1
|
Torghabe SY, Alavi P, Rostami S, Davies NM, Kesharwani P, Karav S, Sahebkar A. Modulation of the ubiquitin-proteasome system by curcumin: Therapeutic implications in cancer. Pathol Res Pract 2025; 265:155741. [PMID: 39612810 DOI: 10.1016/j.prp.2024.155741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/07/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
By the ubiquitin-proteasomes, cellular proteins are structurally degraded and turnover. Many essential functions and regulations of cells are regulated and controlled by these proteins. Recent studies indicated that many cancer types have been associated with aberrations in the ubiquitination pathway, which involves three enzymatic steps. Dietary phytochemicals have been identified as having the potential to inhibit carcinogenesis recently. As part of this group of phytochemicals, curcumin can play a crucial role in suppressing carcinogenesis by changing many reactions affected by the ubiquitin-proteasome pathway. Due to its ability to change some biological processes such as NF-κB, inhibit some cyclins, and induce apoptosis, it can be used as a drug in cancer treatment.
Collapse
Affiliation(s)
- Shima Yahoo Torghabe
- Department of Basic Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Parisa Alavi
- Department of Biology, Faculty of Basic Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sara Rostami
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Science and Culture University, Tehran, Iran
| | - Neal M Davies
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Zhang X, Zhou X, Tu Z, Qiang L, Lu Z, Xie Y, Liu CH, Zhang L, Fu Y. Proteomic and ubiquitinome analysis reveal that microgravity affects glucose metabolism of mouse hearts by remodeling non-degradative ubiquitination. PLoS One 2024; 19:e0313519. [PMID: 39541295 PMCID: PMC11563481 DOI: 10.1371/journal.pone.0313519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
Long-term exposure to a microgravity environment leads to structural and functional changes in hearts of astronauts. Although several studies have reported mechanisms of cardiac damage under microgravity conditions, comprehensive research on changes at the protein level in these hearts is still lacking. In this study, proteomic analysis of microgravity-exposed hearts identified 156 differentially expressed proteins, and ubiquitinomic analysis of these hearts identified 169 proteins with differential ubiquitination modifications. Integrated ubiquitinomic and proteomic analysis revealed that differential proteomic changes caused by transcription affect the immune response in microgravity-exposed hearts. Additionally, changes in ubiquitination modifications under microgravity conditions excessively activated certain kinases, such as hexokinase and phosphofructokinase, leading to cardiac metabolic disorders. These findings provide new insights into the mechanisms of cardiac damage under microgravity conditions.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Xuemei Zhou
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Zhiwei Tu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Lihua Qiang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Zhe Lu
- Institute of Microbiology (Chinese Academy of Sciences), CAS Key Laboratory of Pathogenic Microbiology and Immunology, Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yuping Xie
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Cui Hua Liu
- Institute of Microbiology (Chinese Academy of Sciences), CAS Key Laboratory of Pathogenic Microbiology and Immunology, Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Yesheng Fu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| |
Collapse
|
3
|
Wang L, Liu X, Han Y, Tsai HI, Dan Z, Yang P, Xu Z, Shu F, He C, Eriksson JE, Zhu H, Chen H, Cheng F. TRAF6 enhances PD-L1 expression through YAP1-TFCP2 signaling in melanoma. Cancer Lett 2024; 590:216861. [PMID: 38583649 DOI: 10.1016/j.canlet.2024.216861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Immunotherapy represented by programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) monoclonal antibodies has led tumor treatment into a new era. However, the low overall response rate and high incidence of drug resistance largely damage the clinical benefits of existing immune checkpoint therapies. Recent studies correlate the response to PD-1/PD-L1 blockade with PD-L1 expression levels in tumor cells. Hence, identifying molecular targets and pathways controlling PD-L1 protein expression and stability in tumor cells is a major priority. In this study, we performed a Stress and Proteostasis CRISPR interference screening to identify PD-L1 positive modulators. Here, we identified TRAF6 as a critical regulator of PD-L1 in melanoma cells. As a non-conventional E3 ubiquitin ligase, TRAF6 is inclined to catalyze the synthesis and linkage of lysine-63 (K63) ubiquitin which is related to the stabilization of substrate proteins. Our results showed that suppression of TRAF6 expression down-regulates PD-L1 expression on the membrane surface of melanoma cells. We then used in vitro and in vivo assays to investigate the biological function and mechanism of TRAF6 and its downstream YAP1/TFCP2 signaling in melanoma. TRAF6 stabilizes YAP1 by K63 poly-ubiquitination modification, subsequently promoting the formation of YAP1/TFCP2 transcriptional complex and PD-L1 transcription. Inhibition of TRAF6 by Bortezomib enhanced cytolytic activity of CD8+ T cells by reduction of endogenous PD-L1. Notably, Bortezomib enhances anti-tumor immunity to an extent comparable to anti-PD-1 therapies with no obvious toxicity. Our findings reveal the potential of inhibiting TRAF6 to stimulate internal anti-tumor immunological effect for TRAF6-PD-L1 overexpressing cancers.
Collapse
Affiliation(s)
- Linglu Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Xiaoyan Liu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yuhang Han
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Hsiang-I Tsai
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
| | - Zilin Dan
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Peiru Yang
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Zhanxue Xu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Fan Shu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Chao He
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - John E Eriksson
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Haitao Zhu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China.
| | - Hongbo Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
| | - Fang Cheng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
4
|
Singh A, Tiwari S, Singh S. Pirh2 modulates the mitochondrial function and cytochrome c-mediated neuronal death during Alzheimer's disease. Cell Death Dis 2024; 15:331. [PMID: 38740775 PMCID: PMC11091053 DOI: 10.1038/s41419-024-06662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 03/26/2024] [Accepted: 04/09/2024] [Indexed: 05/16/2024]
Abstract
Pirh2 is an E3 ubiquitin ligase known to regulate the DNA damage responses through ubiquitylation of various participating signaling factors. DNA damage is a key pathological contributor to Alzheimer's disease (AD), therefore, the role of Pirh2 was investigated in streptozotocin and oligomer Aβ1-42 induced rodent experimental model of AD. Pirh2 protein abundance increased during AD conditions, and transient silencing of Pirh2 inhibited the disease-specific pathological markers like level of p-Tau, βamyloid, acetylcholinesterase activity, and neuronal death. Biochemically, Pirh2 silencing significantly attenuated the oxidative stress, depleted mitochondrial membrane potential, cytochrome c translocation from mitochondria to cytosol, and depleted mitochondrial complex-I activity, and ATP level. Pirh2 silencing also inhibited the altered level of VDAC1, hsp75, hexokinase1, t-Bid, caspase-9, and altered level of apoptotic proteins (Bcl-2, Bax). MALDI-TOF/TOF, co-immunoprecipitation, and UbcH13-linked ubiquitylation assay confirmed the interaction of Pirh2 with cytochrome c and the role of Pirh2 in ubiquitylation of cytochrome c, along with Pirh2-dependent altered proteasome activity. Additionally, Pirh2 silencing further inhibited the translocation of mitochondrion-specific endonuclease G and apoptosis-inducing factors to the nucleus and DNA damage. In conclusion, findings suggested the significant implication of Pirh2 in disease pathogenesis, particularly through impaired mitochondrial function, including biochemical alterations, translocation of cytochrome c, endonuclease G and apoptosis-inducing factor, DNA damage, and neuronal apoptosis.
Collapse
Affiliation(s)
- Abhishek Singh
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shubhangini Tiwari
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Sarika Singh
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Xu BY, Yu XL, Gao WX, Gao TT, Hu HY, Wu TT, Shen C, Huang XY, Zheng B, Wu YB. RNF187 governs the maintenance of mouse GC-2 cell development by facilitating histone H3 ubiquitination at K57/80. Asian J Androl 2024; 26:272-281. [PMID: 38156805 PMCID: PMC11156453 DOI: 10.4103/aja202368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/19/2023] [Indexed: 01/03/2024] Open
Abstract
RING finger 187 (RNF187), a ubiquitin-ligating (E3) enzyme, plays a crucial role in the proliferation of cancer cells. However, it remains unclear whether RNF187 exhibits comparable functionality in the development of germline cells. To investigate the potential involvement of RNF187 in germ cell development, we conducted interference and overexpression assays using GC-2 cells, a mouse spermatocyte-derived cell line. Our findings reveal that the interaction between RNF187 and histone H3 increases the viability, proliferation, and migratory capacity of GC-2 cells. Moreover, we provide evidence demonstrating that RNF187 interacts with H3 and mediates the ubiquitination of H3 at lysine 57 (K57) or lysine 80 (K80), directly or indirectly resulting in increased cellular transcription. This is a study to report the role of RNF187 in maintaining the development of GC-2 cells by mediating histone H3 ubiquitination, thus highlighting the involvement of the K57 and K80 residues of H3 in the epistatic regulation of gene transcription. These discoveries provide a new theoretical foundation for further comprehensive investigations into the function of RNF187 in the reproductive system.
Collapse
Affiliation(s)
- Bing-Ya Xu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Xiang-Ling Yu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Wen-Xin Gao
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Ting-Ting Gao
- Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Hao-Yue Hu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Tian-Tian Wu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Cong Shen
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215002, China
| | - Xiao-Yan Huang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Bo Zheng
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215002, China
| | - Yi-Bo Wu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Su C, Zhang H, Mo J, Liao Z, Zhang B, Zhu P. SP1-activated USP27X-AS1 promotes hepatocellular carcinoma progression via USP7-mediated AKT stabilisation. Clin Transl Med 2024; 14:e1563. [PMID: 38279869 PMCID: PMC10819096 DOI: 10.1002/ctm2.1563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/11/2023] [Accepted: 01/14/2024] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) continues to pose a significant threat to patient survival. Emerging evidence underscores the pivotal involvement of long non-coding RNAs (lncRNAs) in the cancer process. Nevertheless, our understanding of the roles and processes of lncRNAs in HCC remains limited. METHODS The expression level of USP27X-AS1 was assessed in an HCC patient cohort through a combination of bioinformatics analysis and qRT-PCR. Subsequent biological experiments were conducted to delve into the functional aspects of USP27X-AS1. Additional molecular biology techniques, including RNA pulldown and RNA immunoprecipitation (RIP), were employed to elucidate the potential mechanisms involving USP27X-AS1 in HCC. Finally, CUT-RUN assay and other investigations were carried out to determine the factors contributing to the heightened expression of USP27X-AS1 in HCC. RESULTS High expression of the novel oncogene USP27X-AS1 predicted poor prognosis in HCC patients. Further investigation confirmed that USP27X-AS1 promoted the proliferation and metastasis of HCC by enabling USP7 to interact with AKT, which reduced level of AKT poly-ubiquitylation and enhanced AKT protein stability, which improves protein stabilisation of AKT and promotes the progression of HCC. Moreover, we also revealed that SP1 binds to USP27X-AS1 promoter to activate its transcription. CONCLUSIONS Novel oncogenic lncRNA USP27X-AS1 promoted HCC progression via recruiting USP7 to deubiquitinate AKT. SP1 transcriptionally activated USP27X-AS1 expression. These findings shed light on HCC and pointed to USP27X-AS1 as a potential predictive biomarker and treatment target for the malignancy.
Collapse
Affiliation(s)
- Chen Su
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiPeople's Republic of China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanHubeiPeople's Republic of China
| | - Haoquan Zhang
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiPeople's Republic of China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanHubeiPeople's Republic of China
| | - Jie Mo
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiPeople's Republic of China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanHubeiPeople's Republic of China
| | - Zhibin Liao
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiPeople's Republic of China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanHubeiPeople's Republic of China
| | - Bixiang Zhang
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiPeople's Republic of China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanHubeiPeople's Republic of China
- Key Laboratory of Organ TransplantationMinistry of EducationWuhanHubeiPeople's Republic of China
- Key Laboratory of Organ TransplantationNational Health CommissionWuhanHubeiPeople's Republic of China
- Key Laboratory of Organ TransplantationChinese Academy of Medical SciencesWuhanHubeiPeople's Republic of China
| | - Peng Zhu
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiPeople's Republic of China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanHubeiPeople's Republic of China
- Key Laboratory of Organ TransplantationMinistry of EducationWuhanHubeiPeople's Republic of China
- Key Laboratory of Organ TransplantationNational Health CommissionWuhanHubeiPeople's Republic of China
- Key Laboratory of Organ TransplantationChinese Academy of Medical SciencesWuhanHubeiPeople's Republic of China
| |
Collapse
|
7
|
Guo Y, Tian J, Guo Y, Wang C, Chen C, Cai S, Yu W, Sun B, Yan J, Li Z, Fan J, Qi Q, Zhang D, Jin W, Hua Z, Chen G. Oncogenic KRAS effector USP13 promotes metastasis in non-small cell lung cancer through deubiquitinating β-catenin. Cell Rep 2023; 42:113511. [PMID: 38043062 DOI: 10.1016/j.celrep.2023.113511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/19/2023] [Accepted: 11/13/2023] [Indexed: 12/05/2023] Open
Abstract
KRAS mutations are frequently detected in non-small cell lung cancers (NSCLCs). Although covalent KRASG12C inhibitors have been developed to treat KRASG12C-mutant cancers, effective treatments are still lacking for other KRAS-mutant NSCLCs. Thus, identifying a KRAS effector that confers poor prognosis would provide an alternative strategy for the treatment of KRAS-driven cancers. Here, we show that KRAS drives expression of deubiquitinase USP13 through Ras-responsive element-binding protein 1 (RREB1). Elevated USP13 promotes KRAS-mutant NSCLC metastasis, which is associated with poor prognosis in NSCLC patients. Mechanistically, USP13 interacts with and removes the K63-linked polyubiquitination of β-catenin at lysine 508, which enhances the binding between β-catenin and transcription factor TCF4. Importantly, we identify 2-methoxyestradiol as an effective inhibitor for USP13 from a natural compound library, and it could potently suppress the metastasis of KRAS-mutant NSCLC cells in vitro and in vivo. These findings identify USP13 as a therapeutic target for metastatic NSCLC with KRAS mutations.
Collapse
Affiliation(s)
- Yanguan Guo
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China; Department of General Surgery and Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, P.R. China
| | - Jiaxin Tian
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Yongjian Guo
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Cong Wang
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Congcong Chen
- Department of General Surgery and Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, P.R. China
| | - Songwang Cai
- Department of General Surgery and Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, P.R. China
| | - Wenliang Yu
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Binghe Sun
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Jin Yan
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Zhonghua Li
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Jun Fan
- Department of Medical Biochemistry, Molecular Biology and Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, P.R. China
| | - Qi Qi
- Department of Medical Biochemistry, Molecular Biology and Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, P.R. China
| | - Dongmei Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, P.R. China
| | - Weilin Jin
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou 730000, P.R. China
| | - Zichun Hua
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China; School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China.
| | - Guo Chen
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China; Department of Medical Biochemistry, Molecular Biology and Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, P.R. China.
| |
Collapse
|
8
|
Le Clorennec C, Subramonian D, Huo Y, Zage PE. UBE4B interacts with the ITCH E3 ubiquitin ligase to induce Ku70 and c-FLIPL polyubiquitination and enhanced neuroblastoma apoptosis. Cell Death Dis 2023; 14:739. [PMID: 37957138 PMCID: PMC10643674 DOI: 10.1038/s41419-023-06252-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 10/22/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023]
Abstract
Expression of the UBE4B ubiquitin ligase is strongly associated with neuroblastoma patient outcomes, but the functional roles of UBE4B in neuroblastoma pathogenesis are not known. We evaluated interactions of UBE4B with the E3 ubiquitin ligase ITCH/AIP4 and the effects of UBE4B expression on Ku70 and c-FLIPL ubiquitination and proteasomal degradation by co-immunoprecipitation and Western blots. We also evaluated the role of UBE4B in apoptosis induced by histone deacetylase (HDAC) inhibition using Western blots. UBE4B binding to ITCH was mediated by WW domains in the ITCH protein. ITCH activation led to ITCH-UBE4B complex formation and recruitment of Ku70 and c-FLIPL via ITCH WW domains, followed by Ku70 and c-FLIPL Lys48/Lys63 branched polyubiquitination and proteasomal degradation. HDAC inhibition induced Ku70 acetylation, leading to release of c-FLIPL and Bax from Ku70, increased Ku70 and c-FLIPL Lys48/Lys63 branched polyubiquitination via the ITCH-UBE4B complex, and induction of apoptosis. UBE4B depletion led to reduced polyubiquitination and increased levels of Ku70 and c-FLIPL and to reduced apoptosis induced by HDAC inhibition via stabilization of c-FLIPL and Ku70 and inhibition of caspase 8 activation. Our results have identified novel interactions and novel targets for UBE4B ubiquitin ligase activity and a direct role for the ITCH-UBE4B complex in responses of neuroblastoma cells to HDAC inhibition, suggesting that the ITCH-UBE4B complex plays a critical role in responses of neuroblastoma to therapy and identifying a potential mechanism underlying the association of UBE4B expression with neuroblastoma patient outcomes.
Collapse
Affiliation(s)
- Christophe Le Clorennec
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA, USA
| | - Divya Subramonian
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA, USA
| | - Yuchen Huo
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA, USA
| | - Peter E Zage
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA, USA.
- Peckham Center for Cancer and Blood Disorders, Rady Children's Hospital, San Diego, CA, USA.
| |
Collapse
|
9
|
Li K, Ma L, Lu Z, Yan L, Chen W, Wang B, Xu H, Asemi Z. Apoptosis and heart failure: The role of non-coding RNAs and exosomal non-coding RNAs. Pathol Res Pract 2023; 248:154669. [PMID: 37422971 DOI: 10.1016/j.prp.2023.154669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023]
Abstract
Heart failure is a condition that affects the cardio vascular system and occurs if the heart cannot adequately pump the oxygen and blood to the body. Myocardial infarction, reperfusion injury, and this disease is the only a few examples of the numerous cardiovascular illnesses that are impacted by the closely controlled cell deletion process known as apoptosis. Attention has been paid to the creation of alternative diagnostic and treatment modalities for the condition. Recent evidences have shown that some non-coding RNAs (ncRNAs) influence the stability of proteins, control of transcription factors, and HF apoptosis through a variety of methods. Exosomes make a significant paracrine contribution to the regulation of illnesses as well as to the communication between nearby and distant organs. However, it has not yet been determined whether exosomes regulate the cardiomyocyte-tumor cell interaction in ischemia HF to limit the vulnerability of malignancy to ferroptosis. Here, we list the numerous ncRNAs in HF that are connected to apoptosis. In addition, we emphasize the significance of exosomal ncRNAs in the HF.
Collapse
Affiliation(s)
- Ketao Li
- Department of cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310022, China
| | - Liping Ma
- Department of cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310022, China
| | - Zhiwei Lu
- Hangzhou Heyunjia Hospital, Hangzhou, Zhe'jiang 310000, China
| | - Laixing Yan
- Department of cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310022, China
| | - Wan Chen
- Department of Cardiology, Jiulongpo First People's Hospital, Chongqing 400051, China
| | - Bing Wang
- Department of cardiology, Zouping People's Hospital, Zouping, Shandong 256299, China
| | - Huiju Xu
- Department of cardiology, Hangzhou Mingzhou Hospital, Hangzhou, Zhe'jiang 311215, China.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
10
|
Park HB, Min Y, Hwang S, Baek KH. Suppression of USP7 negatively regulates the stability of ETS proto-oncogene 2 protein. Biomed Pharmacother 2023; 162:114700. [PMID: 37062218 DOI: 10.1016/j.biopha.2023.114700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023] Open
Abstract
Ubiquitin-specific protease 7 (USP7) is one of the deubiquitinating enzymes (DUBs) that remove mono or polyubiquitin chains from target proteins. Depending on cancer types, USP7 has two opposing roles: oncogene or tumor suppressor. Moreover, it also known that USP7 functions in the cell cycle, apoptosis, DNA repair, chromatin remodeling, and epigenetic regulation through deubiquitination of several substrates including p53, mouse double minute 2 homolog (MDM2), Myc, and phosphatase and tensin homolog (PTEN). The [P/A/E]-X-X-S and K-X-X-X-K motifs of target proteins are necessary elements for the binding of USP7. In a previous study, we identified a novel substrate of USP7 through bioinformatics analysis using the binding motifs for USP7, and suggested that it can be an effective tool for finding new substrates for USP7. In the current study, gene ontology (GO) analysis revealed that putative target proteins having the [P/A/E]-X-X-S and K-X-X-K motifs are involved in transcriptional regulation. Moreover, through protein-protein interaction (PPI) analysis, we discovered that USP7 binds to the AVMS motif of ETS proto-oncogene 2 (ETS2) and deubiquitinates M1-, K11-, K27-, and K29-linked polyubiquitination of ETS2. Furthermore, we determined that suppression of USP7 decreases the protein stability of ETS2 and inhibits the transcriptional activity of ETS2 by disrupting the binding between the GGAA/T core motif and ETS2. Therefore, we propose that USP7 can be a novel target in cancers related to the dysregulation of ETS2.
Collapse
Affiliation(s)
- Hong-Beom Park
- Department of Biomedical Science, CHA University, Gyeonggi-Do 13488, Republic of Korea
| | - Yosuk Min
- Department of Biomedical Science, CHA University, Gyeonggi-Do 13488, Republic of Korea
| | - Sohyun Hwang
- Department of Biomedical Science, CHA University, Gyeonggi-Do 13488, Republic of Korea; Department of Pathology, CHA Bundang Medical Center, CHA University School of Medicine, Gyeonggi-Do 13496, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, Gyeonggi-Do 13488, Republic of Korea.
| |
Collapse
|
11
|
OTU7B Modulates the Mosquito Immune Response to Beauveria bassiana Infection via Deubiquitination of the Toll Adaptor TRAF4. Microbiol Spectr 2023; 11:e0312322. [PMID: 36537797 PMCID: PMC9927300 DOI: 10.1128/spectrum.03123-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Aedes aegypti mosquito transmits devastating flaviviruses, such as Zika, dengue, and yellow fever viruses. For more effective control of the vector, the pathogenicity of Beauveria bassiana, a fungus commonly used for biological control of pest insects, may be enhanced based on in-depth knowledge of molecular interactions between the pathogen and its host. Here, we identified a mechanism employed by B. bassiana, which efficiently blocks the Ae. aegypti antifungal immune response by a protease that contains an ovarian tumor (OTU) domain. RNA-sequencing analysis showed that the depletion of OTU7B significantly upregulates the mRNA level of immunity-related genes after a challenge of the fungus. CRISPR-Cas9 knockout of OTU7B conferred a higher resistance of mosquitoes to the fungus B. bassiana. OTU7B suppressed activation of the immune response by preventing nuclear translocation of the NF-κB transcription factor Rel1, a mosquito orthologue of Drosophila Dorsal. Further studies identified tumor necrosis factor receptor-associated factor 4 (TRAF4) as an interacting protein of OTU7B. TRAF4-deficient mosquitoes were more sensitive to fungal infection, indicating TRAF4 to be the adaptor protein that activates the Toll pathway. TRAF4 is K63-link polyubiquitinated at K338 residue upon immune challenge. However, OTU7B inhibited the immune signaling by enzymatically removing the polyubiquitin chains of mosquito TRAF4. Thus, this study has uncovered a novel mechanism of fungal action against the host innate immunity, providing a platform for further improvement of fungal pathogen effectiveness. IMPORTANCE Insects use innate immunity to defend against microbial infection. The Toll pathway is a major immune signaling pathway that is associated with the antifungal immune response in mosquitoes. Our study identified a fungal-induced deubiquitinase, OTU7B, which, when knocked out, promotes the translocation of the NF-κB factor Rel1 into the nucleus and confers enhanced resistance to fungal infection. We further found the counterpart of OTU7B, TRAF4, which is a component of the Toll pathway and acts as an adaptor protein. OTU7B enzymatically removes K63-linked polyubiquitin chains from TRAF4. The immune response is suppressed, and mosquitoes become much more sensitive to the Beauveria bassiana infection. Our findings reveal a novel mechanism of fungal action against the host innate immunity.
Collapse
|
12
|
Song J, Yuan X, Piao L, Wang J, Wang P, Zhuang M, Liu J, Liu Z. Cellular functions and molecular mechanisms of ubiquitination in osteosarcoma. Front Oncol 2022; 12:1072701. [DOI: 10.3389/fonc.2022.1072701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
Although some advances have been made in the treatment of osteosarcoma in recent years, surgical resection remains the mainstream treatment. Initial and early diagnosis of osteosarcoma could be very difficult to achieve due to the insufficient sensitivity for the means of examination. The distal metastasis of osteosarcoma also predicts the poor prognosis of osteosarcoma. In order to solve this series of problems, people begin to discover a new method of diagnosing and treating osteosarcoma. Ubiquitination, as an emerging posttranslational modification, has been shown to be closely related to osteosarcoma in studies over the past decades. In general, this review describes the cellular functions and molecular mechanisms of ubiquitination during the development of osteosarcoma.
Collapse
|
13
|
Tsai PJ, Lai YH, Manne RK, Tsai YS, Sarbassov D, Lin HK. Akt: a key transducer in cancer. J Biomed Sci 2022; 29:76. [PMID: 36180910 PMCID: PMC9526305 DOI: 10.1186/s12929-022-00860-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/21/2022] [Indexed: 01/27/2023] Open
Abstract
Growth factor signaling plays a pivotal role in diverse biological functions, such as cell growth, apoptosis, senescence, and migration and its deregulation has been linked to various human diseases. Akt kinase is a central player transmitting extracellular clues to various cellular compartments, in turn executing these biological processes. Since the discovery of Akt three decades ago, the tremendous progress towards identifying its upstream regulators and downstream effectors and its roles in cancer has been made, offering novel paradigms and therapeutic strategies for targeting human diseases and cancers with deregulated Akt activation. Unraveling the molecular mechanisms for Akt signaling networks paves the way for developing selective inhibitors targeting Akt and its signaling regulation for the management of human diseases including cancer.
Collapse
Affiliation(s)
- Pei-Jane Tsai
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Hsin Lai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Rajesh Kumar Manne
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Yau-Sheng Tsai
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Clinical Medicine Research Center, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Dos Sarbassov
- Biology Department, School of Sciences and Humanities, and National Laboratory Astana, Nazarbayev University, Nur-Sultan City, 010000, Kazakhstan.
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
14
|
Classification and Expression Profile of the U-Box E3 Ubiquitin Ligase Enzyme Gene Family in Maize (Zea mays L.). PLANTS 2022; 11:plants11192459. [PMID: 36235327 PMCID: PMC9573083 DOI: 10.3390/plants11192459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022]
Abstract
The U-box E3 (PUB) family genes encode the E3 ubiquitin ligase enzyme, which determines substrate specific recognition during protein ubiquitination. They are widespread in plants and are critical for plant growth, development, and response to external stresses. However, there are few studies on the functional characteristic of PUB gene family in the important staple crop, maize (Zea mays L.). In this study, the PUB gene in maize was aimed to identify and classify through whole-genome screening. Phylogenetic tree, gene structure, conserved motif, chromosome location, gene duplication (GD), synteny, and cis-acting regulatory element of PUB member were analyzed. The expression profiles of ZmPUB gene family in maize during development and under abiotic stress and hormones treatment were analyzed by the RNA-seq data. A total of 79 PUB genes were identified in maize genome, and they were stratified into seven categories. There were 25 pairs of segmental duplications (SD) and 1 pair of tandem duplication (TD) identified in the maize PUB gene family. A close relationship was observed between the monocot plant maize and rice in PUB gene family. There were 94 kinds of cis-acting elements identified in the maize PUB gene family, which included 46 biotic- and abiotic-responsive elements, 19 hormone-responsive elements, 13 metabolic and growth-related elements. The expression profiles of maize PUB gene family showed characteristics of tissue specificity and response to abiotic stress and hormones treatment. These results provided an extensive overview of the maize PUB gene family.
Collapse
|
15
|
Park HB, Baek KH. E3 ligases and deubiquitinating enzymes regulating the MAPK signaling pathway in cancers. Biochim Biophys Acta Rev Cancer 2022; 1877:188736. [DOI: 10.1016/j.bbcan.2022.188736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/30/2022] [Accepted: 05/11/2022] [Indexed: 12/13/2022]
|
16
|
Bhattacharya K, Bordoloi R, Chanu NR, Kalita R, Sahariah BJ, Bhattacharjee A. In silico discovery of 3 novel quercetin derivatives against papain-like protease, spike protein, and 3C-like protease of SARS-CoV-2. J Genet Eng Biotechnol 2022; 20:43. [PMID: 35262828 PMCID: PMC8905286 DOI: 10.1186/s43141-022-00314-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/04/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND The derivatives of quercetin is known for their immune-modulating antiviral, anti-blood clotting, antioxidant, and also for its anti-inflammatory efficacy. The current study was therefore conducted to examine the noted novel derivatives of quercetin present in plant sources as an immune modulator and as an antiviral molecule in the COVID-19 disease and also to study their affinity of binding with potential three targets reported for coronavirus, i.e., papain-like protease, spike protein receptor-binding domain, and 3C-like protease. Based on the high-positive drug-likeness score, the reported derivatives of quercetin obtained from an open-source database were further filtered. Compounds with positive and high drug-likeness scores were further predicted for their potential targets using DIGEP-Pred software, and STRING was used to evaluate the interaction between modulated proteins. The associated pathways were recorded based on the Kyoto Encyclopedia of Genes and Genomes pathway database. Docking was performed finally using PyRx having AutoDock Vina to identify the efficacy of binding between quercetin derivatives with papain-like protease, spike protein receptor-binding domain, and 3C-like protease. The ligand that scored minimum binding energy was chosen to visualize the interaction between protein and ligand. Normal mode analysis in internal coordinates was done with normal mode analysis to evaluate the physical movement and stability of the best protein-ligand complexes using the iMODS server. RESULTS Forty bioactive compounds with the highest positive drug-likeness scores were identified. These 40 bioactives were responsible for regulating different pathways associated with antiviral activity and modulation of immunity. Finally, three lead molecules were identified based on the molecular docking and dynamics simulation studies with the highest anti-COVID-19 and immunomodulatory potentials. Standard antiviral drug remdesivir on docking showed a binding affinity of - 5.8 kcal/mol with PLpro, - 6.4 kcal/mol with 3CLpro, and - 8.6 kcal/mol with spike protein receptor-binding domain of SARS-CoV-2, the discovered hit molecules quercetin 3-O-arabinoside 7-O-rhamnoside showed binding affinity of - 8.2 kcal/mol with PLpro, whereas quercetin 3-[rhamnosyl-(1- > 2)-alpha-L-arabinopyranoside] and quercetin-3-neohesperidoside-7-rhamnoside was predicted to have a binding affinity of - 8.5 kcal/mol and - 8.8 kcal/mol with spike protein receptor-binding domain and 3CLpro respectively CONCLUSION: Docking study revealed quercetin 3-O-arabinoside 7-O-rhamnoside to possess the highest binding affinity with papain-like protease, quercetin 3-[rhamnosyl-(1- > 2)-alpha-L-arabinopyranoside] with spike protein receptor-binding domain, and quercetin-3-neohesperidoside-7-rhamnoside with 3C-like protease and all the protein-ligand complexes were found to be stable after performing the normal mode analysis of the complexes in internal coordinates.
Collapse
Affiliation(s)
- Kunal Bhattacharya
- NETES Institute of Pharmaceutical Science, Mirza, Guwahati, Assam, 781125, India.
| | - Ripunjoy Bordoloi
- NETES Institute of Pharmaceutical Science, Mirza, Guwahati, Assam, 781125, India
- Assam Science and Technology University, Guwahati, Assam, India
| | | | - Ramen Kalita
- NETES Institute of Pharmaceutical Science, Mirza, Guwahati, Assam, 781125, India
| | | | | |
Collapse
|
17
|
Wu HT, Lin YT, Chew SH, Wu KJ. Organ defects of the Usp7 mutant mouse strain indicate the essential role of K63-polyubiquitinated Usp7 in organ formation. Biomed J 2022; 46:122-133. [PMID: 35183794 PMCID: PMC10104958 DOI: 10.1016/j.bj.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/12/2022] [Accepted: 02/09/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND K63-linked polyubiquitination of proteins have nonproteolytic functions and regulate the activity of many signal transduction pathways. USP7, a HIF1α deubiquitinase, undergoes K63-linked polyubiquitination under hypoxia. K63-polyubiquitinated USP7 serves as a scaffold to anchor HIF1α, CREBBP, the mediator complex, and the super elongation complex to enhance HIF1α-induced gene transcription. However, the physiological role of K63-polyubiquitinated USP7 remains unknown. METHODS Using a Usp7K444R point mutation knock-in mouse strain, we performed immunohistochemistry and standard molecular biological methods to examine the organ defects of liver and kidney in this knock-in mouse strain. Mechanistic studies were performed by using deubiquitination, immunoprecipitation, and quantitative immunoprecipitations (qChIP) assays. RESULTS We observed multiple organ defects, including decreased liver and muscle weight, decreased tibia/fibula length, liver glycogen storage defect, and polycystic kidneys. The underlying mechanisms include the regulation of protein stability and/or modulation of transcriptional activation of several key factors, leading to decreased protein levels of Prr5l, Hnf4α, Cebpα, and Hnf1β. Repression of these crucial factors leads to the organ defects described above. CONCLUSIONS K63-polyubiquitinated Usp7 plays an essential role in the development of multiple organs and illustrates the importance of the process of K63-linked polyubiquitination in regulating critical protein functions.
Collapse
Affiliation(s)
- Han-Tsang Wu
- Department of Cell and Tissue Engineering, Changhua Christian Hospital, Changhua, Taiwan
| | - Yueh-Te Lin
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Shan Hwu Chew
- Cancer Research Malaysia, Outpatient Centre, Sime Darby Medical Centre, Subang Jaya, Selangor, Malaysia
| | - Kou-Juey Wu
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan; Inst. of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
18
|
Park JS, Ma H, Roh YS. Ubiquitin pathways regulate the pathogenesis of chronic liver disease. Biochem Pharmacol 2021; 193:114764. [PMID: 34529948 DOI: 10.1016/j.bcp.2021.114764] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
Chronic liver disease (CLD) is considered the leading cause of global mortality. In westernized countries, increased consumption of alcohol and overeating foods with high fat/ high glucose promote progression of CLD such as alcoholic liver disease (ALD) and non-alcoholic liver disease (NAFLD). Accumulating evidence and research suggest that ubiquitin, a 75 amino acid protein, plays crucial role in the pathogenesis of CLD through dynamic post-translational modifications (PTMs) exerting diverse cellular outcomes such as protein degradation through ubiquitin-proteasome system (UPS) and autophagy, and regulation of signal transduction. In this review, we present the function of ubiquitination and latest findings on diverse mechanism of PTMs, UPS and autophagy which significantly contribute to the pathogenesis of alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), cirrhosis, and HCC. Despite its high prevalence, morbidity, and mortality, there are only few FDA approved drugs that could be administered to CLD patients. The goal of this review is to present a variety of pathways and therapeutic targets involving ubiquitination in the pathogenesis of CLD. Further, this review summarizes collective views of pharmaceutical inhibition or activation of recent drugs targeting UPS and autophagy system to highlight potential targets and new approaches to treat CLD.
Collapse
Affiliation(s)
- Jeong-Su Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, South Korea
| | - Hwan Ma
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, South Korea
| | - Yoon-Seok Roh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, South Korea.
| |
Collapse
|
19
|
Taillandier D. [Metabolic pathways controlled by E3 ligases: an opportunity for therapeutic targeting]. Biol Aujourdhui 2021; 215:45-57. [PMID: 34397374 DOI: 10.1051/jbio/2021006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Indexed: 11/14/2022]
Abstract
Since its discovery, the Ubiquitin Proteasome System (UPS) has been recognized for its major role in controlling most of the cell's metabolic pathways. In addition to its essential role in the degradation of proteins, it is also involved in the addressing, signaling or repair of DNA, which makes it a key player in cellular homeostasis. Although other control systems exist in the cell, the UPS is often referred to as the conductor. In view of its importance, any dysregulation of the UPS leads to more or less severe disorders for the cell and therefore the body, which accounts for UPS implication in many pathologies (cancer, Alzheimer's disease, Huntington's disease, etc.). UPS is made up of more than 1000 different proteins, the combinations of which allow the fine targeting of virtually all proteins in the body. UPS uses an enzymatic cascade (E1, 2 members; E2 > 35; E3 > 800) which allows the transfer of ubiquitin, a small protein of 8.5 kDa onto the protein to be targeted either for its degradation or to modify its activity. This ubiquitinylation signal is reversible and many deubiquitinylases (DUB, ∼ 80 isoforms) also have an important role. E3 enzymes are the most numerous and their function is to recognize the target protein, which makes them important players in the specific action of UPS. The very nature of E3 and the complexity of their interactions with different partners offer a very broad field of investigation and therefore significant potential for the development of therapeutic approaches. Without being exhaustive, this review illustrates the different strategies that have already been implemented to fight against different pathologies (excluding bacterial or viral infections).
Collapse
Affiliation(s)
- Daniel Taillandier
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, 63000 Clermont-Ferrand, France
| |
Collapse
|
20
|
Dang F, Nie L, Wei W. Ubiquitin signaling in cell cycle control and tumorigenesis. Cell Death Differ 2020; 28:427-438. [PMID: 33130827 PMCID: PMC7862229 DOI: 10.1038/s41418-020-00648-0] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Cell cycle progression is a tightly regulated process by which DNA replicates and cell reproduces. The major driving force underlying cell cycle progression is the sequential activation of cyclin-dependent kinases (CDKs), which is achieved in part by the ubiquitin-mediated proteolysis of their cyclin partners and kinase inhibitors (CKIs). In eukaryotic cells, two families of E3 ubiquitin ligases, anaphase-promoting complex/cyclosome and Skp1-Cul1-F-box protein complex, are responsible for ubiquitination and proteasomal degradation of many of these CDK regulators, ensuring cell cycle progresses in a timely and precisely regulated manner. In the past couple of decades, accumulating evidence have demonstrated that the dysregulated cell cycle transition caused by inefficient proteolytic control leads to uncontrolled cell proliferation and finally results in tumorigenesis. Based upon this notion, targeting the E3 ubiquitin ligases involved in cell cycle regulation is expected to provide novel therapeutic strategies for cancer treatment. Thus, a better understanding of the diversity and complexity of ubiquitin signaling in cell cycle regulation will shed new light on the precise control of the cell cycle progression and guide anticancer drug development. ![]()
Collapse
Affiliation(s)
- Fabin Dang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Li Nie
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
21
|
Musaus M, Navabpour S, Jarome TJ. The diversity of linkage-specific polyubiquitin chains and their role in synaptic plasticity and memory formation. Neurobiol Learn Mem 2020; 174:107286. [PMID: 32745599 DOI: 10.1016/j.nlm.2020.107286] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/15/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022]
Abstract
Over the last 20 years, a number of studies have provided strong support for protein degradation mediated by the ubiquitin-proteasome system in synaptic plasticity and memory formation. In this system, target substrates become covalently modified by the small protein ubiquitin through a series of enzymatic reactions involving hundreds of different ligases. While some substrates will acquire only a single ubiquitin, most will be marked by multiple ubiquitin modifications, which link together at specific lysine sites or the N-terminal methionine on the previous ubiquitin to form a polyubiquitin chain. There are at least eight known linkage-specific polyubiquitin chains a target protein can acquire, many of which are independent of the proteasome, and these chains can be homogenous, mixed, or branched in nature, all of which result in different functional outcomes and fates for the target substrate. However, as the focus has remained on protein degradation, much remains unknown about the role of these diverse ubiquitin chains in the brain, particularly during activity- and learning-dependent synaptic plasticity. Here, we review the different types and functions of ubiquitin chains and summarize evidence suggesting a role for these diverse ubiquitin modifications in synaptic plasticity and memory formation. We conclude by discussing how technological limitations have limited our ability to identify and elucidate the role of different ubiquitin chains in the brain and speculate on the future directions and implications of understanding linkage-specific ubiquitin modifications in activity- and learning-dependent synaptic plasticity.
Collapse
Affiliation(s)
- Madeline Musaus
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Shaghayegh Navabpour
- Fralin Biomedical Research Institute, Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
| | - Timothy J Jarome
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Fralin Biomedical Research Institute, Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA; Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
22
|
Sharma B, Taganna J. Genome-wide analysis of the U-box E3 ubiquitin ligase enzyme gene family in tomato. Sci Rep 2020; 10:9581. [PMID: 32533036 PMCID: PMC7293263 DOI: 10.1038/s41598-020-66553-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022] Open
Abstract
E3 ubiquitin ligases are a central modifier of plant signaling pathways that act through targeting proteins to the degradation pathway. U-box E3 ubiquitin ligases are a distinct class of E3 ligases that utilize intramolecular interactions for its scaffold stabilization. U-box E3 ubiquitin ligases are prevalent in plants in comparison to animals. However, the evolutionary aspects, genetic organizations, and functional fate of the U-box E3 gene family in plant development, especially in tomato is not well understood. In the present study, we have performed in-silico genome-wide analysis of the U-box E3 ubiquitin ligase gene family in Solanum lycopersicum. We have identified 62 U-box genes with U-box/Ub Fusion Degradation 2 (UFD2) domain. The chromosomal localization, phylogenetic analysis, gene structure, motifs, gene duplication, syntenic regions, promoter, physicochemical properties, and ontology were investigated. The U-box gene family showed significant conservation of the U-box domain throughout the gene family. Duplicated genes discerned noticeable functional transitions among duplicated genes. The gene expression profiles of U-box E3 family members show involvement in abiotic and biotic stress signaling as well as hormonal pathways. We found remarkable participation of the U-box gene family in the vegetative and reproductive tissue development. It is predicted to be actively regulating flowering time and endosperm formation. Our study provides a comprehensive picture of distribution, structural features, promoter elements, evolutionary relationship, and gene expression of the U-box gene family in the tomato. We predict the crucial participation of the U-box gene family in tomato plant development and stress responses.
Collapse
Affiliation(s)
- Bhaskar Sharma
- TERI School of Advanced Studies, 10 Institutional Area, Vasant Kunj, New Delhi, Delhi, 110070, India.
- School of Life and Environmental Sciences, Faculty of Science, Engineering, and Built Environment, Deakin University, Geelong, VIC-3220, Australia.
| | - Joemar Taganna
- SciBiz Informatics, 2/F Unit 3 CFI Building, Maharlika Highway, Brgy. Guindapunan, Palo, Leyte, 6501, Philippines
| |
Collapse
|
23
|
Asmamaw MD, Liu Y, Zheng YC, Shi XJ, Liu HM. Skp2 in the ubiquitin-proteasome system: A comprehensive review. Med Res Rev 2020; 40:1920-1949. [PMID: 32391596 DOI: 10.1002/med.21675] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/26/2020] [Accepted: 04/27/2020] [Indexed: 12/19/2022]
Abstract
The ubiquitin-proteasome system (UPS) is a complex process that regulates protein stability and activity by the sequential actions of E1, E2 and E3 enzymes to influence diverse aspects of eukaryotic cells. However, due to the diversity of proteins in cells, substrate selection is a highly critical part of the process. As a key player in UPS, E3 ubiquitin ligases recruit substrates for ubiquitination specifically. Among them, RING E3 ubiquitin ligases which are the most abundant E3 ubiquitin ligases contribute to diverse cellular processes. The multisubunit cullin-RING ligases (CRLs) are the largest family of RING E3 ubiquitin ligases with tremendous plasticity in substrate specificity and regulate a vast array of cellular functions. The F-box protein Skp2 is a component of CRL1 (the prototype of CRLs) which is expressed in many tissues and participates in multiple cellular functions such as cell proliferation, metabolism, and tumorigenesis by contributing to the ubiquitination and subsequent degradation of several specific tumor suppressors. Most importantly, Skp2 plays a pivotal role in a plethora of cancer-associated signaling pathways. It enhances cell growth, accelerates cell cycle progression, promotes migration and invasion, and inhibits cell apoptosis among others. Hence, targeting Skp2 may represent a novel and attractive strategy for the treatment of different human cancers overexpressing this oncogene. In this review article, we summarized the known roles of Skp2 both in health and disease states in relation to the UPS.
Collapse
Affiliation(s)
- Moges Dessale Asmamaw
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou, Henan, China
| | - Ying Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou, Henan, China
| | - Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou, Henan, China
| | - Xiao-Jing Shi
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou, Henan, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou, Henan, China
| |
Collapse
|
24
|
Li P, Huang P, Li X, Yin D, Ma Z, Wang H, Song H. Tankyrase Mediates K63-Linked Ubiquitination of JNK to Confer Stress Tolerance and Influence Lifespan in Drosophila. Cell Rep 2019; 25:437-448. [PMID: 30304683 DOI: 10.1016/j.celrep.2018.09.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 07/18/2018] [Accepted: 09/12/2018] [Indexed: 01/25/2023] Open
Abstract
Tankyrase (Tnks) transfers poly(ADP-ribose) on substrates. Whereas studies have highlighted the pivotal roles of Tnks in cancer, cherubism, systemic sclerosis, and viral infection, the requirement for Tnks under physiological contexts remains unclear. Here, we report that the loss of Tnks or its muscle-specific knockdown impairs lifespan, stress tolerance, and energy homeostasis in adult Drosophila. We find that Tnks is a positive regulator in the JNK signaling pathway, and modest alterations in the activity of JNK signaling can strengthen or suppress the Tnks mutant phenotypes. We further identify JNK as a direct substrate of Tnks. Although Tnks-dependent poly-ADP-ribosylation is tightly coupled to proteolysis in the proteasome, we demonstrate that Tnks initiates degradation-independent ubiquitination on two lysine residues of JNK to promote its kinase activity and in vivo functions. Our study uncovers a type of posttranslational modification of Tnks substrates and provides insights into Tnks-mediated physiological roles.
Collapse
Affiliation(s)
- Ping Li
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ping Huang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaojiao Li
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Dingzi Yin
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhiwei Ma
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Haiyun Song
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
25
|
Ma P, Song NN, Li Y, Zhang Q, Zhang L, Zhang L, Kong Q, Ma L, Yang X, Ren B, Li C, Zhao X, Li Y, Xu Y, Gao X, Ding YQ, Mao B. Fine-Tuning of Shh/Gli Signaling Gradient by Non-proteolytic Ubiquitination during Neural Patterning. Cell Rep 2019; 28:541-553.e4. [DOI: 10.1016/j.celrep.2019.06.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 11/08/2018] [Accepted: 06/03/2019] [Indexed: 01/14/2023] Open
|
26
|
Qi Y, Zhao X, Chen J, Pradipta AR, Wei J, Ruan H, Zhou L, Hsung RP, Tanaka K. In vitro and in vivo cancer cell apoptosis triggered by competitive binding of Cinchona alkaloids to the RING domain of TRAF6. Biosci Biotechnol Biochem 2019; 83:1011-1026. [DOI: 10.1080/09168451.2018.1559030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ABSTRACT
TRAF6 is highly expressed in many tumors and plays an important role in the immune system. The aim of this study is to confirm anti-tumor activities of all naturally occurring Cinchona alkaloids that have been screened using computational docking program, and to validate the accuracy and specificity of the RING domain of TRAF6 as a potential anti-tumor target, and to explore their effect on the immune system. Results reported herein would demonstrate that Cinchona alkaloids could induce apoptosis in HeLa cells, inhibit the ubiquitination and phosphorylation of both AKT and TAK1, and up-regulate the ratio of Bax/Bcl-2. In addition, these compounds could induce apoptosis in vivo, and increase the secretion of TNF-α, IFN-γ, and IgG, while not significantly impacting the ratio of CD4+T/CD8+T. These investigations suggest that the RING domain of TRAF6 could serve as a de novo biological target for therapeutic treatment in cancers.
Collapse
Affiliation(s)
- Yonghao Qi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
| | - Xuan Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
| | - Jiaying Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
| | - Ambara R Pradipta
- Biofunctional Synthetic Chemistry Laboratory, RIKEN, Wako, Saitama, Japan
| | - Jing Wei
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
| | - Haihua Ruan
- Tianjin University of Commerce, Tianjin, P.R. China
| | - Lijun Zhou
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
| | - Richard P Hsung
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, WI, USA
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory, RIKEN, Wako, Saitama, Japan
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, WI, USA
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, Kazan, Russia
- JST-PRESTO, Wako, Saitama, Japan
| |
Collapse
|
27
|
Li C, Du L, Ren Y, Liu X, Jiao Q, Cui D, Wen M, Wang C, Wei G, Wang Y, Ji A, Wang Q. SKP2 promotes breast cancer tumorigenesis and radiation tolerance through PDCD4 ubiquitination. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:76. [PMID: 30760284 PMCID: PMC6375223 DOI: 10.1186/s13046-019-1069-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/30/2019] [Indexed: 12/20/2022]
Abstract
Background S-phase kinase-associated protein 2 (SKP2) is an oncogene and cell cycle regulator that specifically recognizes phosphorylated cell cycle regulator proteins and mediates their ubiquitination. Programmed cell death protein 4 (PDCD4) is a tumor suppressor gene that plays a role in cell apoptosis and DNA-damage response via interacting with eukaryotic initiation factor-4A (eIF4A) and P53. Previous research showed SKP2 may interact with PDCD4, however the relationship between SKP2 and PDCD4 is unclear. Methods To validate the interaction between SKP2 and PDCD4, mass spectrometric analysis and reciprocal co-immunoprecipitation (Co-IP) experiments were performed. SKP2 stably overexpressed or knockdown breast cancer cell lines were established and western blot was used to detect proteins changes before and after radiation. In vitro and in vivo experiments were performed to verify whether SKP2 inhibits cell apoptosis and promotes DNA-damage response via PDCD4 suppression. SMIP004 was used to test the effect of radiotherapy combined with SKP2 inhibitor. Results We found that SKP2 remarkably promoted PDCD4 phosphorylation, ubiquitination and degradation. SKP2 promoted cell proliferation, inhibited cell apoptosis and enhanced the response to DNA-damage via PDCD4 suppression in breast cancer. SKP2 and PDCD4 showed negative correlation in human breast cancer tissues. Radiotherapy combine with SKP2 inhibitor SMIP004 showed significant inhibitory effects on breast cancer cells in vitro and in vivo. Conclusions We identify PDCD4 as an important ubiquitination substrate of SKP2. SKP2 promotes breast cancer tumorigenesis and radiation tolerance via PDCD4 degradation. Radiotherapy combine with SKP2-targeted adjuvant therapy may improve breast cancer patient survival in clinical medicine. Electronic supplementary material The online version of this article (10.1186/s13046-019-1069-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ce Li
- School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Tianqiao District, Jinan, 250033, Shandong, China
| | - Yidan Ren
- International Biotechnology R&D Center, Shandong University School of Ocean, 180 Wenhua Xi Road, Weihai, 264209, Shandong, China
| | - Xiaoyan Liu
- Department of Human Anatomy and Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Qinlian Jiao
- International Biotechnology R&D Center, Shandong University School of Ocean, 180 Wenhua Xi Road, Weihai, 264209, Shandong, China
| | - Donghai Cui
- Department of Human Anatomy and Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Mingxin Wen
- Department of Human Anatomy and Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Tianqiao District, Jinan, 250033, Shandong, China
| | - Guangwei Wei
- Department of Human Anatomy and Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yunshan Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Tianqiao District, Jinan, 250033, Shandong, China
| | - Aiguo Ji
- School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China.
| | - Qin Wang
- Department of Anesthesiology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, China.
| |
Collapse
|
28
|
Regulation of Mammalian DNA Replication via the Ubiquitin-Proteasome System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1042:421-454. [PMID: 29357069 DOI: 10.1007/978-981-10-6955-0_19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Proper regulation of DNA replication ensures the faithful transmission of genetic material essential for optimal cellular and organismal physiology. Central to this regulation is the activity of a set of enzymes that induce or reverse posttranslational modifications of various proteins critical for the initiation, progression, and termination of DNA replication. This is particularly important when DNA replication proceeds in cancer cells with elevated rates of genomic instability and increased proliferative capacities. Here, we describe how DNA replication in mammalian cells is regulated via the activity of the ubiquitin-proteasome system as well as the consequence of derailed ubiquitylation signaling involved in this important cellular activity.
Collapse
|
29
|
Abstract
The tumor suppressor LKB1 is an essential serine/threonine kinase, which regulates various cellular processes such as cell metabolism, cell proliferation, cell polarity, and cell migration. Germline mutations in the STK11 gene (encoding LKB1) are the cause of the Peutz-Jeghers syndrome, which is characterized by benign polyps in the intestine and a higher risk for the patients to develop intestinal and extraintestinal tumors. Moreover, mutations and misregulation of LKB1 have been reported to occur in most types of tumors and are among the most common aberrations in lung cancer. LKB1 activates several downstream kinases of the AMPK family by direct phosphorylation in the T-loop. In particular the activation of AMPK upon energetic stress has been intensively analyzed in various diseases, including cancer to induce a metabolic switch from anabolism towards catabolism to regulate energy homeostasis and cell survival. In contrast, the regulation of LKB1 itself has long been only poorly understood. Only in the last years, several proteins and posttranslational modifications of LKB1 have been analyzed to control its localization, activity and recognition of substrates. Here, we summarize the current knowledge about the upstream regulation of LKB1, which is important for the understanding of the pathogenesis of many types of tumors.
Collapse
|
30
|
Zenata O, Vrzal R. Fine tuning of vitamin D receptor (VDR) activity by post-transcriptional and post-translational modifications. Oncotarget 2018; 8:35390-35402. [PMID: 28427151 PMCID: PMC5471063 DOI: 10.18632/oncotarget.15697] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/08/2017] [Indexed: 12/31/2022] Open
Abstract
Vitamin D receptor (VDR) is a member of the nuclear receptor (NR) superfamily of ligand-activated transcription factors. Activated VDR is responsible for maintaining calcium and phosphate homeostasis, and is required for proper cellular growth, cell differentiation and apoptosis. The expression of both phases I and II drug-metabolizing enzymes is also regulated by VDR, therefore it is clinically important. Post-translational modifications of NRs have been known as an important mechanism modulating the activity of NRs and their ability to drive the expression of target genes. The aim of this mini review is to summarize the current knowledge about post-transcriptional and post-translational modifications of VDR.
Collapse
Affiliation(s)
- Ondrej Zenata
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
31
|
Nyati S, Chaudhry N, Chatur A, Gregg BS, Kimmel L, Khare D, Basrur V, Ray D, Rehemtulla A. A novel reporter for real-time, quantitative imaging of AKT-directed K63-poly-ubiquitination in living cells. Oncotarget 2018. [PMID: 29541398 PMCID: PMC5834254 DOI: 10.18632/oncotarget.24323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Post-translational K63-linked poly-ubiquitination of AKT is required for its membrane recruitment and phosphorylation dependent activation in response to growth-factor stimulation. Current assays for target specific poly-ubiquitination involve cumbersome enzymatic preparations and semi-quantitative readouts. We have engineered a reporter that can quantitatively and in a target specific manner report on AKT-directed K63-polyubiquitination (K63UbR) in live cells. The reporter constitutes the AKT-derived poly-ubiquitination substrate peptide, a K63 poly-ubiquitin binding domain (UBD) as well as the split luciferase protein complementation domains. In cells, wherein signaling events upstream of AKT are activated (e.g. either EGFR or IGFR), poly-ubiquitination of the reporter leads to a stearic constraint that prevents luciferase complementation. However, upon inhibition of growth factor receptor signaling, loss of AKT poly-ubiquitination results in a decrease in interaction between the target peptide and the UBD, allowing for reconstitution of the split luciferase domains and therefore increased bioluminescence in a quantitative and dynamic manner. The K63UbR was confirmed to be suitable for high throughput screen (HTS), thus providing an excellent tool for small molecule or siRNA based HTS to discover new inhibitors or identify novel regulators of this key signaling node. Furthermore, the K63UbR platform could be adapted for non-invasive monitoring of additional target specific K63-polyubiquitination events in live cells.
Collapse
Affiliation(s)
- Shyam Nyati
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI-48109, USA
| | - Nauman Chaudhry
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI-48109, USA
| | - Areeb Chatur
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI-48109, USA
| | - Brandon S Gregg
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI-48109, USA
| | - Lauren Kimmel
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI-48109, USA
| | - Dheeraj Khare
- Life Sciences Institute, University of Michigan, Ann Arbor, MI-48109, USA
| | - Venkatesha Basrur
- UMCCC Proteomics Shared Resource, University of Michigan, Ann Arbor, MI-48109, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI-48109, USA
| | - Dipankar Ray
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI-48109, USA
| | - Alnawaz Rehemtulla
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI-48109, USA
| |
Collapse
|
32
|
miR-130b, an onco-miRNA in bladder cancer, is directly regulated by NF-κB and sustains NF-κB activation by decreasing Cylindromatosis expression. Oncotarget 2018; 7:48547-48561. [PMID: 27391066 PMCID: PMC5217037 DOI: 10.18632/oncotarget.10423] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/22/2016] [Indexed: 02/02/2023] Open
Abstract
Persistent activation of NF-κB signaling is closely related to chronic inflammation and tumorigenesis. Commonly, NF-κB signaling is tightly controlled by multiple feedback loops and regulators, such as the deubiquitinases (DUBs). However, in cancer cells, NF-κB may override these feedbacks through special pathways and lead to the sustained activation. In the present study, we demonstrate that in transitional cell carcinoma (TCC) of bladder, miR-130b plays an oncogenesis role, it enhanced proliferation, invasion and migration of TCC cell, and was highly correlated with tumor progression. On the other hand, NF-κB directly regulated the transcription of miR-130b by binding with its promoter region. Importantly, we verify that, through deceasing the expression of Cylindromatosis (CYLD), a K63-specific DUB and endogenous blocker of NF-κB signaling, miR-130b can in return sustain the persistent activation of NF-κB, which may promote the malignant progression of TCC. Thus, the present study uncovers a potential signaling transduction in which NF-κB is continuously activated, and may provide a novel therapeutic approach for the clinical management of TCC.
Collapse
|
33
|
Abstract
Pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) are recognized by different cellular pathogen recognition receptors (PRRs), which are expressed on cell membrane or in the cytoplasm of cells of the innate immune system. Nucleic acids derived from pathogens or from certain cellular conditions represent a large category of PAMPs/DAMPs that trigger production of type I interferons (IFN-I) in addition to pro-inflammatory cytokines, by specifically binding to intracellular Toll-like receptors or cytosolic receptors. These cytosolic receptors, which are not related to TLRs and we call them “Toll-free” receptors, include the RNA-sensing RIG-I like receptors (RLRs), the DNA-sensing HIN200 family, and cGAS, amongst others. Viruses have evolved myriad strategies to evoke both host cellular and viral factors to evade IFN-I-mediated innate immune responses, to facilitate their infection, replication, and establishment of latency. This review outlines these “Toll-free” innate immune pathways and recent updates on their regulation, with focus on cellular and viral factors with enzyme activities.
Collapse
Affiliation(s)
- Ling Wang
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.,Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Shunbin Ning
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.,Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| |
Collapse
|
34
|
Li M, Qi Y, Wei J, Lu L, Zhao X, Zhou L. N6-Isopentenyladenosine promoted HeLa cell apoptosis through inhibitions of AKT and transforming growth factor β-activated kinase 1 activation. Tumour Biol 2017; 39:1010428317695966. [PMID: 28345459 DOI: 10.1177/1010428317695966] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
N6-Isopentenyladenosine, a member of the family of plant hormones, possesses anti-cancer activities on a number of cancer cell lines. However, its mode of action in cervical cancer cell remains poorly understood. Our computational docking studies showed that N6-Isopentenyladenosine could bind with the really interesting new gene domain of tumor necrosis factor receptor-associated factor 6, which is an ubiquitination E3 ligase. Tumor necrosis factor receptor-associated factor 6-mediated ubiquitination is known to activate both protein kinase B (also known as AKT) and transforming growth factor β-activated kinase 1, and the really interesting new gene domain comprises the core of the ubiquitin ligase catalytic domain. First, we evaluated the effects of iPA on cervical cancer cell line HeLa using MTT and flow cytometry. Second, we examined the effects of iPA on activation of tumor necrosis factor receptor-associated factor 6-mediated downstream targets using western blot or immunoprecipitation. iPA could reduce HeLa cell proliferation through apoptosis, and such anti-cancer activity is associated with inhibitions of both AKT and transforming growth factor β-activated kinase 1 signaling pathways. In addition, suppression of the anti-apoptotic protein Bcl-2 and elevation of the pro-apoptotic protein Bax were also observed. Anti-proliferation properties of iPA are likely due to its binding at the really interesting new gene domain of tumor necrosis factor receptor-associated factor 6 and loss of AKT and transforming growth factor β-activated kinase 1 activities as a result of functional modulations of tumor necrosis factor receptor-associated factor 6. These results support the emerging notion that tumor necrosis factor receptor-associated factor 6 could serve as a viable target for developing new cancer therapeutics.
Collapse
Affiliation(s)
- Miao Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
| | - Yonghao Qi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
| | - Jing Wei
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
| | - Lulu Lu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
| | - Xuan Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
| | - Lijun Zhou
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
| |
Collapse
|
35
|
Zhang X, Li B, Rezaeian AH, Xu X, Chou PC, Jin G, Han F, Pan BS, Wang CY, Long J, Zhang A, Huang CY, Tsai FJ, Tsai CH, Logothetis C, Lin HK. H3 ubiquitination by NEDD4 regulates H3 acetylation and tumorigenesis. Nat Commun 2017; 8:14799. [PMID: 28300060 PMCID: PMC5357315 DOI: 10.1038/ncomms14799] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 01/27/2017] [Indexed: 12/14/2022] Open
Abstract
Dynamic changes in histone modifications under various physiological cues play important roles in gene transcription and cancer. Identification of new histone marks critical for cancer development is of particular importance. Here we show that, in a glucose-dependent manner, E3 ubiquitin ligase NEDD4 ubiquitinates histone H3 on lysine 23/36/37 residues, which specifically recruits histone acetyltransferase GCN5 for subsequent H3 acetylation. Genome-wide analysis of chromatin immunoprecipitation followed by sequencing reveals that NEDD4 regulates glucose-induced H3 K9 acetylation at transcription starting site and enhancer regions. Integrative analysis of ChIP-seq and microarray data sets also reveals a consistent role of NEDD4 in transcription activation and H3 K9 acetylation in response to glucose. Functionally, we show that NEDD4-mediated H3 ubiquitination, by transcriptionally activating IL1α, IL1β and GCLM, is important for tumour sphere formation. Together, our study reveals the mechanism for glucose-induced transcriptome reprograming and epigenetic regulation in cancer by inducing NEDD4-dependent H3 ubiquitination. Histone modifications play important roles in gene transcription and cancer. Here the authors establish a role for the E3 ubiquitin ligase NEDD4 in modifying in a glucose-dependent manner the histone H3, thus regulating the expression of genes involved in tumorigenesis.
Collapse
Affiliation(s)
- Xian Zhang
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA
| | - Binkui Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Abdol Hossein Rezaeian
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xiaohong Xu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ping-Chieh Chou
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Guoxiang Jin
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Fei Han
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA
| | - Bo-Syong Pan
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Chi-Yun Wang
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jie Long
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Anmei Zhang
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan.,Department of Biotechnology, Asia University, Taichung 41354, Taiwan
| | - Fuu-Jen Tsai
- College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.,Department of Medical Genetics, Pediatrics and Medical Research, China Medical University Hospital, Taichung 40402, Taiwan
| | - Chang-Hai Tsai
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan.,Center of Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
| | - Christopher Logothetis
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA.,Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan.,Department of Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
36
|
Chakraborty S, Ain R. Nitric-oxide synthase trafficking inducer is a pleiotropic regulator of endothelial cell function and signaling. J Biol Chem 2017; 292:6600-6620. [PMID: 28235804 DOI: 10.1074/jbc.m116.742627] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 02/22/2017] [Indexed: 01/27/2023] Open
Abstract
Endothelial nitric-oxide synthase (eNOS) and its bioactive product, nitric oxide (NO), mediate many endothelial cell functions, including angiogenesis and vascular permeability. For example, vascular endothelial growth factor (VEGF)-mediated angiogenesis is inhibited upon reduction of NO bioactivity both in vitro and in vivo Moreover, genetic disruption or pharmacological inhibition of eNOS attenuates angiogenesis during tissue repair, resulting in delayed wound closure. These observations emphasize that eNOS-derived NO can promote angiogenesis. Intriguingly, eNOS activity is regulated by nitric-oxide synthase trafficking inducer (NOSTRIN), which sequesters eNOS, thereby attenuating NO production. This has prompted significant interest in NOSTRIN's function in endothelial cells. We show here that NOSTRIN affects the functional transcriptome of endothelial cells by down-regulating several genes important for invasion and angiogenesis. Interestingly, the effects of NOSTRIN on endothelial gene expression were independent of eNOS activity. NOSTRIN also affected the expression of secreted cytokines involved in inflammatory responses, and ectopic NOSTRIN overexpression functionally restricted endothelial cell proliferation, invasion, adhesion, and VEGF-induced capillary tube formation. Furthermore, NOSTRIN interacted directly with TNF receptor-associated factor 6 (TRAF6), leading to the suppression of NFκB activity and inhibition of AKT activation via phosphorylation. Interestingly, TNF-α-induced NFκB pathway activation was reversed by NOSTRIN. We found that the SH3 domain of NOSTRIN is involved in the NOSTRIN-TRAF6 interaction and is required for NOSTRIN-induced down-regulation of endothelial cell proteins. These results have broad biological implications, as aberrant NOSTRIN expression leading to deactivation of the NFκB pathway, in turn triggering an anti-angiogenic cascade, might inhibit tumorigenesis and cancer progression.
Collapse
Affiliation(s)
- Shreeta Chakraborty
- From the Division of Cell Biology and Physiology, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata 700032, West Bengal, India
| | - Rupasri Ain
- From the Division of Cell Biology and Physiology, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata 700032, West Bengal, India
| |
Collapse
|
37
|
The Linear Ubiquitin Assembly Complex Modulates Latent Membrane Protein 1 Activation of NF-κB and Interferon Regulatory Factor 7. J Virol 2017; 91:JVI.01138-16. [PMID: 27903798 DOI: 10.1128/jvi.01138-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 11/14/2016] [Indexed: 12/11/2022] Open
Abstract
Recently, linear ubiquitin assembly complex (LUBAC)-mediated linear ubiquitination has come into focus due to its emerging role in activation of NF-κB in different biological contexts. However, the role of LUBAC in LMP1 signaling leading to NF-κB and interferon regulatory factor 7 (IRF7) activation has not been investigated. We show here that RNF31, the key component of LUBAC, interacts with LMP1 and IRF7 in Epstein-Barr virus (EBV)-transformed cells and that LUBAC stimulates linear ubiquitination of NEMO and IRF7. Consequently, LUBAC is required for LMP1 signaling to full activation of NF-κB but inhibits LMP1-stimulated IRF7 transcriptional activity. The protein levels of RNF31 and LMP1 are correlated in EBV-transformed cells. Knockdown of RNF31 in EBV-transformed IB4 cells by RNA interference negatively regulates the expression of the genes downstream of LMP1 signaling and results in a decrease of cell proliferation. These lines of evidence indicate that LUBAC-mediated linear ubiquitination plays crucial roles in regulating LMP1 signaling and functions. IMPORTANCE We show here that LUBAC-mediated linear ubiquitination is required for LMP1 activation of NF-κB but inhibits LMP1-mediated IRF7 activation. Our findings provide novel mechanisms underlying EBV-mediated oncogenesis and may have a broad impact on IRF7-mediated immune responses.
Collapse
|
38
|
Yamamoto H, Ryu J, Min E, Oi N, Bai R, Zykova TA, Yu DH, Moriyama K, Bode AM, Dong Z. TRAF1 Is Critical for DMBA/Solar UVR-Induced Skin Carcinogenesis. J Invest Dermatol 2017; 137:1322-1332. [PMID: 28131816 DOI: 10.1016/j.jid.2016.12.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/27/2016] [Accepted: 12/30/2016] [Indexed: 12/15/2022]
Abstract
TRAF1 is a member of the TRAF protein family, which regulates the canonical and noncanonical NF-κB signaling cascades. Although aberrant TRAF1 expression in tumors has been reported, the role of TRAF1 remains elusive. Here, we report that TRAF1 is required for solar UV-induced skin carcinogenesis. Immunohistochemical analysis showed that TRAF1 expression is up-regulated in human actinic keratosis and squamous cell carcinoma. In vivo studies indicated that TRAF1 expression levels in mouse skin are induced by short-term solar UV irradiation, and a long-term skin carcinogenesis study showed that deletion of TRAF1 in mice results in a significant inhibition of skin tumor formation. Moreover, we show that TRAF1 is required for solar UV-induced extracellular signal-regulated kinase-5 (ERK5) phosphorylation and the expression of AP-1 family members (c-Fos/c-Jun). Mechanistic studies showed that TRAF1 expression enhances the ubiquitination of ERK5 on lysine 184, which is necessary for its kinase activity and AP-1 activation. Overall, our results suggest that TRAF1 mediates ERK5 activity by regulating the upstream effectors of ERK5 and also by modulating its ubiquitination status. Targeting TRAF1 function might lead to strategies for preventing and treating skin cancer.
Collapse
Affiliation(s)
- Hiroyuki Yamamoto
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Joohyun Ryu
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Eli Min
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Naomi Oi
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Ruihua Bai
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Tatyana A Zykova
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Dong Hoon Yu
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Kenji Moriyama
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA.
| |
Collapse
|
39
|
Kwon SK, Kim EH, Baek KH. RNPS1 is modulated by ubiquitin-specific protease 4. FEBS Lett 2017; 591:369-381. [DOI: 10.1002/1873-3468.12531] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/01/2016] [Accepted: 12/12/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Seul-Ki Kwon
- Department of Biomedical Science; CHA University; Gyeonggi-Do Korea
| | - Eun-Hea Kim
- Department of Biomedical Science; CHA University; Gyeonggi-Do Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science; CHA University; Gyeonggi-Do Korea
| |
Collapse
|
40
|
Wu HT, Kuo YC, Hung JJ, Huang CH, Chen WY, Chou TY, Chen Y, Chen YJ, Chen YJ, Cheng WC, Teng SC, Wu KJ. K63-polyubiquitinated HAUSP deubiquitinates HIF-1α and dictates H3K56 acetylation promoting hypoxia-induced tumour progression. Nat Commun 2016; 7:13644. [PMID: 27934968 PMCID: PMC5155157 DOI: 10.1038/ncomms13644] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 10/20/2016] [Indexed: 02/06/2023] Open
Abstract
Intratumoural hypoxia induces HIF-1α and promotes tumour progression, metastasis and treatment resistance. HIF-1α stability is regulated by VHL-E3 ligase-mediated ubiquitin-dependent degradation; however, the hypoxia-regulated deubiquitinase that stabilizes HIF-1α has not been identified. Here we report that HAUSP (USP7) deubiquitinase deubiquitinates HIF-1α to increase its stability, induce epithelial-mesenchymal transition and promote metastasis. Hypoxia induces K63-linked polyubiquitinated HAUSP at lysine 443 to enhance its functions. Knockdown of HAUSP decreases acetylation of histone 3 lysine 56 (H3K56Ac). K63-polyubiquitinated HAUSP interacts with a ubiquitin receptor CBP to specifically mediate H3K56 acetylation. ChIP-seq analysis of HAUSP and HIF-1α binding reveals two motifs responsive to hypoxia. HectH9 is the E3 ligase for HAUSP and a prognostic marker together with HIF-1α. This report demonstrates that hypoxia-induced K63-polyubiquitinated HAUSP deubiquitinates HIF-1α and causes CBP-mediated H3K56 acetylation on HIF-1α target gene promoters to promote EMT/metastasis, further defining HAUSP as a therapeutic target in hypoxia-induced tumour progression.
Collapse
Affiliation(s)
- Han-Tsang Wu
- Research Center for Tumor Medical Science, Graduate Institutes of Biomedical Sciences and New Drug Development, China Medical University, Taichung 404, Taiwan
| | - Yi-Chih Kuo
- Research Center for Tumor Medical Science, Graduate Institutes of Biomedical Sciences and New Drug Development, China Medical University, Taichung 404, Taiwan
| | - Jung-Jyh Hung
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan.,Division of Thoracic Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Chi-Hung Huang
- Taiwan Advance Biopharm (TABP), Inc., Xizhi city, New Taipei City 221, Taiwan
| | - Wei-Yi Chen
- Institute of Biochemistry &Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Teh-Ying Chou
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan.,Department of Pathology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Yeh Chen
- Department of Biotechnology, Hungkuang University, Taichung 433, Taiwan
| | - Yi-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Wei-Chung Cheng
- Research Center for Tumor Medical Science, Graduate Institutes of Biomedical Sciences and New Drug Development, China Medical University, Taichung 404, Taiwan
| | - Shu-Chun Teng
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Kou-Juey Wu
- Research Center for Tumor Medical Science, Graduate Institutes of Biomedical Sciences and New Drug Development, China Medical University, Taichung 404, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan
| |
Collapse
|
41
|
A hypoxia-responsive TRAF6-ATM-H2AX signalling axis promotes HIF1α activation, tumorigenesis and metastasis. Nat Cell Biol 2016; 19:38-51. [PMID: 27918549 DOI: 10.1038/ncb3445] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 10/27/2016] [Indexed: 12/16/2022]
Abstract
The understanding of how hypoxia stabilizes and activates HIF1α in the nucleus with related oncogenic signals could revolutionize targeted therapy for cancers. Here, we find that histone H2AX displays oncogenic activity by serving as a crucial regulator of HIF1α signalling. H2AX interacts with HIF1α to prevent its degradation and nuclear export in order to allow successful VHL-independent HIF1α transcriptional activation. We show that mono-ubiquitylation and phosphorylation of H2AX, which are strictly mediated by hypoxia-induced E3 ligase activity of TRAF6 and ATM, critically regulate HIF1α-driven tumorigenesis. Importantly, TRAF6 and γH2AX are overexpressed in human breast cancer, correlate with activation of HIF1α signalling, and predict metastatic outcome. Thus, TRAF6 and H2AX overexpression and γH2AX-mediated HIF1α enrichment in the nucleus of cancer cells lead to overactivation of HIF1α-driven tumorigenesis, glycolysis and metastasis. Our findings suggest that TRAF6-mediated mono-ubiquitylation and subsequent phosphorylation of H2AX may serve as potential means for cancer diagnosis and therapy.
Collapse
|
42
|
Lawrence DW, Kornbluth J. E3 ubiquitin ligase NKLAM ubiquitinates STAT1 and positively regulates STAT1-mediated transcriptional activity. Cell Signal 2016; 28:1833-1841. [PMID: 27570112 PMCID: PMC5206800 DOI: 10.1016/j.cellsig.2016.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/19/2016] [Accepted: 08/24/2016] [Indexed: 01/16/2023]
Abstract
Signal transducer and activator of transcription 1 (STAT1) is critically important for the transcription of a large number of immunologically relevant genes. In macrophages, interferon gamma (IFNγ) signal transduction occurs via the JAK/STAT pathway and ends with the transcription of a number of genes necessary for a successful host immune response. The predominant mechanism of regulation of STAT1 is phosphorylation; however, there is a growing body of evidence that demonstrates STAT1 is also regulated by ubiquitination. In this report we show that JAK1 and STAT1 in macrophages deficient in an E3 ubiquitin ligase termed Natural Killer Lytic-Associated Molecule (NKLAM) are hyperphosphorylated following IFNγ stimulation. We found NKLAM was transiently localized to the IFNγ receptor complex during stimulation with IFNγ, where it bound to and mediated K63-linked ubiquitination of STAT1. In vitro nucleofection studies demonstrated that STAT1-mediated transcription was significantly reduced in NKLAM-KO macrophages. There was no obvious defect in STAT1 nuclear translocation; however, STAT1 from NKLAM-KO macrophages had a reduced ability to bind a functional gamma activation DNA sequence. There was also less mRNA expression of STAT1-mediated genes in NKLAM-KO macrophages treated with IFNγ. Our results demonstrate for the first time that NKLAM is a positive regulator of STAT1-mediated transcriptional activity and is an important component of the innate immune response.
Collapse
Affiliation(s)
- Donald W Lawrence
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO 63104, United States
| | - Jacki Kornbluth
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO 63104, United States; VA St. Louis Health Care System, St. Louis, MO 63106, United States.
| |
Collapse
|
43
|
Lu W, Liu S, Li B, Xie Y, Izban MG, Ballard BR, Sathyanarayana SA, Adunyah SE, Matusik RJ, Chen Z. SKP2 loss destabilizes EZH2 by promoting TRAF6-mediated ubiquitination to suppress prostate cancer. Oncogene 2016; 36:1364-1373. [PMID: 27869166 DOI: 10.1038/onc.2016.300] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/24/2016] [Accepted: 07/17/2016] [Indexed: 02/06/2023]
Abstract
EZH2 is crucial for the progression of prostate cancer (PCa) and castration-resistant prostate cancer (CRPC) through upregulation and activation of progenitor genes, as well as androgen receptor (AR)-target genes. However, the mechanisms by which EZH2 is regulated in PCa and CRPC remain elusive. Here we report that EZH2 is post-transcriptionally regulated by SKP2 in vitro in cultured cells and in vivo in mouse models. We observed aberrant upregulation of Skp2, Ezh2 and histone H3 lysine 27 trimethylation (H3K27me3) in both Pten null mouse embryonic fibroblasts (MEFs) and Pten null mouse prostate tissues. Loss of Skp2 resulted in a striking decrease of Ezh2 levels in Pten/Trp53 double-null MEFs and in prostate tumors of Pten/Trp53 double-null mutant mice. SKP2 knockdown decreased EZH2 levels in human PCa cells through upregulation of TRAF6-mediated and lysine(K) 63-linked ubiquitination of EZH2 for degradation. Ectopic expression of TRAF6 promoted the K63-linked ubiquitination of EZH2 to decrease EZH2 and H3K27me3 levels in PCa cells. In contrast, TRAF6 knockdown resulted in a reduced EZH2 ubiquitination with an increase of EZH2 and H3K27me3 levels in PCa cells. Furthermore, the catalytically dead mutant TRAF6 C70A abolished the TRAF6-mediated polyubiquitination of recombinant human EZH2 in vitro. Most importantly, a concurrent elevation of Skp2 and Ezh2 was found in CRPC tumors of Pten/Trp53 mutant mice, and expression levels of SKP2 and EZH2 were positively correlated in human PCa specimens. Taken together, our findings revealed a novel mechanism on EZH2 ubiquitination and an important signaling network of SKP2-TRAF6-EZH2/H3K27me3, and targeting SKP2-EZH2 pathway may be a promising therapeutic strategy for CRPC treatment.
Collapse
Affiliation(s)
- W Lu
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN, USA
| | - S Liu
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN, USA
| | - B Li
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN, USA
| | - Y Xie
- Department of Biology, School of Science and Technology, Nazarbayev University, Astana, Republic of Kazakhstan
| | - M G Izban
- Department of Pathology, Anatomy and Cell Biology, Meharry Medical College, Nashville, TN, USA
| | - B R Ballard
- Department of Pathology, Anatomy and Cell Biology, Meharry Medical College, Nashville, TN, USA
| | | | - S E Adunyah
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN, USA
| | - R J Matusik
- Department of Urologic Surgery, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Z Chen
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN, USA
| |
Collapse
|
44
|
Zhang X, Li CF, Zhang L, Wu CY, Han L, Jin G, Rezaeian AH, Han F, Liu C, Xu C, Xu X, Huang CY, Tsai FJ, Tsai CH, Watabe K, Lin HK. TRAF6 Restricts p53 Mitochondrial Translocation, Apoptosis, and Tumor Suppression. Mol Cell 2016; 64:803-814. [PMID: 27818144 DOI: 10.1016/j.molcel.2016.10.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 08/02/2016] [Accepted: 09/30/2016] [Indexed: 10/20/2022]
Abstract
Mitochondrial p53 is involved in apoptosis and tumor suppression. However, its regulation is not well studied. Here, we show that TRAF6 E3 ligase is a crucial factor to restrict mitochondrial translocation of p53 and spontaneous apoptosis by promoting K63-linked ubiquitination of p53 at K24 in cytosol, and such ubiquitination limits the interaction between p53 and MCL-1/BAK. Genotoxic stress reduces this ubiquitination in cytosol by S13/T330 phosphorylation-dependent translocation of TRAF6 from cytosol to nucleus, where TRAF6 also facilitates the K63-linked ubiquitination of nuclear p53 and its transactivation by recruiting p300 for p53 acetylation. Functionally, K63-linked ubiquitination of p53 compromised p53-mediated apoptosis and tumor suppression. Colorectal cancer samples with WT p53 reveal that TRAF6 overexpression negatively correlates with apoptosis and predicts poor response to chemotherapy and radiotherapy. Together, our study identifies TRAF6 as a critical gatekeeper to restrict p53 mitochondrial translocation, and such mechanism may contribute to tumor development and drug resistance.
Collapse
Affiliation(s)
- Xian Zhang
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Chien-Feng Li
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan; Department of Pathology, Chi-Mei Foundational Medical Center, Tainan 710, Taiwan
| | - Ling Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, 1#, Yixueyuan Road, Chongqing, 400016, China
| | - Ching-Yuan Wu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Lixia Han
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Guoxiang Jin
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Abdol Hossein Rezaeian
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Fei Han
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Chunfang Liu
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chuan Xu
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaohong Xu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan; Department of Biotechnology, Asia University, Taichung 41354, Taiwan
| | - Fuu-Jen Tsai
- College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; Department of Medical Genetics, Pediatrics, and Medical Research, China Medical University Hospital, Taichung 40402, Taiwan
| | - Chang-Hai Tsai
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan; Center of Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
| | - Kounosuke Watabe
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan; Department of Biotechnology, Asia University, Taichung 41354, Taiwan.
| |
Collapse
|
45
|
Wang Y, Zhao W, Gao Q, Fan L, Qin Y, Zhou H, Li M, Fang J. pVHL mediates K63-linked ubiquitination of IKKβ, leading to IKKβ inactivation. Cancer Lett 2016; 383:1-8. [PMID: 27693634 DOI: 10.1016/j.canlet.2016.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/09/2016] [Accepted: 09/10/2016] [Indexed: 01/06/2023]
Abstract
Nuclear factor (NF)-κB is a transcription factor that plays an important role in many biological functions. Regulation of NF-κB activity is complicated, and ubiquitination is essential for NF-κB activation. Hypoxia can activate NF-κB. However, the underlying mechanism remains unclear. pVHL is a tumour suppressor and functions as an adaptor of E3-ligase. In this study, we demonstrated that pVHL inhibits NF-κB by mediating K63-ubiquitination of IKKβ, which is dependent on oxygen. We found that pVHL mediates K63-linked ubiquitination of IKKβ, which is an upstream regulator of NF-κB. The pVHL-mediated K63-ubiquitination of IKKβ prevents TAK1 binding, which leads to the inhibition of IKKβ phosphorylation and NF-κB activation. pVHL-mediated K63-ubiquitination of IKKβ is inhibited under hypoxia. DMOG, which is a specific inhibitor of prolyl hydroxylases, also suppresses K63-ubiquitination of IKKβ. Prolyl hydroxylase (PHD) 1 enhances K63-ubiquitination of IKKβ and inhibits IKKβ phosphorylation. These results suggest a novel function for pVHL in mediating K63-linked ubiquitination of IKKβ, which plays a role in the regulation of IKK/NF-κB signalling. The results also provide new insight into the mechanism of NF-κB activation through hypoxia.
Collapse
Affiliation(s)
- Yuxin Wang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, China
| | - Wenting Zhao
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, China
| | - Qiang Gao
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, China
| | - Li Fan
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, China
| | - Yanqing Qin
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, China
| | - Hu Zhou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 200031, China
| | - Min Li
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jing Fang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China.
| |
Collapse
|
46
|
Mixed – Lineage Protein kinases (MLKs) in inflammation, metabolism, and other disease states. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1581-6. [DOI: 10.1016/j.bbadis.2016.05.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 02/06/2023]
|
47
|
Sharma B, Joshi D, Yadav PK, Gupta AK, Bhatt TK. Role of Ubiquitin-Mediated Degradation System in Plant Biology. FRONTIERS IN PLANT SCIENCE 2016; 7:806. [PMID: 27375660 PMCID: PMC4897311 DOI: 10.3389/fpls.2016.00806] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/23/2016] [Indexed: 05/05/2023]
Abstract
Ubiquitin-mediated proteasomal degradation is an important mechanism to control protein load in the cells. Ubiquitin binds to a protein on lysine residue and usually promotes its degradation through 26S proteasome system. Abnormal proteins and regulators of many processes, are targeted for degradation by the ubiquitin-proteasome system. It allows cells to maintain the response to cellular level signals and altered environmental conditions. The ubiquitin-mediated proteasomal degradation system plays a key role in the plant biology, including abiotic stress, immunity, and hormonal signaling by interfering with key components of these pathways. The involvement of the ubiquitin system in many vital processes led scientists to explore more about the ubiquitin machinery and most importantly its targets. In this review, we have summarized recent discoveries of the plant ubiquitin system and its involvement in critical processes of plant biology.
Collapse
|
48
|
Yang CY, Chiu LL, Tan TH. TRAF2-mediated Lys63-linked ubiquitination of DUSP14/MKP6 is essential for its phosphatase activity. Cell Signal 2016; 28:145-51. [DOI: 10.1016/j.cellsig.2015.10.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/24/2015] [Indexed: 12/27/2022]
|
49
|
Abstract
Ubiquitination, the structured degradation and turnover of cellular proteins, is regulated by the ubiquitin-proteasome system (UPS). Most proteins that are critical for cellular regulations and functions are targets of the process. Ubiquitination is comprised of a sequence of three enzymatic steps, and aberrations in the pathway can lead to tumor development and progression as observed in many cancer types. Recent evidence indicates that targeting the UPS is effective for certain cancer treatment, but many more potential targets might have been previously overlooked. In this review, we will discuss the current state of small molecules that target various elements of ubiquitination. Special attention will be given to novel inhibitors of E3 ubiquitin ligases, especially those in the SCF family.
Collapse
Affiliation(s)
- John Kenneth Morrow
- Integrated Molecular Discovery Laboratory, Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Hui-Kuan Lin
- Department of Molecular & Cellular Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shao-Cong Sun
- Department of Immunology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shuxing Zhang
- Integrated Molecular Discovery Laboratory, Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
50
|
Heo J, Eki R, Abbas T. Deregulation of F-box proteins and its consequence on cancer development, progression and metastasis. Semin Cancer Biol 2015; 36:33-51. [PMID: 26432751 DOI: 10.1016/j.semcancer.2015.09.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 09/25/2015] [Accepted: 09/25/2015] [Indexed: 01/28/2023]
Abstract
F-box proteins are substrate receptors of the SCF (SKP1-Cullin 1-F-box protein) E3 ubiquitin ligase that play important roles in a number of physiological processes and activities. Through their ability to assemble distinct E3 ubiquitin ligases and target key regulators of cellular activities for ubiquitylation and degradation, this versatile group of proteins is able to regulate the abundance of cellular proteins whose deregulated expression or activity contributes to disease. In this review, we describe the important roles of select F-box proteins in regulating cellular activities, the perturbation of which contributes to the initiation and progression of a number of human malignancies.
Collapse
Affiliation(s)
- Jinho Heo
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA
| | - Rebeka Eki
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Tarek Abbas
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA; Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|