1
|
Halim A, Al-Qadi N, Kenyon E, Conner KN, Mondal SK, Medarova Z, Moore A. Inhibition of miR-10b treats metastatic breast cancer by targeting stem cell-like properties. Oncotarget 2024; 15:591-606. [PMID: 39189967 PMCID: PMC11348941 DOI: 10.18632/oncotarget.28641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024] Open
Abstract
Despite advances in breast cancer screening and treatment, prognosis for metastatic disease remains dismal at 30% five-year survival. This is due, in large, to the failure of current therapeutics to target properties unique to metastatic cells. One of the drivers of metastasis is miR-10b, a small noncoding RNA implicated in cancer cell invasion, migration, viability, and proliferation. We have developed a nanodrug, termed MN-anti-miR10b, that delivers anti-miR-10b antisense oligomers to cancer cells. In mouse models of metastatic triple-negative breast cancer, MN-anti-miR10b has been shown to prevent onset of metastasis and eliminate existing metastases in combination with chemotherapy, even after treatment has been stopped. Recent studies have implicated miR-10b in conferring stem cell-like properties onto cancer cells, such as chemoresistance. In this study, we show transcriptional evidence that inhibition of miR-10b with MN-anti-miR10b activates developmental processes in cancer cells and that stem-like cancer cells have increased miR-10b expression. We then demonstrate that treatment of breast cancer cells with MN-anti-miR10b reduces their stemness, confirming that these properties make metastatic cells susceptible to the nanodrug actions. Collectively, these findings indicate that inhibition of miR-10b functions to impair breast cancer cell stemness, positioning MN-anti-miR10b as an effective treatment option for stem-like breast cancer subtypes.
Collapse
Affiliation(s)
- Alan Halim
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA
| | - Nasreen Al-Qadi
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA
| | - Elizabeth Kenyon
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Kayla N. Conner
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI 48824, USA
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Sujan Kumar Mondal
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | | | - Anna Moore
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
2
|
Talebloo N, Bernal MAO, Kenyon E, Mallett CL, Mondal SK, Fazleabas A, Moore A. Imaging of Endometriotic Lesions Using cRGD-MN Probe in a Mouse Model of Endometriosis. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:319. [PMID: 38334590 PMCID: PMC10856945 DOI: 10.3390/nano14030319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Approximately 10% of women suffer from endometriosis during their reproductive years. This disease is a chronic debilitating condition whose etiology for lesion implantation and survival heavily relies on adhesion and angiogenic factors. Currently, there are no clinically approved agents for its detection. In this study, we evaluated cRGD-peptide-conjugated nanoparticles (RGD-Cy5.5-MN) to detect lesions using magnetic resonance imaging (MRI) in a mouse model of endometriosis. We utilized a luciferase-expressing murine suture model of endometriosis. Imaging was performed before and after 24 h following the intravenous injection of RGD-Cy5.5-MN or control nanoparticles (Cy5.5-MN). Next, we performed biodistribution of RGD-Cy5.5-MN and correlative fluorescence microscopy of lesions stained for CD34. Tissue iron content was determined using inductively coupled plasma optical emission spectrometry (ICP-OES). Our results demonstrated that targeting endometriotic lesions with RGD-Cy5.5-MN resulted in a significantly higher delta T2* upon its accumulation compared to Cy5.5-MN. ICP-OES showed significantly higher iron content in the lesions of the animals in the experimental group compared to the lesions of the animals in the control group. Histology showed colocalization of Cy5.5 signal from RGD-Cy5.5-MN with CD34 in the lesions pointing to the targeted nature of the probe. This work offers initial proof-of-concept for targeting angiogenesis in endometriosis which can be useful for potential clinical diagnostic and therapeutic approaches for treating this disease.
Collapse
Affiliation(s)
- Nazanin Talebloo
- Precision Health Program, Michigan State University, 766 Service Road, East Lansing, MI 48824, USA; (N.T.); (E.K.); (S.K.M.)
- Department of Chemistry, College of Natural Sciences, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| | - M. Ariadna Ochoa Bernal
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI 49503, USA; (M.A.O.B.); (A.F.)
- Department of Animal Science, Michigan State University, 474 S Shaw Ln #1290, East Lansing, MI 48824, USA
| | - Elizabeth Kenyon
- Precision Health Program, Michigan State University, 766 Service Road, East Lansing, MI 48824, USA; (N.T.); (E.K.); (S.K.M.)
- Department of Radiology, College of Human Medicine, Michigan State University, 766 Service Road, East Lansing, MI 48824, USA;
| | - Christiane L. Mallett
- Department of Radiology, College of Human Medicine, Michigan State University, 766 Service Road, East Lansing, MI 48824, USA;
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, East Lansing, MI 48824, USA
| | - Sujan Kumar Mondal
- Precision Health Program, Michigan State University, 766 Service Road, East Lansing, MI 48824, USA; (N.T.); (E.K.); (S.K.M.)
- Department of Radiology, College of Human Medicine, Michigan State University, 766 Service Road, East Lansing, MI 48824, USA;
| | - Asgerally Fazleabas
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI 49503, USA; (M.A.O.B.); (A.F.)
| | - Anna Moore
- Precision Health Program, Michigan State University, 766 Service Road, East Lansing, MI 48824, USA; (N.T.); (E.K.); (S.K.M.)
- Department of Radiology, College of Human Medicine, Michigan State University, 766 Service Road, East Lansing, MI 48824, USA;
| |
Collapse
|
3
|
Ahmadi SM, Amirkhanloo S, Yazdian-Robati R, Ebrahimi H, Pirhayati FH, Almalki WH, Ebrahimnejad P, Kesharwani P. Recent advances in novel miRNA mediated approaches for targeting breast cancer. J Drug Target 2023; 31:777-793. [PMID: 37480323 DOI: 10.1080/1061186x.2023.2240979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/18/2023] [Accepted: 05/05/2023] [Indexed: 07/24/2023]
Abstract
Breast cancer (BC) is considered one of the most frequent cancers among woman worldwide. While conventional therapy has been successful in treating many cases of breast cancer, drug resistance, heterogenicity, tumour features and recurrence, invasion, metastasis and the presence of breast cancer stem cells can hinder the effect of treatments, and can reduce the quality of life of patients. MicroRNAs (miRNAs) are short non-coding RNA molecules that play a crucial role in the development and progression of breast cancer. Several studies have reported that aberrant expression of specific miRNAs is associated with the pathogenesis of breast cancer. However, miRNAs are emerging as potential biomarkers and therapeutic targets for breast cancer. Understanding their role in breast cancer biology could help develop more effective treatments for this disease. The present study discusses the biogenesis and function of miRNAs, as well as miRNA therapy approaches for targeting and treating breast cancer cells.
Collapse
Affiliation(s)
- Seyedeh Melika Ahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shervin Amirkhanloo
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Rezvan Yazdian-Robati
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Ebrahimi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
4
|
Chen M, Kim B, Robertson N, Mondal SK, Medarova Z, Moore A. Co-administration of temozolomide (TMZ) and the experimental therapeutic targeting miR-10b, profoundly affects the tumorigenic phenotype of human glioblastoma cells. Front Mol Biosci 2023; 10:1179343. [PMID: 37398551 PMCID: PMC10311069 DOI: 10.3389/fmolb.2023.1179343] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction: Recent studies have shown that miRNA-10b is highly expressed in high-grade glioblastoma multiforme (GBM), and its inhibition leads to deregulation of multiple pathways in tumorigenesis, resulting in repression of tumor growth and increased apoptosis. Thus, we hypothesized that suppressing miR-10b could enhance the cytotoxicity of conventional GBM chemotherapy with temozolomide (TMZ). Methods: Inhibition of miR-10b in glioblastoma cells was achieved using an experimental therapeutic consisting of anti-miR10b antagomirs conjugated to iron oxide nanoparticles (termed MN-anti-miR10b). The nanoparticles serve as delivery vehicles for the antagomirs as well as imaging reporters guiding the delivery in future animal studies. Results: Treatment of U251 and LN229 human glioblastoma cells with MN-anti-miR10b led to inhibition of miR-10b accompanied by repression of growth and increase in apoptosis. We next explored whether MN-anti-miR10b could enhance the cytotoxic effect of TMZ. During these studies, we unexpectedly found that TMZ monotherapy increased miR-10b expression and changed the expression of corresponding miR-10b targets. This discovery led to the design of a sequence-dependent combination treatment, in which miR-10b inhibition and induction of apoptosis by MN-anti-miR10b was followed by a sub-therapeutic dose of TMZ, which caused cell cycle arrest and ultimately cell death. This combination was highly successful in significant enhancement of apoptosis and decrease in cell migration and invasiveness. Discussion: Considering the unexpected effects of TMZ on miR-10b expression and possible implications on its clinical application, we reasoned that comprehensive in vitro studies were warranted before embarking on studies in animals. These intriguing findings serve as a solid foundation for future in vivo studies and offer promise for the successful treatment of GBM.
Collapse
Affiliation(s)
- Ming Chen
- Precision Health Program, Michigan State University, East Lansing, MI, United States
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| | - Bryan Kim
- Precision Health Program, Michigan State University, East Lansing, MI, United States
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
| | - Neil Robertson
- Precision Health Program, Michigan State University, East Lansing, MI, United States
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| | - Sujan Kumar Mondal
- Precision Health Program, Michigan State University, East Lansing, MI, United States
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| | | | - Anna Moore
- Precision Health Program, Michigan State University, East Lansing, MI, United States
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
5
|
Robertson N, Sempere L, Kenyon E, Mallet C, Smith K, Hix J, Halim A, Fan J, Moore A. Omniparticle Contrast Agent for Multimodal Imaging: Synthesis and Characterization in an Animal Model. Mol Imaging Biol 2023; 25:401-412. [PMID: 36071300 PMCID: PMC9989039 DOI: 10.1007/s11307-022-01770-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 10/14/2022]
Abstract
PURPOSE Individual imaging modalities have certain advantages, but each suffers from drawbacks that other modalities may overcome. The goal of this study was to create a novel contrast agent suitable for various imaging modalities that after a single administration can bridge and strengthen the collaboration between the research fields as well as enrich the information obtained from any one modality. PROCEDURES The contrast agent platform is based on dextran-coated iron oxide nanoparticles (for MRI and MPI) and synthesized using a modified co-precipitation method, followed by a series of conjugation steps with a fluorophore (for fluorescence and photoacoustic imaging), thyroxine (for CT imaging), and chelators for radioisotope labeling (for PET imaging). The fully conjugated agent was then tested in vitro in cell uptake, viability, and phantom studies and in vivo in a model of intraductal injection and in a tumor model. RESULTS The agent was synthesized, characterized, and tested in vitro where it showed the ability to produce a signal on MRI/MPI/FL/PA/CT and PET images. Studies in cells showed the expected concentration-dependent uptake of the agent without noticeable toxicity. In vivo studies demonstrated localization of the agent to the ductal tree in mice after intraductal injection with different degrees of resolution, with CT being the best for this particular application. In a model of injected labeled tumor cells, the agent produced a signal with all modalities and showed persistence in tumor cells confirmed by histology. CONCLUSIONS A fully functional omniparticle contrast agent was synthesized and tested in vitro and in vivo in two animal models. Results shown here point to the generation of a potent signal in all modalities tested without detrimental toxicity. Future use of this agent includes its exploration in various models of human disease including image-guided diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Neil Robertson
- Precision Health Program, Michigan State University, 766 Service Road, East Lansing, MI, 48824, USA
- Department of Radiology, College of Human Medicine, Michigan State University, 766 Service Road, East Lansing, MI, 48824, USA
- Department of Chemistry, College of Natural Sciences, Michigan State University, 578 S Shaw Lane, East Lansing, MI, 48824, USA
| | - Lorenzo Sempere
- Precision Health Program, Michigan State University, 766 Service Road, East Lansing, MI, 48824, USA
- Department of Radiology, College of Human Medicine, Michigan State University, 766 Service Road, East Lansing, MI, 48824, USA
- Department of Chemistry, College of Natural Sciences, Michigan State University, 578 S Shaw Lane, East Lansing, MI, 48824, USA
| | - Elizabeth Kenyon
- Precision Health Program, Michigan State University, 766 Service Road, East Lansing, MI, 48824, USA
- Department of Chemistry, College of Natural Sciences, Michigan State University, 578 S Shaw Lane, East Lansing, MI, 48824, USA
| | - Christiane Mallet
- Department of Radiology, College of Human Medicine, Michigan State University, 766 Service Road, East Lansing, MI, 48824, USA
- Department of Chemistry, College of Natural Sciences, Michigan State University, 578 S Shaw Lane, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, East Lansing, MI, 48824, USA
| | - Kylie Smith
- Department of Chemistry, College of Natural Sciences, Michigan State University, 578 S Shaw Lane, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, East Lansing, MI, 48824, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, 766 Service Road, East Lansing, MI, 48824, USA
| | - Jeremy Hix
- Department of Radiology, College of Human Medicine, Michigan State University, 766 Service Road, East Lansing, MI, 48824, USA
- Department of Chemistry, College of Natural Sciences, Michigan State University, 578 S Shaw Lane, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, East Lansing, MI, 48824, USA
| | - Alan Halim
- Precision Health Program, Michigan State University, 766 Service Road, East Lansing, MI, 48824, USA
- Department of Chemistry, College of Natural Sciences, Michigan State University, 578 S Shaw Lane, East Lansing, MI, 48824, USA
| | - Jinda Fan
- Department of Radiology, College of Human Medicine, Michigan State University, 766 Service Road, East Lansing, MI, 48824, USA
- Department of Chemistry, College of Natural Sciences, Michigan State University, 578 S Shaw Lane, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, East Lansing, MI, 48824, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, 766 Service Road, East Lansing, MI, 48824, USA
| | - Anna Moore
- Precision Health Program, Michigan State University, 766 Service Road, East Lansing, MI, 48824, USA.
- Department of Radiology, College of Human Medicine, Michigan State University, 766 Service Road, East Lansing, MI, 48824, USA.
- Department of Chemistry, College of Natural Sciences, Michigan State University, 578 S Shaw Lane, East Lansing, MI, 48824, USA.
| |
Collapse
|
6
|
Wang D, Wang L, Zheng L, Chen J, Zhang W, Zhou W, Yang X, Jiang L, Jin X, Yu X, Liu X, Chen H, Xu J. Enhancing the Management of Metastatic Tumors by Robust Co-Delivery of 5-Fluorouracil/MicroRNA-10b Inhibitor Using EGFR-Targeted Nanovehicles. Adv Healthc Mater 2023:e2202989. [PMID: 36740892 DOI: 10.1002/adhm.202202989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/26/2023] [Indexed: 02/07/2023]
Abstract
Invasion and metastasis are the leading causes of death of patients with CRC. 5-Fluorouracil is widely used in clinic practice as the basic chemotherapy drug for CRC. However, it is inefficient in inhibiting tumor metastasis. MicroRNA-10b is uninvolved in regulating the growth of primary tumors; however, it could induce early tumor metastases and is a key regulator of chemotherapeutic resistance to 5-FU. A multifunctional nanovehicle that can carry small molecule drugs not only through the hydrophobic pockets of conjugated β-cyclodextrin but also through electrostatic interaction between the conjugated peptides and siRNA to target functional genes is previously developed. In this study, a nanovehicle, named GCD, with epithelium growth factor receptor (EGFR)-targeted characteristics to simultaneously deliver chemotherapeutic and nucleotide drugs to distinct targets in CRC, is employed. These data show that co-delivery of 5-FU and anti-miR-10b can be effectively applied to targeted therapy of EGFR-overexpressed CRC, particularly inhibiting the metastasis of CRC. Furthermore, the therapeutic effect of this combination on tumor xenograft models derived from patients with CRC is evaluated. Taken together, this study may provide insights into the inhibition of tumor growth and metastasis simultaneously.
Collapse
Affiliation(s)
- Di Wang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Clinical Research Center of Motor System Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
| | - Liwei Wang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Clinical Research Center of Motor System Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
| | - Liming Zheng
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Clinical Research Center of Motor System Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
| | - Jiaxin Chen
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Clinical Research Center of Motor System Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
| | - Wei Zhang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
| | - Wei Zhou
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
| | - Xiaobo Yang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Clinical Research Center of Motor System Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
| | - Lifeng Jiang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Clinical Research Center of Motor System Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
| | - Xiaoqiang Jin
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Clinical Research Center of Motor System Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
| | - Xiaohua Yu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Clinical Research Center of Motor System Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
| | - Xin Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
| | - Heng Chen
- School of Material Science and Engineering, Dongguan University of Technology, Dongguan City, Guangdong Province, 523000, P. R. China
| | - Jianbin Xu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Clinical Research Center of Motor System Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
| |
Collapse
|
7
|
Savan NA, Saavedra PV, Halim A, Yuzbasiyan-Gurkan V, Wang P, Yoo B, Kiupel M, Sempere L, Medarova Z, Moore A. Case report: MicroRNA-10b as a therapeutic target in feline metastatic mammary carcinoma and its implications for human clinical trials. Front Oncol 2022; 12:959630. [PMID: 36387245 PMCID: PMC9643803 DOI: 10.3389/fonc.2022.959630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Ninety percent of deaths from cancer are caused by metastasis. miRNAs are critical players in biological processes such as proliferation, metastasis, apoptosis, and self-renewal. We and others have previously demonstrated that miRNA-10b promotes metastatic cell migration and invasion. Importantly, we also showed that miR-10b is a critical driver of metastatic cell viability and proliferation. To treat established metastases by inhibiting miR-10b, we utilized a therapeutic, termed MN-anti-miR10b, composed of anti-miR-10b antagomirs, conjugated to iron oxide nanoparticles, that serve as delivery vehicles to tumor cells in vivo and a magnetic resonance imaging (MRI) reporter. In our previous studies using murine models of metastatic breast cancer, we demonstrated the effectiveness of MN-anti-miR10b in preventing and eliminating existing metastases. With an outlook toward clinical translation of our therapeutic, here we report studies in large animals (companion cats) with spontaneous feline mammary carcinoma (FMC). We first investigated the expression and tissue localization of miR-10b in feline tumors and metastases and showed remarkable similarity to these features in humans. Next, in the first case study involving this therapeutic we intravenously dosed an FMC patient with MN-anti-miR10b and demonstrated its delivery to the metastatic lesions using MRI. We also showed the initial safety profile of the therapeutic and demonstrated significant change in miR-10b expression and its target HOXD10 after dosing. Our results provide support for using companion animals for further MN-anti-miR10b development as a therapy and serve as a guide for future clinical trials in human patients.
Collapse
Affiliation(s)
- N. Anna Savan
- Precision Health Program, Michigan State University, East Lansing, MI, United States
| | - Paulo Vilar Saavedra
- Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Alan Halim
- Precision Health Program, Michigan State University, East Lansing, MI, United States
| | - Vilma Yuzbasiyan-Gurkan
- Microbiology and Molecular Genetics and Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Ping Wang
- Precision Health Program, Michigan State University, East Lansing, MI, United States
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| | - Byunghee Yoo
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States
| | - Matti Kiupel
- Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Lorenzo Sempere
- Precision Health Program, Michigan State University, East Lansing, MI, United States
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| | - Zdravka Medarova
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States
- Transcode Therapeutics Inc., Boston, MA, United States
| | - Anna Moore
- Precision Health Program, Michigan State University, East Lansing, MI, United States
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
8
|
Elgeshy KM, Abdel Wahab AHA. The Role, Significance, and Association of MicroRNA-10a/b in Physiology of Cancer. Microrna 2022; 11:118-138. [PMID: 35616665 DOI: 10.2174/2211536611666220523104408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/21/2022] [Accepted: 04/04/2022] [Indexed: 01/01/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate the translation of mRNA and protein, mainly at the posttranscriptional level. Global expression profiling of miRNAs has demonstrated a broad spectrum of aberrations that correlated with several diseases, and miRNA- 10a and miRNA-10b were the first examined miRNAs to be involved in abnormal activities upon dysregulation, including many types of cancers and progressive diseases. It is expected that the same miRNAs behave inconsistently within different types of cancer. This review aims to provide a set of information about our updated understanding of miRNA-10a and miRNA-10b and their clinical significance, molecular targets, current research gaps, and possible future applications of such potent regulators.
Collapse
Affiliation(s)
- Khaled M Elgeshy
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Cairo, Egypt
| | | |
Collapse
|
9
|
Significance of metastamiR-10b in breast cancer therapeutics. J Egypt Natl Canc Inst 2022; 34:19. [DOI: 10.1186/s43046-022-00120-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/14/2022] [Indexed: 12/30/2022] Open
Abstract
Abstract
Background
Breast cancer is a fatal disease and a major reason of cancer associated death in females. Many factors along with miRNA are responsible for the development and the progression of the disease. The miRNA plays a very crucial role in the regulation of the genes. MicroRNAs are of three major types—oncomiRs, tumor suppressive miRNAs, and metastamiRs.
Main body
MicoRNA-10b is a prometastatic microRNA targeting various genes that facilitates multiple outcomes such as metastasis, increased capacity for invasion, proliferation and migration, increased epithelial-mesenchymal transformation, angiogenesis, and therefore exhibits worse clinical outcomes. It is found to be upregulated in various malignancies and is thus to be considered as the possible therapeutic candidate.
Conclusion
The therapeutic delivery of miR-10b antagonists (antagomiRs) and/or knockdown of miRNA is beneficial in reducing tumor growth. Additionally, combination therapy which includes antisense oligonucleotides using miR-10b can function as an effective approach to tumor regression and drug resistance reversal.
Graphical abstract
Collapse
|
10
|
Rodriguez-Casanova A, Bao-Caamano A, Costa-Fraga N, Muinelo-Romay L, Diaz-Lagares A. Epigenetics and Liquid Biopsy in Oncology: Role in Metastasis and Clinical Utility. CANCER METASTASIS THROUGH THE LYMPHOVASCULAR SYSTEM 2022:167-174. [DOI: 10.1007/978-3-030-93084-4_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Sempere LF, Azmi AS, Moore A. microRNA-based diagnostic and therapeutic applications in cancer medicine. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1662. [PMID: 33998154 PMCID: PMC8519065 DOI: 10.1002/wrna.1662] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 01/18/2023]
Abstract
It has been almost two decades since the first link between microRNAs and cancer was established. In the ensuing years, this abundant class of short noncoding regulatory RNAs has been studied in virtually all cancer types. This tremendously large body of research has generated innovative technological advances for detection of microRNAs in tissue and bodily fluids, identified the diagnostic, prognostic, and/or predictive value of individual microRNAs or microRNA signatures as potential biomarkers for patient management, shed light on regulatory mechanisms of RNA-RNA interactions that modulate gene expression, uncovered cell-autonomous and cell-to-cell communication roles of specific microRNAs, and developed a battery of viral and nonviral delivery approaches for therapeutic intervention. Despite these intense and prolific research efforts in preclinical and clinical settings, there are a limited number of microRNA-based applications that have been incorporated into clinical practice. We review recent literature and ongoing clinical trials that highlight most promising approaches and standing challenges to translate these findings into viable microRNA-based clinical tools for cancer medicine. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Lorenzo F. Sempere
- Department of Radiology, Precision Health ProgramMichigan State UniversityEast LansingMichiganUSA
| | - Asfar S. Azmi
- Department of OncologyWayne State University School of MedicineDetroitMichiganUSA
- Karmanos Cancer InstituteDetroitMichiganUSA
| | - Anna Moore
- Departments of Radiology and Physiology, Precision Health ProgramMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
12
|
Le Fur M, Ross A, Pantazopoulos P, Rotile N, Zhou I, Caravan P, Medarova Z, Yoo B. Radiolabeling and PET-MRI microdosing of the experimental cancer therapeutic, MN-anti-miR10b, demonstrates delivery to metastatic lesions in a murine model of metastatic breast cancer. Cancer Nanotechnol 2021; 12:16. [PMID: 34531932 PMCID: PMC8442631 DOI: 10.1186/s12645-021-00089-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/01/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND In our earlier work, we identified microRNA-10b (miR10b) as a master regulator of the viability of metastatic tumor cells. This knowledge allowed us to design a miR10b-targeted therapeutic consisting of anti-miR10b and ultrasmall iron oxide magnetic nanoparticles (MN), termed MN-anti-miR10b. In mouse models of breast cancer, we demonstrated that MN-anti-miR10b caused durable regressions of established metastases with no evidence of systemic toxicity. As a first step towards translating MN-anti-miR10b for the treatment of metastatic breast cancer, we needed to determine if MN-anti-miR10b, which is so effective in mice, will also accumulate in human metastases. RESULTS In this study, we devised a method to efficiently radiolabel MN-anti-miR10b with Cu-64 (64Cu) and evaluated the pharmacokinetics and biodistribution of the radiolabeled product at two different doses: a therapeutic dose, referred to as macrodose, corresponding to 64Cu-MN-anti-miR10b co-injected with non-labeled MN-anti-miR10b, and a tracer level dose of 64Cu-MN-anti-miR10b, referred to as microdose. In addition, we evaluated the uptake of 64Cu-MN-anti-miR10b by metastatic lesions using both in vivo and ex vivo positron emission tomography-magnetic resonance imaging (PET-MRI). A comparable distribution of the therapeutic was observed after administration of a microdose or macrodose. Uptake of the therapeutic by metastatic lymph nodes, lungs, and bone was also demonstrated by PET-MRI with a significantly higher PET signal than in the same organs devoid of metastatic lesions. CONCLUSION Our results demonstrate that PET-MRI following a microdose injection of the agent will accurately reflect the innate biodistribution of the therapeutic. The tools developed in the present study lay the groundwork for the clinical testing of MN-anti-miR10b and other similar therapeutics in patients with cancer.
Collapse
Affiliation(s)
- Mariane Le Fur
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129 USA
- Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, MA 02129 USA
| | - Alana Ross
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129 USA
| | - Pamela Pantazopoulos
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129 USA
| | - Nicholas Rotile
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129 USA
- Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, MA 02129 USA
| | - Iris Zhou
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129 USA
- Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, MA 02129 USA
| | - Peter Caravan
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129 USA
- Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, MA 02129 USA
| | - Zdravka Medarova
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129 USA
| | - Byunghee Yoo
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129 USA
| |
Collapse
|
13
|
Lan YL, Zhang J. Modulation of untranslated region alternative polyadenylation in glioma tumorigenesis. Biomed Pharmacother 2021; 137:111416. [DOI: 10.1016/j.biopha.2021.111416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 01/10/2023] Open
|
14
|
MiRNA10b-directed nanotherapy effectively targets brain metastases from breast cancer. Sci Rep 2021; 11:2844. [PMID: 33531596 PMCID: PMC7854676 DOI: 10.1038/s41598-021-82528-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 01/12/2021] [Indexed: 12/29/2022] Open
Abstract
RNA interference represents one of the most appealing therapeutic modalities for cancer because of its potency, versatility, and modularity. Because the mechanism is catalytic and affects the expression of disease-causing antigens at the post-transcriptional level, only small amounts of therapeutic need to be delivered to the target in order to exert a robust therapeutic effect. RNA interference is also advantageous over other treatment modalities, such as monoclonal antibodies or small molecules, because it has a much broader array of druggable targets. Finally, the complementarity of the genetic code gives us the opportunity to design RNAi therapeutics using computational, rational approaches. Previously, we developed and tested an RNAi-targeted therapeutic, termed MN-anti-miR10b, which was designed to inhibit the critical driver of metastasis and metastatic colonization, miRNA-10b. We showed in animal models of metastatic breast cancer that MN-anti-miR10b accumulated into tumors and metastases in the lymph nodes, lungs, and bone, following simple intravenous injection. We also found that treatment incorporating MN-anti-miR10b was effective at inhibiting the emergence of metastases and could regress already established metastases in the lymph nodes, lungs, and bone. In the present study, we extend the application of MN-anti-miR10b to a model of breast cancer metastatic to the brain. We demonstrate delivery to the metastatic lesions and obtain evidence of a therapeutic effect manifested as inhibition of metastatic progression. This investigation represents an additional step towards translating similar RNAi-targeted therapeutics for the systemic treatment of metastatic disease.
Collapse
|
15
|
Uyar TB, Wu K, He M, Khan I, Royzen M, Yigit MV. Switchable Fluorescence of Doxorubicin for Label-Free Imaging of Bioorthogonal Drug Release. ChemMedChem 2020; 15:988-994. [PMID: 32216081 PMCID: PMC7397846 DOI: 10.1002/cmdc.202000065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Indexed: 12/11/2022]
Abstract
Monitoring the release and activation of prodrug formulations provides essential information about the outcome of a therapy. While the prodrug delivery can be confirmed by using different imaging techniques, confirming the release of active payload by using imaging is a challenge. Here, we have discovered that the switchable fluorescence of doxorubicin can validate drug release upon its uncaging reaction with a highly specific chemical partner. We have observed that the conjugation of doxorubicin with a trans-cyclooctene (TCO) diminishes its fluorescence at 595 nm. This quenched fluorescence of the doxorubicin prodrug is recovered upon its bond-cleaving reaction with tetrazine. Clinically assessed iron oxide nanoparticles were used to formulate a doxorubicin nanodrug. The release of doxorubicin from the nanodrug was studied under various experimental conditions. A fivefold increase in doxorubicin fluorescence is observed after complete release. The studies were carried out in vitro in MDA-MB-231 breast cancer cells. An increase in Dox signal was observed upon tetrazine administration. This switchable fluorescence mechanism of Dox could be employed for fundamental studies, that is, the reactivity of various tetrazine and TCO linker types under different experimental conditions. In addition, the system could be instrumental for translational research where the release and activation of doxorubicin prodrug payloads can be monitored by using optical imaging systems.
Collapse
Affiliation(s)
- Taha Bilal Uyar
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Kui Wu
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Muhan He
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Irfan Khan
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Maksim Royzen
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
- The RNA Institute University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Mehmet V Yigit
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
- The RNA Institute University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| |
Collapse
|
16
|
Qi T, Song C, He J, Shen W, Kong D, Shi H, Tan L, Pan R, Tang S, Lee HK. Highly Sensitive Detection of Multiple MicroRNAs by High-Performance Liquid Chromatography Coupled with Long and Short Probe-Based Recycling Amplification. Anal Chem 2020; 92:5033-5040. [DOI: 10.1021/acs.analchem.9b05301] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Tong Qi
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, People’s Republic of China
| | - Chang Song
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, People’s Republic of China
| | - Jing He
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, People’s Republic of China
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, People’s Republic of China
| | - Dezhao Kong
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, People’s Republic of China
| | - Haiwei Shi
- Jiangsu Institute for Food and Drug Control, Nanjing 210019, Jiangsu Province, People’s Republic of China
- Key Laboratory for Impurity Profile of Chemical Drugs, National Medical Products Administration, Nanjing 210019, Jiangsu Province, People’s Republic of China
| | - Li Tan
- Jiangsu Institute for Food and Drug Control, Nanjing 210019, Jiangsu Province, People’s Republic of China
- Key Laboratory for Impurity Profile of Chemical Drugs, National Medical Products Administration, Nanjing 210019, Jiangsu Province, People’s Republic of China
| | - Ruirong Pan
- Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu Province, People’s Republic of China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, People’s Republic of China
| | - Hian Kee Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
17
|
Medarova Z, Pantazopoulos P, Yoo B. Screening of potential miRNA therapeutics for the prevention of multi-drug resistance in cancer cells. Sci Rep 2020; 10:1970. [PMID: 32029822 PMCID: PMC7005303 DOI: 10.1038/s41598-020-58919-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
Chemotherapy, a major cancer treatment approach, suffers seriously from multidrug resistance (MDR), generally caused by innate DNA repair proteins that reverse the DNA modification by anti-cancer therapeutics or trans-membrane efflux proteins that pump anti-cancer therapeutics out of the cytosol. This project focused on finding microRNAs that can regulate MDR proteins by managing corresponding mRNA levels through post-transcriptional regulation based on nucleotide sequence matching. Screening was done with bioinformatics databases for unpublished/unexplored microRNAs with high nucleotide sequence correspondence to two representative MDR proteins, MGMT (a DNA repair protein) and ABCB1 (an efflux protein), revealing microRNA-4539 and microRNA-4261 respectively. To investigate the enhancement of chemotherapeutics in cancer cells, high MGMT expressing glioblastoma (T98G) and a high ABCB1 expressing triple-negative breast cancer cell line (MDA-MB-231-luc) were treated with varying concentrations of chemotherapeutics and corresponding miRNAs. Newly identified MDR-related miRNAs (MDRmiRs) enhanced the response to anti-cancer therapeutics and resulted in effective cell death. In this study, we demonstrated that therapeutic miRNAs could be identified based on the nucleotide sequence matching of miRNAs to targeted mRNA and the same approach could be employed for the screening of therapeutic candidates to regulate specific target proteins in diverse diseases.
Collapse
Affiliation(s)
- Zdravka Medarova
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA.
| | - Pamela Pantazopoulos
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Byunghee Yoo
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA.
| |
Collapse
|
18
|
Yoo B, Meka N, Sheedy P, Billig AM, Pantazopoulos P, Medarova Z. MicroRNA-710 regulates multiple pathways of carcinogenesis in murine metastatic breast cancer. PLoS One 2019; 14:e0226356. [PMID: 31834924 PMCID: PMC6910689 DOI: 10.1371/journal.pone.0226356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/25/2019] [Indexed: 11/18/2022] Open
Abstract
Prior research has shown that critical differences between non-metastatic and metastatic tumor cells are at the level of microRNA. Consequently, harnessing these molecules for the treatment of metastatic cancer could have significant clinical impact. In the present study, we set out to identify metastasis-specific microRNAs which drive metastatic colonization of distant organs. Using a murine model of metastatic breast cancer, we employed a directed approach in which we screened for microRNAs that are differentially expressed between the primary tumors and metastatic lesions but concordantly expressed in all of the metastatic lesions irrespective of the tissue that is colonized. Of the identified targets, we focused on miR-710, which was consistently and significantly downregulated in the metastatic lesions relative to the primary tumors. The level of downregulation was independent of the distant organ that is involved, suggesting that miR-710 plays a fundamental role in metastatic colonization. Computational target prediction suggested a pleiotropic role for miR-710 in apoptosis, migration and invasion, and stemness. Using a previously validated oligonucleotide delivery system, we introduced miR-710 mimics into 4T1 metastatic breast adenocarcinoma cells and assessed the resultant phenotypic effects. We demonstrated significant inhibition of cell viability, migration, and invasion. We also showed that the treatment profoundly enhanced cell senescence, reduced stemness, and influenced markers of epithelial to mesenchymal transition, as evidenced by enhanced E-cadherin and reduced vimentin expression. This knowledge represents a first step towards harnessing a similar approach to discover novel microRNA targets with therapeutic potential in metastasis.
Collapse
Affiliation(s)
- Byunghee Yoo
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
- * E-mail: (BY); (ZM)
| | - Nikhil Meka
- College of Arts and Science, New York University, NY, United States of America
| | - Patrick Sheedy
- Department of Health Sciences, CaNCURE Program, Northeastern University, Boston, MA
| | - Ann-Marie Billig
- Department of Health Sciences, CaNCURE Program, Northeastern University, Boston, MA
| | - Pamela Pantazopoulos
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Zdravka Medarova
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
- * E-mail: (BY); (ZM)
| |
Collapse
|
19
|
Improving the therapeutic efficiency of noncoding RNAs in cancers using targeted drug delivery systems. Drug Discov Today 2019; 25:718-730. [PMID: 31758914 DOI: 10.1016/j.drudis.2019.11.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/01/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022]
Abstract
The delivery of noncoding (nc)RNA to target cancer stem cells and metastatic tumors has shown many positive outcomes, resulting in improved and more efficient treatment strategies. The success of therapeutic RNA depends solely on passing cellular barriers to reach the target site, where it binds to the mRNA of the interest. By 2018, 20 clinical trials had been initiated, most focusing on cancer and diabetes, with some progressing to Phase II clinical trials testing the safety and efficacy of small interfering (si)RNA. Many challenges limit RNA interference (RNAi) and miRNA usage in vivo; therefore, various approaches have been developed to promote ncRNA efficiency and stability. In this review, we focus on targeting the tumor microenvironment (TME) via the modification of delivery systems utilizing nanotechnology-based delivery approaches.
Collapse
|
20
|
Wang M, Qiu R, Gong Z, Zhao X, Wang T, Zhou L, Lu W, Shen B, Zhu W, Xu W. miR-188-5p emerges as an oncomiRNA to promote gastric cancer cell proliferation and migration via upregulation of SALL4. J Cell Biochem 2019; 120:15027-15037. [PMID: 31009138 DOI: 10.1002/jcb.28764] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) play pivotal roles in modulating key biological processes in gastric cancer (GC). As a newly identified miRNA, the function and potential mechanism of miR-188-5p in GC has not been thoroughly elucidated. Here, quantitative real-time polymerase chain reaction detection showed abnormally higher expression of miR-188-5p in GC cells and tissues. Gain-of-function analysis in vitro showed that miR-188-5p promoted GC cell proliferation and migration, while loss-of-function studies showed the reverse. Targetscan has predicted that phosphatase and tensin homolog (PTEN) was a potential target gene of miR-188-5p. miR-188-5p suppressed PTEN messenger RNA and protein expression and activated downstream AKT/mTOR signaling in GC cells, but luciferase reporter analysis showed that PTEN was not regulated by miR-188-5p via the 3' untranslated region. Furthermore, we observed that miR-188-5p overexpression promoted Sal-like protein 4 (SALL4) protein expression, cellular nuclear translocation, and transcription. Knockdown of SALL4 eliminated the effect of miR-188-5p in GC cells as well as suppression of PTEN. Taken together, our results demonstrate that miR-188-5p promotes GC cell proliferation and migration while suppressing tumor suppressor gene PTEN expression via transcriptional upregulation of oncogene SALL4. We conclude that miR-188-5p acts as an oncomiRNA in GC and may be a promising therapeutic target for GC.
Collapse
Affiliation(s)
- Mei Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Rong Qiu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zheng Gong
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xinxin Zhao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tingting Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lulu Zhou
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Weiwei Lu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Bo Shen
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China
| | - Wei Zhu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wenrong Xu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
21
|
RNAi-Mediated PD-L1 Inhibition for Pancreatic Cancer Immunotherapy. Sci Rep 2019; 9:4712. [PMID: 30886310 PMCID: PMC6423142 DOI: 10.1038/s41598-019-41251-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 03/05/2019] [Indexed: 12/21/2022] Open
Abstract
The recent past has seen impressive progress in the treatment of various malignancies using immunotherapy. One of the most promising approaches involves immune checkpoint inhibitors. However, the clinical results with these agents have demonstrated variability in the response. Pancreatic cancer, in particular, has proven resistant to initial immunotherapy approaches. Here, we describe an alternative strategy that relies on combining gemcitabine and a novel programmed death-ligand 1 (PD-L1) inhibitor, termed MN-siPDL1. MN-siPDL1 incorporates small interfering RNA against PD-L1 (siPDL1) conjugated to a magnetic nanocarrier (MN). We show that noninvasive magnetic resonance imaging (MRI) could be used to monitor therapeutic response. Combination therapy consisting of gemcitabine and MN-siPDL1 in a syngeneic murine pancreatic cancer model resulted in a significant reduction in tumor growth and an increase in survival. Following optimization, a 90% reduction in tumor volume was achieved 2 weeks after the beginning of treatment. Whereas 100% of the control animals had succumbed to their tumors by week 6 after the beginning of treatment, there was no mortality in the experimental group by week 5, and 67% of the experimental animals survived for 12 weeks. This method could provide therapeutic benefit against an intractable disease for which there are no effective treatments and which is characterized by a mere 1% 5-year survival.
Collapse
|
22
|
Mollaei H, Safaralizadeh R, Rostami Z. MicroRNA replacement therapy in cancer. J Cell Physiol 2019; 234:12369-12384. [PMID: 30605237 DOI: 10.1002/jcp.28058] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022]
Abstract
Despite the recent progress in cancer management approaches, the mortality rate of cancer is still growing and there are lots of challenges in the clinics in terms of novel therapeutics. MicroRNAs (miRNA) are regulatory small noncoding RNAs and are already confirmed to have a great role in regulating gene expression level by targeting multiple molecules that affect cell physiology and disease development. Recently, miRNAs have been introduced as promising therapeutic targets for cancer treatment. Regulatory potential of tumor suppressor miRNAs, which enables regulation of entire signaling networks within the cells, makes them an interesting option for developing cancer therapeutics. In this regard, over recent decades, scientists have aimed at developing powerful and safe targeting approaches to restore these suppressive miRNAs in cancerous cells. The present review summarizes the function of miRNAs in tumor development and presents recent findings on how miRNAs have served as therapeutic agents against cancer, with a special focus on tumor suppressor miRNAs (mimics). Moreover, the latest investigations on the therapeutic strategies of miRNA delivery have been presented.
Collapse
Affiliation(s)
- Homa Mollaei
- Department of Biology, Faculty of Sciences, University of Birjand, Birjand, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Zeinab Rostami
- Department of Immunology, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
23
|
Sheedy P, Medarova Z. The fundamental role of miR-10b in metastatic cancer. Am J Cancer Res 2018; 8:1674-1688. [PMID: 30323962 PMCID: PMC6176190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/01/2018] [Indexed: 06/08/2023] Open
Abstract
Small, non-coding strands of RNA have been identified as a significant player in the pathology of cancer. One of the first miRNAs to be shown as having aberrant expression in cancer was miR-10b. Since the inaugural study on miR-10b, its role as a metastasis promoting factor has been extensively validated. To date, more than 100 studies have been completed on miR-10b and metastasis across 18 cancer types. This immense set of information holds possibilities for novel methods to improve the lives of many. This review outlines what is currently understood of miR-10b's clinical significance, its molecular regulation, and the possible diagnostic and therapeutic methods leveraging miR-10b as a fundamental target in metastatic cancer. Such methods would move us closer to developing a truly individualized therapeutic strategy against cancer and will likely provide unique information about cancer staging, disease outcome, metastatic potential, and ultimately survival.
Collapse
Affiliation(s)
- Patrick Sheedy
- Department of Health Sciences, CaNCURE Program, Northeastern UniversityBoston, MA 02115, USA
| | - Zdravka Medarova
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical SchoolBoston, MA 02129, USA
| |
Collapse
|
24
|
Yoo B, Greninger P, Stein GT, Egan RK, McClanaghan J, Moore A, Benes CH, Medarova Z. Potent and selective effect of the mir-10b inhibitor MN-anti-mir10b in human cancer cells of diverse primary disease origin. PLoS One 2018; 13:e0201046. [PMID: 30028875 PMCID: PMC6054402 DOI: 10.1371/journal.pone.0201046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/07/2018] [Indexed: 01/02/2023] Open
Abstract
Since microRNAs (miRNAs, miRs) have been implicated in oncogenesis, many of them have been identified as therapeutic targets. Previously we have demonstrated that miRNA-10b acts as a master regulator of the viability of metastatic tumor cells and represents a target for therapeutic intervention. We designed and synthesized an inhibitor of miR-10b, termed MN-anti-miR10b. We showed that treatment with MN-anti-miR10b led to durable regression/elimination of established metastases in murine models of metastatic breast cancer. Since miRNA-10b has been associated with various metastatic and non-metastatic cancers, in the present study, we investigated the effect of MN-anti-miR10b in a panel of over 600 cell lines derived from a variety of human malignancies. We observed an effect on the viability of multiple cell lines within each cancer type and a mostly dichotomous response with cell lines either strongly responsive to MN-anti-miR10b or not at all even at maximum dose tested, suggesting a very high specificity of the effect. Genomic modeling of the drug response showed enrichment of genes associated with the proto-oncogene, c-Jun.
Collapse
Affiliation(s)
- Byunghee Yoo
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Patricia Greninger
- Center for Molecular Therapeutics, Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Giovanna T. Stein
- Center for Molecular Therapeutics, Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Regina K. Egan
- Center for Molecular Therapeutics, Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Joseph McClanaghan
- Center for Molecular Therapeutics, Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Anna Moore
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
- * E-mail: (ZM); (CHB); (AM)
| | - Cyril H. Benes
- Center for Molecular Therapeutics, Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
- * E-mail: (ZM); (CHB); (AM)
| | - Zdravka Medarova
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
- * E-mail: (ZM); (CHB); (AM)
| |
Collapse
|
25
|
Yoo B, Fuchs BC, Medarova Z. New Directions in the Study and Treatment of Metastatic Cancer. Front Oncol 2018; 8:258. [PMID: 30042926 PMCID: PMC6048200 DOI: 10.3389/fonc.2018.00258] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/22/2018] [Indexed: 12/23/2022] Open
Abstract
Traditional cancer therapy has relied on a strictly cytotoxic approach that views non-metastatic and metastatic tumor cells as identical in terms of molecular biology and sensitivity to therapeutic intervention. Mounting evidence suggests that, in fact, non-metastatic and metastatic tumor cells differ in key characteristics that could explain the capacity of the metastatic cells to not only escape the primary organ but also to survive while in the circulation and to colonize a distant organ. Here, we lay out a framework for a new multi-pronged therapeutic approach. This approach involves modifying the local microenvironment of the primary tumor to inhibit the formation and release of metastatic cells; normalizing the microenvironment of the metastatic organ to limit the capacity of metastatic tumor cells to invade and colonize the organ; remediating the immune response to tumor neoantigens; and targeting metastatic tumor cells on a systemic level by restoring critical and unique aspects of the cell’s phenotype, such as anchorage dependence. Given the limited progress against metastatic cancer using traditional therapeutic strategies, the outlined paradigm could provide a more rational alternative to patients with metastatic cancer.
Collapse
Affiliation(s)
- Byunghee Yoo
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Bryan C Fuchs
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, United States
| | - Zdravka Medarova
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
26
|
Avitabile E, Bedognetti D, Ciofani G, Bianco A, Delogu LG. How can nanotechnology help the fight against breast cancer? NANOSCALE 2018; 10:11719-11731. [PMID: 29917035 DOI: 10.1039/c8nr02796j] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this review we provide a broad overview on the use of nanotechnology for the fight against breast cancer (BC). Nowadays, detection, diagnosis, treatment, and prevention may be possible thanks to the application of nanotechnology to clinical practice. Taking into consideration the different forms of BC and the disease status, nanomaterials can be designed to meet the most forefront objectives of modern therapy and diagnosis. We have analyzed in detail three main groups of nanomaterial applications for BC treatment and diagnosis. We have identified several types of drugs successfully conjugated with nanomaterials. We have analyzed the main important imaging techniques and all nanomaterials used to help the non-invasive, early detection of the lesions. Moreover, we have examined theranostic nanomaterials as unique tools, combining imaging, detection, and therapy for BC. This state of the art review provides a useful guide depicting how nanotechnology can be used to overcome the current barriers in BC clinical practice, and how it will shape the future scenario of treatments, prevention, and diagnosis, revolutionizing the current approaches, e.g., reducing the suffering related to chemotherapy.
Collapse
Affiliation(s)
- Elisabetta Avitabile
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy.
| | | | | | | | | |
Collapse
|
27
|
Grijalvo S, Alagia A, Jorge AF, Eritja R. Covalent Strategies for Targeting Messenger and Non-Coding RNAs: An Updated Review on siRNA, miRNA and antimiR Conjugates. Genes (Basel) 2018; 9:E74. [PMID: 29415514 PMCID: PMC5852570 DOI: 10.3390/genes9020074] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/26/2018] [Accepted: 01/26/2018] [Indexed: 12/11/2022] Open
Abstract
Oligonucleotide-based therapy has become an alternative to classical approaches in the search of novel therapeutics involving gene-related diseases. Several mechanisms have been described in which demonstrate the pivotal role of oligonucleotide for modulating gene expression. Antisense oligonucleotides (ASOs) and more recently siRNAs and miRNAs have made important contributions either in reducing aberrant protein levels by sequence-specific targeting messenger RNAs (mRNAs) or restoring the anomalous levels of non-coding RNAs (ncRNAs) that are involved in a good number of diseases including cancer. In addition to formulation approaches which have contributed to accelerate the presence of ASOs, siRNAs and miRNAs in clinical trials; the covalent linkage between non-viral vectors and nucleic acids has also added value and opened new perspectives to the development of promising nucleic acid-based therapeutics. This review article is mainly focused on the strategies carried out for covalently modifying siRNA and miRNA molecules. Examples involving cell-penetrating peptides (CPPs), carbohydrates, polymers, lipids and aptamers are discussed for the synthesis of siRNA conjugates whereas in the case of miRNA-based drugs, this review article makes special emphasis in using antagomiRs, locked nucleic acids (LNAs), peptide nucleic acids (PNAs) as well as nanoparticles. The biomedical applications of siRNA and miRNA conjugates are also discussed.
Collapse
Affiliation(s)
- Santiago Grijalvo
- Institute of Advanced Chemistry of Catalonia (IQAC, CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Adele Alagia
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Andreia F Jorge
- Coimbra Chemistry Centre, (CQC), Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal.
| | - Ramon Eritja
- Institute of Advanced Chemistry of Catalonia (IQAC, CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
28
|
Yoo B, Billig AM, Medarova Z. Guidelines for Rational Cancer Therapeutics. Front Oncol 2017; 7:310. [PMID: 29312885 PMCID: PMC5732930 DOI: 10.3389/fonc.2017.00310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/29/2017] [Indexed: 12/12/2022] Open
Abstract
Traditionally, cancer therapy has relied on surgery, radiation therapy, and chemotherapy. In recent years, these interventions have become increasingly replaced or complemented by more targeted approaches that are informed by a deeper understanding of the underlying biology. Still, the implementation of fully rational patient-specific drug design appears to be years away. Here, we present a vision of rational drug design for cancer that is defined by two major components: modularity and image guidance. We suggest that modularity can be achieved by combining a nanocarrier and an oligonucleotide component into the therapeutic. Image guidance can be incorporated into the nanocarrier component by labeling with a specific imaging reporter, such as a radionuclide or contrast agent for magnetic resonance imaging. While limited by the need for additional technological advancement in the areas of cancer biology, nanotechnology, and imaging, this vision for the future of cancer therapy can be used as a guide to future research endeavors.
Collapse
Affiliation(s)
- Byunghee Yoo
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Ann-Marie Billig
- Bouvé College of Health Sciences, Northeastern University, Boston, MA, United States
| | - Zdravka Medarova
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
29
|
Robertson NM, Yang Y, Khan I, LaMantia VE, Royzen M, Yigit MV. Single-trigger dual-responsive nanoparticles for controllable and sequential prodrug activation. NANOSCALE 2017; 9:10020-10030. [PMID: 28682403 DOI: 10.1039/c7nr04138a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Here we have developed a novel approach where two synergistically acting drugs were completely inactivated upon chemical immobilization on a nanoparticle template and activated in response to a chemical stimulus. The activation rate of each drug payload is controlled using a biologically inert bioorthogonal chemistry approach. By exploiting the subtle differences in the 'click-to-release' bioorthogonal reaction, we engineered a single delivery platform capable of releasing the payloads in a time-staggered manner in response to a single dose of a highly specific, yet reactive, small molecule. Incorporation of both di-axial, 'fast release', and di-equatorial, 'slow release', TCO linkers into our nanodrug assembly inhibited the activity of the drug molecules and enabled us to control the timing and activation of each payload. This single-trigger dual-responsive nanoparticle construct and its release kinetics were characterized using two molecular fluorescent probes and tested in vitro for efficient delivery of molecular payloads. In this manuscript we show that this approach was also successful in the treatment of triple negative BT-20 breast cancer cells. Our nanodrug loaded with the slow-releasing doxorubicin and fast-releasing PAC-1 prodrugs displayed a greater therapeutic response than the nanodrug which released both payloads simultaneously.
Collapse
Affiliation(s)
- Neil M Robertson
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Khan I, Seebald LM, Robertson NM, Yigit MV, Royzen M. Controlled in-cell activation of RNA therapeutics using bond-cleaving bio-orthogonal chemistry. Chem Sci 2017; 8:5705-5712. [PMID: 28989610 PMCID: PMC5621156 DOI: 10.1039/c7sc01380a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/13/2017] [Indexed: 12/16/2022] Open
Abstract
In vitro exogenous activation of siRNA nanodrug using bio-orthogonal de-click chemistry.
Temporal control of siRNA activation is a major challenge for RNAi-based therapeutics. The majority of the reported siRNA delivery systems rely on environmental factors, such as differences in extracellular and intracellular redox potential, ATP concentration, or pH to activate an siRNA payload. However dynamic endogenous environments are far too complex to rely on for controllable siRNA release and can result in premature siRNA activation prior to reaching the intended biological target. In addition, there are uncertainties about timing, degree and rate of the siRNA activation with spontaneous release approaches. Herein we describe a bio-orthogonal chemistry approach to address this important challenge. With our approach we were able achieve two major goals: complete siRNA inactivation upon immobilization of the payload on the surface of iron oxide nanoparticles and controlled in-cell activation with the addition of a small non-toxic chemical trigger after sufficient cellular uptake of the nanoparticles was confirmed. We have demonstrated our in-cell activation approach using two siRNAs against green fluorescent protein (GFP) and cyclin dependent kinase 8 (CDK8) in GFP expressing MDA-MB-231 cell line. We anticipate that this methodology will potentially advance the clinical translation of RNAi-based therapeutics, as the described bio-orthogonal chemistry can be generalized for any siRNA of choice.
Collapse
Affiliation(s)
- Irfan Khan
- Department of Chemistry , University at Albany , State University of New York , 1400 Washington Avenue , Albany , New York 12222 , USA . ; ; Tel: +1-518-442-3002 ; Tel: +1-518-437-4463.,The RNA Institute , University at Albany , State University of New York , 1400 Washington Avenue , Albany , New York 12222 , USA
| | - Leah M Seebald
- Department of Chemistry , University at Albany , State University of New York , 1400 Washington Avenue , Albany , New York 12222 , USA . ; ; Tel: +1-518-442-3002 ; Tel: +1-518-437-4463.,The RNA Institute , University at Albany , State University of New York , 1400 Washington Avenue , Albany , New York 12222 , USA
| | - Neil M Robertson
- Department of Chemistry , University at Albany , State University of New York , 1400 Washington Avenue , Albany , New York 12222 , USA . ; ; Tel: +1-518-442-3002 ; Tel: +1-518-437-4463.,The RNA Institute , University at Albany , State University of New York , 1400 Washington Avenue , Albany , New York 12222 , USA
| | - Mehmet V Yigit
- Department of Chemistry , University at Albany , State University of New York , 1400 Washington Avenue , Albany , New York 12222 , USA . ; ; Tel: +1-518-442-3002 ; Tel: +1-518-437-4463.,The RNA Institute , University at Albany , State University of New York , 1400 Washington Avenue , Albany , New York 12222 , USA
| | - Maksim Royzen
- Department of Chemistry , University at Albany , State University of New York , 1400 Washington Avenue , Albany , New York 12222 , USA . ; ; Tel: +1-518-442-3002 ; Tel: +1-518-437-4463.,The RNA Institute , University at Albany , State University of New York , 1400 Washington Avenue , Albany , New York 12222 , USA
| |
Collapse
|
31
|
Nedaeinia R, Avan A, Ahmadian M, Nia SN, Ranjbar M, Sharifi M, Goli M, Piroozmand A, Nourmohammadi E, Manian M, Ferns GA, Ghayour-Mobarhan M, Salehi R. Current Status and Perspectives Regarding LNA-Anti-miR Oligonucleotides and microRNA miR-21 Inhibitors as a Potential Therapeutic Option in Treatment of Colorectal Cancer. J Cell Biochem 2017; 118:4129-4140. [PMID: 28401648 DOI: 10.1002/jcb.26047] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/10/2017] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is among the leading causes of cancer-related death, principally due to its metastatic spread and multifactorial chemoresistance. The therapeutic failure can also be explained by inter- or intra-tumor genetic heterogeneity and tumor stromal content. Thus, the identification of novel prognostic biomarkers and therapeutic options are warranted in the management of CRC patients. There are data showing that microRNA-21 is elevated in different types of cancer, particularly colon adenocarcinoma and that this is association with a poor prognosis. This suggests that microRNA-21 may be of value as a potential therapeutic target. Furthermore, locked nucleic acid (LNA)-modified oligonucleotides have recently emerged as a therapeutic option for targeting dysregulated miRNAs in cancer therapy, through antisense-based gene silencing. Further work is required to identify innovative anticancer drugs that improve the current therapy either through novel combinatorial approaches or with better efficacy than conventional drugs. We aimed to provide an overview of the preclinical and clinical studies targeting key dysregulated signaling pathways in CRC as well as the therapeutic application of LNA-modified oligonucleotides, and miR inhibitors in the treatment of CRC patients. J. Cell. Biochem. 118: 4129-4140, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Reza Nedaeinia
- Deputy of Food and Drug, Isfahan University of Medical Sciences, Isfahan, Iran.,Student Research Committee, Department of medical biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Ahmadian
- Department of Gastroentrology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sasan Nedaee Nia
- Department of Agricultural engineering and Weed science, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Maryam Ranjbar
- Deputy of Food and Drug, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Goli
- Department of Food Science and Technology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Ahmad Piroozmand
- School of Medicine, Kashan University of Medical Sciences, Autoimmune Diseases Research Center, Kashan, Iran
| | - Esmail Nourmohammadi
- Student Research Committee, Department of medical biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mostafa Manian
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Gordon A Ferns
- Brighton and Sussex Medical School, Division of Medical Education, Falmer, Brighton BN1 9PH, Sussex, UK
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rasoul Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
32
|
Lo PK, Zhang Y, Yao Y, Wolfson B, Yu J, Han SY, Duru N, Zhou Q. Tumor-associated myoepithelial cells promote the invasive progression of ductal carcinoma in situ through activation of TGFβ signaling. J Biol Chem 2017; 292:11466-11484. [PMID: 28512126 DOI: 10.1074/jbc.m117.775080] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/12/2017] [Indexed: 12/18/2022] Open
Abstract
The normal myoepithelium has a tumor-suppressing nature and inhibits the progression of ductal carcinoma in situ (DCIS) into invasive ductal carcinoma (IDC). Conversely, a growing number of studies have shown that tumor-associated myoepithelial cells have a tumor-promoting effect. Moreover, the exact role of tumor-associated myoepithelial cells in the DCIS-to-IDC development remains undefined. To address this, we explored the role of tumor-associated myoepithelial cells in the DCIS-to-IDC progression. We developed a direct coculture system to study the cell-cell interactions between DCIS cells and tumor-associated myoepithelial cells. Coculture studies indicated that tumor-associated myoepithelial cells promoted the invasive progression of a DCIS cell model in vitro, and mechanistic studies revealed that the interaction with DCIS cells stimulated tumor-associated myoepithelial cells to secrete TGFβ1, which subsequently contributed to activating the TGFβ/Smads pathway in DCIS cells. We noted that activation of the TGFβ signaling pathway promoted the epithelial-mesenchymal transition, basal-like phenotypes, stemness, and invasiveness of DCIS cells. Importantly, xenograft studies further demonstrated that tumor-associated myoepithelial cells enhanced the DCIS-to-IDC progression in vivo Furthermore, we found that TGFβ-mediated induction of oncogenic miR-10b-5p expression and down-regulation of RB1CC1, a miR-10b-5p-targeted tumor-suppressor gene, contributed to the invasive progression of DCIS. Our findings provide the first experimental evidence to directly support the paradigm that altered DCIS-associated myoepithelial cells promote the invasive progression of DCIS into IDC via TGFβ signaling activation.
Collapse
Affiliation(s)
- Pang-Kuo Lo
- From the Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201 and
| | - Yongshu Zhang
- From the Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201 and
| | - Yuan Yao
- From the Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201 and
| | - Benjamin Wolfson
- From the Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201 and
| | - Justine Yu
- From the Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201 and
| | - Shu-Yan Han
- From the Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201 and.,the Key Laboratory of Carcinogenesis and Translational Research, Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Nadire Duru
- From the Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201 and
| | - Qun Zhou
- From the Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201 and
| |
Collapse
|
33
|
Keshavarzi M, Sorayayi S, Jafar Rezaei M, Mohammadi M, Ghaderi A, Rostamzadeh A, Masoudifar A, Mirzaei H. MicroRNAs‐Based Imaging Techniques in Cancer Diagnosis and Therapy. J Cell Biochem 2017; 118:4121-4128. [DOI: 10.1002/jcb.26012] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Maryam Keshavarzi
- Department of Oral and Maxillofacial RadiologySchool of DentistryLorestan University of Medical SciencesKhorramabadIran
| | - Saba Sorayayi
- Faculty of MedicineDepartment of Clinical BiochemistryArdabil University of Medical SciencesArdabilIran
| | - Mohammad Jafar Rezaei
- Cellular and Molecular Research Center, Department of Anatomical Sciences, Faculty of MedicineKurdistan University of Medical SciencesSanandajIran
| | - Mohsen Mohammadi
- Faculty of PharmacyDepartment of Pharmaceutical BiotechnologyLorestan University of Medical SciencesKhorramabadIran
| | - Amir Ghaderi
- Faculty of PharmacyDepartment of Pharmaceutical BiotechnologyTehran University of Medical ScienceTehranIran
| | - Ayoob Rostamzadeh
- Faculty of MedicineDepartment of Anatomy and NeuroscienceShahrekord University of Medical SciencesShahrekordIran
| | - Aria Masoudifar
- Department of Molecular BiotechnologyRoyan Institute for BiotechnologyCell Science Research CenterACECRIsfahanIran
| | - Hamed Mirzaei
- Department of Medical BiotechnologySchool of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
34
|
Yoo B, Kavishwar A, Wang P, Ross A, Pantazopoulos P, Dudley M, Moore A, Medarova Z. Therapy targeted to the metastatic niche is effective in a model of stage IV breast cancer. Sci Rep 2017; 7:45060. [PMID: 28322342 PMCID: PMC5359550 DOI: 10.1038/srep45060] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/17/2017] [Indexed: 12/22/2022] Open
Abstract
Treatment of stage IV metastatic breast cancer patients is limited to palliative options and represents an unmet clinical need. Here, we demonstrate that pharmacological inhibition of miRNA-10b - a master regulator of metastatic cell viability – leads to elimination of distant metastases in a mouse model of metastatic breast cancer. This was achieved using the miRNA-10b inhibitory nanodrug, MN-anti-miR10b, which consists of magnetic nanoparticles, conjugated to LNA-based miR-10b antagomirs. Intravenous injection of MN-anti-miR10b into mice bearing lung, bone, and brain metastases from breast cancer resulted in selective accumulation of the nanodrug in metastatic tumor cells. Weekly treatments of mice with MN-anti-miR-10b and low-dose doxorubicin resulted in complete regression of pre-existing distant metastases in 65% of the animals and a significant reduction in cancer mortality. These observations were supported by dramatic reduction in proliferation and increase in apoptosis in metastatic sites. On a molecular level, we observed a significant increase in the expression of HOXD10, which is a known target of miRNA-10b. These results represent first steps into the uncharted territory of therapy targeted to the metastatic niche.
Collapse
Affiliation(s)
- Byunghee Yoo
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Amol Kavishwar
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Ping Wang
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Alana Ross
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Pamela Pantazopoulos
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | | | - Anna Moore
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Zdravka Medarova
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| |
Collapse
|
35
|
Adams BD, Parsons C, Walker L, Zhang WC, Slack FJ. Targeting noncoding RNAs in disease. J Clin Invest 2017; 127:761-771. [PMID: 28248199 DOI: 10.1172/jci84424] [Citation(s) in RCA: 506] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Many RNA species have been identified as important players in the development of chronic diseases, including cancer. Over the past decade, numerous studies have highlighted how regulatory RNAs such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) play crucial roles in the development of a disease state. It is clear that the aberrant expression of miRNAs promotes tumor initiation and progression, is linked with cardiac dysfunction, allows for the improper physiological response in maintaining glucose and insulin levels, and can prevent the appropriate integration of neuronal networks, resulting in neurodegenerative disorders. Because of this, there has been a major effort to therapeutically target these noncoding RNAs. In just the past 5 years, over 100 antisense oligonucleotide-based therapies have been tested in phase I clinical trials, a quarter of which have reached phase II/III. Most notable are fomivirsen and mipomersen, which have received FDA approval to treat cytomegalovirus retinitis and high blood cholesterol, respectively. The continued improvement of innovative RNA modifications and delivery entities, such as nanoparticles, will aid in the development of future RNA-based therapeutics for a broader range of chronic diseases. Here we summarize the latest promises and challenges of targeting noncoding RNAs in disease.
Collapse
MESH Headings
- Clinical Trials, Phase I as Topic
- Clinical Trials, Phase II as Topic
- Cytomegalovirus Retinitis/drug therapy
- Cytomegalovirus Retinitis/genetics
- Cytomegalovirus Retinitis/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- MicroRNAs/antagonists & inhibitors
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Neoplasms/drug therapy
- Neoplasms/genetics
- Neoplasms/metabolism
- Neurodegenerative Diseases/drug therapy
- Neurodegenerative Diseases/genetics
- Neurodegenerative Diseases/metabolism
- Oligodeoxyribonucleotides, Antisense/genetics
- Oligodeoxyribonucleotides, Antisense/therapeutic use
- RNA, Long Noncoding/antagonists & inhibitors
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Neoplasm/antagonists & inhibitors
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
Collapse
|
36
|
Zhang L, Xiang ZL, Zeng ZC, Fan J, Tang ZY, Zhao XM. A microRNA-based prediction model for lymph node metastasis in hepatocellular carcinoma. Oncotarget 2016; 7:3587-98. [PMID: 26657296 PMCID: PMC4823129 DOI: 10.18632/oncotarget.6534] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/22/2015] [Indexed: 12/17/2022] Open
Abstract
We developed an efficient microRNA (miRNA) model that could predict the risk of lymph node metastasis (LNM) in hepatocellular carcinoma (HCC). We first evaluated a training cohort of 192 HCC patients after hepatectomy and found five LNM associated predictive factors: vascular invasion, Barcelona Clinic Liver Cancer stage, miR-145, miR-31, and miR-92a. The five statistically independent factors were used to develop a predictive model. The predictive value of the miRNA-based model was confirmed in a validation cohort of 209 consecutive HCC patients. The prediction model was scored for LNM risk from 0 to 8. The cutoff value 4 was used to distinguish high-risk and low-risk groups. The model sensitivity and specificity was 69.6 and 80.2 %, respectively, during 5 years in the validation cohort. And the area under the curve (AUC) for the miRNA-based prognostic model was 0.860. The 5-year positive and negative predictive values of the model in the validation cohort were 30.3 and 95.5 %, respectively. Cox regression analysis revealed that the LNM hazard ratio of the high-risk versus low-risk groups was 11.751 (95 % CI, 5.110–27.021; P < 0.001) in the validation cohort. In conclusion, the miRNA-based model is reliable and accurate for the early prediction of LNM in patients with HCC.
Collapse
Affiliation(s)
- Li Zhang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zuo-Lin Xiang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhao-Chong Zeng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhao-You Tang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiao-Mei Zhao
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
37
|
Li Y, Humphries B, Wang Z, Lang S, Huang X, Xiao H, Jiang Y, Yang C. Complex Coacervation-Integrated Hybrid Nanoparticles Increasing Plasmid DNA Delivery Efficiency in Vivo. ACS APPLIED MATERIALS & INTERFACES 2016; 8:30735-30746. [PMID: 27781434 PMCID: PMC6457453 DOI: 10.1021/acsami.6b10306] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Many polycation-based gene delivery vehicles have limited in vivo transfection efficiency because of their excessive exterior positive charges and/or PEGylation, both of which could result in premature dissociation and poor cellular uptake and trafficking. Here, we reported novel hybrid PEGylated nanoparticles (HNPs) that are composed of (a) poly(ethylene glycol)-b-poly(aspartate)-adamantane (PEG-P(asp)-Ad) constituting the outer PEG layer to provide colloidal stability; (b) poly(ethylenimine)10K (PEI10K) forming complex coacervate with P(asp) as the cross-linked cage preventing premature dissociation; (c) cyclodextrin-decorated PEI10K (PEI10K-CD) forming the core with reporter plasmid DNA (pDNA). These HNPs exhibited an increased stability and higher in vitro transfection efficiency compared to traditional PEGylated nanoparticles (PEG-NP). Intratumoral injections further demonstrated that HNPs were able to successfully deliver pDNAs into tumors, while PEG-NP and PEI25K had only negligible delivery efficiencies. Moreover, HNPs' in vivo stability and pDNA delivery capability post intravenous injection were also confirmed by live animal bioluminescence and fluorescence image analysis. It is likely that the coacervation integration at the interface of PEI10K-CD/pDNA core and the PEG shell attributed to the significantly improved in vivo transfection efficiency of HNPs over PEG-NP and PEI25K. This study suggests that the HNP has the potential for in vivo gene delivery applications with significantly improved gene transfection efficiency.
Collapse
Affiliation(s)
- Yunfei Li
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Pharmaceutics, Institute of Medicinal Biotechnology, Peking Union Medical College, Beijing 100050, People’s Republic of China
- Department of Toxicology and Cancer Biology and Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Brock Humphries
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, United States
- Cellular and Molecular Biology Graduate Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Zhishan Wang
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Toxicology and Cancer Biology and Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Shuyao Lang
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Hua Xiao
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yiguo Jiang
- Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, Guangdong 511436, People’s Republic of China
| | - Chengfeng Yang
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Toxicology and Cancer Biology and Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, Kentucky 40536, United States
- Cellular and Molecular Biology Graduate Program, Michigan State University, East Lansing, Michigan 48824, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, United States
- Corresponding Author Tel: +1-859-323-4641. Fax: +1-859-323-1059.
| |
Collapse
|
38
|
Yoo B, Kavishwar A, Ross A, Pantazopoulos P, Moore A, Medarova Z. In Vivo Detection of miRNA Expression in Tumors Using an Activatable Nanosensor. Mol Imaging Biol 2016; 18:70-8. [PMID: 25987466 DOI: 10.1007/s11307-015-0863-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE The development of tools for the analysis of microRNA (miRNA) function in tumors can advance our diagnostic and prognostic capabilities. Here, we describe the development of technology for the profiling of miRNA expression in the tumors of live animals. PROCEDURES The approach is based on miRNA nanosensors consisting of sensor oligonucleotides conjugated to magnetic nanoparticles for systemic delivery. Feasibility was demonstrated for the detection of miR-10b, implicated in epithelial to mesenchymal transition and the development of metastasis. The miR-10b nanosensor was tested in vivo in two mouse models of cancer. In the first model, mice were implanted subcutaneously with MDA-MB-231-luc-D3H2LN tumors, in which miR-10b was inhibited. In the second model, mice were implanted bilaterally with metastatic MDA-MB-231 and nonmetastatic MCF-7 cells. The nanosensors were injected intravenously, and fluorescence intensity in the tumors was monitored over time. RESULTS We showed that the described nanosensors are capable of discriminating between tumors based on their expression of miR-10b. Radiant efficiency was higher in the miR-10b-active tumors than in the miR-10b-inhibited tumors and in the MDA-MB-231 tumors relative to the MCF-7 tumors. CONCLUSIONS The described technology provides an important tool that could be used to answer questions about microRNA function in cancer.
Collapse
Affiliation(s)
- Byunghee Yoo
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Amol Kavishwar
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Alana Ross
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Pamela Pantazopoulos
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Anna Moore
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA.
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA.
| | - Zdravka Medarova
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA.
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA.
| |
Collapse
|
39
|
Chen X, Lu P, Wang DD, Yang SJ, Wu Y, Shen HY, Zhong SL, Zhao JH, Tang JH. The role of miRNAs in drug resistance and prognosis of breast cancer formalin-fixed paraffin-embedded tissues. Gene 2016; 595:221-226. [PMID: 27746365 DOI: 10.1016/j.gene.2016.10.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/25/2016] [Accepted: 10/11/2016] [Indexed: 01/10/2023]
Abstract
PURPOSE Chemoresistance mediated by miRNAs in breast cancer have been already validated by previous studies in vitro, while little is known concerning the expression of them in vivo. The aim of this study was to investigate the role of miR-222, miR-29a, miR-34a, miR-130a, miR-90b, miR-200b, miR-452, miR-197, miR-138, miR-210, miR-423, miR-4298, miR-4644, miR-139, miR-1246, miR-1268a, miR-140, miR-149, miR-3178, miR-3613, miR-4258, miR-574, miR-671, miR-6780b, miR-7107, miR-744 and miR-7847 linked to drug resistance in breast cancer formalin-fixed paraffin-embedded tissues and the association of prognosis with miRNAs, thus providing effective targets in chemotherapy, as well as potential biomarkers for guiding effective treatments of breast cancer. METHODS The relationship between the expression of diverse miRNAs and drug resistance was detected by RT-qPCR using 55 breast cancer FFPE tissues containing 26 paired FFPE specimens. RESULTS MiR-222, miR-29a, miR-34a, miR-423, miR-140, miR-3178, miR-574, miR-6780b and miR-744 exhibited significantly higher expression levels in surgically-resected specimens compared with pre-neoadjuvant chemotherapy biopsies. Evidently high expression of miR-222, miR-29a, miR-140, miR-574, miR-6780b, miR-7107 and miR-744 were found in ineffective group comparing with effective group. Further investigations revealed the significant association between several miRNAs in breast cancer patients. CONCLUSIONS This study highlights the role of numerous miRNAs in prediction of therapeutic responses and suggests that specific miRNAs could serve as valuable sources for biomarker detections and optimal chemotherapeutic choices for breast cancer patients.
Collapse
Affiliation(s)
- Xiu Chen
- The Fourth Clinical School of Nanjing Medical University, 210009 Nanjing, China; Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting42, 210009 Nanjing, China; The First Affiliated Hospital of Nanjing Medical University, Guangzhoulu300, 210029 Nanjing, China
| | - Peng Lu
- School of Public Health Nanjing Medical University, 210009 Nanjing, China
| | - Dan-Dan Wang
- The First Clinical School of Nanjing Medical University, 210009 Nanjing, China
| | - Su-Jin Yang
- The Fourth Clinical School of Nanjing Medical University, 210009 Nanjing, China
| | - Ying Wu
- The First Clinical School of Nanjing Medical University, 210009 Nanjing, China
| | - Hong-Yu Shen
- The Fourth Clinical School of Nanjing Medical University, 210009 Nanjing, China
| | - Shan-Liang Zhong
- The First Affiliated Hospital of Nanjing Medical University, Guangzhoulu300, 210029 Nanjing, China
| | - Jian-Hua Zhao
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting42, 210009 Nanjing, China.
| | - Jin-Hai Tang
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting42, 210009 Nanjing, China; The First Affiliated Hospital of Nanjing Medical University, Guangzhoulu300, 210029 Nanjing, China.
| |
Collapse
|
40
|
Kavishwar A, Medarova Z. Sensing miRNA: Signal Amplification by Cognate RISC for Intracellular Detection of miRNA in Live Cells. Methods Mol Biol 2016; 1372:121-7. [PMID: 26530920 DOI: 10.1007/978-1-4939-3148-4_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability to detect miRNA expression in live cells would leave these cells available for further manipulation or culture. Here, we describe the design of a miRNA sensor oligonucleotide whose sequence mimics the target mRNA. The sensor has a fluorescent label on one end of the oligo and a quencher on the other. When inside the cell, the sensor is recognized by its cognate miRNA-RISC and gets cleaved, setting the fluorophore free from its quencher. This results in fluorescence "turn on." Since cleavage by the RISC complex is an enzymatic process, the described approach has a very high level of sensitivity (nM). The rate of nonspecific cleavage of the sensor is very slow permitting the collection of meaningful signal over a long period of time.
Collapse
Affiliation(s)
- Amol Kavishwar
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA.
| | - Zdravka Medarova
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.,Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
41
|
Chen X, Zhong SL, Lu P, Wang DD, Zhou SY, Yang SJ, Shen HY, Zhang L, Zhang XH, Zhao JH, Tang JH. miR-4443 Participates in the Malignancy of Breast Cancer. PLoS One 2016; 11:e0160780. [PMID: 27504971 PMCID: PMC4978484 DOI: 10.1371/journal.pone.0160780] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/25/2016] [Indexed: 01/25/2023] Open
Abstract
PURPOSE Chemo-resistance is the leading cause of failure in cancer therapy, however, much remains to be understood about the intrinsic mechanisms. In the present study, we discovered the novel miR-4443 that regulated malignancy of breast cancer both in vitro and in vivo. METHODS We examined the expression of miR-4443 in MDA-MB-231/S and MDA-MB-231 Epirubicin-resistant cell lines with 76 breast cancer formalin-fixed paraffin-embedded tissues by real-time PCR. Also, we investigated the loss- and gain-functions of miR-4443 by MTT assay and flow cytometry. Furthermore, we detected miR-4443 mediated tissue inhibitor of metalloproteinase 2 expression in cells by TargetScan, RT-qPCR and western blot. RESULTS We identified the up-regulated expression of miR-4443 in Epi-resistant cell lines versus MDA-MB-231/S cell(Epi versus S) and in post-chemotherapy FFPE tissues, along with statistically differential expressions in PR(partial response) versus SD(stable disease)/PD(progressive disease) patients. Overexpression of miR-4443 increased the IC50 value of Epi for the target cells transfected, while inhibition of miR-4443 could restored sensitivity of the target cells to Epi. Besides, down-regulation of endogenous miR-4443 by miRNA-inhibitors significantly enhanced Epi-induced apoptosis while up-regulation of miR-4443 by miRNA-mimics lead to less Epi-induced apoptotic cells. Consequently, changes in TIMP2 mRNA and protein expression revealed that miR-4443 mimics suppressed expression of TIMP2 and induced migration in breast cancer cells. Furthermore, TIMP2 expression associated with better prognosis(HR = 0.721, 95%CI: 0.529-0.983). CONCLUSIONS We revealed that miR-4443 induced malignancy of breast cancer mainly in chemo-resistance aspect for the very first time, providing a novel biomarker in breast cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Xiu Chen
- The Fourth Clinical School of Nanjing Medical University, Nanjing, China
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Shan-liang Zhong
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Peng Lu
- School of Public Health Nanjing Medical University, Nanjing, China
| | - Dan-dan Wang
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Si-ying Zhou
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Su-jin Yang
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Hong-yu Shen
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Lei Zhang
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Xiao-hui Zhang
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Jian-hua Zhao
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, China
- * E-mail: (JHT); (JHZ)
| | - Jin-hai Tang
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, China
- Department of General Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- * E-mail: (JHT); (JHZ)
| |
Collapse
|
42
|
Wang Y, Li Z, Zhao X, Zuo X, Peng Z. miR-10b promotes invasion by targeting HOXD10 in colorectal cancer. Oncol Lett 2016; 12:488-494. [PMID: 27347170 PMCID: PMC4907168 DOI: 10.3892/ol.2016.4628] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 04/08/2016] [Indexed: 12/22/2022] Open
Abstract
Studies have shown that homeobox D10 (HOXD10) is the target gene of microRNA-10b (miR-10b) and is closely associated with the inhibition of cell migration and invasion. Ras homolog family member C (RhoC) has been reported to promote tumor metastasis in various types of cancer. The effect of miR-10b on colorectal cancer (CRC) metastasis and the associated molecular mechanisms remain elusive. The present study aimed to investigate whether miR-10b could promote invasion by targeting HOXD10 in CRC by exploring the association between miR-10b and HOXD10 expression in CRC patients. The findings revealed that miR-10b levels were elevated in the CRC specimens and significantly correlated with advanced clinical stage and lymph node metastasis. In addition, HOXD10 was a direct target of miR-10b, and the increased expression of RhoC and downregulation of HOXD10 correlated with the increased expression level of miR-10b. HOXD10 protein level was also markedly attenuated in lymph node metastasis-positive tumor tissues compared with lymph node metastasis-free tumor tissues. These findings suggest that miR-10b may stimulate the upregulation of RhoC through targeting HOXD10, thus promoting the invasion and migration in CRC tumor.
Collapse
Affiliation(s)
- Yunfeng Wang
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, P.R. China
| | - Zhen Li
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, P.R. China
| | - Xuhong Zhao
- Department of Central Experiment Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, P.R. China
| | - Xiaoming Zuo
- Department of Pathology, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, P.R. China
| | - Zhihai Peng
- Department of General Surgery, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| |
Collapse
|
43
|
Robertson NM, Toscano AE, LaMantia VE, Hizir MS, Rana M, Balcioglu M, Sheng J, Yigit MV. Unlocked Nucleic Acids for miRNA detection using two dimensional nano-graphene oxide. Biosens Bioelectron 2016; 89:551-557. [PMID: 26944029 DOI: 10.1016/j.bios.2016.02.058] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 12/12/2022]
Abstract
In this study we have used Unlocked Nucleic Acids (UNAs) to discriminate a breast cancer oncomiR from two other miRNAs in the same RNA family using two-dimensional graphene oxide nanoassemblies. Fluorescently labeled single stranded probe strands and graphene oxide nanoassemblies have been used to detect miR-10b and discriminate it from miR-10a, which differs by only a single nucleotide (12th base from the 5' end), and miR-10c, which differs by only two nucleotides (12th and 16th bases from the 5' end). We have determined the discrimination efficacy and detection capacity of a DNA probe with two inserted UNA monomers (UNA2), and compared it to the DNA probe with two purposefully inserted mutations (DNAM2) and full complementary sequence (DNAfull). We have observed that UNA2 is 50 times more powerful than DNAfull in discriminating miR-10b from miR-10c while generating an equally high fluorescence signal. This fluorescence signal was then further enhanced with the use of the highly specific endonuclease dsDNase for an enzymatic amplification step. The results demonstrate that the underutilized UNAs have enormous potential for miRNA detection and offer remarkable discrimination efficacy over single and double mismatches.
Collapse
Affiliation(s)
- Neil M Robertson
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - Amy E Toscano
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - Vincent E LaMantia
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - Mustafa Salih Hizir
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - Muhit Rana
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - Mustafa Balcioglu
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - Jia Sheng
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States; The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - Mehmet V Yigit
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States; The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States.
| |
Collapse
|
44
|
Liang AL, Zhang TT, Zhou N, Wu CY, Lin MH, Liu YJ. MiRNA-10b sponge: An anti-breast cancer study in vitro. Oncol Rep 2016; 35:1950-8. [PMID: 26820121 PMCID: PMC4774667 DOI: 10.3892/or.2016.4596] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/07/2016] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is a malignant tumor with the highest incidence among women. Breast cancer metastasis is the major cause of treatment failure and mortality among such patients. MicroRNAs (miRNAs) are a class of small molecular non-coding regulatory RNAs, which act as oncogenes or tumor suppressors in breast cancer. miRNA-10b has been found to exhibit a high expression level in advanced and metastatic breast cancer, and is closely related to breast cancer metastasis. An miRNA sponge is an mRNA with several repeated sequences of complete or incomplete complementarity to the natural miRNA in its 3' non-translating region. It acts as a sponge adsorbing miRNAs and ensures their separation from their targets and inhibits their function. The present study designed a sponge plasmid against miRNA-10b and transiently transfected it into high and low metastatic human breast cancer cell lines MDA-MB-231 and MCF-7, and analyzed the effects of the miRNA-10b sponge on the growth and proliferation, migration and invasion in these cell lines. qRT-PCR results found that the sponge plasmid effectively inhibited the expression of miRNA-10b, and upregulated the expression of the miRNA‑10b target protein HOXD-10. The results from the CCK-8 assay found that the miRNA-10b sponge inhibited the growth of breast cancer cell lines MDA-MB-231 and MCF-7. Results of the plate cloning experiments indicated that the miRNA-10b sponge suppressed the colony formation of the MDA-MB-231 and MCF-7 cells. The results of wound healing and Transwell assays showed that the miRNA-10b sponge inhibited the migration and invasion of the breast cancer cell lines MDA-MB-231 and MCF-7. Our results demonstrated that the miRNA-10b sponge effectively inhibited the growth and proliferation of breast cancer MDA-MB-231 and MCF-7 cells. In addition, it also restrained the migration and invasion of human highly metastatic breast cancer MDA-MB-231 cells.
Collapse
Affiliation(s)
- Ai-Ling Liang
- Medical Molecular Diagnostics Key Laboratory of Guangdong, and Departments of Biochemistry and Molecular Biology and Clinical Biochemistry, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Ting-Ting Zhang
- Department of Clinical Laboratory, Huangshi City Central Hospital, Huangshi, Hubei 415000, P.R. China
| | - Ning Zhou
- Medical Molecular Diagnostics Key Laboratory of Guangdong, and Departments of Biochemistry and Molecular Biology and Clinical Biochemistry, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Cui Yun Wu
- Medical Molecular Diagnostics Key Laboratory of Guangdong, and Departments of Biochemistry and Molecular Biology and Clinical Biochemistry, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Man-Hua Lin
- Department of Clinical Hematology Testing, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Yong-Jun Liu
- Medical Molecular Diagnostics Key Laboratory of Guangdong, and Departments of Biochemistry and Molecular Biology and Clinical Biochemistry, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| |
Collapse
|
45
|
Khan I, Agris PF, Yigit MV, Royzen M. In situ activation of a doxorubicin prodrug using imaging-capable nanoparticles. Chem Commun (Camb) 2016; 52:6174-7. [DOI: 10.1039/c6cc01024e] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A general strategy for image-guided prodrug activation using fluorescently-labeled magnetic iron oxide nanoparticles is described.
Collapse
Affiliation(s)
- Irfan Khan
- Department of Chemistry and The RNA Institute
- University at Albany
- State University of New York
- Albany
- USA
| | - Paul F. Agris
- Department of Chemistry and The RNA Institute
- University at Albany
- State University of New York
- Albany
- USA
| | - Mehmet V. Yigit
- Department of Chemistry and The RNA Institute
- University at Albany
- State University of New York
- Albany
- USA
| | - Maksim Royzen
- Department of Chemistry and The RNA Institute
- University at Albany
- State University of New York
- Albany
- USA
| |
Collapse
|
46
|
Controlling RNA Expression in Cancer Using Iron Oxide Nanoparticles Detectable by MRI and In Vivo Optical Imaging. Methods Mol Biol 2016; 1372:163-79. [PMID: 26530923 DOI: 10.1007/978-1-4939-3148-4_13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Herein, we describe a protocol for the preparation of iron oxide nanoparticle-based contrast agents and drug delivery vehicles for noninvasive cancer imaging and therapy. In the first part of the chapter we describe the details of the contrast agent synthesis, functionalization, and characterization. In the second part we describe the methods for tumor imaging using the synthesized particles with noninvasive T2-weighted magnetic resonance imaging (MRI) and in vivo near infrared optical imaging.
Collapse
|
47
|
Rana M, Balcioglu M, Kovach M, Hizir MS, Robertson NM, Khan I, Yigit MV. Reprogrammable multiplexed detection of circulating oncomiRs using hybridization chain reaction. Chem Commun (Camb) 2016; 52:3524-7. [DOI: 10.1039/c5cc09910b] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Coupling the DNA polymerization capability of HCR with the plasmonic properties of AuNP for reprogrammable, multiplexed and visual detection of three different circulating oncomiRs in seven different combinations.
Collapse
Affiliation(s)
- Muhit Rana
- Department of Chemistry
- University at Albany
- State University of New York
- Albany
- USA
| | - Mustafa Balcioglu
- Department of Chemistry
- University at Albany
- State University of New York
- Albany
- USA
| | - Maya Kovach
- Department of Chemistry
- University at Albany
- State University of New York
- Albany
- USA
| | - Mustafa Salih Hizir
- Department of Chemistry
- University at Albany
- State University of New York
- Albany
- USA
| | - Neil M. Robertson
- Department of Chemistry
- University at Albany
- State University of New York
- Albany
- USA
| | - Irfan Khan
- Department of Chemistry
- University at Albany
- State University of New York
- Albany
- USA
| | - Mehmet V. Yigit
- Department of Chemistry
- University at Albany
- State University of New York
- Albany
- USA
| |
Collapse
|
48
|
Yoo B, Kavishwar A, Ross A, Wang P, Tabassum DP, Polyak K, Barteneva N, Petkova V, Pantazopoulos P, Tena A, Moore A, Medarova Z. Combining miR-10b-Targeted Nanotherapy with Low-Dose Doxorubicin Elicits Durable Regressions of Metastatic Breast Cancer. Cancer Res 2015; 75:4407-15. [PMID: 26359455 PMCID: PMC4609288 DOI: 10.1158/0008-5472.can-15-0888] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 07/31/2015] [Indexed: 12/22/2022]
Abstract
The therapeutic promise of microRNA (miRNA) in cancer has yet to be realized. In this study, we identified and therapeutically exploited a new role for miR-10b at the metastatic site, which links its overexpression to tumor cell viability and proliferation. In the protocol developed, we combined a miR-10b-inhibitory nanodrug with low-dose anthracycline to achieve complete durable regressions of metastatic disease in a murine model of metastatic breast cancer. Mechanistic investigations suggested a potent antiproliferative, proapoptotic effect of the nanodrug in the metastatic cells, potentiated by a cell-cycle arrest produced by administration of the low-dose anthracycline. miR-10b was overexpressed specifically in cells with high metastatic potential, suggesting a role for this miRNA as a metastasis-specific therapeutic target. Taken together, our results implied the existence of pathways that regulate the viability and proliferation of tumor cells only after they have acquired the ability to grow at distant metastatic sites. As illustrated by miR-10b targeting, such metastasis-dependent apoptotic pathways would offer attractive targets for further therapeutic exploration.
Collapse
Affiliation(s)
- Byunghee Yoo
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Amol Kavishwar
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Alana Ross
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ping Wang
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Doris P Tabassum
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Natalia Barteneva
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Victoria Petkova
- Molecular Medicine Core, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Pamela Pantazopoulos
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Aseda Tena
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Anna Moore
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Zdravka Medarova
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
49
|
Development of nanotheranostics against metastatic breast cancer--A focus on the biology & mechanistic approaches. Biotechnol Adv 2015; 33:1897-911. [PMID: 26454168 DOI: 10.1016/j.biotechadv.2015.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 09/25/2015] [Accepted: 10/05/2015] [Indexed: 12/23/2022]
Abstract
Treatment for metastatic breast cancer still remains to be a challenge since the currently available diagnostic and treatment strategies fail to detect the micro-metastasis resulting in higher mortality rate. Moreover, the lack of specificity to target circulating tumor cells is also a factor. In addition, currently available imaging modalities to identify the secondaries vary with respect to various metastatic anatomic areas and size of the tumor. The drawbacks associated with the existing clinical management of the metastatic breast cancer demands the requirement of multifunctional nanotheranostics, which could diagnose at macro- and microscopic level, target the solid as well as circulating tumor cells and control further progression with the simultaneous evaluation of treatment response in a single platform. However, without the understanding of the biology as well as preferential homing ability of circulating tumor cells at distant organs, it is quite impossible to address the existing challenges in the present diagnostics and therapeutics against the breast cancer metastasis. Hence this review outlines the severity of the problem, basic biology and organ specificity with the sequential steps for the secondary progression of disease followed by the various mechanistic approaches in diagnosis and therapy at different stages.
Collapse
|
50
|
Robertson NM, Hizir MS, Balcioglu M, Wang R, Yavuz MS, Yumak H, Ozturk B, Sheng J, Yigit MV. Discriminating a Single Nucleotide Difference for Enhanced miRNA Detection Using Tunable Graphene and Oligonucleotide Nanodevices. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:9943-52. [PMID: 26305398 DOI: 10.1021/acs.langmuir.5b02026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this study we have reported our efforts to address some of the challenges in the detection of miRNAs using water-soluble graphene oxide and DNA nanoassemblies. Purposefully inserting mismatches at specific positions in our DNA (probe) strands shows increasing specificity against our target miRNA, miR-10b, over miR-10a which varies by only a single nucleotide. This increased specificity came at a loss of signal intensity within the system, but we demonstrated that this could be addressed with the use of DNase I, an endonuclease capable of cleaving the DNA strands of the RNA/DNA heteroduplex and recycling the RNA target to hybridize to another probe strand. As we previously demonstrated, this enzymatic signal also comes with an inherent activity of the enzyme on the surface-adsorbed probe strands. To remove this activity of DNase I and the steady nonspecific increase in the fluorescence signal without compromising the recovered signal, we attached a thermoresponsive PEGMA polymer (poly(ethylene glycol) methyl ether methacrylate) to nGO. This smart polymer is able to shield the probes adsorbed on the nGO surface from the DNase I activity and is capable of tuning the detection capacity of the nGO nanoassembly with a thermoswitch at 39 °C. By utilizing probes with multiple mismatches, DNase I cleavage of the DNA probe strands, and the attachment of PEGMA polymers to graphene oxide to block undesired DNase I activity, we were able to detect miR-10b from liquid biopsy mimics and breast cancer cell lines. Overall we have reported our efforts to improve the specificity, increase the sensitivity, and eliminate the undesired enzymatic activity of DNase I on surface-adsorbed probes for miR-10b detection using water-soluble graphene nanodevices. Even though we have demonstrated only the discrimination of miR-10b from miR-10a, our approach can be extended to other short RNA molecules which differ by a single nucleotide.
Collapse
Affiliation(s)
- Neil M Robertson
- Department of Chemistry , University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Mustafa Salih Hizir
- Department of Chemistry , University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Mustafa Balcioglu
- Department of Chemistry , University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Rui Wang
- Department of Chemistry , University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Mustafa Selman Yavuz
- Department of Metallurgy and Materials Engineering, Advanced Technology Research and Application Center, Selcuk University , Konya, Turkey
| | - Hasan Yumak
- Department of Science, BMCC, City University of New York , 199 Chambers Street, New York, New York 10007, United States
| | - Birol Ozturk
- Department of Physics and Engineering Physics, Morgan State University , 1700 E. Cold Spring Lane, Baltimore, Maryland 21251, United States
| | - Jia Sheng
- Department of Chemistry , University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Mehmet V Yigit
- Department of Chemistry , University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| |
Collapse
|