1
|
Siavrienė E, Petraitytė G, Mikštienė V, Maldžienė Ž, Sasnauskienė A, Žitkutė V, Ambrozaitytė L, Rančelis T, Utkus A, Kučinskas V, Preikšaitienė E. Molecular and Functional Characterisation of a Novel Intragenic 12q24.21 Deletion Resulting in MED13L Haploinsufficiency Syndrome. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1225. [PMID: 37512036 PMCID: PMC10385642 DOI: 10.3390/medicina59071225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/17/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023]
Abstract
Background and Objectives: Heterozygous pathogenic variants in the MED13L gene cause impaired intellectual development and distinctive facial features with or without cardiac defects (MIM #616789). This complex neurodevelopmental disorder is characterised by various phenotypic features, including plagiocephaly, strabismus, clubfoot, poor speech, and developmental delay. The aim of this study was to evaluate the clinical significance and consequences of a novel heterozygous intragenic MED13L deletion in a proband with clinical features of a MED13L-related disorder through extensive clinical, molecular, and functional characterisation. Materials and Methods: Combined comparative genomic hybridisation and single-nucleotide polymorphism array (SNP-CGH) was used to identify the changes in the proband's gDNA sequence (DECIPHER #430183). Intragenic MED13L deletion was specified via quantitative polymerase chain reaction (qPCR) and Sanger sequencing of the proband's cDNA sample. Western blot and bioinformatics analyses were used to investigate the consequences of this copy number variant (CNV) at the protein level. CRISPR-Cas9 technology was used for a MED13L-gene-silencing experiment in a culture of the control individual's skin fibroblasts. After the MED13L-gene-editing experiment, subsequent functional fibroblast culture analyses were performed. Results: The analysis of the proband's cDNA sample allowed for specifying the regions of the breakpoints and identifying the heterozygous deletion that spanned exons 3 to 10 of MED13L, which has not been reported previously. In silico, the deletion was predicted to result in a truncated protein NP_056150.1:p.(Val104Glyfs*5), partly altering the Med13_N domain and losing the MedPIWI and Med13_C domains. After MED13L gene editing was performed, reduced cell viability; an accelerated aging process; and inhibition of the RB1, E2F1, and CCNC gene expression were found to exist. Conclusions: Based on these findings, heterozygous intragenic 12q24.21 deletion in the affected individual resulted in MED13L haploinsufficiency due to the premature termination of protein translation, therefore leading to MED13L haploinsufficiency syndrome.
Collapse
Affiliation(s)
- Evelina Siavrienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 08410 Vilnius, Lithuania
| | - Gunda Petraitytė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 08410 Vilnius, Lithuania
| | - Violeta Mikštienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 08410 Vilnius, Lithuania
| | - Živilė Maldžienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 08410 Vilnius, Lithuania
| | - Aušra Sasnauskienė
- Department of Biochemistry and Molecular Biology, Institute of Biosciences, Life Sciences Centre, Vilnius University, 10257 Vilnius, Lithuania
| | - Vilmantė Žitkutė
- Department of Biochemistry and Molecular Biology, Institute of Biosciences, Life Sciences Centre, Vilnius University, 10257 Vilnius, Lithuania
| | - Laima Ambrozaitytė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 08410 Vilnius, Lithuania
| | - Tautvydas Rančelis
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 08410 Vilnius, Lithuania
| | - Algirdas Utkus
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 08410 Vilnius, Lithuania
| | - Vaidutis Kučinskas
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 08410 Vilnius, Lithuania
| | - Eglė Preikšaitienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 08410 Vilnius, Lithuania
| |
Collapse
|
2
|
Li C, Li S, Yang C, Ding Y, Zhang Y, Wang X, Zhou X, Su Z, Ming W, Zeng L, Ma Y, Shi Y, Kang X. Blood transcriptome reveals immune and metabolic-related genes involved in growth of pasteurized colostrum-fed calves. Front Genet 2023; 14:1075950. [PMID: 36814903 PMCID: PMC9939824 DOI: 10.3389/fgene.2023.1075950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
The quality of colostrum is a key factor contributing to healthy calf growth, and pasteurization of colostrum can effectively reduce the counts of pathogenic microorganisms present in the colostrum. Physiological changes in calves fed with pasteurized colostrum have been well characterized, but little is known about the underlying molecular mechanisms. In this study, key genes and functional pathways through which pasteurized colostrum affects calf growth were identified through whole blood RNA sequencing. Our results showed that calves in the pasteurized group (n = 16) had higher body height and daily weight gain than those in the unpasteurized group (n = 16) in all months tested. Importantly, significant differences in body height were observed at 3 and 4 months of age (p < 0.05), and in daily weight gain at 2, 3, and 6 months of age (p < 0.05) between the two groups. Based on whole blood transcriptome data from 6-months old calves, 630 differentially expressed genes (DEGs), of which 235 were upregulated and 395 downregulated, were identified in the pasteurized compared to the unpasteurized colostrum groups. Most of the DEGs have functions in the immune response (e.g., CCL3, CXCL3, and IL1A) and metabolism (e.g., PTX3 and EXTL1). Protein-protein interaction analyses of DEGs revealed three key subnetworks and fifteen core genes, including UBA52 and RPS28, that have roles in protein synthesis, oxidative phosphorylation, and inflammatory responses. Twelve co-expression modules were identified through weighted gene co-expression network analysis. Among them, 17 genes in the two modules that significantly associated with pasteurization were mainly involved in the tricarboxylic acid cycle, NF-kappa B signaling, and NOD-like receptor signaling pathways. Finally, DEGs that underwent alternative splicing in calves fed pasteurized colostrum have roles in the immune response (SLCO4A1, AKR1C4, and MED13L), indicative of potential roles in immune regulation. Results from multiple analytical methods used suggest that differences in calf growth between the pasteurized and unpasteurized groups may be due to differential immune activity. Our data provide new insights into the impact of pasteurization on calf immune and metabolic-related pathways through its effects on gene expression.
Collapse
|
3
|
Bessenyei B, Balogh I, Mokánszki A, Ujfalusi A, Pfundt R, Szakszon K. MED13L-related intellectual disability due to paternal germinal mosaicism. Cold Spring Harb Mol Case Stud 2022; 8:a006124. [PMID: 34654706 PMCID: PMC8744498 DOI: 10.1101/mcs.a006124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/13/2021] [Indexed: 12/03/2022] Open
Abstract
The MED13L-related intellectual disability or MRFACD syndrome (Mental retardation and distinctive facial features with or without cardiac defects; MIM # 616789) is one of the most common forms of syndromic intellectual disability with about a hundred cases reported so far. Affected individuals share overlapping features comprising intellectual disability, hypotonia, motor delay, remarkable speech delay, and a recognizable facial gestalt. De novo disruption of the MED13L gene by deletions, duplications, or sequence variants has been identified as deleterious. Siblings affected by intragenic deletion transmitted from a mosaic parent have been reported once in the literature. We now present the first case of paternal germinal mosaicism for a missense MED13L variant causing MRFACD syndrome in one of the father's children and being the likely cause of intellectual disability and facial dysmorphism in the other. As part of the Mediator complex, the MED proteins have an essential role in regulating transcription. Thirty-two subunits of the Mediator complex genes have been linked to congenital malformations that are now acknowledged as transcriptomopathies. The MRFACD syndrome has been suggested to represent a recognizable phenotype.
Collapse
Affiliation(s)
- Beáta Bessenyei
- Division of Clinical Genetics, Department of Laboratory Medicine, University of Debrecen, Debrecen, 4032 Hungary
| | - István Balogh
- Division of Clinical Genetics, Department of Laboratory Medicine, University of Debrecen, Debrecen, 4032 Hungary
| | - Attila Mokánszki
- Institute of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, 4032 Hungary
| | - Anikó Ujfalusi
- Division of Clinical Genetics, Department of Laboratory Medicine, University of Debrecen, Debrecen, 4032 Hungary
| | - Rolph Pfundt
- Genome Diagnostics Nijmegen, Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Katalin Szakszon
- Institute of Paediatrics, Faculty of Medicine, University of Debrecen, Debrecen, 4032 Hungary
| |
Collapse
|
4
|
Qi JC, Yang Z, Lin T, Ma L, Wang YX, Zhang Y, Gao CC, Liu KL, Li W, Zhao AN, Shi B, Zhang H, Wang DD, Wang XL, Wen JK, Qu CB. CDK13 upregulation-induced formation of the positive feedback loop among circCDK13, miR-212-5p/miR-449a and E2F5 contributes to prostate carcinogenesis. J Exp Clin Cancer Res 2021; 40:2. [PMID: 33390186 PMCID: PMC7780414 DOI: 10.1186/s13046-020-01814-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/13/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Both E2F transcription factor and cyclin-dependent kinases (CDKs), which increase or decrease E2F activity by phosphorylating E2F or its partner, are involved in the control of cell proliferation, and some circRNAs and miRNAs regulate the expression of E2F and CDKs. However, little is known about whether dysregulation among E2Fs, CDKs, circRNAs and miRNAs occurs in human PCa. METHODS The expression levels of CDK13 in PCa tissues and different cell lines were determined by quantitative real-time PCR and Western blot analysis. In vitro and in vivo assays were preformed to explore the biological effects of CDK13 in PCa cells. Co-immunoprecipitation anlysis coupled with mass spectrometry was used to identify E2F5 interaction with CDK13. A CRISPR-Cas9 complex was used to activate endogenous CDK13 and circCDK13 expression. Furthermore, the mechanism of circCDK13 was investigated by using loss-of-function and gain-of-function assays in vitro and in vivo. RESULTS Here we show that CDK13 is significantly upregulated in human PCa tissues. CDK13 depletion and overexpression in PCa cells decrease and increase, respectively, cell proliferation, and the pro-proliferation effect of CDK13 is strengthened by its interaction with E2F5. Mechanistically, transcriptional activation of endogenous CDK13, but not the forced expression of CDK13 by its expression vector, remarkably promotes E2F5 protein expression by facilitating circCDK13 formation. Further, the upregulation of E2F5 enhances CDK13 transcription and promotes circCDK13 biogenesis, which in turn sponges miR-212-5p/449a and thus relieves their repression of the E2F5 expression, subsequently leading to the upregulation of E2F5 expression and PCa cell proliferation. CONCLUSIONS These findings suggest that CDK13 upregulation-induced formation of the positive feedback loop among circCDK13, miR-212-5p/miR-449a and E2F5 is responsible for PCa development. Targeting this newly identified regulatory axis may provide therapeutic benefit against PCa progression and drug resistance.
Collapse
Affiliation(s)
- Jin-Chun Qi
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Zhan Yang
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Tao Lin
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Long Ma
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Ya-Xuan Wang
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Yong Zhang
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Chun-Cheng Gao
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Kai-Long Liu
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Wei Li
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - An-Ning Zhao
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Bei Shi
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Hong Zhang
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Dan-Dan Wang
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Xiao-Lu Wang
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Jin-Kun Wen
- Department of Biochemistry and Molecular Biology, Ministry of Education of China, Hebei Medical University, No. 361 Zhongshan E Rd, Shijiazhuang, 050017, China
| | - Chang-Bao Qu
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China.
| |
Collapse
|
5
|
Zhou W, Cai H, Li J, Xu H, Wang X, Men H, Zheng Y, Cai L. Potential roles of mediator Complex Subunit 13 in Cardiac Diseases. Int J Biol Sci 2021; 17:328-338. [PMID: 33390853 PMCID: PMC7757031 DOI: 10.7150/ijbs.52290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/25/2020] [Indexed: 12/16/2022] Open
Abstract
Mediator complex subunit 13 (MED13, previously known as THRAP1 and TRAP240) is a subunit of the cyclin-dependent kinase 8 (CDK8) kinase module in the eukaryotic mediator complex. MED13 has been known to play critical roles in cell cycle, development, and growth. The purpose of this review is to comprehensively discuss its newly identified potential roles in myocardial energy metabolism and non-metabolic cardiovascular diseases. Evidence indicates that cardiac MED13 mainly participates in the regulation of nuclear receptor signaling, which drives the transcription of genes involved in modulating cardiac and systemic energy homeostasis. MED13 is also associated with several pathological conditions, such as metabolic syndrome and thyroid disease-associated heart failure. Therefore, MED13 constitutes a potential therapeutic target for the regulation of metabolic disorders and other cardiovascular diseases.
Collapse
Affiliation(s)
- Wenqian Zhou
- The Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China.,Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA
| | - He Cai
- The Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China
| | - Jia Li
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA.,Department of Nephrology, the First Hospital of Jilin University, Changchun 130021, China
| | - He Xu
- Department of Respiratory Medicine, the First Hospital of Jilin University (Eastern Division), Changchun 130031, China
| | - Xiang Wang
- The Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China.,Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA
| | - Hongbo Men
- The Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China.,Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA
| | - Yang Zheng
- The Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China
| | - Lu Cai
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA.,Department of Pharmacology and Toxicology, the University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
6
|
Zhang N, Song Y, Xu Y, Liu J, Shen Y, Zhou L, Yu J, Yang M. MED13L integrates Mediator-regulated epigenetic control into lung cancer radiosensitivity. Am J Cancer Res 2020; 10:9378-9394. [PMID: 32802198 PMCID: PMC7415817 DOI: 10.7150/thno.48247] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022] Open
Abstract
To date, efforts to improve non-small-cell lung cancer (NSCLC) outcomes with increased radiation dose have not been successful. Identification of novel druggable targets that are capable to modulate NSCLC radiosensitivity may provide a way forward. Mediator complex is implicated in gene expression control, but it remains unclear how Mediator dysfunction is involved in cancer radiotherapy. Methods: The biologic functions of miR-4497, MED13L and PRKCA in NSCLC radiosensitivity were examined through biochemical assays including gene expression profilling, cell proliferation assay, colony formation assay, wound healing assay, transwell assay, dual luciferase reporter assay, xenograft models, immunoprecipitation, and chromatin immunoprecipitation sequencing. Clinical implications of miR-4497, MED13L and PRKCA in radiosensitivity were evaluated in NSCLC patients treated with concurrent chemoradiotherapy or radiotherapy alone. Results: We found that radiation can trigger disassemble of Mediator complex via silencing of MED13L by miR-4497 in NSCLC. Although not interrupting structure integrity of the core Mediator or the CDK8 kinase module, suppression of MED13L attenuated their physical interactions and reduced recruitment of acetyltransferase P300 to chromatin via Mediator. Silencing of MED13L therefore diminishes global H3K27ac signals written by P300, activities of enhancer and/or promoters and expression of multiple oncogenes, especially PRKCA. Inhibition of PRKCA expression potentiates the killing effect of radiotherapy in vitro and in vivo. Remarkably, high PRKCA expression in NSCLC tissues is correlated with poor prognosis of patients received radiotherapy. Conclusions: Our study linking PRKCA to radiosensitivity through a novel mechanism may enable the rational targeting of PRKCA to unlock therapeutic potentials of NSCLC.
Collapse
|
7
|
Miao YL, Gambini A, Zhang Y, Padilla-Banks E, Jefferson WN, Bernhardt ML, Huang W, Li L, Williams CJ. Mediator complex component MED13 regulates zygotic genome activation and is required for postimplantation development in the mouse. Biol Reprod 2019; 98:449-464. [PMID: 29325037 DOI: 10.1093/biolre/ioy004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/08/2018] [Indexed: 12/21/2022] Open
Abstract
Understanding factors that regulate zygotic genome activation (ZGA) is critical for determining how cells are reprogrammed to become totipotent or pluripotent. There is limited information regarding how this process occurs physiologically in early mammalian embryos. Here, we identify a mediator complex subunit, MED13, as translated during mouse oocyte maturation and transcribed early from the zygotic genome. Knockdown and conditional knockout approaches demonstrate that MED13 is essential for ZGA in the mouse, in part by regulating expression of the embryo-specific chromatin remodeling complex, esBAF. The role of MED13 in ZGA is mediated in part by interactions with E2F transcription factors. In addition to MED13, its paralog, MED13L, is required for successful preimplantation embryo development. MED13L partially compensates for loss of MED13 function in preimplantation knockout embryos, but postimplantation development is not rescued by MED13L. Our data demonstrate an essential role for MED13 in supporting chromatin reprogramming and directed transcription of essential genes during ZGA.
Collapse
Affiliation(s)
- Yi-Liang Miao
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA.,Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction, Ministry of Education College of Animal Science and Technology, Huazhong Agricultural University, China
| | - Andrés Gambini
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Yingpei Zhang
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Elizabeth Padilla-Banks
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Wendy N Jefferson
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Miranda L Bernhardt
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Weichun Huang
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Leping Li
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Carmen J Williams
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| |
Collapse
|
8
|
Analysis of Polymorphisms in the Mediator Complex Subunit 13-like (Med13L) Gene in the Context of Immune Function and Development of Experimental Arthritis. Arch Immunol Ther Exp (Warsz) 2018; 66:365-377. [PMID: 29951696 PMCID: PMC6154033 DOI: 10.1007/s00005-018-0516-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/15/2018] [Indexed: 12/21/2022]
Abstract
The Mediator complex subunit 13-like (MED13L) protein is part of the multi-protein mediator complex and plays an important role in gene transcription. Polymorphisms in the MED13L gene have been linked to congenital heart anomalies and intellectual disabilities. Despite recent evidence of indirect links of MED13L to cytokine release and inflammation, impact of genetic variations in MED13L on immune cells remains unexplored. The B10.RIII and RIIIS/J mouse strains vary in susceptibility to induced experimental autoimmune disease models. From sequencing data of the two mouse strains, we identified six polymorphisms in the coding regions of Med13L. Using congenic mice, we studied the effect of these polymorphisms on immune cell development and function along with susceptibility to collagen-induced arthritis, an animal model for rheumatoid arthritis. Combining in vivo disease data, in vitro functional data, and computational analysis of the reported non-synonymous polymorphisms, we report that genetic polymorphisms in Med13L do not affect the immune phenotype in these mice and are predicted to be non-disease associated.
Collapse
|
9
|
Lee H, Joung JG, Shin HT, Kim DH, Kim Y, Kim H, Kwon OJ, Shim YM, Lee HY, Lee KS, Choi YL, Park WY, Hayes DN, Um SW. Genomic alterations of ground-glass nodular lung adenocarcinoma. Sci Rep 2018; 8:7691. [PMID: 29769567 PMCID: PMC5955945 DOI: 10.1038/s41598-018-25800-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/30/2018] [Indexed: 12/20/2022] Open
Abstract
In-depth molecular pathogenesis of ground-glass nodular lung adenocarcinoma has not been well understood. The objectives of this study were to identify genomic alterations in ground-glass nodular lung adenocarcinomas and to investigate whether viral transcripts were detected in these tumors. Nine patients with pure (n = 4) and part-solid (n = 5) ground-glass nodular adenocarcinomas were included. Six were females with a median age of 58 years. We performed targeted exon sequencing and RNA sequencing. EGFR (n = 10), IDH2 (n = 2), TP53 (n = 1), PTEN (n = 1), EPHB4 (n = 1), and BRAF (n = 1) were identified as driver mutations by targeted exon sequencing. Vasculogenesis-associated genes including NOTCH4 and TGFBR3 expression were significantly downregulated in adenocarcinoma tissue versus normal tissue (adjusted P values < 0.001 for both NOTCH4 and TGFBR3). In addition, five novel fusion gene loci were identified in four lung adenocarcinomas. However, no significant virus-associated transcripts were detected in tumors. In conclusions, EGFR, IDH2, TP53, PTEN, EPHB4, and BRAF were identified as putative driver mutations of ground-glass nodular adenocarcinomas. Five novel fusion genes were also identified in four tumors. Viruses do not appear to be involved in the tumorigenesis of ground-glass nodular lung adenocarcinoma.
Collapse
Affiliation(s)
- Hyun Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Je-Gun Joung
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Hyun-Tae Shin
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Duk-Hwan Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Yujin Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Hojoong Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - O Jung Kwon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Mog Shim
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ho Yun Lee
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyung Soo Lee
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yoon-La Choi
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - D Neil Hayes
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sang-Won Um
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
10
|
Wilke CM, Hess J, Klymenko SV, Chumak VV, Zakhartseva LM, Bakhanova EV, Feuchtinger A, Walch AK, Selmansberger M, Braselmann H, Schneider L, Pitea A, Steinhilber J, Fend F, Bösmüller HC, Zitzelsberger H, Unger K. Expression of miRNA-26b-5p and its target TRPS1 is associated with radiation exposure in post-Chernobyl breast cancer. Int J Cancer 2017; 142:573-583. [PMID: 28944451 DOI: 10.1002/ijc.31072] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 08/10/2017] [Accepted: 08/31/2017] [Indexed: 02/06/2023]
Abstract
Ionizing radiation is a well-recognized risk factor for the development of breast cancer. However, it is unknown whether radiation-specific molecular oncogenic mechanisms exist. We investigated post-Chernobyl breast cancers from radiation-exposed female clean-up workers and nonexposed controls for molecular changes. Radiation-associated alterations identified in the discovery cohort (n = 38) were subsequently validated in a second cohort (n = 39). Increased expression of hsa-miR-26b-5p was associated with radiation exposure in both of the cohorts. Moreover, downregulation of the TRPS1 protein, which is a transcriptional target of hsa-miR-26b-5p, was associated with radiation exposure. As TRPS1 overexpression is common in sporadic breast cancer, its observed downregulation in radiation-associated breast cancer warrants clarification of the specific functional role of TRPS1 in the radiation context. For this purpose, the impact of TRPS1 on the transcriptome was characterized in two radiation-transformed breast cell culture models after siRNA-knockdown. Deregulated genes upon TRPS1 knockdown were associated with DNA-repair, cell cycle, mitosis, cell migration, angiogenesis and EMT pathways. Furthermore, we identified the interaction partners of TRPS1 from the transcriptomic correlation networks derived from gene expression data on radiation-transformed breast cell culture models and sporadic breast cancer tissues provided by the TCGA database. The genes correlating with TRPS1 in the radiation-transformed breast cell lines were primarily linked to DNA damage response and chromosome segregation, while the transcriptional interaction partners in the sporadic breast cancers were mostly associated with apoptosis. Thus, upregulation of hsa-miR-26b-5p and downregulation of TRPS1 in radiation-associated breast cancer tissue samples suggests these molecules representing radiation markers in breast cancer.
Collapse
Affiliation(s)
- Christina M Wilke
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Julia Hess
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer', Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, 85764, Germany
| | - Sergiy V Klymenko
- National Research Center for Radiation Medicine of National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Vadim V Chumak
- National Research Center for Radiation Medicine of National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | | | - Elena V Bakhanova
- National Research Center for Radiation Medicine of National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Axel K Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Martin Selmansberger
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Herbert Braselmann
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer', Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, 85764, Germany
| | - Ludmila Schneider
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer', Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, 85764, Germany
| | - Adriana Pitea
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | | | - Falko Fend
- Institute of Pathology and Neuropathology, Tübingen, Germany
| | | | - Horst Zitzelsberger
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer', Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, 85764, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, München, Germany
| | - Kristian Unger
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer', Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, 85764, Germany
| |
Collapse
|
11
|
Asadollahi R, Zweier M, Gogoll L, Schiffmann R, Sticht H, Steindl K, Rauch A. Genotype-phenotype evaluation of MED13L defects in the light of a novel truncating and a recurrent missense mutation. Eur J Med Genet 2017. [PMID: 28645799 DOI: 10.1016/j.ejmg.2017.06.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A decade after the designation of MED13L as a gene and its link to intellectual disability (ID) and dextro-looped transposition of great arteries in 2003, we previously described a recognizable syndrome due to MED13L haploinsufficiency. Subsequent reports of 22 further patients diagnosed by genome-wide testing further delineated the syndrome with expansion of the phenotypic spectrum and showed reduced penetrance for congenital heart defects. We now report two novel patients identified by whole exome sequencing, one with a de novo MED13L truncating mutation and the other with a de novo missense mutation. The first patient indicates some facial resemblance to Kleefstra syndrome as a novel differential diagnosis, and the second patient shows, for the first time, recurrence of a MED13L missense mutation (p.(Asp860Gly)). Notably, our in silico modelling predicted this missense mutation to decrease the stability of an alpha-helix and thereby affecting the MED13L secondary structure, while the majority of published missense mutations remain variants of uncertain significance. Review of the reported patients with MED13L haploinsufficiency indicates moderate to severe ID and facial anomalies in all patients, as well as severe speech delay and muscular hypotonia in the majority. Further common signs include abnormal MRI findings of myelination defects and abnormal corpus callosum, ataxia and coordination problems, autistic features, seizures/abnormal EEG, or congenital heart defects, present in about 20-50% of the patients. With reference to facial anomalies, the majority of patients were reported to show broad/prominent forehead, low set ears, bitemporal narrowing, upslanting palpebral fissures, depressed/flat nasal bridge, bulbous nose, and abnormal chin, but macroglossia and horizontal eyebrows were also observed in ∼30%. The latter are especially important in the differential diagnosis of 1p36 deletion and Kleefstra syndromes, while the more common facial gestalt shows some resemblance to 22q11.2 deletion syndrome. Despite the fact that MED13L was found to be one of the most common ID genes in the Deciphering Developmental Disorders Study, further detailed patient descriptions are needed to explore the full clinical spectrum, potential genotype-phenotype correlations, as well as the role of missense mutations and potential mutational hotspots along the gene.
Collapse
Affiliation(s)
- Reza Asadollahi
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Markus Zweier
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Laura Gogoll
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Raphael Schiffmann
- Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Heinrich Sticht
- Institute of Biochemistry, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland; Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
12
|
Guo X, Koff JL, Moffitt AB, Cinar M, Ramachandiran S, Chen Z, Switchenko JM, Mosunjac M, Neill SG, Mann KP, Bagirov M, Du Y, Natkunam Y, Khoury HJ, Rossi MR, Harris W, Flowers CR, Lossos IS, Boise LH, Dave SS, Kowalski J, Bernal-Mizrachi L. Molecular impact of selective NFKB1 and NFKB2 signaling on DLBCL phenotype. Oncogene 2017; 36:4224-4232. [PMID: 28368397 DOI: 10.1038/onc.2017.90] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 02/15/2017] [Accepted: 02/26/2017] [Indexed: 12/15/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) has been categorized into two molecular subtypes that have prognostic significance, namely germinal center B-cell like (GCB) and activated B-cell like (ABC). Although ABC-DLBCL has been associated with NF-κB activation, the relationships between activation of specific NF-κB signals and DLBCL phenotype remain unclear. Application of novel gene expression classifiers identified two new DLBCL categories characterized by selective p100 (NF-κB2) and p105 (NF-κB1) signaling. Interestingly, our molecular studies showed that p105 signaling is predominantly associated with GCB subtype and histone mutations. Conversely, most tumors with p100 signaling displayed ABC phenotype and harbored ABC-associated mutations in genes such as MYD88 and PIM1. In vitro, MYD88 L265P mutation promoted p100 signaling through TAK1/IKKα and GSK3/Fbxw7a pathways, suggesting a novel role for this protein as an upstream regulator of p100. p100 signaling was engaged during activation of normal B cells, suggesting p100's role in ABC phenotype development. Additionally, silencing p100 in ABC-DLBCL cells resulted in a GCB-like phenotype, with suppression of Blimp, IRF4 and XBP1 and upregulation of BCL6, whereas introduction of p52 or p100 into GC cells resulted in differentiation toward an ABC-like phenotype. Together, these findings identify specific roles for p100 and p105 signaling in defining DLBCL molecular subtypes and posit MYD88/p100 signaling as a regulator for B-cell activation.
Collapse
Affiliation(s)
- X Guo
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - J L Koff
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - A B Moffitt
- Duke Institute for Genome Sciences and Policy, Department of Medicine, Duke University, Durham, NC, USA
| | - M Cinar
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - S Ramachandiran
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Z Chen
- Department of Biostatistics and Bioinformatics, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - J M Switchenko
- Department of Biostatistics and Bioinformatics, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - M Mosunjac
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - S G Neill
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - K P Mann
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - M Bagirov
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Y Du
- Department of Pharmacology, Emory University, Atlanta, GA, USA
| | - Y Natkunam
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - H J Khoury
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - M R Rossi
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | - W Harris
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - C R Flowers
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - I S Lossos
- Division of Hematology Oncology and Molecular and Cellular Pharmacology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - L H Boise
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - S S Dave
- Duke Institute for Genome Sciences and Policy, Department of Medicine, Duke University, Durham, NC, USA
| | - J Kowalski
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA.,Department of Biostatistics and Bioinformatics, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - L Bernal-Mizrachi
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| |
Collapse
|
13
|
Kruer TL, Dougherty SM, Reynolds L, Long E, de Silva T, Lockwood WW, Clem BF. Expression of the lncRNA Maternally Expressed Gene 3 (MEG3) Contributes to the Control of Lung Cancer Cell Proliferation by the Rb Pathway. PLoS One 2016; 11:e0166363. [PMID: 27832204 PMCID: PMC5104461 DOI: 10.1371/journal.pone.0166363] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 10/27/2016] [Indexed: 12/14/2022] Open
Abstract
Maternally expressed gene 3 (MEG3, mouse homolog Gtl2) encodes a long noncoding RNA (lncRNA) that is expressed in many normal tissues, but is suppressed in various cancer cell lines and tumors, suggesting it plays a functional role as a tumor suppressor. Hypermethylation has been shown to contribute to this loss of expression. We now demonstrate that MEG3 expression is regulated by the retinoblastoma protein (Rb) pathway and correlates with a change in cell proliferation. Microarray analysis of mouse embryonic fibroblasts (MEFs) isolated from mice with genetic deletion of all three Rb family members (TKO) revealed a significant silencing of Gtl2/MEG3 expression compared to WT MEFs, and re-expression of Gtl2/MEG3 caused decrease in cell proliferation and increased apoptosis. MEG3 levels also were suppressed in A549 lung cancer cells compared with normal human bronchial epithelial (NHBE) cells, and, similar to the TKO cells, re-constitution of MEG3 led to a decrease in cell proliferation and elevated apoptosis. Activation of pRb by treatment of A549 and SK-MES-1 cells with palbociclib, a CDK4/6 inhibitor, increased the expression of MEG3 in a dose-dependent manner, while knockdown of pRb/p107 attenuated this effect. In addition, expression of phosphorylation-deficient mutant of pRb increased MEG3 levels in both lung cancer cell types. Treatment of these cells with palbociclib also decreased the expression of pRb-regulated DNA methyltransferase 1 (DNMT1), while conversely, knockdown of DNMT1 resulted in increased expression of MEG3. As gene methylation has been suggested for MEG3 regulation, we found that palbociclib resulted in decreased methylation of the MEG3 locus similar to that observed with 5-aza-deoxycytidine. Anti-sense oligonucleotide silencing of drug-induced MEG3 expression in A549 and SK-MES-1 cells partially rescued the palbociclib-mediated decrease in cell proliferation, while analysis of the TCGA database revealed decreased MEG3 expression in human lung tumors harboring a disrupted RB pathway. Together, these data suggest that disruption of the pRb-DNMT1 pathway leads to a decrease in MEG3 expression, thereby contributing to the pro-proliferative state of certain cancer cells.
Collapse
Affiliation(s)
- Traci L. Kruer
- Department of Biochemistry and Molecular Genetics, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Susan M. Dougherty
- Department of Biochemistry and Molecular Genetics, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Lindsey Reynolds
- Department of Biochemistry and Molecular Genetics, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Elizabeth Long
- Department of Biochemistry and Molecular Genetics, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Tanya de Silva
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Integrative Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | - William W. Lockwood
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Integrative Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Brian F. Clem
- Department of Biochemistry and Molecular Genetics, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
14
|
Global and Targeted Proteomics of Prostate Cancer Cell Secretome: Combination of 2-Dimensional Image-Converted Analysis of Liquid Chromatography and Mass Spectrometry and In Silico Selection Selected Reaction Monitoring Analysis. J Pharm Sci 2016; 105:3440-3452. [DOI: 10.1016/j.xphs.2016.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 08/23/2016] [Accepted: 08/23/2016] [Indexed: 01/22/2023]
|
15
|
Novel de novo heterozygous loss-of-function variants in MED13L and further delineation of the MED13L haploinsufficiency syndrome. Eur J Hum Genet 2015; 23:1499-504. [PMID: 25712080 DOI: 10.1038/ejhg.2015.19] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 12/09/2014] [Accepted: 12/19/2014] [Indexed: 01/16/2023] Open
Abstract
MED13L haploinsufficiency has recently been described as responsible for syndromic intellectual disability. We planned a search for causative gene variants in seven subjects with intellectual disability and overlapping dysmorphic facial features such as bulbous nasal tip, short mouth and straight eyebrows. We found two de novo frameshift variants in MED13L, consisting in single-nucleotide deletion (c.3765delC) and duplication (c.607dupT). A de novo nonsense variant (c.4420A>T) in MED13L was detected in a further subject in the course of routine whole-exome sequencing. By analyzing the clinical data of our patients along with those recently described in the literature, we confirm that there is a common, recognizable phenotype associated with MED13L haploinsufficiency, which includes intellectual disability and a distinctive facial appearance. Congenital heart diseases are found in some subjects with various degree of severity. Our observation of cleft palate, ataxia, epilepsy and childhood leukemia observed in single cases broadens the known clinical spectrum. Haploinsufficiency for MED13L should be considered in the differential diagnosis of the 1p36 microdeletion syndrome, due to overlapping dysmorphic facial features in some patients. The introduction of massive parallel-sequencing techniques into clinical practice is expected to allow for detection of other causative point variants in MED13L. Analysis of genomic data in connection with deep clinical evaluation of patients could elucidate genetic heterogeneity of the MED13L haploinsufficiency phenotype.
Collapse
|
16
|
Grants JM, Goh GYS, Taubert S. The Mediator complex of Caenorhabditis elegans: insights into the developmental and physiological roles of a conserved transcriptional coregulator. Nucleic Acids Res 2015; 43:2442-53. [PMID: 25634893 PMCID: PMC4344494 DOI: 10.1093/nar/gkv037] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Mediator multiprotein complex (‘Mediator’) is an important transcriptional coregulator that is evolutionarily conserved throughout eukaryotes. Although some Mediator subunits are essential for the transcription of all protein-coding genes, others influence the expression of only subsets of genes and participate selectively in cellular signaling pathways. Here, we review the current knowledge of Mediator subunit function in the nematode Caenorhabditis elegans, a metazoan in which established and emerging genetic technologies facilitate the study of developmental and physiological regulation in vivo. In this nematode, unbiased genetic screens have revealed critical roles for Mediator components in core developmental pathways such as epidermal growth factor (EGF) and Wnt/β-catenin signaling. More recently, important roles for C. elegans Mediator subunits have emerged in the regulation of lipid metabolism and of systemic stress responses, engaging conserved transcription factors such as nuclear hormone receptors (NHRs). We emphasize instances where similar functions for individual Mediator subunits exist in mammals, highlighting parallels between Mediator subunit action in nematode development and in human cancer biology. We also discuss a parallel between the association of the Mediator subunit MED12 with several human disorders and the role of its C. elegans ortholog mdt-12 as a regulatory hub that interacts with numerous signaling pathways.
Collapse
Affiliation(s)
- Jennifer M Grants
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada Centre for Molecular Medicine and Therapeutics, Child & Family Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Grace Y S Goh
- Centre for Molecular Medicine and Therapeutics, Child & Family Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada Graduate Program in Cell and Developmental Biology, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Stefan Taubert
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada Centre for Molecular Medicine and Therapeutics, Child & Family Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada Graduate Program in Cell and Developmental Biology, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
17
|
Lu X, Wang L, Lin X, Huang J, Charles Gu C, He M, Shen H, He J, Zhu J, Li H, Hixson JE, Wu T, Dai J, Lu L, Shen C, Chen S, He L, Mo Z, Hao Y, Mo X, Yang X, Li J, Cao J, Chen J, Fan Z, Li Y, Zhao L, Li H, Lu F, Yao C, Yu L, Xu L, Mu J, Wu X, Deng Y, Hu D, Zhang W, Ji X, Guo D, Guo Z, Zhou Z, Yang Z, Wang R, Yang J, Zhou X, Yan W, Sun N, Gao P, Gu D. Genome-wide association study in Chinese identifies novel loci for blood pressure and hypertension. Hum Mol Genet 2014; 24:865-74. [PMID: 25249183 DOI: 10.1093/hmg/ddu478] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Hypertension is a common disorder and the leading risk factor for cardiovascular disease and premature deaths worldwide. Genome-wide association studies (GWASs) in the European population have identified multiple chromosomal regions associated with blood pressure, and the identified loci altogether explain only a small fraction of the variance for blood pressure. The differences in environmental exposures and genetic background between Chinese and European populations might suggest potential different pathways of blood pressure regulation. To identify novel genetic variants affecting blood pressure variation, we conducted a meta-analysis of GWASs of blood pressure and hypertension in 11 816 subjects followed by replication studies including 69 146 additional individuals. We identified genome-wide significant (P < 5.0 × 10(-8)) associations with blood pressure, which included variants at three new loci (CACNA1D, CYP21A2, and MED13L) and a newly discovered variant near SLC4A7. We also replicated 14 previously reported loci, 8 (CASZ1, MOV10, FGF5, CYP17A1, SOX6, ATP2B1, ALDH2, and JAG1) at genome-wide significance, and 6 (FIGN, ULK4, GUCY1A3, HFE, TBX3-TBX5, and TBX3) at a suggestive level of P = 1.81 × 10(-3) to 5.16 × 10(-8). These findings provide new mechanistic insights into the regulation of blood pressure and potential targets for treatments.
Collapse
Affiliation(s)
- Xiangfeng Lu
- State Key Laboratory of Cardiovascular Disease Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Laiyuan Wang
- State Key Laboratory of Cardiovascular Disease National Human Genome Center at Beijing, Beijing 100176, China
| | - Xu Lin
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Jianfeng Huang
- Hypertension Division Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - C Charles Gu
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Meian He
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab for Modern Toxicology School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China Section of Clinical Epidemiology, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Jingwen Zhu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Huaixing Li
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | - James E Hixson
- Department of Epidemiology, University of Texas School of Public Health, Houston, TX 77025, USA
| | - Tangchun Wu
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Juncheng Dai
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab for Modern Toxicology School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China Section of Clinical Epidemiology, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ling Lu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Chong Shen
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab for Modern Toxicology School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Shufeng Chen
- State Key Laboratory of Cardiovascular Disease Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Lin He
- Bio-X Institutes, Ministry of Education Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Medical Scientific Research Center and Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yongchen Hao
- State Key Laboratory of Cardiovascular Disease Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Xingbo Mo
- State Key Laboratory of Cardiovascular Disease Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Xueli Yang
- State Key Laboratory of Cardiovascular Disease Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Jianxin Li
- State Key Laboratory of Cardiovascular Disease Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Jie Cao
- State Key Laboratory of Cardiovascular Disease Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Jichun Chen
- State Key Laboratory of Cardiovascular Disease Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Zhongjie Fan
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ying Li
- State Key Laboratory of Cardiovascular Disease Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Liancheng Zhao
- State Key Laboratory of Cardiovascular Disease Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Hongfan Li
- National Human Genome Center at Beijing, Beijing 100176, China
| | - Fanghong Lu
- Cardio-Cerebrovascular Control and Research Center, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Cailiang Yao
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Lin Yu
- Department of Cardiology, Fujian Provincial People's Hospital, Fuzhou, Fujian 350004, China
| | - Lihua Xu
- Department of Cardiology, Affiliated Hospital of Beihua University, Beihua University, Jilin 132011, China
| | - Jianjun Mu
- Department of Cardiology, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shannxi 710061, China
| | - Xianping Wu
- Center for Chronic and Noncommunicable Disease Control and Prevention, Sichuan Center of Disease Control and Prevention, Chengdu, Sichuan 610041, China
| | - Ying Deng
- Center for Chronic and Noncommunicable Disease Control and Prevention, Sichuan Center of Disease Control and Prevention, Chengdu, Sichuan 610041, China
| | - Dongsheng Hu
- School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China School of Medicine, Shenzhen University, Shenzhen, Guangdong 518000, China
| | - Weidong Zhang
- School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xu Ji
- Department of Internal Medicine, Xinle Red Cross Hospital, Xinle, Hebei 050700, China
| | - Dongshuang Guo
- Department of Internal Medicine, Yuxian Renmin Hospital, Yuxian, Shanxi 045100, China
| | - Zhirong Guo
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhengyuan Zhou
- Changshu Center of Disease Control and Prevention, Changshu, Jiangsu 215501, China
| | - Zili Yang
- Nantong Center of Disease Control and Prevention, Nantong, Jiangsu 226007, China
| | - Renping Wang
- Department of Internal Medicine, Shijiazhuang Greatwall Hospital, Shijiazhuang, Hebei 052260, China
| | - Jun Yang
- Department of Cardiology, Hanzhong People's Hospital, Hanzhong, Shannxi 723000, China
| | - Xiaoyang Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Weili Yan
- Department of Clinical Epidemiology, Children's Hospital of Fudan University, Shanghai 200062, China
| | - Ningling Sun
- Department of Heart Center, Peking University People's Hospital, Beijing 100044, China and
| | - Pingjin Gao
- State Key Laboratory of Medical Genetics, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Dongfeng Gu
- State Key Laboratory of Cardiovascular Disease Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| |
Collapse
|
18
|
Dehainault C, Garancher A, Castéra L, Cassoux N, Aerts I, Doz F, Desjardins L, Lumbroso L, Montes de Oca R, Almouzni G, Stoppa-Lyonnet D, Pouponnot C, Gauthier-Villars M, Houdayer C. The survival gene MED4 explains low penetrance retinoblastoma in patients with large RB1 deletion. Hum Mol Genet 2014; 23:5243-50. [PMID: 24858910 DOI: 10.1093/hmg/ddu245] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Retinoblastoma is a non-hereditary as well as an inherited pediatric tumor of the developing retina resulting from the inactivation of both copies of the RB1 tumor suppressor gene. Familial retinoblastoma is a highly penetrant genetic disease that usually develops by carrying germline mutations that inactivate one allele of the RB1 gene, leading to multiple retinoblastomas. However, large and complete germline RB1 deletions are associated with low or no tumor risk for reasons that remain unknown. In this study, we define a minimal genomic region associated with this low penetrance. This region encompasses few genes including MED4 a subunit of the mediator complex. We further show that retinoblastoma RB1 -/- cells cannot survive in the absence of MED4, both in vitro and in orthotopic xenograft models in vivo, therefore identifying MED4 as a survival gene in retinoblastoma. We propose that the contiguous loss of the adjacent retinoblastoma gene, MED4, explains the low penetrance in patients with large deletions that include both RB1 and MED4. Our findings also point to another synthetic lethal target in tumors with inactivated RB1 and highlight the importance of collateral damage in carcinogenesis.
Collapse
Affiliation(s)
| | - Alexandra Garancher
- Institut Curie, Section Recherche, Orsay, France CNRS UMR3347 INSERM U1021 Université Paris Sud and
| | | | - Nathalie Cassoux
- Département d'oncologie chirurgicale, service d'Ophtalmologie, Institut Curie, Paris, France Laboratoire d'Investigation Préclinique, Institut Curie, Paris, France
| | - Isabelle Aerts
- Département d'oncologie pédiatrique, adolescents jeunes adultes and
| | - François Doz
- Département d'oncologie pédiatrique, adolescents jeunes adultes and Université Paris Descartes, Sciences pharmaceutiques et biologiques, Sorbonne Paris Cité, Paris, France
| | - Laurence Desjardins
- Département d'oncologie chirurgicale, service d'Ophtalmologie, Institut Curie, Paris, France
| | - Livia Lumbroso
- Département d'oncologie chirurgicale, service d'Ophtalmologie, Institut Curie, Paris, France
| | | | | | - Dominique Stoppa-Lyonnet
- Service de Génétique, Institut Curie, Paris, France INSERM U830, centre de recherche de l'Institut Curie, Paris, France Université Paris Descartes, Sciences pharmaceutiques et biologiques, Sorbonne Paris Cité, Paris, France
| | - Celio Pouponnot
- Institut Curie, Section Recherche, Orsay, France CNRS UMR3347 INSERM U1021 Université Paris Sud and
| | | | - Claude Houdayer
- Service de Génétique, Institut Curie, Paris, France INSERM U830, centre de recherche de l'Institut Curie, Paris, France Université Paris Descartes, Sciences pharmaceutiques et biologiques, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
19
|
Mahata B, Zhang X, Kolodziejczyk AA, Proserpio V, Haim-Vilmovsky L, Taylor AE, Hebenstreit D, Dingler FA, Moignard V, Göttgens B, Arlt W, McKenzie ANJ, Teichmann SA. Single-cell RNA sequencing reveals T helper cells synthesizing steroids de novo to contribute to immune homeostasis. Cell Rep 2014; 7:1130-42. [PMID: 24813893 PMCID: PMC4039991 DOI: 10.1016/j.celrep.2014.04.011] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 03/23/2014] [Accepted: 04/03/2014] [Indexed: 12/24/2022] Open
Abstract
T helper 2 (Th2) cells regulate helminth infections, allergic disorders, tumor immunity, and pregnancy by secreting various cytokines. It is likely that there are undiscovered Th2 signaling molecules. Although steroids are known to be immunoregulators, de novo steroid production from immune cells has not been previously characterized. Here, we demonstrate production of the steroid pregnenolone by Th2 cells in vitro and in vivo in a helminth infection model. Single-cell RNA sequencing and quantitative PCR analysis suggest that pregnenolone synthesis in Th2 cells is related to immunosuppression. In support of this, we show that pregnenolone inhibits Th cell proliferation and B cell immunoglobulin class switching. We also show that steroidogenic Th2 cells inhibit Th cell proliferation in a Cyp11a1 enzyme-dependent manner. We propose pregnenolone as a “lymphosteroid,” a steroid produced by lymphocytes. We speculate that this de novo steroid production may be an intrinsic phenomenon of Th2-mediated immune responses to actively restore immune homeostasis. Differential upregulation of the steroid biosynthetic pathway during Th2 differentiation T helper cells produce the steroid pregnenolone in vitro and in vivo Steroidogenic Th2 cells suppress Th cell proliferation in a Cyp11a1-dependent manner Pregnenolone inhibits B cell immunoglobulin class switching in vitro
Collapse
Affiliation(s)
- Bidesh Mahata
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK; MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 OQH, UK; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
| | - Xiuwei Zhang
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | | | - Valentina Proserpio
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK; MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 OQH, UK; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Liora Haim-Vilmovsky
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK; MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 OQH, UK; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Angela E Taylor
- Centre for Endocrinology, Diabetes, and Metabolism, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, UK
| | - Daniel Hebenstreit
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 OQH, UK; School of Life Sciences, The University of Warwick, Coventry CV4 7AL, UK
| | - Felix A Dingler
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 OQH, UK
| | - Victoria Moignard
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust and MRC Cambridge Stem Cell Institute, Hills Road, Cambridge CB2 0XY, UK
| | - Berthold Göttgens
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust and MRC Cambridge Stem Cell Institute, Hills Road, Cambridge CB2 0XY, UK
| | - Wiebke Arlt
- Centre for Endocrinology, Diabetes, and Metabolism, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, UK
| | - Andrew N J McKenzie
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 OQH, UK
| | - Sarah A Teichmann
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
| |
Collapse
|
20
|
Schiano C, Casamassimi A, Rienzo M, de Nigris F, Sommese L, Napoli C. Involvement of Mediator complex in malignancy. Biochim Biophys Acta Rev Cancer 2013; 1845:66-83. [PMID: 24342527 DOI: 10.1016/j.bbcan.2013.12.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 11/28/2013] [Accepted: 12/09/2013] [Indexed: 12/22/2022]
Abstract
Mediator complex (MED) is an evolutionarily conserved multiprotein, fundamental for growth and survival of all cells. In eukaryotes, the mRNA transcription is dependent on RNA polymerase II that is associated to various molecules like general transcription factors, MED subunits and chromatin regulators. To date, transcriptional machinery dysfunction has been shown to elicit broad effects on cell proliferation, development, differentiation, and pathologic disease induction, including cancer. Indeed, in malignant cells, the improper activation of specific genes is usually ascribed to aberrant transcription machinery. Here, we focus our attention on the correlation of MED subunits with carcinogenesis. To date, many subunits are mutated or display altered expression in human cancers. Particularly, the role of MED1, MED28, MED12, CDK8 and Cyclin C in cancer is well documented, although several studies have recently reported a possible association of other subunits with malignancy. Definitely, a major comprehension of the involvement of the whole complex in cancer may lead to the identification of MED subunits as novel diagnostic/prognostic tumour markers to be used in combination with imaging technique in clinical oncology, and to develop novel anti-cancer targets for molecular-targeted therapy.
Collapse
Affiliation(s)
- Concetta Schiano
- Institute of Diagnostic and Nuclear Development (SDN), IRCCS, Via E. Gianturco 113, 80143 Naples, Italy
| | - Amelia Casamassimi
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via L. De Crecchio 7, 80138 Naples, Italy.
| | - Monica Rienzo
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Filomena de Nigris
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Linda Sommese
- U.O.C. Immunohematology, Transfusion Medicine and Transplant Immunology [SIMT], Regional Reference Laboratory of Transplant Immunology [LIT], Azienda Universitaria Policlinico (AOU), 1st School of Medicine, Second University of Naples, Piazza Miraglia 2, 80138 Naples, Italy
| | - Claudio Napoli
- Institute of Diagnostic and Nuclear Development (SDN), IRCCS, Via E. Gianturco 113, 80143 Naples, Italy; Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via L. De Crecchio 7, 80138 Naples, Italy; U.O.C. Immunohematology, Transfusion Medicine and Transplant Immunology [SIMT], Regional Reference Laboratory of Transplant Immunology [LIT], Azienda Universitaria Policlinico (AOU), 1st School of Medicine, Second University of Naples, Piazza Miraglia 2, 80138 Naples, Italy
| |
Collapse
|
21
|
He X, Sanders SJ, Liu L, De Rubeis S, Lim ET, Sutcliffe JS, Schellenberg GD, Gibbs RA, Daly MJ, Buxbaum JD, State MW, Devlin B, Roeder K. Integrated model of de novo and inherited genetic variants yields greater power to identify risk genes. PLoS Genet 2013; 9:e1003671. [PMID: 23966865 PMCID: PMC3744441 DOI: 10.1371/journal.pgen.1003671] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 06/10/2013] [Indexed: 01/31/2023] Open
Abstract
De novo mutations affect risk for many diseases and disorders, especially those with early-onset. An example is autism spectrum disorders (ASD). Four recent whole-exome sequencing (WES) studies of ASD families revealed a handful of novel risk genes, based on independent de novo loss-of-function (LoF) mutations falling in the same gene, and found that de novo LoF mutations occurred at a twofold higher rate than expected by chance. However successful these studies were, they used only a small fraction of the data, excluding other types of de novo mutations and inherited rare variants. Moreover, such analyses cannot readily incorporate data from case-control studies. An important research challenge in gene discovery, therefore, is to develop statistical methods that accommodate a broader class of rare variation. We develop methods that can incorporate WES data regarding de novo mutations, inherited variants present, and variants identified within cases and controls. TADA, for Transmission And De novo Association, integrates these data by a gene-based likelihood model involving parameters for allele frequencies and gene-specific penetrances. Inference is based on a Hierarchical Bayes strategy that borrows information across all genes to infer parameters that would be difficult to estimate for individual genes. In addition to theoretical development we validated TADA using realistic simulations mimicking rare, large-effect mutations affecting risk for ASD and show it has dramatically better power than other common methods of analysis. Thus TADA's integration of various kinds of WES data can be a highly effective means of identifying novel risk genes. Indeed, application of TADA to WES data from subjects with ASD and their families, as well as from a study of ASD subjects and controls, revealed several novel and promising ASD candidate genes with strong statistical support. The genetic underpinnings of autism spectrum disorder (ASD) have proven difficult to determine, despite a wealth of evidence for genetic causes and ongoing effort to identify genes. Recently investigators sequenced the coding regions of the genomes from ASD children along with their unaffected parents (ASD trios) and identified numerous new candidate genes by pinpointing spontaneously occurring (de novo) mutations in the affected offspring. A gene with a severe (de novo) mutation observed in more than one individual is immediately implicated in ASD; however, the majority of severe mutations are observed only once per gene. These genes create a short list of candidates, and our results suggest about 50% are true risk genes. To strengthen our inferences, we develop a novel statistical method (TADA) that utilizes inherited variation transmitted to affected offspring in conjunction with (de novo) mutations to identify risk genes. Through simulations we show that TADA dramatically increases power. We apply this approach to nearly 1000 ASD trios and 2000 subjects from a case-control study and identify several promising genes. Through simulations and application we show that TADA's integration of sequencing data can be a highly effective means of identifying risk genes.
Collapse
Affiliation(s)
- Xin He
- Lane Center of Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Stephan J. Sanders
- Departments of Psychiatry and Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Li Liu
- Department of Statistics, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Psychiatry, Icahn Mount Sinai School of Medicine, New York, New York, United States of America
| | - Elaine T. Lim
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - James S. Sutcliffe
- Vanderbilt Brain Institute, Departments of Molecular Physiology & Biophysics and Psychiatry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Gerard D. Schellenberg
- Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mark J. Daly
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Joseph D. Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Psychiatry, Icahn Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Genetics and Genomic Sciences, Icahn Mount Sinai School of Medicine, New York, New York, United States of America
- Friedman Brain Institute, Icahn Mount Sinai School of Medicine, New York, New York, United States of America
| | - Matthew W. State
- Departments of Psychiatry and Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Kathryn Roeder
- Lane Center of Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Department of Statistics, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
22
|
Wang Z, Zhu S, Shen M, Liu J, Wang M, Li C, Wang Y, Deng A, Mei Q. STAT3 is involved in esophageal carcinogenesis through regulation of Oct-1. Carcinogenesis 2013; 34:678-688. [DOI: 10.1093/carcin/bgs361] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
23
|
Asadollahi R, Oneda B, Sheth F, Azzarello-Burri S, Baldinger R, Joset P, Latal B, Knirsch W, Desai S, Baumer A, Houge G, Andrieux J, Rauch A. Dosage changes of MED13L further delineate its role in congenital heart defects and intellectual disability. Eur J Hum Genet 2013; 21:1100-4. [PMID: 23403903 DOI: 10.1038/ejhg.2013.17] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 01/09/2013] [Accepted: 01/16/2013] [Indexed: 01/20/2023] Open
Abstract
A chromosomal balanced translocation disrupting the MED13L (Mediator complex subunit13-like) gene, encoding a subunit of the Mediator complex, was previously associated with transposition of the great arteries (TGA) and intellectual disability (ID), and led to the identification of missense mutations in three patients with isolated TGA. Recently, a homozygous missense mutation in MED13L was found in two siblings with non-syndromic ID from a consanguineous family. Here, we describe for the first time, three patients with copy number changes affecting MED13L and delineate a recognizable MED13L haploinsufficiency syndrome. Using high resolution molecular karyotyping, we identified two intragenic de novo frameshift deletions, likely resulting in haploinsufficiency, in two patients with a similar phenotype of hypotonia, moderate ID, conotruncal heart defect and facial anomalies. In both, Sanger sequencing of MED13L did not reveal any pathogenic mutation and exome sequencing in one patient showed no evidence for a non-allelic second hit. A further patient with hypotonia, learning difficulties and perimembranous VSD showed a 1 Mb de novo triplication in 12q24.2, including MED13L and MAP1LC3B2. Our findings show that MED13L haploinsufficiency in contrast to the previously observed missense mutations cause a distinct syndromic phenotype. Additionally, a MED13L copy number gain results in a milder phenotype. The clinical features suggesting a neurocristopathy may be explained by animal model studies indicating involvement of the Mediator complex subunit 13 in neural crest induction.
Collapse
Affiliation(s)
- Reza Asadollahi
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|