1
|
Zhao WJ, Qian Y, Zhang YF, Yang AH, Cao JX, Qian HY, Liu Y, Zhu WZ. Endothelial FOSL1 drives angiotensin II-induced myocardial injury via AT1R-upregulated MYH9. Acta Pharmacol Sin 2024:10.1038/s41401-024-01410-9. [PMID: 39592734 DOI: 10.1038/s41401-024-01410-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/09/2024] [Indexed: 11/28/2024] Open
Abstract
Vascular remodeling represents a pathological basis for myocardial pathologies, including myocardial hypertrophy and myocardial infarction, which can ultimately lead to heart failure. The molecular mechanism of angiotensin II (Ang II)-induced vascular remodeling following myocardial infarction reperfusion is complex and not yet fully understood. In this study, we examined the effect of Ang II infusion on cardiac vascular remodeling in mice. Single-cell sequencing showed Ang II induced cytoskeletal pathway enrichment and that FOS like-1 (FOSL1) affected mouse cardiac endothelial dysfunction by pseudotime analysis. Myosin heavy chain 9 (MYH9) was predominantly expressed in primary cardiac endothelial cells. The Ang II type I receptor blocker telmisartan and the protein kinase C inhibitor staurosporine suppressed Ang II-induced upregulation of MYH9 and FOSL1 phosphorylation in human umbilical vein endothelial cells. Silencing MYH9 abolished Ang II-mediated inhibition of angiogenesis in human umbilical vein endothelial cells, and attenuated AngII-induced vascular hyperpermeability. We found that FOSL1 directly bound to the MYH9 promoter and thus activated transcription of MYH9 by the dual luciferase reporter and chromatin immunoprecipitation assays, leading to vascular dysfunction. In vivo, 6 weeks after injecting adeno-associated virus-ENT carrying the TEK tyrosine kinase (tie) promoter-driven short hairpin RNA for silencing FOSL1 (AAV-tie-shFOSL1), cardiac function represented by the ejection fraction and fractional shortening was improved, myocardial fibrosis was decreased, protein levels of phosphorylated FOSL1, MYH9, and collagen type I alpha were reduced, and cardiac vascular density was recovered in mice with endothelial Fosl1-specific knockdown in Ang II-infused mice. In ischemia-reperfusion mice, AAV-shFosl1 mice had a reduced infarct size and preserved cardiac function compared with control AAV mice. Our findings suggest a critical role of the FOSL1/MYH9 axis in hindering Ang II-induced vascular remodeling, and we identified FOSL1 as a potential therapeutic target in endothelial cell injuries induced by myocardial ischemia-reperfusion.
Collapse
Affiliation(s)
- Wen-Jing Zhao
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, 226001, China
- Cancer Research Center Nantong, Nantong Tumor Hospital and Tumor Hospital Affiliated to Nantong University, Nantong, 226006, China
| | - Yi Qian
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, 226001, China
| | - Yi-Feng Zhang
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, 226001, China
| | - Ai-Hua Yang
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, 226001, China
| | - Jia-Xin Cao
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, 226001, China
| | - Hong-Yan Qian
- Cancer Research Center Nantong, Nantong Tumor Hospital and Tumor Hospital Affiliated to Nantong University, Nantong, 226006, China
| | - Yi Liu
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, 226001, China
| | - Wei-Zhong Zhu
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, 226001, China.
| |
Collapse
|
2
|
Hodapp SJ, Gravel N, Kannan N, Newton AC. Cancer-associated mutations in protein kinase C theta are loss-of-function. Biochem J 2024; 481:759-775. [PMID: 38752473 PMCID: PMC11346454 DOI: 10.1042/bcj20240148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 06/11/2024]
Abstract
The Ca2+-independent, but diacylglycerol-regulated, novel protein kinase C (PKC) theta (θ) is highly expressed in hematopoietic cells where it participates in immune signaling and platelet function. Mounting evidence suggests that PKCθ may be involved in cancer, particularly blood cancers, breast cancer, and gastrointestinal stromal tumors, yet how to target this kinase (as an oncogene or as a tumor suppressor) has not been established. Here, we examine the effect of four cancer-associated mutations, R145H/C in the autoinhibitory pseudosubstrate, E161K in the regulatory C1A domain, and R635W in the regulatory C-terminal tail, on the cellular activity and stability of PKCθ. Live-cell imaging studies using the genetically-encoded fluorescence resonance energy transfer-based reporter for PKC activity, C kinase activity reporter 2 (CKAR2), revealed that the pseudosubstrate and C1A domain mutations impaired autoinhibition to increase basal signaling. This impaired autoinhibition resulted in decreased stability of the protein, consistent with the well-characterized behavior of Ca2+-regulated PKC isozymes wherein mutations that impair autoinhibition are paradoxically loss-of-function because the mutant protein is degraded. In marked contrast, the C-terminal tail mutation resulted in enhanced autoinhibition and enhanced stability. Thus, the examined mutations were loss-of-function by different mechanisms: mutations that impaired autoinhibition promoted the degradation of PKC, and those that enhanced autoinhibition stabilized an inactive PKC. Supporting a general loss-of-function of PKCθ in cancer, bioinformatics analysis revealed that protein levels of PKCθ are reduced in diverse cancers, including lung, renal, head and neck, and pancreatic. Our results reveal that PKCθ function is lost in cancer.
Collapse
Affiliation(s)
- Stefanie J. Hodapp
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, U.S.A
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, U.S.A
| | - Nathan Gravel
- Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, U.S.A
| | - Natarajan Kannan
- Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, U.S.A
| | - Alexandra C. Newton
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, U.S.A
| |
Collapse
|
3
|
Khedri A, Guo S, Ramar V, Hudson B, Liu M. FOSL1's Oncogene Roles in Glioma/Glioma Stem Cells and Tumorigenesis: A Comprehensive Review. Int J Mol Sci 2024; 25:5362. [PMID: 38791400 PMCID: PMC11121637 DOI: 10.3390/ijms25105362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
This review specifically examines the important function of the oncoprotein FOSL1 in the dimeric AP-1 transcription factor, which consists of FOS-related components. FOSL1 is identified as a crucial controller of invasion and metastatic dissemination, making it a potential target for therapeutic treatment in cancer patients. The review offers a thorough examination of the regulatory systems that govern the influence exerted on FOSL1. These include a range of changes that occur throughout the process of transcription and after the translation of proteins. We have discovered that several non-coding RNAs, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), play a significant role in regulating FOSL1 expression by directly interacting with its mRNA transcripts. Moreover, an investigation into the functional aspects of FOSL1 reveals its involvement in apoptosis, proliferation, and migration. This work involves a comprehensive analysis of the complex signaling pathways that support these diverse activities. Furthermore, particular importance is given to the function of FOSL1 in coordinating the activation of several cytokines, such as TGF-beta, and the commencement of IL-6 and VEGF production in tumor-associated macrophages (TAMs) that migrate into the tumor microenvironment. There is a specific emphasis on evaluating the predictive consequences linked to FOSL1. Insights are now emerging on the developing roles of FOSL1 in relation to the processes that drive resistance and reliance on specific treatment methods. Targeting FOSL1 has a strong inhibitory effect on the formation and spread of specific types of cancers. Despite extensive endeavors, no drugs targeting AP-1 or FOSL1 for cancer treatment have been approved for clinical use. Hence, it is imperative to implement innovative approaches and conduct additional verifications.
Collapse
Affiliation(s)
- Azam Khedri
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Shanchun Guo
- RCMI Cancer Research Center, Department of Chemistry, New Orleans, LA 70125, USA
| | - Vanajothi Ramar
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - BreAnna Hudson
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Mingli Liu
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| |
Collapse
|
4
|
Xu X, Bok I, Jasani N, Wang K, Chadourne M, Mecozzi N, Deng O, Welsh EA, Kinose F, Rix U, Karreth FA. PTEN Lipid Phosphatase Activity Suppresses Melanoma Formation by Opposing an AKT/mTOR/FRA1 Signaling Axis. Cancer Res 2024; 84:388-404. [PMID: 38193852 PMCID: PMC10842853 DOI: 10.1158/0008-5472.can-23-1730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/27/2023] [Accepted: 11/17/2023] [Indexed: 01/10/2024]
Abstract
Inactivating mutations in PTEN are prevalent in melanoma and are thought to support tumor development by hyperactivating the AKT/mTOR pathway. Conversely, activating mutations in AKT are relatively rare in melanoma, and therapies targeting AKT or mTOR have shown disappointing outcomes in preclinical models and clinical trials of melanoma. This has led to the speculation that PTEN suppresses melanoma by opposing AKT-independent pathways, potentially through noncanonical functions beyond its lipid phosphatase activity. In this study, we examined the mechanisms of PTEN-mediated suppression of melanoma formation through the restoration of various PTEN functions in PTEN-deficient cells or mouse models. PTEN lipid phosphatase activity predominantly inhibited melanoma cell proliferation, invasion, and tumor growth, with minimal contribution from its protein phosphatase and scaffold functions. A drug screen underscored the exquisite dependence of PTEN-deficient melanoma cells on the AKT/mTOR pathway. Furthermore, activation of AKT alone was sufficient to counteract several aspects of PTEN-mediated melanoma suppression, particularly invasion and the growth of allograft tumors. Phosphoproteomics analysis of the lipid phosphatase activity of PTEN validated its potent inhibition of AKT and many of its known targets, while also identifying the AP-1 transcription factor FRA1 as a downstream effector. The restoration of PTEN dampened FRA1 translation by inhibiting AKT/mTOR signaling, and FRA1 overexpression negated aspects of PTEN-mediated melanoma suppression akin to AKT. This study supports AKT as the key mediator of PTEN inactivation in melanoma and identifies an AKT/mTOR/FRA1 axis as a driver of melanomagenesis. SIGNIFICANCE PTEN suppresses melanoma predominantly through its lipid phosphatase function, which when lost, elevates FRA1 levels through AKT/mTOR signaling to promote several aspects of melanomagenesis.
Collapse
Affiliation(s)
- Xiaonan Xu
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Ilah Bok
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Cancer Biology PhD program, University of South Florida, Tampa, Florida
| | - Neel Jasani
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Cancer Biology PhD program, University of South Florida, Tampa, Florida
| | - Kaizhen Wang
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Cancer Biology PhD program, University of South Florida, Tampa, Florida
| | - Manon Chadourne
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Nicol Mecozzi
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Cancer Biology PhD program, University of South Florida, Tampa, Florida
| | - Ou Deng
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Eric A. Welsh
- Biostatistics and Bioinformatics Shared Resource, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Fumi Kinose
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Uwe Rix
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Oncologic Sciences, University of South Florida, Tampa, Florida
| | - Florian A. Karreth
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Oncologic Sciences, University of South Florida, Tampa, Florida
| |
Collapse
|
5
|
Hu S, Wang M, Ji A, Yang J, Gao R, Li X, Sun L, Wang J, Zhang Y, Liu H. Mutant p53 and ELK1 co-drive FRA-1 expression to induce metastasis in breast cancer. FEBS Lett 2023; 597:3087-3101. [PMID: 37971884 DOI: 10.1002/1873-3468.14774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/17/2023] [Accepted: 10/02/2023] [Indexed: 11/19/2023]
Abstract
Tumor-associated p53 mutations induce activities different from wild-type p53, thus causing loss of the protein's tumor inhibition function. The cells carrying p53 mutations have more aggressive characteristics related to invasion, metastasis, proliferation, and cell survival. By comparing the gene expression profiles of mutant p53 (mutp53) and mutp53 silenced cohorts, we found that FOS-related antigen-1 (FRA-1), which is encoded by FOSL1, is a potential effector of mutp53-mediated metastasis. We demonstrate that the expression of FRA-1, a gatekeeper of mesenchymal-epithelial transition, is elevated in the presence of p53 mutations. Mechanistically, mutant p53 cooperates with the transcription factor ELK1 in binding and activating the promoter of FOSL1, thus fostering lung metastasis. This study reveals new insights into how mutant p53 contributes to metastasis in breast cancer.
Collapse
Affiliation(s)
- Sike Hu
- Tianjin Institute of Medical and Pharmaceutical Sciences, China
| | - Manxue Wang
- Tianjin Institute of Medical and Pharmaceutical Sciences, China
| | - Ailing Ji
- Tianjin Institute of Medical and Pharmaceutical Sciences, China
| | - Jie Yang
- Tianjin Institute of Medical and Pharmaceutical Sciences, China
| | - Ruifang Gao
- Tianjin Institute of Medical and Pharmaceutical Sciences, China
| | - Xia Li
- Tianjin Institute of Medical and Pharmaceutical Sciences, China
| | - Lili Sun
- Tianjin Medicine and Health Research Center, China
| | - Jing Wang
- Tianjin Institute of Medical and Pharmaceutical Sciences, China
| | - Ying Zhang
- Tianjin Medicine and Health Research Center, China
| | - Hongbin Liu
- Tianjin Medicine and Health Research Center, China
| |
Collapse
|
6
|
Li S, Wei Y, Sun X, Liu M, Zhu M, Yuan Y, Zhang J, Dong Y, Hu K, Ma S, Zhang X, Xu B, Jiang H, Gan L, Liu T. JUNB mediates oxaliplatin resistance via the MAPK signaling pathway in gastric cancer by chromatin accessibility and transcriptomic analysis. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1784-1796. [PMID: 37337631 PMCID: PMC10679881 DOI: 10.3724/abbs.2023119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/19/2023] [Indexed: 06/21/2023] Open
Abstract
Currently, platinum-containing regimens are the most commonly used regimens for advanced gastric cancer patients, and chemotherapy resistance is one of the main reasons for treatment failure. Thus, it is important to reveal the mechanism of oxaliplatin resistance and to seek effective intervention strategies to improve chemotherapy sensitivity, thereby improving the survival and prognosis of gastric cancer patients. To understand the molecular mechanisms of oxaliplatin resistance, we generate an oxaliplatin-resistant gastric cancer cell line and conduct assay for transposase-accessible chromatin sequencing (ATAC-seq) and RNA sequencing (RNA-seq) for both parental and oxaliplatin-resistant AGS cells. A total of 3232 genomic regions are identified to have higher accessibility in oxaliplatin-resistant cells, and DNA-binding motif analysis identifies JUNB as the core transcription factor in the regulatory network. JUNB is overexpressed in oxaliplatin-resistant gastric cancer cells, and its upregulation is associated with poor prognosis in gastric cancer patients, which is validated by our tissue microarray data. Moreover, chromatin immunoprecipitation sequencing (ChIP-seq) analysis reveals that JUNB binds to the transcriptional start site of key genes involved in the MAPK signaling pathway. Knockdown of JUNB inhibits the MAPK signaling pathway and restores sensitivity to oxaliplatin. Combined treatment with the ERK inhibitor piperlongumine or MEK inhibitor trametinib effectively overcomes oxaliplatin resistance. This study provides evidence that JUNB mediates oxaliplatin resistance in gastric cancer by activating the MAPK pathway. The combination of MAPK inhibitors with oxaliplatin overcomes resistance to oxaliplatin, providing a promising treatment opportunity for oxaliplatin-resistant gastric cancer patients.
Collapse
Affiliation(s)
- Suyao Li
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Yichou Wei
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Xun Sun
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Mengling Liu
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Mengxuan Zhu
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Yitao Yuan
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Jiayu Zhang
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Yu Dong
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Keshu Hu
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Sining Ma
- Department of Obstetrics and GynecologyZhongshan HospitalShanghai200032China
| | - Xiuping Zhang
- Department of OncologyZhongshan Hospital (Xiamen)Fudan UniversityXiamen361004China
| | - Bei Xu
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
- Cancer CenterZhongshan HospitalFudan UniversityShanghai200032China
| | - Hesheng Jiang
- Department of SurgerySouthwest HealthcareSouthern California Medical Education ConsortiumTemecula Valley HospitalTemeculaCA92592USA
| | - Lu Gan
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
- Cancer CenterZhongshan HospitalFudan UniversityShanghai200032China
| | - Tianshu Liu
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
- Cancer CenterZhongshan HospitalFudan UniversityShanghai200032China
| |
Collapse
|
7
|
Bejjani F, Evanno E, Mahfoud S, Tolza C, Zibara K, Piechaczyk M, Jariel-Encontre I. Multiple Fra-1-bound enhancers showing different molecular and functional features can cooperate to repress gene transcription. Cell Biosci 2023; 13:129. [PMID: 37464380 DOI: 10.1186/s13578-023-01077-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND How transcription factors (TFs) down-regulate gene expression remains ill-understood, especially when they bind to multiple enhancers contacting the same gene promoter. In particular, it is not known whether they exert similar or significantly different molecular effects at these enhancers. RESULTS To address this issue, we used a particularly well-suited study model consisting of the down-regulation of the TGFB2 gene by the TF Fra-1 in Fra-1-overexpressing cancer cells, as Fra-1 binds to multiple enhancers interacting with the TGFB2 promoter. We show that Fra-1 does not repress TGFB2 transcription via reducing RNA Pol II recruitment at the gene promoter but by decreasing the formation of its transcription-initiating form. This is associated with complex long-range chromatin interactions implicating multiple molecularly and functionally heterogeneous Fra-1-bound transcriptional enhancers distal to the TGFB2 transcriptional start site. In particular, the latter display differential requirements upon the presence and the activity of the lysine acetyltransferase p300/CBP. Furthermore, the final transcriptional output of the TGFB2 gene seems to depend on a balance between the positive and negative effects of Fra-1 at these enhancers. CONCLUSION Our work unveils complex molecular mechanisms underlying the repressive actions of Fra-1 on TGFB2 gene expression. This has consequences for our general understanding of the functioning of the ubiquitous transcriptional complex AP-1, of which Fra-1 is the most documented component for prooncogenic activities. In addition, it raises the general question of the heterogeneity of the molecular functions of TFs binding to different enhancers regulating the same gene.
Collapse
Affiliation(s)
- Fabienne Bejjani
- IGMM, Univ Montpellier, CNRS, Montpellier, France
- DSST, ER045, PRASE, Lebanese University, Beirut, Lebanon
| | | | - Samantha Mahfoud
- IGMM, Univ Montpellier, CNRS, Montpellier, France
- DSST, ER045, PRASE, Lebanese University, Beirut, Lebanon
| | - Claire Tolza
- IGMM, Univ Montpellier, CNRS, Montpellier, France
| | - Kazem Zibara
- DSST, ER045, PRASE, Lebanese University, Beirut, Lebanon
- Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | | | - Isabelle Jariel-Encontre
- IGMM, Univ Montpellier, CNRS, Montpellier, France.
- Institut de Recherche en Cancérologie de Montpellier, IRCM, INSERM U1194, ICM, Université de Montpellier, Montpellier, France.
| |
Collapse
|
8
|
Casalino L, Talotta F, Matino I, Verde P. FRA-1 as a Regulator of EMT and Metastasis in Breast Cancer. Int J Mol Sci 2023; 24:ijms24098307. [PMID: 37176013 PMCID: PMC10179602 DOI: 10.3390/ijms24098307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/21/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Among FOS-related components of the dimeric AP-1 transcription factor, the oncoprotein FRA-1 (encoded by FOSL1) is a key regulator of invasion and metastasis. The well-established FRA-1 pro-invasive activity in breast cancer, in which FOSL1 is overexpressed in the TNBC (Triple Negative Breast Cancer)/basal subtypes, correlates with the FRA-1-dependent transcriptional regulation of EMT (Epithelial-to-Mesenchymal Transition). After summarizing the major findings on FRA-1 in breast cancer invasiveness, we discuss the FRA-1 mechanistic links with EMT and cancer cell stemness, mediated by transcriptional and posttranscriptional interactions between FOSL1/FRA-1 and EMT-regulating transcription factors, miRNAs, RNA binding proteins and cytokines, along with other target genes involved in EMT. In addition to the FRA-1/AP-1 effects on the architecture of target promoters, we discuss the diagnostic and prognostic significance of the EMT-related FRA-1 transcriptome, along with therapeutic implications. Finally, we consider several novel perspectives regarding the less explored roles of FRA-1 in the tumor microenvironment and in control of the recently characterized hybrid EMT correlated with cancer cell plasticity, stemness, and metastatic potential. We will also examine the application of emerging technologies, such as single-cell analyses, along with animal models of TNBC and tumor-derived CTCs and PDXs (Circulating Tumor Cells and Patient-Derived Xenografts) for studying the FRA-1-mediated mechanisms in in vivo systems of EMT and metastasis.
Collapse
Affiliation(s)
- Laura Casalino
- Institute of Genetics and Biophysics "A. Buzzati Traverso", Consiglio Nazionale delle Ricerche (CNR), Via Pietro Castellino, 111, 80131 Naples, Italy
| | - Francesco Talotta
- Institute of Genetics and Biophysics "A. Buzzati Traverso", Consiglio Nazionale delle Ricerche (CNR), Via Pietro Castellino, 111, 80131 Naples, Italy
| | - Ilenia Matino
- Institute of Genetics and Biophysics "A. Buzzati Traverso", Consiglio Nazionale delle Ricerche (CNR), Via Pietro Castellino, 111, 80131 Naples, Italy
| | - Pasquale Verde
- Institute of Genetics and Biophysics "A. Buzzati Traverso", Consiglio Nazionale delle Ricerche (CNR), Via Pietro Castellino, 111, 80131 Naples, Italy
| |
Collapse
|
9
|
He YY, Zhou HF, Chen L, Wang YT, Xie WL, Xu ZZ, Xiong Y, Feng YQ, Liu GY, Li X, Liu J, Wu QP. The Fra-1: Novel role in regulating extensive immune cell states and affecting inflammatory diseases. Front Immunol 2022; 13:954744. [PMID: 36032067 PMCID: PMC9404335 DOI: 10.3389/fimmu.2022.954744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Fra-1(Fos-related antigen1), a member of transcription factor activator protein (AP-1), plays an important role in cell proliferation, apoptosis, differentiation, inflammation, oncogenesis and tumor metastasis. Accumulating evidence suggest that the malignancy and invasive ability of tumors can be significantly changed by directly targeting Fra-1. Besides, the effects of Fra-1 are gradually revealed in immune and inflammatory settings, such as arthritis, pneumonia, psoriasis and cardiovascular disease. These regulatory mechanisms that orchestrate immune and non-immune cells underlie Fra-1 as a potential therapeutic target for a variety of human diseases. In this review, we focus on the current knowledge of Fra-1 in immune system, highlighting its unique importance in regulating tissue homeostasis. In addition, we also discuss the possible critical intervention strategy in diseases, which also outline future research and development avenues.
Collapse
|
10
|
Zeng F, He J, Jin X, Liao Q, Chen Z, Peng H, Zhou Y. FRA-1: A key factor regulating signal transduction of tumor cells and a potential target molecule for tumor therapy. Biomed Pharmacother 2022; 150:113037. [PMID: 35658206 DOI: 10.1016/j.biopha.2022.113037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 11/19/2022] Open
Abstract
Fos-related antigen-1 (FRA-1) is a member of activator protein-1 (AP-1) transcription factor superfamily, and FRA-1 is highly expressed in colon cancer, breast cancer, gastric cancer, lung cancer, bladder cancer, and other tumors. The expression level of FRA-1 is closely related to the processes of tumor cell proliferation, apoptosis, transformation, migration, and invasion, which is a potential therapeutic target and prognostic factor for many tumors. Clarifying the detailed mechanism of action of FRA-1 could provide the theoretical basis for tumor diagnosis, treatment, and prognosis, and is of great significance for the study of tumor etiology and pathogenesis. In this paper, the expression levels and influencing factors of FRA-1 in various tumor tissues and cells are summarized, as well as the effect of FRA-1 expression level on the biological behavior of tumor cells and the signal transduction mechanism. At the same time, the signal transduction mechanism of FRA-1 in inflammation was expounded. In addition, the related metabolites, drugs and non-coding RNA that affect the expression and function of FRA-1 were summarized. Finally, it illustrates that FRA-1 may be taken as a key factor for tumor prognosis and a potential therapeutic target. This review provides a theoretical basis for the systematic understanding of the relationship between FRA-1 and tumors, its function, and possible mechanism.
Collapse
Affiliation(s)
- Feng Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Junyu He
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Xi Jin
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Zhifang Chen
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Honghua Peng
- Department of The Oncology, Third Xianya Hospital, Xiangya School of Medicine, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, China.
| | - Yanhong Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
11
|
Xu Q, Yu J, Jia G, Li Z, Xiong H. Crocin attenuates NF-κB-mediated inflammation and proliferation in breast cancer cells by down-regulating PRKCQ. Cytokine 2022; 154:155888. [PMID: 35447530 DOI: 10.1016/j.cyto.2022.155888] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 03/06/2022] [Accepted: 04/06/2022] [Indexed: 12/11/2022]
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer confronting women worldwide. Crocin, a glycosylated carotenoid extracted from Crocus sativus L., possesses anti-cancer and anti-inflammatory activities. This study tried to explore the influences of crocin on proliferation and inflammation of BC cells, and to investigate the possible mechanism. The protein levels of protein kinase C theta (PRKCQ) and nuclear factor kappa B (NF-κB) p-p65 and p65 were examined using western blot analysis. The potential targets of crocin were predicted using the PharmMapper database. Cell viability and proliferation were determined utilizing CCK-8 and EdU incorporation assays, respectively. Inflammation was assessed by detecting the levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) using RT-qPCR and ELISA. Results showed that crocin inhibited NF-κB activation and suppressed cell viability and proliferation in BC cells. Crocin caused a significant reduction of levels of TNF-α and IL-1β, suggesting that crocin suppressed inflammation in BC cells. NF-κB inhibition decreased proliferation and inflammation in BC cells. Additionally, PRKCQ was identified as a potential target of crocin according to PharmMapper database. Crocin treatment inhibited the activation of NF-κB in BC cells by reducing PRKCQ expression. Mechanistically, PRKCQ-dependent activation of NF-κB pathway reversed the effects of crocin on the proliferation and inflammation in BC cells. In conclusion, crocin inhibited NF-κB-mediated inflammation and proliferation in BC cells through reducing PRKCQ expression.
Collapse
Affiliation(s)
- Quanxiao Xu
- Department of Oncology, Nanyang First People's Hospital Affiliated to Henan University, Nanyang 473004, China
| | - Jinsong Yu
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang 473004, China; Key Laboratory of Thyroid Tumor Prevention and Treatment of Nanyang, Nanyang First People's Hospital Affiliated to Henan University, Nanyang 473004, China
| | - Guangwei Jia
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang 473004, China; Key Laboratory of Thyroid Tumor Prevention and Treatment of Nanyang, Nanyang First People's Hospital Affiliated to Henan University, Nanyang 473004, China.
| | - Zhong Li
- Department of General Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang 473004, China
| | - Hui Xiong
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang 473004, China; Key Laboratory of Thyroid Tumor Prevention and Treatment of Nanyang, Nanyang First People's Hospital Affiliated to Henan University, Nanyang 473004, China
| |
Collapse
|
12
|
Selective Targeting of Protein Kinase C (PKC)-θ Nuclear Translocation Reduces Mesenchymal Gene Signatures and Reinvigorates Dysfunctional CD8 + T Cells in Immunotherapy-Resistant and Metastatic Cancers. Cancers (Basel) 2022; 14:cancers14061596. [PMID: 35326747 PMCID: PMC8946217 DOI: 10.3390/cancers14061596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Some important signaling proteins that control how cells grow and behave not only act in the cytoplasm but also in the nucleus, where they tether to chromatin. This is especially true for protein kinase C (PKC)-θ, which acts in the nucleus to mediate cancer hallmarks that drive metastasis and in normal T cells. However, current PKC-θ inhibitors are either non-specific or target only its cytoplasmic function. In a bid to develop a novel class of PKC-θ inhibitor that maintains cytoplasmic signaling but inhibits its nuclear function, here we present a novel PKC-θ inhibitor (nPKC-θi2) that specifically inhibits nuclear translocation of PKC-θ without interrupting normal signaling in healthy T cells. We show for the first time that nPKC-θ mediates immunotherapy resistance via its activity in circulating tumor cells and dysfunctional CD8+ T cells. Our novel inhibitor provides a means to target this process by simultaneously overcoming T-cell exhaustion and cancer stem cell burden. As part of a sequential approach with other therapies, this work paves the way for improving outcomes in cancer patients with immunotherapy-resistant relapse and metastasis. Abstract Protein kinase C (PKC)-θ is a serine/threonine kinase with both cytoplasmic and nuclear functions. Nuclear chromatin-associated PKC-θ (nPKC-θ) is increasingly recognized to be pathogenic in cancer, whereas its cytoplasmic signaling is restricted to normal T-cell function. Here we show that nPKC-θ is enriched in circulating tumor cells (CTCs) in patients with triple-negative breast cancer (TNBC) brain metastases and immunotherapy-resistant metastatic melanoma and is associated with poor survival in immunotherapy-resistant disease. To target nPKC-θ, we designed a novel PKC-θ peptide inhibitor (nPKC-θi2) that selectively inhibits nPKC-θ nuclear translocation but not PKC-θ signaling in healthy T cells. Targeting nPKC-θ reduced mesenchymal cancer stem cell signatures in immunotherapy-resistant CTCs and TNBC xenografts. PKC-θ was also enriched in the nuclei of CD8+ T cells isolated from stage IV immunotherapy-resistant metastatic cancer patients. We show for the first time that nPKC-θ complexes with ZEB1, a key repressive transcription factor in epithelial-to-mesenchymal transition (EMT), in immunotherapy-resistant dysfunctional PD1+/CD8+ T cells. nPKC-θi2 inhibited the ZEB1/PKC-θ repressive complex to induce cytokine production in CD8+ T cells isolated from patients with immunotherapy-resistant disease. These data establish for the first time that nPKC-θ mediates immunotherapy resistance via its activity in CTCs and dysfunctional CD8+ T cells. Disrupting nPKC-θ but retaining its cytoplasmic function may offer a means to target metastases in combination with chemotherapy or immunotherapy.
Collapse
|
13
|
Casalino L, Talotta F, Cimmino A, Verde P. The Fra-1/AP-1 Oncoprotein: From the "Undruggable" Transcription Factor to Therapeutic Targeting. Cancers (Basel) 2022; 14:cancers14061480. [PMID: 35326630 PMCID: PMC8946526 DOI: 10.3390/cancers14061480] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
The genetic and epigenetic changes affecting transcription factors, coactivators, and chromatin modifiers are key determinants of the hallmarks of cancer. The acquired dependence on oncogenic transcriptional regulators, representing a major determinant of cancer cell vulnerability, points to transcription factors as ideal therapeutic targets. However, given the unavailability of catalytic activities or binding pockets for small-molecule inhibitors, transcription factors are generally regarded as undruggable proteins. Among components of the AP-1 complex, the FOS-family transcription factor Fra-1, encoded by FOSL1, has emerged as a prominent therapeutic target. Fra-1 is overexpressed in most solid tumors, in response to the BRAF-MAPK, Wnt-beta-catenin, Hippo-YAP, IL-6-Stat3, and other major oncogenic pathways. In vitro functional analyses, validated in onco-mouse models and corroborated by prognostic correlations, show that Fra-1-containing dimers control tumor growth and disease progression. Fra-1 participates in key mechanisms of cancer cell invasion, Epithelial-to-Mesenchymal Transition, and metastatic spreading, by driving the expression of EMT-inducing transcription factors, cytokines, and microRNAs. Here we survey various strategies aimed at inhibiting tumor growth, metastatic dissemination, and drug resistance by interfering with Fra-1 expression, stability, and transcriptional activity. We summarize several tools aimed at the design and tumor-specific delivery of Fra-1/AP-1-specific drugs. Along with RNA-based therapeutics targeting the FOSL1 gene, its mRNA, or cognate regulatory circRNAs, we will examine the exploitation of blocking peptides, small molecule inhibitors, and innovative Fra-1 protein degraders. We also consider the possible caveats concerning Fra-1 inhibition in specific therapeutic contexts. Finally, we discuss a recent suicide gene therapy-based approach, aimed at selectively killing the Fra-1-overexpressing neoplastic cells.
Collapse
Affiliation(s)
- Laura Casalino
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, Consiglio Nazionale dele Ricerche (CNR), 80131 Naples, Italy;
- Correspondence: (L.C.); (P.V.)
| | | | - Amelia Cimmino
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, Consiglio Nazionale dele Ricerche (CNR), 80131 Naples, Italy;
| | - Pasquale Verde
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, Consiglio Nazionale dele Ricerche (CNR), 80131 Naples, Italy;
- Correspondence: (L.C.); (P.V.)
| |
Collapse
|
14
|
Chadelle L, Liu J, Choesmel-Cadamuro V, Karginov AV, Froment C, Burlet-Schiltz O, Gandarillas S, Barreira Y, Segura C, Van Den Berghe L, Czaplicki G, Van Acker N, Dalenc F, Franchet C, Hahn KM, Wang X, Belguise K. PKCθ-mediated serine/threonine phosphorylations of FAK govern adhesion and protrusion dynamics within the lamellipodia of migrating breast cancer cells. Cancer Lett 2022; 526:112-130. [PMID: 34826547 PMCID: PMC9019305 DOI: 10.1016/j.canlet.2021.11.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/09/2021] [Accepted: 11/19/2021] [Indexed: 02/03/2023]
Abstract
The cytoskeleton and cell-matrix adhesions constitute a dynamic network that controls cellular behavior during development and cancer. The Focal Adhesion Kinase (FAK) is a central actor of these cell dynamics, promoting cell-matrix adhesion turnover and active membrane fluctuations. However, the initial steps leading to FAK activation and subsequent promotion of cell dynamics remain elusive. Here, we report that the serine/threonine kinase PKCθ participates in the initial steps of FAK activation. PKCθ, which is strongly expressed in aggressive human breast cancers, controls the dynamics of cell-matrix adhesions and active protrusions through direct FAK activation, thereby promoting cell invasion and lung metastases. Using various tools for in vitro and live cell studies, we precisely decipher the molecular mechanisms of FAK activation. PKCθ directly interacts with the FAK FERM domain to open FAK conformation through PKCθ's specific V3 domain, while phosphorylating FAK at newly identified serine/threonine residues within nascent adhesions, inducing cell dynamics and aggressive behavior. This study thus places PKCθ-directed FAK opening and phosphorylations as an original mechanism controlling dynamic, migratory, and invasive abilities of aggressive breast cancer cells, further strengthening the emerging oncogenic function of PKCθ.
Collapse
Affiliation(s)
- Lucie Chadelle
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Jiaying Liu
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Valérie Choesmel-Cadamuro
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Andrei V. Karginov
- Department of Pharmacology and Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Carine Froment
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sarah Gandarillas
- Service d’Expérimentation Animale, UMS 006/CREFRE Inserm/UPS, 31059, Toulouse, France
| | - Yara Barreira
- Service d’Expérimentation Animale, UMS 006/CREFRE Inserm/UPS, 31059, Toulouse, France
| | - Christele Segura
- Pole Technologique UMR1037, CRCT (Cancer Research Center of Toulouse), INSERM, UPS, F-31037, Toulouse, France
| | - Loïc Van Den Berghe
- Pole Technologique UMR1037, CRCT (Cancer Research Center of Toulouse), INSERM, UPS, F-31037, Toulouse, France
| | - Georges Czaplicki
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Nathalie Van Acker
- CHU Toulouse, Institut Universitaire du Cancer Toulouse – Oncopole ; Département d’Anatomie Pathologique, 1 avenue Irène-Joliot-Curie, 31059 Toulouse cedex, France
| | - Florence Dalenc
- Institut Claudius Regaud, Institut Universitaire du Cancer Toulouse – Oncopole ; Département d’oncologie médicale,1 avenue Irène-Joliot-Curie, 31059 Toulouse cedex, France
| | - Camille Franchet
- Institut Claudius Regaud, Institut Universitaire du Cancer Toulouse - Oncopole ; Département d’Anatomie Pathologique, 1 avenue Irène-Joliot-Curie, 31059 Toulouse cedex, France
| | - Klaus M. Hahn
- Department of Pharmacology and Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Xiaobo Wang
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France.,Correspondence should be addressed to K.B () and X.W. ()
| | - Karine Belguise
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France.,Correspondence should be addressed to K.B () and X.W. ()
| |
Collapse
|
15
|
Sobolev VV, Khashukoeva AZ, Evina OE, Geppe NA, Chebysheva SN, Korsunskaya IM, Tchepourina E, Mezentsev A. Role of the Transcription Factor FOSL1 in Organ Development and Tumorigenesis. Int J Mol Sci 2022; 23:1521. [PMID: 35163444 PMCID: PMC8835756 DOI: 10.3390/ijms23031521] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/25/2022] Open
Abstract
The transcription factor FOSL1 plays an important role in cell differentiation and tumorigenesis. Primarily, FOSL1 is crucial for the differentiation of several cell lineages, namely adipocytes, chondrocytes, and osteoblasts. In solid tumors, FOSL1 controls the progression of tumor cells through the epithelial-mesenchymal transformation. In this review, we summarize the available data on FOSL1 expression, stabilization, and degradation in the cell. We discuss how FOSL1 is integrated into the intracellular signaling mechanisms and provide a comprehensive analysis of FOSL1 influence on gene expression. We also analyze the pathological changes caused by altered Fosl1 expression in genetically modified mice. In addition, we dedicated a separate section of the review to the role of FOSL1 in human cancer. Primarily, we focus on the FOSL1 expression pattern in solid tumors, FOSL1 importance as a prognostic factor, and FOSL1 perspectives as a molecular target for anticancer therapy.
Collapse
Affiliation(s)
- Vladimir V. Sobolev
- Center for Theoretical Problems in Physico-Chemical Pharmacology, Russian Academy of Sciences, 109029 Moscow, Russia; (I.M.K.); (E.T.)
| | - Asiat Z. Khashukoeva
- Federal State Autonomous Educational Institution of Higher Education, N.I. Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation, 117997 Moscow, Russia;
| | - Olga E. Evina
- “JSC DK Medsi”, Medical and Diagnostics Center, 125284 Moscow, Russia;
| | - Natalia A. Geppe
- NF Filatov Clinical Institute of Children’s Health, I.M. Sechenov First MSMU, 119435 Moscow, Russia; (N.A.G.); (S.N.C.)
| | - Svetlana N. Chebysheva
- NF Filatov Clinical Institute of Children’s Health, I.M. Sechenov First MSMU, 119435 Moscow, Russia; (N.A.G.); (S.N.C.)
| | - Irina M. Korsunskaya
- Center for Theoretical Problems in Physico-Chemical Pharmacology, Russian Academy of Sciences, 109029 Moscow, Russia; (I.M.K.); (E.T.)
| | - Ekaterina Tchepourina
- Center for Theoretical Problems in Physico-Chemical Pharmacology, Russian Academy of Sciences, 109029 Moscow, Russia; (I.M.K.); (E.T.)
| | - Alexandre Mezentsev
- Center for Theoretical Problems in Physico-Chemical Pharmacology, Russian Academy of Sciences, 109029 Moscow, Russia; (I.M.K.); (E.T.)
| |
Collapse
|
16
|
TRIM47 activates NF-κB signaling via PKC-ε/PKD3 stabilization and contributes to endocrine therapy resistance in breast cancer. Proc Natl Acad Sci U S A 2021; 118:2100784118. [PMID: 34433666 DOI: 10.1073/pnas.2100784118] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Increasing attention has been paid to roles of tripartite motif-containing (TRIM) family proteins in cancer biology, often functioning as E3 ubiquitin ligases. In the present study, we focus on a contribution of TRIM47 to breast cancer biology, particularly to endocrine therapy resistance, which is a major clinical problem in breast cancer treatment. We performed immunohistochemical analysis of TRIM47 protein expression in 116 clinical samples of breast cancer patients with postoperative endocrine therapy using tamoxifen. Our clinicopathological study showed that higher immunoreactivity scores of TRIM47 were significantly associated with higher relapse rate of breast cancer patients (P = 0.012). As functional analyses, we manipulated TRIM47 expression in estrogen receptor-positive breast cancer cells MCF-7 and its 4-hydroxytamoxifen (OHT)-resistant derivative OHTR, which was established in a long-term culture with OHT. TRIM47 promoted both MCF-7 and OHTR cell proliferation. MCF-7 cells acquired tamoxifen resistance by overexpressing exogenous TRIM47. We found that TRIM47 enhances nuclear factor kappa-B (NF-κB) signaling, which further up-regulates TRIM47. We showed that protein kinase C epsilon (PKC-ε) and protein kinase D3 (PKD3), known as NF-κB-activating protein kinases, are directly associated with TRIM47 and stabilized in the presence of TRIM47. As an underlying mechanism, we showed TRIM47-dependent lysine 27-linked polyubiquitination of PKC-ε. These results indicate that TRIM47 facilitates breast cancer proliferation and endocrine therapy resistance by forming a ternary complex with PKC-ε and PKD3. TRIM47 and its associated kinases can be a potential diagnostic and therapeutic target for breast cancer refractory to endocrine therapy.
Collapse
|
17
|
Wang Y, Gao N, Feng Y, Cai M, Li Y, Xu X, Zhang H, Yao D. Protein kinase C theta (Prkcq) affects nerve degeneration and regeneration through the c-fos and c-jun pathways in injured rat sciatic nerves. Exp Neurol 2021; 346:113843. [PMID: 34418453 DOI: 10.1016/j.expneurol.2021.113843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/23/2021] [Accepted: 08/15/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Previous finding using DNA microarray and bioinformatics analysis, we have reported some key factors which regulated gene expression and signaling pathways in injured sciatic nerve during Wallerian Degeneration (WD). This research is focused on protein kinase C theta (Prkcq) participates in the regulation of the WD process. METHODS In this study, we explored the molecular mechanism by which Prkcq in Schwann cells (SCs) affects nerve degeneration and regeneration in vivo and in vitro after rat sciatic nerve injury. RESULTS Study of the cross-sectional model showed that Prkcq expression decreased significantly during sciatic nerve repair. Functional analysis showed that upregulation and downregulation of Prkcq could affect the proliferation, migration and apoptosis of Schwann cells and lead to the expression of related factors through the activation of the β-catenin, c-fos, and p-c-jun/c-jun pathways. CONCLUSION The study provides insights into the role of Prkcq in early WD during peripheral nerve degeneration and/or regeneration.
Collapse
Affiliation(s)
- Yi Wang
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Nannan Gao
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Yumei Feng
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Min Cai
- Medical School of Nantong University, Nantong, Jiangsu 226001, PR China.
| | - Yuting Li
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Xi Xu
- Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, PR China
| | - Huanhuan Zhang
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Dengbing Yao
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226019, PR China.
| |
Collapse
|
18
|
Bejjani F, Tolza C, Boulanger M, Downes D, Romero R, Maqbool M, Zine El Aabidine A, Andrau JC, Lebre S, Brehelin L, Parrinello H, Rohmer M, Kaoma T, Vallar L, Hughes J, Zibara K, Lecellier CH, Piechaczyk M, Jariel-Encontre I. Fra-1 regulates its target genes via binding to remote enhancers without exerting major control on chromatin architecture in triple negative breast cancers. Nucleic Acids Res 2021; 49:2488-2508. [PMID: 33533919 PMCID: PMC7968996 DOI: 10.1093/nar/gkab053] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 12/21/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
The ubiquitous family of dimeric transcription factors AP-1 is made up of Fos and Jun family proteins. It has long been thought to operate principally at gene promoters and how it controls transcription is still ill-understood. The Fos family protein Fra-1 is overexpressed in triple negative breast cancers (TNBCs) where it contributes to tumor aggressiveness. To address its transcriptional actions in TNBCs, we combined transcriptomics, ChIP-seqs, machine learning and NG Capture-C. Additionally, we studied its Fos family kin Fra-2 also expressed in TNBCs, albeit much less. Consistently with their pleiotropic effects, Fra-1 and Fra-2 up- and downregulate individually, together or redundantly many genes associated with a wide range of biological processes. Target gene regulation is principally due to binding of Fra-1 and Fra-2 at regulatory elements located distantly from cognate promoters where Fra-1 modulates the recruitment of the transcriptional co-regulator p300/CBP and where differences in AP-1 variant motif recognition can underlie preferential Fra-1- or Fra-2 bindings. Our work also shows no major role for Fra-1 in chromatin architecture control at target gene loci, but suggests collaboration between Fra-1-bound and -unbound enhancers within chromatin hubs sometimes including promoters for other Fra-1-regulated genes. Our work impacts our view of AP-1.
Collapse
Affiliation(s)
- Fabienne Bejjani
- IGMM, Univ Montpellier, CNRS, Montpellier, France
- PRASE, DSST, ER045, Lebanese University, Beirut, Lebanon
| | - Claire Tolza
- IGMM, Univ Montpellier, CNRS, Montpellier, France
| | | | - Damien Downes
- Medical Research Council, Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Raphaël Romero
- IMAG, Univ Montpellier, CNRS, Montpellier, France
- LIRMM, Univ Montpellier, CNRS, Montpellier, France
| | | | | | | | - Sophie Lebre
- IMAG, Univ Montpellier, CNRS, Montpellier, France
| | | | - Hughes Parrinello
- Montpellier GenomiX, MGX, BioCampus Montpellier, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
| | - Marine Rohmer
- Montpellier GenomiX, MGX, BioCampus Montpellier, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
| | - Tony Kaoma
- Computational Biomedecine, Quantitative Biology Unit, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Laurent Vallar
- Proteome and Genome Research Unit, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Jim R Hughes
- Medical Research Council, Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Kazem Zibara
- PRASE, DSST, ER045, Lebanese University, Beirut, Lebanon
- Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Charles-Henri Lecellier
- IGMM, Univ Montpellier, CNRS, Montpellier, France
- LIRMM, Univ Montpellier, CNRS, Montpellier, France
| | | | | |
Collapse
|
19
|
Nicolle A, Zhang Y, Belguise K. The Emerging Function of PKCtheta in Cancer. Biomolecules 2021; 11:biom11020221. [PMID: 33562506 PMCID: PMC7915540 DOI: 10.3390/biom11020221] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/22/2021] [Accepted: 02/02/2021] [Indexed: 12/30/2022] Open
Abstract
Protein Kinase C theta (PKCθ) is a serine/threonine kinase that belongs to the novel PKC subfamily. In normal tissue, its expression is restricted to skeletal muscle cells, platelets and T lymphocytes in which PKCθ controls several essential cellular processes such as survival, proliferation and differentiation. Particularly, PKCθ has been extensively studied for its role in the immune system where its translocation to the immunological synapse plays a critical role in T cell activation. Beyond its physiological role in immune responses, increasing evidence implicates PKCθ in the pathology of various diseases, especially autoimmune disorders and cancers. In this review, we discuss the implication of PKCθ in various types of cancers and the PKCθ-mediated signaling events controlling cancer initiation and progression. In these types of cancers, the high PKCθ expression leads to aberrant cell proliferation, migration and invasion resulting in malignant phenotype. The recent development and application of PKCθ inhibitors in the context of autoimmune diseases could benefit the emergence of treatment for cancers in which PKCθ has been implicated.
Collapse
|
20
|
A Network Pharmacology Approach to Explore the Mechanisms of Artemisiae scopariae Herba for the Treatment of Chronic Hepatitis B. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6614039. [PMID: 33623529 PMCID: PMC7875618 DOI: 10.1155/2021/6614039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/07/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023]
Abstract
Background As a traditional Chinese medicine, Artemisiae scopariae Herba (ASH) is used to treat various liver diseases. The purpose of this study was to explore the mechanisms of ASH for treating chronic hepatitis B (CHB) using a network pharmacological method. Methods Bioactive ingredients and related targets of ASH were obtained from Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. Gene names of targets were extracted from UniProt database. Differentially expressed genes (DEGs) of CHB were obtained from microarray dataset GSE83148. The intersect genes between DEGs and target genes were annotated using clusterProfiler package. The STRING database was used to obtain a network of protein-protein interactions. Cytoscape 3.7.2 was used to construct the “ingredient-gene-pathway” (IGP) network. Molecular docking studies were performed using Autodock vina. Results A total of 13 active components were extracted from TCMSP database. Fifteen intersect genes were obtained between 183 target genes and 403 DEGs of GSE83148. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis results showed that ASH against CHB mainly involved in toll-like receptor signaling pathway, cellular senescence, hepatitis B, and chemokine signaling pathway. We screened one hub compound, five core targets, and four key pathways from constructed networks. The docking results indicated the strong binding activity between quercetin and AKT1. Conclusions This study provides potential molecular mechanisms of ASH against CHB based on exploration of network pharmacology.
Collapse
|
21
|
Xing Q, Ji C, Zhu B, Cong R, Wang Y. Identification of small molecule drugs and development of a novel autophagy-related prognostic signature for kidney renal clear cell carcinoma. Cancer Med 2020; 9:7034-7051. [PMID: 32780567 PMCID: PMC7541166 DOI: 10.1002/cam4.3367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/15/2020] [Accepted: 07/22/2020] [Indexed: 12/24/2022] Open
Abstract
Abnormal autophagic levels have been implicated in the pathogenesis of multiple cancers, however, its role in tumors is complex and has not yet been explored clearly. Hence, we aimed to explore the prognostic values of autophagy-related genes (ARGs) for kidney renal clear cell carcinoma (KIRC). Differentially expressed ARGs and transcription factors (TFs) were identified in KIRC patients obtaining from the The Cancer Genome Atlas (TCGA) database. Then, networks between TFs and ARGs, gene ontology functional annotations and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were conducted. Next, we performed consensus clustering, COX regression analysis and Lasso regression analysis to identify the prognostic ARGs. Finally, an individual prognostic index (PI, riskScore) was established. Based on TCGA cohort and ArrayExpress cohort, Survival analysis, ROC curve, independent prognostic analysis, and clinical correlation analysis were also performed to evaluate this PI. Based on differentially expressed ARGs, KIRC patients were successfully divided into two clusters (P = 5.916e-04). AS for PI, it was constructed based on 11 ARGs and significantly classified KIRC patients into high-risk group and low-risk group in terms of OS (P = 4.885e-15 for TCGA cohort, P = 6.366e-03 for ArrayExpress cohort). AUC of its ROC curve reached 0.747 for TCGA cohort and 0.779 for ArrayExpress cohort. What's more, this PI was proven to be a valuable independent prognostic factor in both univariate and multivariate COX regression analysis (P < .001). Prognostic nomograms were also performed to visualize the relationship between individual predictors and survival rates in patients with KIRC. By means of connectivity map database, emetine, cephaeline and co-dergocrine mesilate related to ARGs were found to be negatively correlated with KIRC. This study provided an effective PI for KIRC and also displayed networks between TFs and ARGs. KIRC patients were successfully divided into two clusters based on differentially expressed ARGs. Besides, small molecule drugs related to ARGs were also identified for KIRC.
Collapse
Affiliation(s)
- Qianwei Xing
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, China
| | - Chengjian Ji
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bingye Zhu
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, China
| | - Rong Cong
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Wang
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
22
|
Byerly JH, Port ER, Irie HY. PRKCQ inhibition enhances chemosensitivity of triple-negative breast cancer by regulating Bim. Breast Cancer Res 2020; 22:72. [PMID: 32600444 PMCID: PMC7322866 DOI: 10.1186/s13058-020-01302-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/26/2020] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Protein kinase C theta, (PRKCQ/PKCθ) is a serine/threonine kinase that is highly expressed in a subset of triple-negative breast cancers (TNBC) and promotes their growth, anoikis resistance, epithelial-mesenchymal transition (EMT), and invasion. Here, we show that PRKCQ regulates the sensitivity of TNBC cells to apoptosis triggered by standard-of-care chemotherapy by regulating levels of pro-apoptotic Bim. METHODS To determine the effects of PRKCQ expression on chemotherapy-induced apoptosis, shRNA and cDNA vectors were used to modulate the PRKCQ expression in MCF-10A breast epithelial cells or triple-negative breast cancer cells (MDA-MB231Luc, HCC1806). A novel PRKCQ small-molecule inhibitor, 17k, was used to inhibit kinase activity. Viability and apoptosis of cells treated with PRKCQ cDNA/shRNA/inhibitor +/-chemotherapy were measured. Expression levels of Bcl2 family members were assessed. RESULTS Enhanced expression of PRKCQ is sufficient to suppress apoptosis triggered by paclitaxel or doxorubicin treatment. Downregulation of PRKCQ also enhanced the apoptosis of chemotherapy-treated TNBC cells. Regulation of chemotherapy sensitivity by PRKCQ mechanistically occurs via regulation of levels of Bim, a pro-apoptotic Bcl2 family member; suppression of Bim prevents the enhanced apoptosis observed with combined PRKCQ downregulation and chemotherapy treatment. Regulation of Bim and chemotherapy sensitivity is significantly dependent on PRKCQ kinase activity; overexpression of a catalytically inactive PRKCQ does not suppress Bim or chemotherapy-associated apoptosis. Furthermore, PRKCQ kinase inhibitor treatment suppressed growth, increased anoikis and Bim expression, and enhanced apoptosis of chemotherapy-treated TNBC cells, phenocopying the effects of PRKCQ downregulation. CONCLUSIONS These studies support PRKCQ inhibition as an attractive therapeutic strategy and complement to chemotherapy to inhibit the growth and survival of TNBC cells.
Collapse
Affiliation(s)
- Jessica H Byerly
- Division of Hematology and Medical Oncology, Department of Medicine, New York, USA
| | - Elisa R Port
- Department of Surgery, Mount Sinai Hospital, New York, NY, 10029, USA
| | - Hanna Y Irie
- Division of Hematology and Medical Oncology, Department of Medicine, New York, USA. .,Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, USA.
| |
Collapse
|
23
|
Expression and function of FRA1 protein in tumors. Mol Biol Rep 2019; 47:737-752. [PMID: 31612408 DOI: 10.1007/s11033-019-05123-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022]
Abstract
AP-1 is a dimeric complex that is composed of JUN, FOS, ATF and MAF protein families. FOS-related antigen 1 (FRA1) which encoded by FOSL1 gene, belongs to the FOS protein family, and mainly forms an AP-1 complex with the protein of the JUN family to exert an effect. Regulation of FRA1 occurs at levels of transcription and post-translational modification, and phosphorylation is the major post-translational modification. FRA1 is mainly regulated by the mitogen-activated protein kinases signaling pathway and is degraded by ubiquitin-independent proteasomes. FRA1 can affect biological functions, such as tumor proliferation, differentiation, invasion and apoptosis. Studies have demonstrated that FRA1 is abnormally expressed in many tumors and plays a relevant role, but the specific condition varies from the target organs. FRA1 is overexpressed in breast cancer, lung cancer, colorectal cancer, prostate cancer, nasopharyngeal cancer, thyroid cancer and other tumors. However, the expression of FRA1 is decreased in cervical cancer, and the expression of FRA1 in ovarian cancer and oral squamous cell carcinoma is still controversial. In this review, we present a detailed description of the regulatory factors and functions of FRA1, also, the expression of FRA1 in various tumors and its function in relative tumor.
Collapse
|
24
|
Tolza C, Bejjani F, Evanno E, Mahfoud S, Moquet-Torcy G, Gostan T, Maqbool MA, Kirsh O, Piechaczyk M, Jariel-Encontre I. AP-1 Signaling by Fra-1 Directly Regulates HMGA1 Oncogene Transcription in Triple-Negative Breast Cancers. Mol Cancer Res 2019; 17:1999-2014. [PMID: 31300541 DOI: 10.1158/1541-7786.mcr-19-0036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/29/2019] [Accepted: 07/08/2019] [Indexed: 11/16/2022]
Abstract
The architectural chromatin protein HMGA1 and the transcription factor Fra-1 are both overexpressed in aggressive triple-negative breast cancers (TNBC), where they both favor epithelial-to-mesenchymal transition, invasion, and metastasis. We therefore explored the possibility that Fra-1 might be involved in enhanced transcription of the HMGA1 gene in TNBCs by exploiting cancer transcriptome datasets and resorting to functional studies combining RNA interference, mRNA and transcriptional run-on assays, chromatin immunoprecipitation, and chromosome conformation capture approaches in TNBC model cell lines. Our bioinformatic analysis indicated that Fra-1 and HMGA1 expressions positively correlate in primary samples of patients with TNBC. Our functional studies showed that Fra-1 regulates HMGA1 mRNA expression at the transcriptional level via binding to enhancer elements located in the last two introns of the gene. Although Fra-1 binding is required for p300/CBP recruitment at the enhancer domain, this recruitment did not appear essential for Fra-1-stimulated HMGA1 gene expression. Strikingly, Fra-1 binding is required for efficient recruitment of RNA Polymerase II at the HMGA1 promoter. This is permitted owing to chromatin interactions bringing about the intragenic Fra-1-binding enhancers and the gene promoter region. Fra-1 is, however, not instrumental for chromatin loop formation at the HMGA1 locus but rather exerts its transcriptional activity by exploiting chromatin interactions preexisting to its binding. IMPLICATIONS: We demonstrate that Fra-1 bound to an intragenic enhancer region is required for RNA Pol II recruitement at the HMGA1 promoter. Thereby, we provide novel insights into the mechanisms whereby Fra-1 exerts its prooncogenic transcriptional actions in the TNBC pathologic context.
Collapse
Affiliation(s)
- Claire Tolza
- Equipe Labellisée par la Ligue contre le Cancer, Montpellier, France.,Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Fabienne Bejjani
- Equipe Labellisée par la Ligue contre le Cancer, Montpellier, France.,Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Lebanese University of Beirut, Rafic Hariri Campus, Hadath, Beirut, Lebanon. M. Piechaczyk and I. Jariel-Encontre are the cosenior authors of this article
| | - Emilie Evanno
- Equipe Labellisée par la Ligue contre le Cancer, Montpellier, France.,Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Samantha Mahfoud
- Equipe Labellisée par la Ligue contre le Cancer, Montpellier, France.,Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Lebanese University of Beirut, Rafic Hariri Campus, Hadath, Beirut, Lebanon. M. Piechaczyk and I. Jariel-Encontre are the cosenior authors of this article
| | - Gabriel Moquet-Torcy
- Equipe Labellisée par la Ligue contre le Cancer, Montpellier, France.,Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Thierry Gostan
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Muhammad Ahmad Maqbool
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Olivier Kirsh
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Marc Piechaczyk
- Equipe Labellisée par la Ligue contre le Cancer, Montpellier, France.,Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Isabelle Jariel-Encontre
- Equipe Labellisée par la Ligue contre le Cancer, Montpellier, France. .,Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| |
Collapse
|
25
|
Song T, Yang J, Zhou J, Chen Z, Yuan X. A Review of the Mechanisms of Wnt7b in the Process of Malignant Tumor Invasion and Metastasis. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2019.523.532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Bejjani F, Evanno E, Zibara K, Piechaczyk M, Jariel-Encontre I. The AP-1 transcriptional complex: Local switch or remote command? Biochim Biophys Acta Rev Cancer 2019; 1872:11-23. [PMID: 31034924 DOI: 10.1016/j.bbcan.2019.04.003] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/19/2022]
Abstract
The ubiquitous family of AP-1 dimeric transcription complexes is involved in virtually all cellular and physiological functions. It is paramount for cells to reprogram gene expression in response to cues of many sorts and is involved in many tumorigenic processes. How AP-1 controls gene transcription has largely remained elusive till recently. The advent of the "omics" technologies permitting genome-wide studies of transcription factors has however changed and improved our view of AP-1 mechanistical actions. If these studies confirm that AP-1 can sometimes act as a local transcriptional switch operating in the vicinity of transcription start sites (TSS), they strikingly indicate that AP-1 principally operates as a remote command binding to distal enhancers, placing chromatin architecture dynamics at the heart of its transcriptional actions. They also unveil novel constraints operating on AP-1, as well as novel mechanisms used to regulate gene expression via transcription-pioneering-, chromatin-remodeling- and chromatin accessibility maintenance effects.
Collapse
Affiliation(s)
- Fabienne Bejjani
- Equipe Labellisée Ligue Nationale contre le Cancer, Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France; PRASE and Biology Department, Faculty of Sciences - I, Lebanese University, Beirut, Lebanon
| | - Emilie Evanno
- Equipe Labellisée Ligue Nationale contre le Cancer, Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Kazem Zibara
- PRASE and Biology Department, Faculty of Sciences - I, Lebanese University, Beirut, Lebanon
| | - Marc Piechaczyk
- Equipe Labellisée Ligue Nationale contre le Cancer, Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.
| | - Isabelle Jariel-Encontre
- Equipe Labellisée Ligue Nationale contre le Cancer, Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
27
|
Wang T, Song P, Zhong T, Wang X, Xiang X, Liu Q, Chen H, Xia T, Liu H, Niu Y, Hu Y, Xu L, Shao Y, Zhu L, Qi H, Shen J, Hou T, Fodde R, Shao J. The inflammatory cytokine IL-6 induces FRA1 deacetylation promoting colorectal cancer stem-like properties. Oncogene 2019; 38:4932-4947. [PMID: 30804456 PMCID: PMC6756002 DOI: 10.1038/s41388-019-0763-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/24/2019] [Accepted: 02/11/2019] [Indexed: 12/25/2022]
Abstract
Colorectal cancer (CRC) has long been known for its tight association with chronic inflammation, thought to play a key role in tumor onset and malignant progression through the modulation of cancer stemness. However, the underlying molecular and cellular mechanisms are still largely elusive. Here we show that the IL-6/STAT3 inflammatory signaling axis induces the deacetylation of FRA1 at the Lys-116 residue located within its DNA-binding domain. The HDAC6 deacetylase underlies this key modification leading to the increase of FRA1 transcriptional activity, the subsequent transactivation of NANOG expression, and the acquisition of stem-like cellular features. As validated in a large (n = 123) CRC cohort, IL-6 secretion was invariably accompanied by increased FRA1 deacetylation at K116 and an overall increase in its protein levels, coincident with malignant progression and poor prognosis. Of note, combined treatment with the conventional cytotoxic drug 5-FU together with Tubastatin A, a HDAC6-specific inhibitor, resulted in a significant in vivo synergistic inhibitory effect on tumor growth through suppression of CRC stemness. Our results reveal a novel transcriptional and posttranslational regulatory cross-talk between inflammation and stemness signaling pathways that underlie self-renewal and maintenance of CRC stem cells and promote their malignant behavior. Combinatorial treatment aimed at the core regulatory mechanisms downstream of IL-6 may offer a novel promising approach for CRC treatment.
Collapse
Affiliation(s)
- Tingyang Wang
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, and Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Ping Song
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, and Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Tingting Zhong
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianjun Wang
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueping Xiang
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, and Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Liu
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiyi Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Tian Xia
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Liu
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Normal University-Jinhua People's Hospital Joint Center for Biomedical Research, Jinhua, China
| | - Yumiao Niu
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanshi Hu
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Yingkuan Shao
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, and Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Lijun Zhu
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongyan Qi
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Shen
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Riccardo Fodde
- Department of Pathology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Jimin Shao
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, and Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
28
|
Ibrahim SAEF, Abudu A, Johnson E, Aftab N, Conrad S, Fluck M. The role of AP-1 in self-sufficient proliferation and migration of cancer cells and its potential impact on an autocrine/paracrine loop. Oncotarget 2018; 9:34259-34278. [PMID: 30344941 PMCID: PMC6188139 DOI: 10.18632/oncotarget.26047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 08/13/2018] [Indexed: 12/11/2022] Open
Abstract
Activating protein-1 (AP-1) family members, especially Fra-1 and c-Jun, are highly expressed in invasive cancers and can mediate enhanced migration and proliferation. The aim of this study was to explore the significance of elevated levels of AP-1 family members under conditions that restrict growth. We observed that invasive MDA-MB-231 cells express high levels of Fra-1, c-Jun, and Jun-D during serum starvation and throughout the cell cycle compared to non-tumorigenic and non-invasive cell lines. We then analyzed Fra-1 levels in additional breast and other cancer cell lines. We found breast and lung cancer cells with higher levels of Fra-1 during serum starvation had relatively higher ability to proliferate and migrate under these conditions. Utilizing a dominant negative construct of AP-1, we demonstrated that proliferation and migration of MDA-MB-231 in the absence of serum requires AP-1 activity. Finally, we observed that MDA-MB-231 cells secrete factors(s) that induce Fra-1 expression and migration in non-tumorigenic and non-metastatic cells and that both the expression of and response to these factors require AP-1 activity. These results suggest the presence of an autocrine/paracrine loop that maintains high Fra-1 levels in aggressive cancer cells, enhancing their proliferative and metastatic ability and affecting neighbors to alter the tumor environment.
Collapse
Affiliation(s)
- Sherif Abd El-Fattah Ibrahim
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA.,Department of Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Aierken Abudu
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Eugenia Johnson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Neelum Aftab
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Susan Conrad
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Michele Fluck
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
29
|
Hu X, Peng N, Qi F, Li J, Shi L, Chen R. Cigarette smoke upregulates SPRR3 by favoring c-Jun/Fra1 heterodimerization in human bronchial epithelial cells. Future Oncol 2018; 14:2599-2613. [PMID: 30073865 DOI: 10.2217/fon-2018-0043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
AIM The airway epithelium of smokers exhibits upregulated SPRR3, an indicator of pathogenic keratinization. The mechanisms underlying this phenomenon require investigation. PATIENTS & METHODS Human bronchial epithelial (HBE) SPRR3 expression was analyzed by smoking status. Primary HBE cells were exposed to cigarette smoke (CS). SPRR3 expression, SPRR3 promoter activity, AP-1 factor binding and AP-1 factors' effects were analyzed. RESULTS Current smokers display SPRR3 upregulation relative to never smokers. CS upregulates SPRR3 transcription in an exposure-dependent manner. CS promotes c-Jun and Fra1 binding to the SPRR3-AP-1/TRE site. Wild-type c-Jun and Fra1 upregulate, whereas c-Jun and Fra1, dominant-negative mutants, suppress SPRR3 promoter activity. CONCLUSION CS induces SPRR3 upregulation in HBE cells by promoting aberrant c-Jun/Fra1 dimerization.
Collapse
Affiliation(s)
- Xiwei Hu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, PR China.,Department of Respiratory Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang City, Guizhou Province, PR China
| | - Nianchun Peng
- Department of Endocrinology, Affiliated Hospital of Guizhou Medical University, Guiyang City, Guizhou Province, PR China
| | - Fei Qi
- Department of Respiratory Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang City, Guizhou Province, PR China
| | - Jingwen Li
- Department of Respiratory Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang City, Guizhou Province, PR China
| | - Lixin Shi
- Department of Respiratory Medicine, The Second Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, PR China.,Department of Endocrinology, Affiliated Hospital of Guizhou Medical University, Guiyang City, Guizhou Province, PR China
| | - Rui Chen
- Department of Respiratory Medicine, The Second Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, PR China
| |
Collapse
|
30
|
Wittkowski KM, Dadurian C, Seybold MP, Kim HS, Hoshino A, Lyden D. Complex polymorphisms in endocytosis genes suggest alpha-cyclodextrin as a treatment for breast cancer. PLoS One 2018; 13:e0199012. [PMID: 29965997 PMCID: PMC6028090 DOI: 10.1371/journal.pone.0199012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 05/17/2018] [Indexed: 02/06/2023] Open
Abstract
Most breast cancer deaths are caused by metastasis and treatment options beyond radiation and cytotoxic drugs, which have severe side effects, and hormonal treatments, which are or become ineffective for many patients, are urgently needed. This study reanalyzed existing data from three genome-wide association studies (GWAS) using a novel computational biostatistics approach (muGWAS), which had been validated in studies of 600-2000 subjects in epilepsy and autism. MuGWAS jointly analyzes several neighboring single nucleotide polymorphisms while incorporating knowledge about genetics of heritable diseases into the statistical method and about GWAS into the rules for determining adaptive genome-wide significance. Results from three independent GWAS of 1000-2000 subjects each, which were made available under the National Institute of Health's "Up For A Challenge" (U4C) project, not only confirmed cell-cycle control and receptor/AKT signaling, but, for the first time in breast cancer GWAS, also consistently identified many genes involved in endo-/exocytosis (EEC), most of which had already been observed in functional and expression studies of breast cancer. In particular, the findings include genes that translocate (ATP8A1, ATP8B1, ANO4, ABCA1) and metabolize (AGPAT3, AGPAT4, DGKQ, LPPR1) phospholipids entering the phosphatidylinositol cycle, which controls EEC. These novel findings suggest scavenging phospholipids as a novel intervention to control local spread of cancer, packaging of exosomes (which prepare distant microenvironment for organ-specific metastases), and endocytosis of β1 integrins (which are required for spread of metastatic phenotype and mesenchymal migration of tumor cells). Beta-cyclodextrins (βCD) have already been shown to be effective in in vitro and animal studies of breast cancer, but exhibits cholesterol-related ototoxicity. The smaller alpha-cyclodextrins (αCD) also scavenges phospholipids, but cannot fit cholesterol. An in-vitro study presented here confirms hydroxypropyl (HP)-αCD to be twice as effective as HPβCD against migration of human cells of both receptor negative and estrogen-receptor positive breast cancer. If the previous successful animal studies with βCDs are replicated with the safer and more effective αCDs, clinical trials of adjuvant treatment with αCDs are warranted. Ultimately, all breast cancer are expected to benefit from treatment with HPαCD, but women with triple-negative breast cancer (TNBC) will benefit most, because they have fewer treatment options and their cancer advances more aggressively.
Collapse
Affiliation(s)
- Knut M. Wittkowski
- Center for Clinical and Translational Science, The Rockefeller University, New York, New York, United States of America
| | - Christina Dadurian
- Center for Clinical and Translational Science, The Rockefeller University, New York, New York, United States of America
| | - Martin P. Seybold
- Institut für Formale Methoden der Informatik, Universität Stuttgart, Stuttgart, Germany
| | - Han Sang Kim
- Department of Pediatrics, and Cell and Developmental Biology Weill Medical College of Cornell University, New York, New York, United States of America
| | - Ayuko Hoshino
- Department of Pediatrics, and Cell and Developmental Biology Weill Medical College of Cornell University, New York, New York, United States of America
| | - David Lyden
- Department of Pediatrics, and Cell and Developmental Biology Weill Medical College of Cornell University, New York, New York, United States of America
| |
Collapse
|
31
|
Chen X, Zhao M, Huang J, Li Y, Wang S, Harrington CA, Qian DZ, Sun XX, Dai MS. microRNA-130a suppresses breast cancer cell migration and invasion by targeting FOSL1 and upregulating ZO-1. J Cell Biochem 2018; 119:4945-4956. [PMID: 29384218 DOI: 10.1002/jcb.26739] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/29/2018] [Indexed: 01/04/2023]
Abstract
FOSL1 is frequently overexpressed in multiple types of human cancers including invasive breast cancers and implicated in cancer invasion and metastasis. However, how FOSL1 is overexpressed in cancers remains to be elucidated. Several microRNAs (miRNAs) have been shown to target FOSL1 and are downregulated in human cancers. Here, we report that miR-130a is a novel FOSL1 targeting miRNA. Using gene expression microarray analysis, we found that FOSL1 is among the most up-regulated genes in cells transfected with miR-130a inhibitors. Transient transfection-immunoblot, RNA-immunoprecipitation, and luciferase reporter assays revealed that miR-130a directly targets FOSL1 mRNA at its 3'-UTR. Overexpression of miR-130a significantly reduced the levels of FOSL1 in invasive breast cancer MDA-MB-231 and Hs578T cell lines and suppresses their migration and invasion. This inhibition can be rescued by ectopic expression of miR-130a-resistant FOSL1. Interestingly, we show that overexpression of miR-130a increased the levels of tight-junction protein ZO-1 while inhibition of miR-130a reduced the levels of ZO-1. We further show that miR-130a expression is significantly reduced in cancer tissues from triple-negative breast cancer (TNBC) patients, correlating significantly with the upregulation of FOSL1 expression, compared to non-TNBC tissues. Together, our results reveal that miR-130a directly targets FOSL1 and suppresses the inhibition of ZO-1, thus inhibiting cancer cell migration and invasion, in TNBCs.
Collapse
Affiliation(s)
- Xiaowei Chen
- Departments of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, Oergon
- Department of Hematology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Min Zhao
- Department of Pathology, the Second People's Hospital of Hefei, Hefei, Anhui, China
| | - Jin Huang
- Department of Pathology, the Second People's Hospital of Hefei, Hefei, Anhui, China
| | - Yuhuang Li
- Departments of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, Oergon
| | - Shunqing Wang
- Department of Hematology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Christina A Harrington
- Departments of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, Oergon
- OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, Oergon
- Integrated Genomics Laboratory, Oregon Health and Science University, Portland, Oergon
| | - David Z Qian
- OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, Oergon
| | - Xiao-Xin Sun
- Departments of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, Oergon
- OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, Oergon
| | - Mu-Shui Dai
- Departments of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, Oergon
- OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, Oergon
| |
Collapse
|
32
|
Ibrahim Abd El-fattah S, Abudu A, Jonhson E, Aftab N, Fluck M. The role of AP-1 in self-sufficient proliferation and migration of cancer cells and its potential impact on an autocrine/paracrine loop.. [DOI: 10.1101/271536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
ABSTRACTThe activating protein-1 (AP-1) family members are highly expressed in invasive cancers, but the consequences of this are not completely understood. The aim of this study was to explore the significance of elevated levels of AP-1 family members under conditions that restrict growth. We observed that invasive MDA-MB-231 cells express high levels of Fra-1, c-Jun and, Jun-D during serum starvation and throughout the cell cycle compared to non-tumorigenic and non-invasive cell lines. We then analyzed Fra-1 levels in additional breast and other cancer cell lines. We found a correlation between the high levels of Fra-1 during serum starvation and the ability of the cells to proliferate and migrate under these conditions. Utilizing a dominant negative construct of AP-1, we demonstrated that proliferation and migration of MDA-MB-231 in the absence of serum requires AP-1 activity. Finally, we observed that MDA-MB-231 cells secrete factors(s) that induce Fra-1 expression and migration in non-tumorigenic and non-metastatic cells and that both the expression of and response to these factors require AP-1 activity. These results suggest the presence of an autocrine/paracrine loop that maintains high Fra-1 levels in aggressive cancer cells, enhancing their proliferative and metastatic ability and affecting neighbors to alter the tumor environment.
Collapse
|
33
|
Annis MG, Ouellet V, Rennhack JP, L'Esperance S, Rancourt C, Mes-Masson AM, Andrechek ER, Siegel PM. Integrin-uPAR signaling leads to FRA-1 phosphorylation and enhanced breast cancer invasion. Breast Cancer Res 2018; 20:9. [PMID: 29382358 PMCID: PMC5791353 DOI: 10.1186/s13058-018-0936-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/15/2018] [Indexed: 12/15/2022] Open
Abstract
Background The Fos-related antigen 1 (FRA-1) transcription factor promotes tumor cell growth, invasion and metastasis. Phosphorylation of FRA-1 increases protein stability and function. We identify a novel signaling axis that leads to increased phosphorylation of FRA-1, increased extracellular matrix (ECM)-induced breast cancer cell invasion and is prognostic of poor outcome in patients with breast cancer. Methods While characterizing five breast cancer cell lines derived from primary human breast tumors, we identified BRC-31 as a novel basal-like cell model that expresses elevated FRA-1 levels. We interrogated the functional contribution of FRA-1 and an upstream signaling axis in breast cancer cell invasion. We extended this analysis to determine the prognostic significance of this signaling axis in samples derived from patients with breast cancer. Results BRC-31 cells display elevated focal adhesion kinase (FAK), SRC and extracellular signal-regulated (ERK2) phosphorylation relative to luminal breast cancer models. Inhibition of this signaling axis, with pharmacological inhibitors, reduces the phosphorylation and stabilization of FRA-1. Elevated integrin αVβ3 and uPAR expression in these cells suggested that integrin receptors might activate this FAK-SRC-ERK2 signaling. Transient knockdown of urokinase/plasminogen activator urokinase receptor (uPAR) in basal-like breast cancer cells grown on vitronectin reduces FRA-1 phosphorylation and stabilization; and uPAR and FRA-1 are required for vitronectin-induced cell invasion. In clinical samples, a molecular component signature consisting of vitronectin-uPAR-uPA-FRA-1 predicts poor overall survival in patients with breast cancer and correlates with an FRA-1 transcriptional signature. Conclusions We have identified a novel signaling axis that leads to phosphorylation and enhanced activity of FRA-1, a transcription factor that is emerging as an important modulator of breast cancer progression and metastasis. Electronic supplementary material The online version of this article (10.1186/s13058-018-0936-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthew G Annis
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada.,Departments of Medicine, McGill University, Montréal, Québec, Canada
| | - Veronique Ouellet
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) and Institut du cancer de Montréal, Montreal, Canada
| | - Jonathan P Rennhack
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | - Sylvain L'Esperance
- Département de Microbiologie et Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Canada
| | - Claudine Rancourt
- Département de Microbiologie et Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Canada
| | - Anne-Marie Mes-Masson
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) and Institut du cancer de Montréal, Montreal, Canada
| | - Eran R Andrechek
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | - Peter M Siegel
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada. .,Departments of Biochemistry, McGill University, Montréal, Québec, Canada. .,Departments of Medicine, McGill University, Montréal, Québec, Canada. .,Departments of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
34
|
Ting CH, Chen YC, Wu CJ, Chen JY. Targeting FOSB with a cationic antimicrobial peptide, TP4, for treatment of triple-negative breast cancer. Oncotarget 2018; 7:40329-40347. [PMID: 27248170 PMCID: PMC5130011 DOI: 10.18632/oncotarget.9612] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/02/2016] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) currently lacks a suitable therapeutic candidate and is thus difficult to treat. Here, we report that a cationic antimicrobial peptide (CAP), tilapia piscidin 4 (TP4), which was derived from Nile tilapia (Oreochromis niloticus), is selectively toxic to TNBC. TP4 acts by inducing an AP-1 protein called FOSB, the expression of which is negatively associated with the pathological grade of TNBC. We show that TP4 is bound to the mitochondria where it disrupts calcium homeostasis and activates FOSB. FOSB overexpression results in TNBC cell death, whereas inhibition of calcium signaling eliminates FOSB induction and blocks TP4-induced TNBC cell death. Both TP4 and anthracyclines strongly induced FOSB, particularly in TNBC, indicating that FOSB may be suitable as a biomarker of drug responses. This study thus provides a novel therapeutic approach toward TNBC through FOSB induction.
Collapse
Affiliation(s)
- Chen-Hung Ting
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Jiaushi, Ilan 262, Taiwan
| | - Yi-Chun Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Jiaushi, Ilan 262, Taiwan
| | - Chang-Jer Wu
- Department of Food Science, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Jiaushi, Ilan 262, Taiwan
| |
Collapse
|
35
|
Rattanasinchai C, Llewellyn BJ, Conrad SE, Gallo KA. MLK3 regulates FRA-1 and MMPs to drive invasion and transendothelial migration in triple-negative breast cancer cells. Oncogenesis 2017; 6:e345. [PMID: 28604765 PMCID: PMC5519193 DOI: 10.1038/oncsis.2017.44] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 04/14/2017] [Accepted: 04/17/2017] [Indexed: 02/06/2023] Open
Abstract
Mixed-lineage kinase 3 (MLK3), a mitogen-activated protein kinase kinase kinase (MAP3K), has critical roles in metastasis of triple-negative breast cancer (TNBC), in part by regulating paxillin phosphorylation and focal adhesion turnover. However the mechanisms and the distinct step(s) of the metastatic processes through which MLK3 exerts its influence are not fully understood. Here we report that in non-metastatic, estrogen receptor-positive breast cancer (ER+ BC) cells, induced MLK3 expression robustly upregulates the oncogenic transcription factor, FOS-related antigen-1 (FRA-1), which is accompanied by elevation of matrix metalloproteinases (MMPs), MMP-1 and MMP-9. MLK3-induced ER+ BC cell invasion is abrogated by FRA-1 silencing, demonstrating that MLK3 drives invasion through FRA-1. Conversely, in metastatic TNBC models, high FRA-1 levels are significantly reduced upon depletion of MLK3 by either gene silencing or by the CRISPR/Cas9n editing approach. Furthermore, ablation of MLK3 or MLK inhibitor treatment decreases expression of both MMP-1 and MMP-9. Consistent with the role of tumor cell-derived MMP-1 in endothelial permeability and transendothelial migration, both of these are reduced in MLK3-depleted TNBC cells. In addition, MLK inhibitor treatment or MLK3 depletion, which downregulates MMP-9 expression, renders TNBC cells defective in Matrigel invasion. Furthermore, circulating tumor cells derived from TNBC-bearing mice display increased levels of FRA-1 and MMP-1 compared with parental cells, supporting a role for the MLK3–FRA-1–MMP-1 signaling axis in vascular intravasation. Our results demonstrating the requirement for MLK3 in controlling the FRA-1/MMPs axis suggest that MLK3 is a promising therapeutic target for treatment of TNBC.
Collapse
Affiliation(s)
- C Rattanasinchai
- Department of Physiology, Michigan State University, East Lansing, MI, USA.,Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, USA
| | - B J Llewellyn
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - S E Conrad
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, USA.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - K A Gallo
- Department of Physiology, Michigan State University, East Lansing, MI, USA.,Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
36
|
Gu X, Lu C, He D, Lu Y, Jin J, Liu D, Ma X. Notch3 negatively regulates chemoresistance in breast cancers. Tumour Biol 2016; 37:15825–15833. [PMID: 27743379 DOI: 10.1007/s13277-016-5412-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/13/2016] [Indexed: 12/21/2022] Open
Abstract
To define the role of the NOTCH signaling pathway in the development of chemoresistance and the associated epithelial-mesenchymal transition (EMT), we investigated the effect of Notch3 on adriamycin (ADM)-resistant human breast cancer cells (MCF-7/ADM cells). We found that Notch3 was downregulated and involved in the chemoresistance of MCF-7/ADM cells, while forced expression of Notch3 reversed the chemoresistance. Furthermore, fos-related antigen 1 (Fra1) was negatively regulated by Notch3 and was highly expressed in MCF-7/ADM cells. Increased Fra1 activated the EMT process. Finally, Notch3 expression was confirmed in clinically chemoresistant samples of breast cancers from patients receiving anthracycline-based chemotherapy. Low expression of Notch3 was an unfavorable predictor of distant relapse-free survival in ER positive breast cancers. Taken together, our findings demonstrate that the Notch3-Fra1 signaling pathway mediates chemoresistance via the EMT.
Collapse
Affiliation(s)
- Xiaoting Gu
- School of Pharmaceutical Sciences, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu, 214122, China
| | - Chunxiao Lu
- School of Pharmaceutical Sciences, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu, 214122, China
| | - Dongxu He
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China
| | - Yangfan Lu
- School of Pharmaceutical Sciences, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu, 214122, China
| | - Jian Jin
- School of Pharmaceutical Sciences, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu, 214122, China
| | - Dequan Liu
- Department of Breast Surgery, The Third Affiliated Hospital, Kunming Medical University, Kunming, China.
| | - Xin Ma
- School of Pharmaceutical Sciences, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
37
|
Belguise K, Cherradi S, Sarr A, Boissière F, Boulle N, Simony-Lafontaine J, Choesmel-Cadamuro V, Wang X, Chalbos D. PKCθ-induced phosphorylations control the ability of Fra-1 to stimulate gene expression and cancer cell migration. Cancer Lett 2016; 385:97-107. [PMID: 27816489 DOI: 10.1016/j.canlet.2016.10.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/20/2016] [Accepted: 10/25/2016] [Indexed: 02/01/2023]
Abstract
The AP-1 transcription factor Fra-1 is aberrantly expressed in a large number of cancers and plays crucial roles in cancer development and progression by stimulating the expression of genes involved in these processes. However, the control of Fra-1 transactivation ability is still unclear and here we hypothesized that PKCθ-induced phosphorylation could be necessary to obtain a fully active Fra-1 protein. Using MCF7 stable cells overexpressing equivalent levels of unphosphorylated Fra-1 or PKCθ-phosphorylated Fra-1, we showed that PKCθ-induced phosphorylation of Fra-1 was crucial for the stimulation of MMP1 and IL6 expression. Consistently, we found a significant positive correlation between PRKCQ (coding for PKCθ) and MMP1 mRNA expression levels in human breast cancer samples. PKCθ-induced phosphorylations, in part at T217 and T227 residues, strongly and specifically increased Fra-1 transcriptional activity through the stimulation of Fra-1 transactivation domain, without affecting JUN factors. More importantly, these phosphorylations were required for Fra-1-induced migration of breast cancer cells and phosphorylated Fra-1 expression was enriched at the invasion front of human breast tumors. Taken together, our findings indicate that PKCθ-induced phosphorylation could be important for the function of Fra-1 in cancer progression.
Collapse
Affiliation(s)
- Karine Belguise
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France; INSERM, U1194, Montpellier, F-34298, France; Université de Montpellier, Montpellier, F-34090, France; Institut de Cancérologie de Montpellier, Montpellier, F-34298, France.
| | - Sara Cherradi
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France; INSERM, U1194, Montpellier, F-34298, France; Université de Montpellier, Montpellier, F-34090, France; Institut de Cancérologie de Montpellier, Montpellier, F-34298, France
| | - Awa Sarr
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France; INSERM, U1194, Montpellier, F-34298, France; Université de Montpellier, Montpellier, F-34090, France; Institut de Cancérologie de Montpellier, Montpellier, F-34298, France
| | - Florence Boissière
- Unité de Recherche Translationnelle, Institut Régional du Cancer de Montpellier, Montpellier, F-34298, France
| | - Nathalie Boulle
- Département de Biopathologie, CHU Montpellier, Montpellier, F-34295, France
| | - Joëlle Simony-Lafontaine
- Unité de Recherche Translationnelle, Institut Régional du Cancer de Montpellier, Montpellier, F-34298, France
| | - Valérie Choesmel-Cadamuro
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Xiaobo Wang
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Dany Chalbos
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France; INSERM, U1194, Montpellier, F-34298, France; Université de Montpellier, Montpellier, F-34090, France; Institut de Cancérologie de Montpellier, Montpellier, F-34298, France.
| |
Collapse
|
38
|
Byerly J, Halstead-Nussloch G, Ito K, Katsyv I, Irie HY. PRKCQ promotes oncogenic growth and anoikis resistance of a subset of triple-negative breast cancer cells. Breast Cancer Res 2016; 18:95. [PMID: 27663795 PMCID: PMC5034539 DOI: 10.1186/s13058-016-0749-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 08/20/2016] [Indexed: 12/02/2022] Open
Abstract
Background The protein kinase C (PKC) family comprises distinct classes of proteins, many of which are implicated in diverse cellular functions. Protein tyrosine kinase C theta isoform (PRKCQ)/PKCθ, a member of the novel PKC family, may have a distinct isoform-specific role in breast cancer. PKCθ is preferentially expressed in triple-negative breast cancer (TNBC) compared to other breast tumor subtypes. We hypothesized that PRKCQ/PKCθ critically regulates growth and survival of a subset of TNBC cells. Methods To elucidate the role of PRKCQ/PKCθ in regulating growth and anoikis resistance, we used both gain and loss of function to modulate expression of PRKCQ. We enhanced expression of PKCθ (kinase-active or inactive) in non-transformed breast epithelial cells (MCF-10A) and assessed effects on epidermal growth factor (EGF)-independent growth, anoikis, and migration. We downregulated expression of PKCθ in TNBC cells, and determined effects on in vitro and in vivo growth and survival. TNBC cells were also treated with a small molecule inhibitor to assess requirement for PKCθ kinase activity in the growth of TNBC cells. Results PRKCQ/PKCθ can promote oncogenic phenotypes when expressed in non-transformed MCF-10A mammary epithelial cells; PRKCQ/PKCθ enhances anchorage-independent survival, growth-factor-independent proliferation, and migration. PKCθ expression promotes retinoblastoma (Rb) phosphorylation and cell-cycle progression under growth factor-deprived conditions that typically induce cell-cycle arrest of MCF-10A breast epithelial cells. Proliferation and Rb phosphorylation are dependent on PKCθ-stimulated extracellular signal-related kinase (Erk)/mitogen-activated protein kinase (MAPK) activity. Enhanced Erk/MAPK activity is dependent on the kinase activity of PKCθ, as overexpression of kinase-inactive PKCθ does not stimulate Erk/MAPK or Rb phosphorylation or promote growth-factor-independent proliferation. Downregulation of PRKCQ/PKCθ in TNBC cells enhances anoikis, inhibits growth in 3-D MatrigelTM cultures, and impairs triple-negative tumor xenograft growth. AEB071, an inhibitor of PKCθ kinase activity, also inhibits growth and invasive branching of TNBC cells in 3-D cultures, further supporting a role for PKCθ kinase activity in triple-negative cancer cell growth. Conclusions Enhanced PRKCQ/PKCθ expression can promote growth-factor-independent growth, anoikis resistance, and migration. PRKCQ critically regulates growth and survival of a subset of TNBC. Inhibition of PKCθ kinase activity may be an attractive therapeutic approach for TNBC, a subtype in need of improved targeted therapies. Electronic supplementary material The online version of this article (doi:10.1186/s13058-016-0749-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jessica Byerly
- Division of Hematology and Medical Oncology, Department of Medicine and Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, USA
| | - Gwyneth Halstead-Nussloch
- Division of Hematology and Medical Oncology, Department of Medicine and Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, USA
| | - Koichi Ito
- Division of Hematology and Medical Oncology, Department of Medicine and Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, USA
| | - Igor Katsyv
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hanna Y Irie
- Division of Hematology and Medical Oncology, Department of Medicine and Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, USA. .,Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, USA.
| |
Collapse
|
39
|
Serum Response Factor Protects Retinal Ganglion Cells Against High-Glucose Damage. J Mol Neurosci 2016; 59:232-40. [PMID: 26803311 DOI: 10.1007/s12031-015-0708-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/23/2015] [Indexed: 12/22/2022]
Abstract
Serum response factor (SRF), which encodes the MADS-box family of related proteins, is a common transcription factor related to the expression of genes associated with cell survival. However, SRF's role in retinal ganglion cells (RGCs) after high-glucose injury remains unclear. In this study, we investigate the protective role of SRF after high-glucose injury and its underlying mechanism. The in vitro RGC model subjected to high glucose was established by employing a 50 mmol/L glucose culture environment. As detected by real-time quantitative PCR and Western blot, SRF was significantly upregulated in RGCs treated with high glucose. Overexpression of SRF significantly promoted survival among RGCs exposed to high glucose and inhibited RGC apoptosis. Knockdown of SRF exerted an inverse effect. Moreover, SRF upregulation enhanced expression of an antioxidant protein, nuclear factor erythroid 2-related factor (Nrf2), via control of the Fos-related antigen 1 (Fra-1). SRF upregulation also affected RGC survival after high-glucose treatment. Our findings showed that overexpression of SRF promoted survival of RGCs after high-glucose injury by regulating Fra-1 and Nrf2.
Collapse
|
40
|
Kim S, Chun SY, Kwon YS, Nam KS. Crosstalk between Wnt signaling and Phorbol ester-mediated PKC signaling in MCF-7 human breast cancer cells. Biomed Pharmacother 2015; 77:114-9. [PMID: 26796274 DOI: 10.1016/j.biopha.2015.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 11/26/2015] [Accepted: 12/15/2015] [Indexed: 11/25/2022] Open
Abstract
Although many studies have implicated the crosstalk between the Wnt and PKC signaling pathways in tumor initiation and progression, the molecular roles of PKC isoforms in the Wnt signaling pathway remain poorly understood. In this study, we explored the contribution of PKC isoforms to canonical and noncanonical Wnt signaling pathway in mediating cell migration and an epithelial-mesenchymal transition (EMT). When MCF-7 cells were treated with 12-O-tetradecanoylphorbol-13-acetate (TPA) for up to 3 weeks, the effect of TPA on Wnt signaling pathway was dramatically different depending on the exposure time. The short term exposure (3 days) of MCF-7 cells to TPA exhibited significant induction of Wnt5a expression, along with the enhanced expression of PKC-α, to promote cell migration, which suggested that activation of noncanonical Wnt signaling pathway is associated with PKC-α. However, the chronic exposure (3 weeks) of cells to TPA completely suppressed Wnt5a expression and the expression of PKC-η and PKC-δ, whereas the expression of Wnt3a and PKC-θ were up-regulated to activate the canonical Wnt signaling pathway. Moreover, the loss of epithelial markers, including E-cadherin and GATA-3, suggested that chronic exposure of TPA stimulates EMT. Taken together, our data suggest that PKC-θ positively regulates the canonical Wnt signaling pathway, and that PKC-η and PKC-δ negatively modulate this signaling pathway.
Collapse
Affiliation(s)
- Soyoung Kim
- Department of Pharmacology, School of Medicine and Intractable Disease Research Center, Dongguk University, 123 Dongdae-ro, Gyeongju-si, Gyeongsangbuk-do 38066, Republic of Korea
| | - So-Young Chun
- Department of Pharmacology, School of Medicine and Intractable Disease Research Center, Dongguk University, 123 Dongdae-ro, Gyeongju-si, Gyeongsangbuk-do 38066, Republic of Korea
| | - Yun-Suk Kwon
- Department of Pharmacology, School of Medicine and Intractable Disease Research Center, Dongguk University, 123 Dongdae-ro, Gyeongju-si, Gyeongsangbuk-do 38066, Republic of Korea
| | - Kyung-Soo Nam
- Department of Pharmacology, School of Medicine and Intractable Disease Research Center, Dongguk University, 123 Dongdae-ro, Gyeongju-si, Gyeongsangbuk-do 38066, Republic of Korea.
| |
Collapse
|
41
|
He J, Zhu G, Gao L, Chen P, Long Y, Liao S, Yi H, Yi W, Pei Z, Wu M, Li X, Xiang J, Peng S, Ma J, Zhou M, Xiong W, Zeng Z, Xiang B, Tang K, Cao L, Li G, Zhou Y. Fra-1 is upregulated in gastric cancer tissues and affects the PI3K/Akt and p53 signaling pathway in gastric cancer. Int J Oncol 2015; 47:1725-34. [PMID: 26330014 DOI: 10.3892/ijo.2015.3146] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 07/30/2015] [Indexed: 11/06/2022] Open
Abstract
Gastric cancer is an aggressive disease that continues to have a daunting impact on global health. Fra-1 (FOSL1) plays important roles in oncogenesis in various malignancies. We investigated the expression of Fra-1 in gastric cancer (GC) tissues by qPCR, immunohistochemistry (IHC) and western blot technologies. The results showed that Fra-1 was overexpressed in gastric cancer tissues compared with the adjacent non‑cancerous tissues. To explore the possible mechanism of Fra-1 in GC, we elucidated the effect of Fra-1 in the apoptosis and cell cycle of gastric cancer cells, AGS, and found that a considerable decrease in apoptotic cells and increase of S phase rate were observed for AGS cells with Fra-1 overexpession. We identified and confirmed that Fra-1 affected the expression level of CTTN and EZR in vitro through LC-MS/MS analyses and western blot technology. Furthermore, we found that Fra-1 was correlated with dysregulation PI3K/Akt and p53 signaling pathway in gastric cancer tissues in vitro. Moreover, we found that Fra-1 overexpression affected the expression of PI3K, Akt, MDM2 and p53 in vivo. In summary, our results suggest that Fra-1 is upregulated in gastric cancer tissues and plays its function by affecting the PI3K/Akt and p53 signaling pathway in gastric cancer.
Collapse
Affiliation(s)
- Junyu He
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Guangchao Zhu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Lu Gao
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| | - Pan Chen
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Yuehua Long
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| | - Shan Liao
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| | - Hong Yi
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Wei Yi
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| | - Zhen Pei
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| | - Minghua Wu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Xiaoling Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Juanjuan Xiang
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Shuping Peng
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Jian Ma
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Ming Zhou
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Wei Xiong
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Zhaoyang Zeng
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Bo Xiang
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Ke Tang
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| | - Li Cao
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| | - Guiyuan Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Yanhong Zhou
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| |
Collapse
|
42
|
Dhillon AS, Tulchinsky E. FRA-1 as a driver of tumour heterogeneity: a nexus between oncogenes and embryonic signalling pathways in cancer. Oncogene 2015; 34:4421-8. [PMID: 25381818 PMCID: PMC4351906 DOI: 10.1038/onc.2014.374] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 10/02/2014] [Accepted: 10/02/2014] [Indexed: 12/12/2022]
Abstract
Tumour heterogeneity is a major factor undermining the success of therapies targeting metastatic cancer. Two major theories are thought to explain the phenomenon of heterogeneity in cancer--clonal evolution and cell plasticity. In this review, we examine a growing body of work implicating the transcription factor FOS-related antigen 1 (FRA-1) as a central node in tumour cell plasticity networks, and discuss mechanisms regulating its activity in cancer cells. We also discuss evidence from the FRA-1 perspective supporting the notion that clonal selection and cell plasticity represent two sides of the same coin. We propose that FRA-1-overexpressing clones featuring high plasticity undergo positive selection during consecutive stages of multistep tumour progression. This model underscores a potential mechanism through which tumour cells retaining elevated levels of plasticity acquire a selective advantage over other clonal populations within a tumour.
Collapse
Affiliation(s)
- A S Dhillon
- Research Division, Peter MacCallum Cancer Center, St Andrews Place, East Melbourne, Melbourne, Victoria 3002, Australia
| | - E Tulchinsky
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, UK
| |
Collapse
|
43
|
Abstract
Protein kinase Cθ (PKCθ) is a key enzyme in T-lymphocytes where it plays an important role in signal transduction downstream of the activated T-cell receptor (TCR) and the CD28 co-stimulatory receptor. Antigenic stimulation of T-cells triggers PKCθ translocation to the centre of the immunological synapse (IS) at the contact site between antigen-specific T-cells and antigen-presenting cells (APCs). The IS-residing PKCθ phosphorylates and activates effector molecules that transduce signals into distinct subcellular compartments and activate the transcription factors, nuclear factor κB (NF-κB), nuclear factor of activated T-cells (NFAT) and activating protein 1 (AP-1), which are essential for the induction of T-cell-mediated responses. Besides its major biological role in T-cells, PKCθ is expressed in several additional cell types and is involved in a variety of distinct physiological and pathological phenomena. For example, PKCθ is expressed at high levels in platelets where it regulates signal transduction from distinct surface receptors, and is required for optimal platelet activation and aggregation, as well as haemostasis. In addition, PKCθ is involved in physiological processes regulating insulin resistance and susceptibility to obesity, and is expressed at high levels in gastrointestinal stromal tumours (GISTs), although the functional importance of PKCθ in these processes and cell types is not fully clear. The present article briefly reviews selected topics relevant to the biological roles of PKCθ in health and disease.
Collapse
|
44
|
Abstract
The protein kinases C (PKCs) are a family of serine/threonine kinases involved in regulating multiple essential cellular processes such as survival, proliferation, and differentiation. Of particular interest is the novel, calcium-independent PKCθ which plays a central role in immune responses. PKCθ shares structural similarities with other PKC family members, mainly consisting of an N-terminal regulatory domain and a C-terminal catalytic domain tethered by a hinge region. This isozyme, however, is unique in that it translocates to the immunological synapse between a T cell and an antigen-presenting cell (APC) upon T cell receptor-peptide MHC recognition. Thereafter, PKCθ interacts physically and functionally with downstream effectors to mediate T cell activation and differentiation, subsequently leading to inflammation. PKCθ-specific perturbations have been identified in several diseases, most notably autoimmune disorders, and hence the modulation of its activity presents an attractive therapeutic intervention. To that end, many inhibitors of PKCs and PKCθ have been developed and tested in preclinical and clinical studies. And although selectivity remains a challenge, results are promising for the future development of effective PKCθ inhibitors that would greatly advance the treatment of several T-cell mediated diseases.
Collapse
|
45
|
Liu Y, Tian F, Hu Z, DeLisi C. Evaluation and integration of cancer gene classifiers: identification and ranking of plausible drivers. Sci Rep 2015; 5:10204. [PMID: 25961669 PMCID: PMC4650817 DOI: 10.1038/srep10204] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 04/02/2015] [Indexed: 12/22/2022] Open
Abstract
The number of mutated genes in cancer cells is far larger than the number of mutations that drive cancer. The difficulty this creates for identifying relevant alterations has stimulated the development of various computational approaches to distinguishing drivers from bystanders. We develop and apply an ensemble classifier (EC) machine learning method, which integrates 10 classifiers that are publically available, and apply it to breast and ovarian cancer. In particular we find the following: (1) Using both standard and non-standard metrics, EC almost always outperforms single method classifiers, often by wide margins. (2) Of the 50 highest ranked genes for breast (ovarian) cancer, 34 (30) are associated with other cancers in either the OMIM, CGC or NCG database (P < 10−22). (3) Another 10, for both breast and ovarian cancer, have been identified by GWAS studies. (4) Several of the remaining genes--including a protein kinase that regulates the Fra-1 transcription factor which is overexpressed in ER negative breast cancer cells; and Fyn, which is overexpressed in pancreatic and prostate cancer, among others--are biologically plausible. Biological implications are briefly discussed. Source codes and detailed results are available at http://www.visantnet.org/misi/driver_integration.zip.
Collapse
Affiliation(s)
- Yang Liu
- Bioinformatics Graduate Program, and Department of Biomedical Engineering, Boston. University, 24 Cummington Mall, Boston, MA 02215, USA
| | - Feng Tian
- Bioinformatics Graduate Program, and Department of Biomedical Engineering, Boston. University, 24 Cummington Mall, Boston, MA 02215, USA
| | - Zhenjun Hu
- Bioinformatics Graduate Program, and Department of Biomedical Engineering, Boston. University, 24 Cummington Mall, Boston, MA 02215, USA
| | - Charles DeLisi
- Bioinformatics Graduate Program, and Department of Biomedical Engineering, Boston. University, 24 Cummington Mall, Boston, MA 02215, USA
| |
Collapse
|
46
|
Liu H, Ren G, Wang T, Chen Y, Gong C, Bai Y, Wang B, Qi H, Shen J, Zhu L, Qian C, Lai M, Shao J. Aberrantly expressed Fra-1 by IL-6/STAT3 transactivation promotes colorectal cancer aggressiveness through epithelial-mesenchymal transition. Carcinogenesis 2015; 36:459-68. [PMID: 25750173 PMCID: PMC4392608 DOI: 10.1093/carcin/bgv017] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/24/2015] [Indexed: 12/12/2022] Open
Abstract
The pro-inflammatory cytokine interleukin-6 (IL-6) in tumor microenvironment has been suggested to promote development and progression of colorectal cancer (CRC). However, the underlying molecular mechanisms remain elusive. In this study, we demonstrate that fos-related antigen-1 (Fra-1) plays a critical role in IL-6 induced CRC aggressiveness and epithelial-mesenchymal transition (EMT). In CRC cell lines, the expression of Fra-1 gene was found significantly upregulated during IL-6-driven EMT process. The Fra-1 induction occurred at transcriptional level in a manner dependent on signal transducer and activator of transcription 3 (STAT3), during which both phosphorylated and acetylated post-translational modifications were required for STAT3 activation to directly bind to the Fra-1 promoter. Importantly, RNA interference-based attenuation of either STAT3 or Fra-1 prevented IL-6-induced EMT, cell migration and invasion, whereas ectopic expression of Fra-1 markedly reversed the STAT3-knockdown effect and enhanced CRC cell aggressiveness by regulating the expression of EMT-promoting factors (ZEB1, Snail, Slug, MMP-2 and MMP-9). Furthermore, Fra-1 levels were positively correlated with the local invasion depth as well as lymph node and liver metastasis in a total of 229 CRC patients. Intense immunohistochemical staining of Fra-1 was observed at the tumor marginal area adjacent to inflammatory cells and in parallel with IL-6 secretion and STAT3 activation in CRC tissues. Together, this study proposes the existence of an aberrant IL-6/STAT3/Fra-1 signaling axis leading to CRC aggressiveness through EMT induction, which suggests novel therapeutic opportunities for the malignant disease.
Collapse
Affiliation(s)
- Hong Liu
- Department of Pathology and Pathophysiology, Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Guoping Ren
- Department of Pathology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Tingyang Wang
- Department of Pathology and Pathophysiology, Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yuexia Chen
- Department of Pathology and Pathophysiology, Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chaoju Gong
- Department of Pathology and Pathophysiology, Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yanfeng Bai
- Department of Pathology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Bo Wang
- Department of Pathology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hongyan Qi
- Department of Pathology and Pathophysiology, Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jing Shen
- Department of Pathology and Pathophysiology, Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lijun Zhu
- Department of Pathology and Pathophysiology, Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Cheng Qian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Maode Lai
- Department of Pathology and Pathophysiology, Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jimin Shao
- Department of Pathology and Pathophysiology, Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou 310058, China,
| |
Collapse
|
47
|
Xiao S, Zhou Y, Yi W, Luo G, Jiang B, Tian Q, Li Y, Xue M. Fra-1 is downregulated in cervical cancer tissues and promotes cervical cancer cell apoptosis by p53 signaling pathway in vitro. Int J Oncol 2015; 46:1677-84. [PMID: 25651840 DOI: 10.3892/ijo.2015.2873] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/22/2015] [Indexed: 11/05/2022] Open
Abstract
Cervical cancer is a potentially preventable disease; however, it is the third most commonly diagnosed cancer and the fourth leading cause of cancer deaths in women worldwide. Cervical cancer is thought to develop through a multistep process involving virus, tumor suppressor genes, proto-oncogenes and immunological factors. It is known that human papillomavirus (HPV) infection is necessary but insufficient to cause malignancy. At present, the etiology of cervical carcinoma remains poorly understood. In this study, we found that the expression of FOS-like antigen-1 (Fra-1) gene was downregulated in cervical cancer compared with the adjacent non-cancerous tissues by RT-qPCR, immunohistochemistry (IHC) and western blotting techniques. To uncover the effect of Fra-1 on cervical cancer, we tested and confirmed that Fra-1 significantly inhibited the proliferation of HeLa cells by MMT assays in vitro. At the same time, overexpression of Fra-1 promoted apoptosis of HeLa cells. To explore the possible mechanism of Fra-1 in cervical cancer, we tested the expression levels of key molecules in p53 signaling pathway by western blotting technology. The results showed that p53 was downregulated in cervical cancer compared with the adjacent non-cancerous tissues, but MDM2 proto-oncogene, E3 ubiquitin protein ligase (MDM2) was upregulated in cervical cancer. In vitro, the p53 was upregulated and MDM2 was downregulated in HeLa cells with Fra-1 overexpression. In summary, our results suggested that Fra-1 expression is low in cervical cancer tissues and promotes apoptosis of cervical cancer cells by p53 signaling pathway.
Collapse
Affiliation(s)
- Songshu Xiao
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yanhong Zhou
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| | - Wei Yi
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| | - Guijuan Luo
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Bin Jiang
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Qi Tian
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yueran Li
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Min Xue
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
48
|
Fra-1/AP-1 induces EMT in mammary epithelial cells by modulating Zeb1/2 and TGFβ expression. Cell Death Differ 2014; 22:336-50. [PMID: 25301070 DOI: 10.1038/cdd.2014.157] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/31/2014] [Accepted: 08/29/2014] [Indexed: 02/08/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is essential for embryonic morphogenesis and wound healing and critical for tumour cell invasion and dissemination. The AP-1 transcription factor Fra-1 has been implicated in tumorigenesis and in tumour-associated EMT in human breast cancer. We observed a significant inverse correlation between Fra-1 mRNA expression and distant-metastasis-free survival in a large cohort of breast cancer patients derived from multiple array data sets. This unique correlation among Fos genes prompted us to assess the evolutionary conservation between Fra-1 functions in EMT of human and mouse cells. Ectopic expression of Fra-1 in fully polarized, non-tumourigenic, mouse mammary epithelial EpH4 cells induced a mesenchymal phenotype, characterized by a loss of epithelial and gain of mesenchymal markers. Proliferation, motility and invasiveness were also increased in the resulting EpFra1 cells, and the cells were tumourigenic and efficiently colonized the lung upon transplantation. Molecular analyses revealed increased expression of Tgfβ1 and the EMT-inducing transcription factors Zeb1, Zeb2 and Slug. Mechanistically, Fra-1 binds to the tgfb1 and zeb2 promoters and to an evolutionarily conserved region in the first intron of zeb1. Furthermore, increased activity of a zeb2 promoter reporter was detected in EpFra1 cells and shown to depend on AP-1-binding sites. Inhibiting TGFβ signalling in EpFra1 cells moderately increased the expression of epithelial markers, whereas silencing of zeb1 or zeb2 restored the epithelial phenotype and decreased migration in vitro and tumorigenesis in vivo. Thus Fra-1 induces changes in the expression of genes encoding EMT-related transcription factors leading to the acquisition of mesenchymal, invasive and tumorigenic capacities by epithelial cells. This study defines a novel function of Fra-1/AP-1 in modulating tgfb1, zeb1 and zeb2 expression through direct binding to genomic regulatory regions, which establishes a basis for future in vivo genetic manipulations and preclinical studies using mouse models.
Collapse
|
49
|
Moquet-Torcy G, Tolza C, Piechaczyk M, Jariel-Encontre I. Transcriptional complexity and roles of Fra-1/AP-1 at the uPA/Plau locus in aggressive breast cancer. Nucleic Acids Res 2014; 42:11011-24. [PMID: 25200076 PMCID: PMC4176185 DOI: 10.1093/nar/gku814] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Plau codes for the urokinase-type plasminogen activator (uPA), critical in cancer metastasis. While the mechanisms driving its overexpression in tumorigenic processes are unknown, it is regulated by the AP-1 transcriptional complex in diverse situations. The AP-1 component Fra-1 being overexpressed in aggressive breast cancers, we have addressed its role in the overexpression of Plau in the highly metastatic breast cancer model cell line MDA-MB231 using ChIP, pharmacological and RNAi approaches. Plau transcription appears controlled by 2 AP-1 enhancers located -1.9 (ABR-1.9) and -4.1 kb (ABR-4.1) upstream of the transcription start site (TSS) of the uPA-coding mRNA, Plau-001, that bind Fra-1. Surprisingly, RNA Pol II is not recruited only at the Plau-001 TSS but also upstream in the ABR-1.9 and ABR-4.1 region. Most Pol II molecules transcribe short and unstable RNAs while tracking down toward the TSS, where there are converted into Plau-001 mRNA-productive species. Moreover, a minority of Pol II molecules transcribes a low abundance mRNA of unknown function called Plau-004 from the ABR-1.9 domain, whose expression is tempered by Fra-1. Thus, we unveil a heretofore-unsuspected transcriptional complexity at Plau in a reference metastatic breast cancer cell line with pleiotropic effects for Fra-1, providing novel information on AP-1 transcriptional action.
Collapse
Affiliation(s)
- Gabriel Moquet-Torcy
- Institut de Génétique Moléculaire de Montpellier UMR 5535, CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France Université Montpellier 2, Place Eugène Bataillon, 34095 Montpellier cedex 5, France Université Montpellier 1, 5 Bd Henry IV, 34967 Montpellier cedex 2, France
| | - Claire Tolza
- Institut de Génétique Moléculaire de Montpellier UMR 5535, CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France Université Montpellier 2, Place Eugène Bataillon, 34095 Montpellier cedex 5, France Université Montpellier 1, 5 Bd Henry IV, 34967 Montpellier cedex 2, France
| | - Marc Piechaczyk
- Institut de Génétique Moléculaire de Montpellier UMR 5535, CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France Université Montpellier 2, Place Eugène Bataillon, 34095 Montpellier cedex 5, France Université Montpellier 1, 5 Bd Henry IV, 34967 Montpellier cedex 2, France
| | - Isabelle Jariel-Encontre
- Institut de Génétique Moléculaire de Montpellier UMR 5535, CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France Université Montpellier 2, Place Eugène Bataillon, 34095 Montpellier cedex 5, France Université Montpellier 1, 5 Bd Henry IV, 34967 Montpellier cedex 2, France
| |
Collapse
|
50
|
Lavigne AC, Castells M, Mermet J, Kocanova S, Dalvai M, Bystricky K. Increased macroH2A1.1 expression correlates with poor survival of triple-negative breast cancer patients. PLoS One 2014; 9:e98930. [PMID: 24911873 PMCID: PMC4049614 DOI: 10.1371/journal.pone.0098930] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 05/08/2014] [Indexed: 01/06/2023] Open
Abstract
PURPOSE Epithelial-Mesenchymal Transition (EMT) features appear to be key events in development and progression of breast cancer. Epigenetic modifications contribute to the establishment and maintenance of cancer subclasses, as well as to the EMT process. Whether histone variants contribute to these transformations is not known. We investigated the relative expression levels of histone macroH2A1 splice variants and correlated it with breast cancer status/prognosis/types. METHODS To detect differential expression of macroH2A1 variant mRNAs in breast cancer cells and tumor samples, we used the following databases: GEO, EMBL-EBI and publisher databases (may-august 2012). We extracted macroH2A1.1/macroH2A1 mRNA ratios and performed correlation studies on intrinsic molecular subclasses of breast cancer and on molecular characteristics of EMT. Associations between molecular and survival data were determined. RESULTS We found increased macroH2A1.1/macroH2A1 mRNA ratios to be associated with the claudin-low intrinsic subtype in breast cancer cell lines. At the molecular level this association translates into a positive correlation between macroH2A1 ratios and molecular characteristics of the EMT process. Moreover, untreated Triple Negative Breast Cancers presenting a high macroH2A1.1 mRNA ratio exhibit a poor outcome. CONCLUSION These results provide first evidence that macroH2A1.1 could be exploited as an actor in the maintenance of a transient cellular state in EMT progress towards metastatic development of breast tumors.
Collapse
Affiliation(s)
- Anne-Claire Lavigne
- Université de Toulouse; Laboratoire de Biologie Moléculaire Eucaryote (LBME); F-31062 Toulouse, France
- CNRS; LBME; F-31062 Toulouse, France
- * E-mail:
| | - Magali Castells
- Université de Toulouse; Laboratoire de Biologie Moléculaire Eucaryote (LBME); F-31062 Toulouse, France
- CNRS; LBME; F-31062 Toulouse, France
| | - Jérôme Mermet
- Université de Toulouse; Laboratoire de Biologie Moléculaire Eucaryote (LBME); F-31062 Toulouse, France
- CNRS; LBME; F-31062 Toulouse, France
| | - Silvia Kocanova
- Université de Toulouse; Laboratoire de Biologie Moléculaire Eucaryote (LBME); F-31062 Toulouse, France
- CNRS; LBME; F-31062 Toulouse, France
| | - Mathieu Dalvai
- Université de Toulouse; Laboratoire de Biologie Moléculaire Eucaryote (LBME); F-31062 Toulouse, France
- CNRS; LBME; F-31062 Toulouse, France
| | - Kerstin Bystricky
- Université de Toulouse; Laboratoire de Biologie Moléculaire Eucaryote (LBME); F-31062 Toulouse, France
- CNRS; LBME; F-31062 Toulouse, France
| |
Collapse
|