0%) of the breast cancer patients among the identified studies while survivin mRNA by RT-PCR was identified in 93.6% (90-97%). Survivin expression has been reported to be associated with over expression of HER 2, vascular endothelial growth factor (VEGF), urokinase plasminogen activator (uPA)/PAI-1. CONCLUSION Survivin is over expressed in majority of breast cancers. The over expression of survivin is found to correlate with HER 2 and EGFR expression. Survivin expression has been found to confer resistance to chemotherapy and radiation. Targeting survivin in experimental models improves survival. More studies are needed on the role of survivin in multi drug resistance (MDR) in the presence of Pgp/uPA/PAI-1 and the impact of survivin over expression in triple negative breast cancer.
Collapse
Affiliation(s)
- Kumkum Jha
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | | | | |
Collapse
|
38
|
El-Hachem N, Nemer G. Identification of new GATA4-small molecule inhibitors by structure-based virtual screening. Bioorg Med Chem 2011; 19:1734-42. [PMID: 21310620 DOI: 10.1016/j.bmc.2011.01.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 01/11/2011] [Accepted: 01/12/2011] [Indexed: 12/22/2022]
Abstract
Members of the GATA family of transcription factors are zinc finger proteins that were shown to play evolutionary conserved roles in cell differentiation and proliferation in different organisms. We hypothesized that by finding new molecules that inhibit their function to be crucial in future therapeutical interventions for various diseases. By virtual high throughput screening using a version of glide (Schrodinger®) program with both crystal and NMR structure of GATA C-terminal zinc finger, we identified new small molecular weight chemicals with lead-like properties. We used in vitro cell-based assays to show that these molecules selectively and efficiently inhibit GATA4 activity by inhibiting its interaction with the DNA. In addition we showed that these molecules can block the activation of downstream target genes by GATA4. Moreover these compounds can moderately enhanced a mouse model of myoblast differentiation into myotubes. This might be partially due to decreased GATA4/DNA interaction as shown by gel retardation assays. Further investigation is needed to reach selectivity and efficacy. Our study however do show that in silico screening combined with in vitro studies are efficient tools to unravel new molecules that interact with zinc finger proteins such as GATA4.
Collapse
Affiliation(s)
- Nehmé El-Hachem
- Department of Biochemistry, American University of Beirut, Beirut, Lebanon
| | | |
Collapse
|
39
|
Lu J, Murakami M, Verma SC, Cai Q, Haldar S, Kaul R, Wasik MA, Middeldorp J, Robertson ES. Epstein-Barr Virus nuclear antigen 1 (EBNA1) confers resistance to apoptosis in EBV-positive B-lymphoma cells through up-regulation of survivin. Virology 2010; 410:64-75. [PMID: 21093004 DOI: 10.1016/j.virol.2010.10.029] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 08/10/2010] [Accepted: 10/18/2010] [Indexed: 12/30/2022]
Abstract
Resistance to apoptosis is an important component of the overall mechanism which drives the tumorigenic process. EBV is a ubiquitous human gamma-herpesvirus which preferentially establishes latent infection in viral infected B-lymphocytes. EBNA1 is typically expressed in most forms of EBV-positive malignancies and is important for replication of the latent episome in concert with replication of the host cells. Here, we investigate the effects of EBNA1 on survivin up-regulation in EBV-infected human B-lymphoma cells. We present evidence which demonstrates that EBNA1 forms a complex with Sp1 or Sp1-like proteins bound to their cis-element at the survivin promoter. This enhances the activity of the complex and up-regulates survivin. Knockdown of survivin and EBNA1 showed enhanced apoptosis in infected cells and thus supports a role for EBNA1 in suppressing apoptosis in EBV-infected cells. Here, we suggest that EBV encoded EBNA1 can contribute to the oncogenic process by up-regulating the apoptosis suppressor protein, survivin in EBV-associated B-lymphoma cells.
Collapse
Affiliation(s)
- Jie Lu
- Department of Microbiology and Tumor Virology Program, Abramson Comprehensive Cancer Center, School of Medicine, University of Pennsylvania, 202E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|