1
|
Sun T, Li X, Zhang Y, Zou B, Zhang Y. ILF2: a multifaceted regulator in malignant tumors and its prospects as a biomarker and therapeutic target. Front Oncol 2024; 14:1513979. [PMID: 39735599 PMCID: PMC11671367 DOI: 10.3389/fonc.2024.1513979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 11/27/2024] [Indexed: 12/31/2024] Open
Abstract
Interleukin enhancer binding factor 2 (ILF2), formerly called nuclear factor 45 (NF45), is widely expressed in normal human tissues. ILF2 often binds to interleukin enhancer binding factor 3 (ILF3) and regulates gene expression in several ways, participating in multiple DNA and RNA metabolism pathways. Recent studies have shown that ILF2 expression is significantly upregulated in esophageal cancer, lung cancer, gastric cancer, and other malignant tumors, which can promote tumor development and tumor cell proliferation, affect the cell cycle, and induce epithelial-mesenchymal transition. ILF2 expression is closely related to tumor cell migration and invasion, neo-angiogenesis, and patient prognosis. ILF2 is expected to become a biomarker for the early diagnosis of patients with tumors and assessing their prognosis. This article reviews the role of ILF2 in malignant tumors and its related mechanisms.
Collapse
Affiliation(s)
- Tonglin Sun
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xi Li
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Zhang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Bingwen Zou
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yan Zhang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
The Polyvalent Role of NF90 in RNA Biology. Int J Mol Sci 2022; 23:ijms232113584. [DOI: 10.3390/ijms232113584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
Double-stranded RNA-binding proteins (dsRBPs) are major players in the regulation of gene expression patterns. Among them, Nuclear Factor 90 (NF90) has a plethora of well-known functions in viral infection, transcription, and translation as well as RNA stability and degradation. In addition, NF90 has been identified as a regulator of microRNA (miRNA) maturation by competing with Microprocessor for the binding of pri-miRNAs in the nucleus. NF90 was recently shown to control the biogenesis of a subset of human miRNAs, which ultimately influences, not only the abundance, but also the expression of the host gene and the fate of the mRNA target repertoire. Moreover, recent evidence suggests that NF90 is also involved in RNA-Induced Silencing Complex (RISC)-mediated silencing by binding to target mRNAs and controlling their translation and degradation. Here, we review the many, and growing, functions of NF90 in RNA biology, with a focus on the miRNA pathway and RISC-mediated gene silencing.
Collapse
|
3
|
NF90-NF45 is essential for β cell compensation under obesity-inducing metabolic stress through suppression of p53 signaling pathway. Sci Rep 2022; 12:8837. [PMID: 35614067 PMCID: PMC9132887 DOI: 10.1038/s41598-022-12600-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 05/09/2022] [Indexed: 01/10/2023] Open
Abstract
The Nuclear Factor 90 (NF90)-NF45 complex has been known to regulate the progression of transcription, mRNA stability, translational inhibition, RNA export and microRNA biogenesis. However, the physiological functions of the NF90-NF45 complex remain unclear. We newly discovered that the NF90-NF45 complex was expressed in primary β cells and established cell lines. Therefore, in this study, we focused on the function of the endogenous NF90-NF45 complex in the β cells. To investigate this issue, we generated β-cell-specific NF90-NF45 deficient mice. These mice exhibited hyperglycaemia and lower plasma insulin levels under a high fat diet together with decreased islet mass. To uncover this mechanism, we performed a whole-genome expression microarray of the total RNA prepared from β cell lines treated with siRNAs targeting both NF90 and NF45. In this result, we found an activation of p53 signaling in the NF90-NF45-knockdown cells. This activation was supported by elevation of luciferase activity derived from a reporter plasmid harboring p53 binding sites in the NF90-NF45-knockdown cells. Furthermore, the knockdown of NF90-NF45 resulted in a significant retardation of the β cell line growth rates. Importantly, a dominant negative form of p53 rescues the growth retardation in BTC6 cells depleted of NF90-NF45, suggesting that NF90-NF45 would be positively involved in β cell proliferation through suppression of p53 signal pathway. Taken together, NF90-NF45 is essential for β cell compensation under obesity-inducing metabolic stress via repression of p53 signaling.
Collapse
|
4
|
Huang Y, Zheng Y, Yao L, Qiao F, Hou Y, Hu X, Li D, Shao Z. RNA binding protein POP7 regulates ILF3 mRNA stability and expression to promote breast cancer progression. Cancer Sci 2022; 113:3801-3813. [PMID: 35579257 DOI: 10.1111/cas.15430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022] Open
Abstract
RNA Binding Proteins(RBPs)play pivotal roles in breast cancer (BC) development. As a RBP, Processing of precursor 7 (POP7) is one of the subunits of RNase P and RNase MRP, however, its exact function and mechanism in BC remain unknown. Here, we showed that expression of POP7 was frequently increased in breast cancer cells and in primary breast tumors. Up-regulated POP7 significantly promoted BC cell proliferation in vitro and primary tumor growth in vivo. POP7 also increased cell migration, invasion in vitro and lung metastasis in vivo. Through RNA-immunoprecipitation coupled with sequencing (RIP-seq), we found that POP7 bound preferentially to intron regions and POP7-binding peak associated genes were mainly enriched in cancer-related pathways. Further, POP7 regulated Interleukin Enhancer Binding Factor 3 (ILF3) expression through influencing its mRNA stability. Knockdown of ILF3 significantly impaired the increased malignant potential of POP7 over-expressing cells, suggesting that POP7 enhances BC progression through regulating ILF3 expression. Collectively, our findings provide the first evidence for the important role of POP7 and its regulation of ILF3 in promoting breast cancer progression.
Collapse
Affiliation(s)
- Yanni Huang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yizi Zheng
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Thyroid and Breast Surgery, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Ling Yao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Feng Qiao
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yifeng Hou
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Hu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Daqiang Li
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhiming Shao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
5
|
Zhang H, Che Y, Xuan B, Wu X, Li H. Serine hydroxymethyltransferase 2 (SHMT2) potentiates the aggressive process of oral squamous cell carcinoma by binding to interleukin enhancer-binding factor 2 (ILF2). Bioengineered 2022; 13:8785-8797. [PMID: 35333683 PMCID: PMC9161932 DOI: 10.1080/21655979.2022.2051886] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a frequent threatening head and neck malignancy. Serine hydroxymethyltransferase 2 (SHMT2) was identified to be upregulated in OSCC and its high expression was associated with poor patient prognosis. This paper set out to assess the influence of SHMT2 on OSCC progression and the potential mechanisms related to interleukin enhancer-binding factor 2 (ILF2). First of all, reverse transcription-quantitative PCR (RT-qPCR) and western blot examined the expression of SHMT2 and ILF2 in OSCC cells. Cell Counting Kit-8 (CCK-8) and colony formation assays appraised cell proliferation. Terminal-deoxynucleotidyl Transferase Mediated Nick End Labeling (TUNEL) staining was to estimate the apoptotic rate of cells. Further, wound healing and transwell assays verified the migration and invasion of cells. Western blot was adopted to detect the expression of factors related to apoptosis, migration, and epithelial–mesenchymal transition (EMT). The possible interaction of SHMT2 and ILF2 was predicted by a Molecular INTeraction (MINT) and BioGRID databases and determined using co-immunoprecipitation (IP) assay. Subsequently, ILF2 was overexpressed to investigate whether SHMT2 regulated OSCC progression by binding to ILF2. Results implied that SHMT2 possessed increased expression in OSCC cells, and OSCC cell viability, migration, invasion, EMT were inhibited and apoptosis was potentiated after its silencing. ILF2 bound to SHMT2 and ILF2 expression was downregulated after SHMT2 silencing in OSCC cells. Importantly, ILF2 overexpression abolished the suppressive role of SHMT2 interference in the progression of OSCC. Collectively, SHMT2 could promote the progression of OSCC by binding to ILF2.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Stomatology, Aerospace Center Hospital, Beijing, China
| | - Yilei Che
- Department of Stomatology, Aerospace Center Hospital, Beijing, China
| | - Bin Xuan
- Department of Stomatology, Aerospace Center Hospital, Beijing, China
| | - Xiaozhen Wu
- Department of Stomatology, Aerospace Center Hospital, Beijing, China
| | - Hui Li
- Department of Stomatology, Aerospace Center Hospital, Beijing, China
| |
Collapse
|
6
|
Zhang X, Bustos MA, Gross R, Ramos RI, Takeshima T, Mills GB, Yu Q, Hoon DSB. Interleukin enhancer-binding factor 2 promotes cell proliferation and DNA damage response in metastatic melanoma. Clin Transl Med 2021; 11:e608. [PMID: 34709752 PMCID: PMC8516365 DOI: 10.1002/ctm2.608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND 1q21.3 amplification, which is frequently observed in metastatic melanoma, is associated with cancer progression. Interleukin enhancer-binding factor 2 (ILF2) is located in the 1q21.3 amplified region, but its functional role or contribution to tumour aggressiveness in cutaneous melanoma is unknown. METHODS In silico analyses were performed using the TCGA SKCM dataset with clinical annotations and three melanoma microarray cohorts from the GEO datasets. RNA in situ hybridisation and immunohistochemistry were utilised to validate the gene expression in melanoma tissues. Four stable melanoma cell lines were established for in vitro ILF2 functional characterisation. RESULTS Our results showed that the ILF2 copy number variation (CNV) is positively correlated with ILF2 mRNA expression (r = 0.68, p < .0001). Additionally, ILF2 expression is significantly increased with melanoma progression (p < .0001), and significantly associated with poor overall survival for metastatic melanoma patients (p = .026). The overexpression of ILF2 (ILF2-OV) promotes proliferation in metastatic melanoma cells, whereas ILF2 knockdown decreases proliferation by blocking the cell cycle. Mechanistically, we demonstrated the interaction between ILF2 and the splicing factor U2AF2, whose knockdown reverses the proliferation effects mediated by ILF2-OV. Stage IIIB-C melanoma patients with high ILF2-U2AF2 expression showed significantly shorter overall survival (p = .024). Enhanced ILF2/U2AF2 expression promotes a more efficient DNA-damage repair by increasing RAD50 and ATM mRNA expression. Paradoxically, metastatic melanoma cells with ILF2-OV were more sensitive to ATM inhibitors. CONCLUSION Our study uncovered that ILF2 amplification of the 1q21.3 chromosome is associated with melanoma progression and triggers a functional downstream pathway in metastatic melanoma promoting drug resistance.
Collapse
Affiliation(s)
- Xiaoqing Zhang
- Department of Translational Molecular MedicineProvidence Saint John's Health CenterSaint John's Cancer InstituteSanta MonicaCalifornia
| | - Matias A. Bustos
- Department of Translational Molecular MedicineProvidence Saint John's Health CenterSaint John's Cancer InstituteSanta MonicaCalifornia
| | - Rebecca Gross
- Department of Translational Molecular MedicineProvidence Saint John's Health CenterSaint John's Cancer InstituteSanta MonicaCalifornia
| | - Romela Irene Ramos
- Department of Translational Molecular MedicineProvidence Saint John's Health CenterSaint John's Cancer InstituteSanta MonicaCalifornia
| | - Teh‐Ling Takeshima
- Department of Translational Molecular MedicineProvidence Saint John's Health CenterSaint John's Cancer InstituteSanta MonicaCalifornia
| | - Gordon B. Mills
- Department of Cell Development and Cancer BiologyKnight Cancer InstituteOregon Health and Science UniversityPortlandOregon
| | - Qiang Yu
- Agency for Science Technology and Research (A*STAR)Genome Institute of SingaporeBiopolisSingapore
| | - Dave S. B. Hoon
- Department of Translational Molecular MedicineProvidence Saint John's Health CenterSaint John's Cancer InstituteSanta MonicaCalifornia
| |
Collapse
|
7
|
Razavi ZS, Asgarpour K, Mahjoubin-Tehran M, Rasouli S, Khan H, Shahrzad MK, Hamblin MR, Mirzaei H. Angiogenesis-related non-coding RNAs and gastrointestinal cancer. MOLECULAR THERAPY-ONCOLYTICS 2021; 21:220-241. [PMID: 34095461 PMCID: PMC8141508 DOI: 10.1016/j.omto.2021.04.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gastrointestinal (GI) cancers are among the main reasons for cancer death globally. The deadliest types of GI cancer include colon, stomach, and liver cancers. Multiple lines of evidence have shown that angiogenesis has a key role in the growth and metastasis of all GI tumors. Abnormal angiogenesis also has a critical role in many non-malignant diseases. Therefore, angiogenesis is considered to be an important target for improved cancer treatment. Despite much research, the mechanisms governing angiogenesis are not completely understood. Recently, it has been shown that angiogenesis-related non-coding RNAs (ncRNAs) could affect the development of angiogenesis in cancer cells and tumors. The broad family of ncRNAs, which include long non-coding RNAs, microRNAs, and circular RNAs, are related to the development, promotion, and metastasis of GI cancers, especially in angiogenesis. This review discusses the role of ncRNAs in mediating angiogenesis in various types of GI cancers and looks forward to the introduction of mimetics and antagonists as possible therapeutic agents.
Collapse
Affiliation(s)
| | - Kasra Asgarpour
- Department of Medicine, University of Western Ontario, London, ON, Canada
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Susan Rasouli
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mohammad Karim Shahrzad
- Department of Internal Medicine and Endocrinology, Shohadae Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
8
|
Li Y, Wang M, Yang M, Xiao Y, Jian Y, Shi D, Chen X, Ouyang Y, Kong L, Huang X, Bai J, Hu Y, Lin C, Song L. Nicotine-Induced ILF2 Facilitates Nuclear mRNA Export of Pluripotency Factors to Promote Stemness and Chemoresistance in Human Esophageal Cancer. Cancer Res 2021; 81:3525-3538. [PMID: 33975879 DOI: 10.1158/0008-5472.can-20-4160] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/05/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022]
Abstract
Balancing mRNA nuclear export kinetics with its nuclear decay is critical for mRNA homeostasis control. How this equilibrium is aberrantly disrupted in esophageal cancer to acquire cancer stem cell properties remains unclear. Here we find that the RNA-binding protein interleukin enhancer binding factor 2 (ILF2) is robustly upregulated by nicotine, a major chemical component of tobacco smoke, via activation of JAK2/STAT3 signaling and significantly correlates with poor prognosis in heavy-smoking patients with esophageal cancer. ILF2 bound the THO complex protein THOC4 as a regulatory cofactor to induce selective interactions with pluripotency transcription factor mRNAs to promote their assembly into export-competent messenger ribonucleoprotein complexes. ILF2 facilitated nuclear mRNA export and inhibited hMTR4-mediated exosomal degradation to promote stabilization and expression of SOX2, NANOG, and SALL4, resulting in enhanced stemness and tumor-initiating capacity of esophageal cancer cells. Importantly, inducible depletion of ILF2 significantly increased the therapeutic efficiency of cisplatin and abrogated nicotine-induced chemoresistance in vitro and in vivo. These findings reveal a novel role of ILF2 in nuclear mRNA export and maintenance of cancer stem cells and open new avenues to overcome smoking-mediated chemoresistance in esophageal cancer. SIGNIFICANCE: This study defines a previously uncharacterized role of nicotine-regulated ILF2 in facilitating nuclear mRNA export to promote cancer stemness, suggesting a potential therapeutic strategy against nicotine-induced chemoresistance in esophageal cancer.
Collapse
Affiliation(s)
- Yue Li
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Meng Wang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Muwen Yang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yunyun Xiao
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yunting Jian
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dongni Shi
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiangfu Chen
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying Ouyang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lingzhi Kong
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xinjian Huang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiewen Bai
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yameng Hu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chuyong Lin
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China. .,Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Libing Song
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China. .,Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
Lian Q, Gao Y, Li Q, He X, Jiang X, Pu Z, Xu G. Cereblon Promotes the Ubiquitination and Proteasomal Degradation of Interleukin Enhancer-Binding Factor 2. Protein J 2020; 39:411-421. [PMID: 33009960 DOI: 10.1007/s10930-020-09918-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2020] [Indexed: 11/25/2022]
Abstract
Interleukin enhancer-binding factor 2 (ILF2) forms a heterodimer with interleukin enhancer-binding factor 3 (ILF3) via double-stranded RNA-binding motif and zinc finger associated domain and thus regulates gene expression and cancer cell growth. However, how ILF2 is degraded in cells remains elusive. In this work, using stable isotope labeling by amino acids in cell culture (SILAC) quantitative proteomics, we find that ILF2 is downregulated in cells expressing cereblon (CRBN). Using affinity purification and immunoblotting analysis, we demonstrate that CRBN interacts with ILF2 and functions as a substrate receptor of the cullin-4 RING E3 ligase complex. Biochemical experiments disclose that CRBN expression reduces ILF2 protein level and this reduction is diminished when the proteasome is inhibited. Upon protein synthesis inhibition, the degradation of ILF2 is enhanced by CRBN. Moreover, CRBN promotes the ubiquitination of ILF2 and thus results in the ubiquitin-mediated proteasomal degradation. Analyses of previously identified post-translational modification sites and the crystal structure of ILF2 discover the potential ubiquitination sites on ILF2. Through mutagenesis and biochemical experiments, we further reveal that the K45R mutation completely abolishes the effect of CRBN on ILF2, suggesting that this is the key residue responsible for its ubiquitination. Taken together, we identify an E3 ligase that regulates ILF2 and uncover a molecular pathway for its degradation. This work might be helpful to elucidate the molecular mechanism by which CRBN regulates diverse cellular functions.
Collapse
Affiliation(s)
- Qihui Lian
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Yuan Gao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Qian Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Xian He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Xiaogang Jiang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Zhongjian Pu
- Department of Oncology, Haian Hospital of Traditional Chinese Medicine, Haian, 226600, Jiangsu, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
10
|
Steroid receptor RNA activator inhibits the migration, invasion and stemness characteristics of renal cell carcinoma cells. Int J Mol Med 2020; 46:1765-1776. [PMID: 33000206 PMCID: PMC7521558 DOI: 10.3892/ijmm.2020.4730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022] Open
Abstract
Renal cell carcinoma (RCC) has a high mortality rate among urological malignancies, and its underlying mechanisms remain unclear. Steroid receptor RNA coactivator (SRA) belongs to the long non-coding RNAs (lncRNAs) and has been demonstrated to be closely related to various types of cancer. In the present study, the decreased expression level of SRA was first confirmed in RCC tissues and cell lines by RT-qPCR. Using knockdown or overexpression systems, it was then found that SRA inhibited the proliferation of RCC cell lines and promoted their apoptosis. In addition, SRA suppressed the migration and invasion, and altered EMT-related markers in RCC cells. More importantly, it was demonstrated that SRA reduced percentage of CD44+/CD24− cells and the sphere-forming efficiency. SRA also attenuated the expression levels of CD44, SOX-2, ABCG2 and OCT-4, which are all associated with cancer cell stemness characteristics. Although SRA increased the phosphorylation of extracellular-regulated protein kinase (ERK), the ERK1/2 pathway could not further interfere with the alteration of EMT-related markers mediated by SRA. Notably, the ERK inhibitor, PD98059, abolished ERK1/2 phosphorylation, whereas it did not exert any marked effects on cell proliferation and EMT-related markers mediated by SRA. Taken together, the findings of the present study indicate that SRA is an important molecule that inhibits the migration, invasion and stem cell characteristics of RCC cells; the ERK signaling pathway may not be involved in this process.
Collapse
|
11
|
Gan M, Yang D, Fan Y, Du J, Shen L, Li Q, Jiang Y, Tang G, Li M, Wang J, Li X, Zhang S, Zhu L. Bidirectional regulation of genistein on the proliferation and differentiation of C2C12 myoblasts. Xenobiotica 2020; 50:1352-1358. [PMID: 29171786 DOI: 10.1080/00498254.2017.1409917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Genistein is a widely studied phytoestrogen. The effects of genistein on myoblasts were reported long ago, but the conclusions are controversial. In this study, we evaluated the effects of different concentrations of genistein on C2C12 myoblasts. Genistein treatment promoted myoblast proliferation in a dose-dependent manner in the concentration range of 0-2 µM/L, reaching its maximum effect at 2 µM/L. Proliferation then declined, and a concentration higher than 20 µM/L showed significant inhibition. In addition, genistein treatment promoted myoblast differentiation at a dose of 10 µM/L. However, at treatment concentrations higher than 10 µM/L, the effect on myoblast differentiation was rapidly inhibited as the concentration increased. Genistein treatment also down-regulated the expression of miR-222, resulting in increased expression of its target genes, MyoG, MyoD, and ERα and thereby promoting myoblast differentiation. Our results suggest that genistein has a dose-dependent and bidirectional regulation effect on myoblast proliferation and differentiation. We also found that genistein is a miRNA inducer, and it specifically affects the expression of miR-222 to regulate myoblast differentiation.
Collapse
Affiliation(s)
- Mailin Gan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Dongli Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yuan Fan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jingjing Du
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Linyuan Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qiang Li
- Sichuan Province General Station of Animal Husbandry, Chengdu, China
| | - Yanzhi Jiang
- College of Life and Science, Sichuan Agricultural University, Chengdu, China
| | - Guoqing Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingzhou Li
- College of Life and Science, Sichuan Agricultural University, Chengdu, China
| | - Jinyong Wang
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Xuewei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shunhua Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
12
|
Wei L, Yang C, Wang G, Li K, Zhang Y, Guan H, Sun Z, Zhong C. Interleukin Enhancer Binding Factor 2 Regulates Cell Viability and Apoptosis of Human Brain Vascular Smooth Muscle Cells. J Mol Neurosci 2020; 71:225-233. [PMID: 32748330 DOI: 10.1007/s12031-020-01638-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/16/2020] [Indexed: 12/27/2022]
Abstract
The proliferation and migration of vascular smooth muscle cells (VSMCs) are involved in the pathogenesis of intracranial aneurysm (IA) formation and rupture. Interleukin enhancer binding factor 2 (ILF2) is known as the nuclear factor of activated T cells and regulates cell growth. This study was aimed to explore the effects of ILF2 on IA progression. Human brain VSMCs (hBVSMCs) were transfected with pCDNA3.1(+), pCDNA3.1(+)-ILF2, siRNA-negative control, and siRNA-ILF2. The transfection efficiency was then evaluated by determining ILF2 expression. The cell viability and apoptosis were determined using Cell Counting Kit-8 and Annexin V-FITC cell apoptosis assay kit, respectively. Real-time quantification PCR (RT-qPCR) was applied to measure the expression levels of apoptosis-related and inflammation-related genes. Finally, western blot was used to detect the expression level of Fas cell surface death receptor 95 (CD95) and Caspase 8. Overexpression of ILF2 could significantly increase cell viability and decrease cell apoptosis (P < 0.05), while knock-down of ILF2 showed opposite trends for hBVSMCs on cell viability and apoptosis (P < 0.05). RT-qPCR results showed that ILF2 knock-down downregulated the expression levels of BCL2 apoptosis regulator (BCL2), transcriptional regulator Myc-like (c-Myc), and caspase 1 (ICE) whereas upregulated the expression levels of CD95, p21, p53, and interleukin-13 (IL-13). Additionally, the protein expression levels of CD95 and Caspase 8 were significantly decreased after ILF2 overexpression while were significantly increased after ILF2 knock-down (P < 0.05). ILF2 knock-down may inhibit cell viability and promote cell apoptosis of hBVSMCs by regulating the expression levels of apoptosis-related genes and suppressing inflammatory response.
Collapse
Affiliation(s)
- Liang Wei
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Cheng Yang
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Guangxue Wang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Keqin Li
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yanfei Zhang
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Hongxin Guan
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Zhiyang Sun
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| | - Chunlong Zhong
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| |
Collapse
|
13
|
Fan Z, Chen X, Liu L, Zhu C, Xu J, Yin X, Sheng Y, Zhu Z, Wen L, Zuo X, Zheng X, Zhang Y, Xu J, Huang H, Zhou F, Sun L, Luo J, Zhang D, Chen X, Cui Y, Hao Y, Cui Y, Zhang X, Chen R. Association of the Polymorphism rs13259960 in SLEAR With Predisposition to Systemic Lupus Erythematosus. Arthritis Rheumatol 2020; 72:985-996. [PMID: 31930717 DOI: 10.1002/art.41200] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 12/31/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Genome-wide association studies have identified many susceptibility loci for systemic lupus erythematosus (SLE). However, most of these loci are located in noncoding regions of the genome. Long noncoding RNAs (lncRNAs) are pervasively expressed and have been reported to be involved in various diseases. This study aimed to explore the genetic significance of lncRNAs in SLE. METHODS A genome-wide survey of SLE risk variants in lncRNA gene loci was performed in Han Chinese subjects (4,556 with SLE and 9,451 healthy controls). The functional relevance of an SLE risk variant in one of the lncRNA genes was explored using biochemical and molecular cell biology analyses. In vitro loss-of-function and gain-of-function strategies were used to clarify the functional and phenotypic relevance of this SLE susceptibility lncRNA. Moreover, correlation of this lncRNA with the degree of apoptosis in the peripheral blood of SLE patients was evaluated. RESULTS A novel SLE susceptibility locus in a lncRNA gene, designated SLEAR (for SLE-associated RNA), was identified at the single-nucleotide polymorphism rs13259960 (odds ratio 1.35, Pcombined = 1.03 × 10-11 ). The A>G variation at rs13259960, located in an intronic enhancer, was found to impair STAT1 recruitment to the enhancer that loops to the SLEAR promoter, resulting in decreased SLEAR production in peripheral blood mononuclear cells from patients with SLE (3 with the G/G genotype, 22 with A/G, and 103 with A/A at rs13259960; P = 0.0241). Moreover, SLEAR interacted with the RNA binding proteins interleukin enhancer binding factor 2, heterogeneous nuclear RNP F, and TATA-binding protein-associated factor 15, to form a complex for transcriptional activation of the downstream antiapoptotic genes. In addition, SLEAR regulated apoptosis of Jurkat cells in vitro, and its expression level was correlated with the degree of cell death in the peripheral blood of patients with SLE (r = 0.824, P = 2.15 × 10-8 ; n = 30). CONCLUSION These findings suggest a mechanism by which the risk variant at rs13259960 modulates SLEAR expression and confers a predisposition to SLE. Taken together, these results may give insights into the etiology of SLE.
Collapse
Affiliation(s)
- Zhen Fan
- Chinese Academy of Sciences, Beijing, China
| | | | - Lu Liu
- Huashan Hospital and Fudan University, Shanghai, China, and First Affiliated Hospital of Anhui Medical University and Anhui Medical University, Hefei, China
| | - Caihong Zhu
- The First Affiliated Hospital of Anhui Medical University and Anhui Medical University, Hefei, China
| | - Jinhua Xu
- Huashan Hospital and Fudan University, Shanghai, China
| | - Xianyong Yin
- Huashan Hospital and Fudan University, Shanghai, China, and First Affiliated Hospital of Anhui Medical University and Anhui Medical University, Hefei, China
| | - Yujun Sheng
- Huashan Hospital and Fudan University, Shanghai, China, and First Affiliated Hospital of Anhui Medical University and Anhui Medical University, Hefei, China
| | - Zhengwei Zhu
- Huashan Hospital and Fudan University, Shanghai, China, and First Affiliated Hospital of Anhui Medical University and Anhui Medical University, Hefei, China
| | - Leilei Wen
- Huashan Hospital and Fudan University, Shanghai, China, and First Affiliated Hospital of Anhui Medical University and Anhui Medical University, Hefei, China
| | - Xianbo Zuo
- The First Affiliated Hospital of Anhui Medical University and Anhui Medical University, Hefei, China
| | - Xiaodong Zheng
- The First Affiliated Hospital of Anhui Medical University and Anhui Medical University, Hefei, China
| | - Yaohua Zhang
- Huashan Hospital and Fudan University, Shanghai, China
| | - Jingkai Xu
- The First Affiliated Hospital of Anhui Medical University and Anhui Medical University, Hefei, China
| | - He Huang
- The First Affiliated Hospital of Anhui Medical University and Anhui Medical University, Hefei, China
| | - Fusheng Zhou
- The First Affiliated Hospital of Anhui Medical University and Anhui Medical University, Hefei, China
| | - Liangdan Sun
- The First Affiliated Hospital of Anhui Medical University and Anhui Medical University, Hefei, China
| | | | | | | | - Ya Cui
- Chinese Academy of Sciences, Beijing, China
| | - Yajing Hao
- Chinese Academy of Sciences, Beijing, China
| | - Yong Cui
- China-Japan Friendship Hospital, Beijing, China
| | - Xuejun Zhang
- Huashan Hospital and Fudan University, Shanghai, China
| | - Runsheng Chen
- Chinese Academy of Sciences and University of Chinese Academy of Sciences, Beijing, China, and Guangdong Geneway Decoding Bio-Tech Co. Ltd, Foshan, China
| |
Collapse
|
14
|
Lu J, Hu Y, Qian R, Zhang Y, Yang X, Luo P. Enhanced proliferation inhibition and apoptosis in glioma cells elicited by combination of irinotecan and imatinib. Eur J Pharmacol 2020; 874:173022. [PMID: 32084420 DOI: 10.1016/j.ejphar.2020.173022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/19/2022]
Abstract
Glioma is a kind of lethal malignant tumor, and lacks efficient therapies. Combination therapy has been claimed to be a promising approach to combat cancer, due to its increased anti-cancer effects and reduced side effects. This study aimed to investigate the anti-cancer effect and mechanism of combining imatinib with irinotecan or its active metabolite 7-ethyl-10-hydroxycamptothecin (SN-38). First, we found that this drug combination exerted synergistic antitumor effects against glioma in vitro and in vivo. In addition, flow cytometry results proved that the SN-38-induced apoptosis was further enhanced by imatinib, and similar results were observed by determining the protein expression levels of apoptosis biomarkers. Interestingly, p53 expression was elevated by the SN-38 mono-treatment, and was not further increased after the co-treatment; besides, knockdown of p53 could only reduce the expression of cleaved-PARP partially, and weaken the enhanced proliferation inhibition induced by SN-38 plus imatinib, indicating that there might be other factors involved in the synergistic effects besides p53. Meanwhile, the markedly elevated p21 expression was observed only in the combination group, instead of the mono-treated groups. According to the results of p21 knockdown, we found that p21 was also required for the synergistic inhibitory effects. Moreover, we explored and ruled out the possibility of imatinib enhancing the sensitivity of irinotecan by inhibiting drug efflux pumps. Thus, our findings collectively suggest that combining irinotecan with imatinib could be a promising new strategy to fight against glioma.
Collapse
Affiliation(s)
- Jiabin Lu
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuhuai Hu
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Renyun Qian
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuqian Zhang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
15
|
Ding D, Huang H, Li Q, Yu W, Wang C, Ma H, Wu J, Dang Y, Yu L, Jiang W. NF90 stabilizes cyclin E1 mRNA through phosphorylation of NF90-Ser382 by CDK2. Cell Death Discov 2020; 6:3. [PMID: 32123579 PMCID: PMC7026180 DOI: 10.1038/s41420-020-0236-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/17/2019] [Accepted: 01/02/2020] [Indexed: 12/19/2022] Open
Abstract
Nuclear factor 90 (NF90), an RNA-binding protein, has been implicated in regulating interleukin-2 (IL-2) and the immune response. It was recently reported that NF90 is upregulated in hepatocellular carcinoma (HCC) tissues and promotes HCC proliferation through upregulating cyclin E1 at the posttranscription level. However, the regulation of NF90 in HCC remains unclear. We demonstrate here that cyclin-dependent kinase (CDK) 2 interacts with NF90 and phosphorylated it at serine382. Mechanistically, phosphorylation of NF90-Ser382 determines the nuclear export of NF90 and stabilization of cyclin E1 mRNA. We also demonstrate that the phosphorylation deficient mutant NF90-S382A inhibits cell growth and induces cell cycle arrest at the G1 phase in HCC cells. Moreover, an NF90-S382A xenograft tumor had a decreased size and weight compared with the wildtype NF90. The NF90-S382A xenograft contained a significantly lower level of the proliferation marker Ki-67. Additionally, in HCC patients, NF90-Ser382 phosphorylation was stronger in tumor than in non-tumor tissues. Clinically, phosphorylation of NF90-Ser382 is significantly associated with larger tumor sizes, higher AFP levels, and shorter overall survival rates. These results suggest NF90-Ser382 phosphorylation serves as a potential diagnosis and prognostic marker and a promising pharmacological target for HCC.
Collapse
Affiliation(s)
- Donglin Ding
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN USA
| | - Huixing Huang
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Quanfu Li
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wenbo Yu
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Chenji Wang
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Haijie Ma
- Laboratory of Cytobiology and Molecular Biology, The Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang China
| | - Jiaxue Wu
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Yongjun Dang
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Long Yu
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Wei Jiang
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Li J, Xia R, Liu T, Cai X, Geng G. LncRNA-ATB Promotes Lung Squamous Carcinoma Cell Proliferation, Migration, and Invasion by Targeting microRNA-590-5p/NF90 Axis. DNA Cell Biol 2020; 39:459-473. [PMID: 31934791 DOI: 10.1089/dna.2019.5193] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lung cancer with highest morbidity and mortality seriously threatens human health worldwide. Long noncoding RNAs (lncRNAs) exert important biological functions by acting as microRNA, which is implicated in tumorigenesis and cancer development. Previous work has reported that lncRNA-ATB expression was significantly upregulated in lung adenocarcinoma tissues and promoted tumor progression; however, the mechanisms of lncRNA-ATB in lung squamous carcinoma (LSC) are still fairly elusive. In our study, lncRNA-ATB expression also markedly increases in LSC tissues and cell lines in comparison to the adjacent normal tissues and normal lung epithelial cells, respectively. Functional experiments indicate that lncRNA-ATB overexpression improves the proliferative, migratory, and invasive capabilities of normal lung epithelial cells compared with control group. Furthermore, the migratory and invasive abilities are strikingly inhibited in lncRNA-ATB silenced LSC cells. Mechanistically, lncRNA-ATB directly binds to microRNA-590-5p and downregulates microRNA-590-5p level, leading to the upregulation of NF-90 expression. In addition, lncRNA-ATB overexpression promotes the epithelial-mesenchymal transition process, where lncRNA-ATB overexpression facilitates the expression of mesenchymal phenotype related molecules N-cadherin and vimentin, while restrains the expression of epithelial phenotype related proteins E-cadherin and CK-19, compared to the control. Conversely, microRNA-590-5p mimics can reverse the results caused by lncRNA-ATB overexpression. Taken together, our initial data suggest that lncRNA-ATB overexpression may promote the progression of LSC by modulating the microRNA-590-5p/NF-90 axis.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, P.R. China.,Teaching Hospital of Fujian Medical University, Xiamen, P.R. China
| | - Rongmu Xia
- School of Medicine, Xiamen University, Xiamen, P.R. China
| | - Tao Liu
- Department of Medical Oncology, Xiang'an Hospital of Xiamen University, Xiamen, P.R. China
| | - Xuemin Cai
- School of Medicine, Xiamen University, Xiamen, P.R. China
| | - Guojun Geng
- Teaching Hospital of Fujian Medical University, Xiamen, P.R. China.,Department of Thoracic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, P.R. China
| |
Collapse
|
17
|
Avasarala S, Wu PY, Khan SQ, Yanlin S, Van Scoyk M, Bao J, Di Lorenzo A, David O, Bedford MT, Gupta V, Winn RA, Bikkavilli RK. PRMT6 Promotes Lung Tumor Progression via the Alternate Activation of Tumor-Associated Macrophages. Mol Cancer Res 2020; 18:166-178. [PMID: 31619507 PMCID: PMC6942249 DOI: 10.1158/1541-7786.mcr-19-0204] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 08/29/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022]
Abstract
Increased expression of protein arginine methyl transferase 6 (PRMT6) correlates with worse prognosis in lung cancer cases. To interrogate the in vivo functions of PRMT6 in lung cancer, we developed a tamoxifen-inducible lung-targeted PRMT6 gain-of-function mouse model, which mimics PRMT6 amplification events in human lung tumors. Lung-targeted overexpression of PRMT6 accelerated cell proliferation de novo and potentiated chemical carcinogen (urethane)-induced lung tumor growth. To explore the molecular mechanism/s by which PRMT6 promotes lung tumor growth, we used proteomics-based approaches and identified interleukin-enhancer binding protein 2 (ILF2) as a novel PRMT6-associated protein. Furthermore, by using a series of in vitro gain-of-function and loss-of-function experiments, we defined a new role for the PRMT6-ILF2 signaling axis in alternate activation of tumor-associated macrophages (TAM). Interestingly, we have also identified macrophage migration inhibitory factor, which has recently been shown to regulate alternate activation of TAMs, as an important downstream target of PRMT6-ILF2 signaling. Collectively, our findings reveal a previously unidentified noncatalytic role for PRMT6 in potentiating lung tumor progression via the alternate activation of TAMs. IMPLICATIONS: This is the first study to demonstrate an in vivo role for PRMT6 in lung tumor progression via the alternate activation of TAMs.
Collapse
Affiliation(s)
- Sreedevi Avasarala
- Medicine/Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Pei-Ying Wu
- Medicine/Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Samia Q Khan
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Su Yanlin
- Medicine/Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Michelle Van Scoyk
- Medicine/Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Jianqiang Bao
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Alessandra Di Lorenzo
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Odile David
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Vineet Gupta
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Robert A Winn
- Medicine/Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
- University of Illinois Cancer Center, Chicago, Illinois
- Jesse Brown VA Medical Center, Chicago, Illinois
| | - Rama Kamesh Bikkavilli
- Medicine/Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois.
- University of Illinois Cancer Center, Chicago, Illinois
| |
Collapse
|
18
|
Jin J, Wang W, Ai S, Liu W, Song Y, Luo Z, Zhang Q, Wu K, Liu Y, Wu J. Enterovirus 71 Represses Interleukin Enhancer-Binding Factor 2 Production and Nucleus Translocation to Antagonize ILF2 Antiviral Effects. Viruses 2019; 12:v12010022. [PMID: 31878072 PMCID: PMC7019514 DOI: 10.3390/v12010022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/09/2019] [Accepted: 12/17/2019] [Indexed: 12/23/2022] Open
Abstract
Enterovirus 71 (EV71) infection causes hand-foot-mouth disease (HFMD), meningoencephalitis, neonatal sepsis, and even fatal encephalitis in children, thereby presenting a serious risk to public health. It is important to determine the mechanisms underlying the regulation of EV71 infection. In this study, we initially show that the interleukin enhancer-binding factor 2 (ILF2) reduces EV71 50% tissue culture infective dose (TCID50) and attenuates EV71 plaque-formation unit (PFU), thereby repressing EV71 infection. Microarray data analyses show that ILF2 mRNA is reduced upon EV71 infection. Cellular studies indicate that EV71 infection represses ILF2 mRNA expression and protein production in human leukemic monocytes (THP-1) -differentiated macrophages and human rhabdomyosarcoma (RD) cells. In addition, EV71 nonstructural protein 2B interacts with ILF2 in human embryonic kidney (HEK293T) cells. Interestingly, in the presence of EV71 2B, ILF2 is translocated from the nucleus to the cytoplasm, and it colocalizes with 2B in the cytoplasm. Therefore, we present a distinct mechanism by which EV71 antagonizes ILF2-mediated antiviral effects by inhibiting ILF2 expression and promoting ILF2 translocation from the nucleus to the cytoplasm through its 2B protein.
Collapse
Affiliation(s)
- Jing Jin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.J.); (S.A.); (W.L.); (Y.S.); (Q.Z.); (K.W.); (Y.L.)
| | - Wenbiao Wang
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China; (W.W.); (Z.L.)
| | - Sha Ai
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.J.); (S.A.); (W.L.); (Y.S.); (Q.Z.); (K.W.); (Y.L.)
| | - Weiyong Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.J.); (S.A.); (W.L.); (Y.S.); (Q.Z.); (K.W.); (Y.L.)
| | - Yu Song
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.J.); (S.A.); (W.L.); (Y.S.); (Q.Z.); (K.W.); (Y.L.)
| | - Zhen Luo
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China; (W.W.); (Z.L.)
| | - Qi Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.J.); (S.A.); (W.L.); (Y.S.); (Q.Z.); (K.W.); (Y.L.)
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.J.); (S.A.); (W.L.); (Y.S.); (Q.Z.); (K.W.); (Y.L.)
| | - Yingle Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.J.); (S.A.); (W.L.); (Y.S.); (Q.Z.); (K.W.); (Y.L.)
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China; (W.W.); (Z.L.)
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.J.); (S.A.); (W.L.); (Y.S.); (Q.Z.); (K.W.); (Y.L.)
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China; (W.W.); (Z.L.)
- Correspondence: ; Tel.: +86-27-68754979
| |
Collapse
|
19
|
DDX5 plays essential transcriptional and post-transcriptional roles in the maintenance and function of spermatogonia. Nat Commun 2019; 10:2278. [PMID: 31123254 PMCID: PMC6533336 DOI: 10.1038/s41467-019-09972-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/02/2019] [Indexed: 02/07/2023] Open
Abstract
Mammalian spermatogenesis is sustained by mitotic germ cells with self-renewal potential known as undifferentiated spermatogonia. Maintenance of undifferentiated spermatogonia and spermatogenesis is dependent on tightly co-ordinated transcriptional and post-transcriptional mechanisms. The RNA helicase DDX5 is expressed by spermatogonia but roles in spermatogenesis are unexplored. Using an inducible knockout mouse model, we characterise an essential role for DDX5 in spermatogonial maintenance and show that Ddx5 is indispensable for male fertility. We demonstrate that DDX5 regulates appropriate splicing of key genes necessary for spermatogenesis. Moreover, DDX5 regulates expression of cell cycle genes in undifferentiated spermatogonia post-transcriptionally and is required for cell proliferation and survival. DDX5 can also act as a transcriptional co-activator and we demonstrate that DDX5 interacts with PLZF, a transcription factor required for germline maintenance, to co-regulate select target genes. Combined, our data reveal a critical multifunctional role for DDX5 in regulating gene expression programmes and activity of undifferentiated spermatogonia. Sustained sperm production is dependent on activity of undifferentiated spermatogonia. Here, the authors demonstrate an essential role for RNA helicase DDX5 in maintenance of spermatogonia in adults through control of gene transcription plus RNA processing and export.
Collapse
|
20
|
Jia R, Ajiro M, Yu L, McCoy P, Zheng ZM. Oncogenic splicing factor SRSF3 regulates ILF3 alternative splicing to promote cancer cell proliferation and transformation. RNA (NEW YORK, N.Y.) 2019; 25:630-644. [PMID: 30796096 PMCID: PMC6467003 DOI: 10.1261/rna.068619.118] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 02/21/2019] [Indexed: 05/28/2023]
Abstract
Alternative RNA splicing is an important focus in molecular and clinical oncology. We report here that SRSF3 regulates alternative RNA splicing of interleukin enhancer binding factor 3 (ILF3) and production of this double-strand RNA-binding protein. An increased coexpression of ILF3 isoforms and SRSF3 was found in various types of cancers. ILF3 isoform-1 and isoform-2 promote cell proliferation and transformation. Tumor cells with reduced SRSF3 expression produce aberrant isoform-5 and -7 of ILF3. By binding to RNA sequence motifs, SRSF3 regulates the production of various ILF3 isoforms by exclusion/inclusion of ILF3 exon 18 or by selection of an alternative 3' splice site within exon 18. ILF3 isoform-5 and isoform-7 suppress tumor cell proliferation and the isoform-7 induces cell apoptosis. Our data indicate that ILF3 isoform-1 and isoform-2 are two critical factors for cell proliferation and transformation. The increased SRSF3 expression in cancer cells plays an important role in maintaining the steady status of ILF3 isoform-1 and isoform-2.
Collapse
Affiliation(s)
- Rong Jia
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Ke Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Masahiko Ajiro
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| | - Lulu Yu
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| | - Philip McCoy
- Flow Cytometry Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| |
Collapse
|
21
|
Wen-Jian Y, Song T, Jun T, Kai-Ying X, Jian-Jun W, Si-Hua W. NF45 promotes esophageal squamous carcinoma cell invasion by increasing Rac1 activity through 14-3-3ε protein. Arch Biochem Biophys 2018; 663:101-108. [PMID: 30550728 DOI: 10.1016/j.abb.2018.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/04/2018] [Accepted: 12/10/2018] [Indexed: 10/27/2022]
Abstract
Nuclear factor 45 (NF-45) has been found to be markedly upregulated in several cancers, including esophageal squamous cell carcinoma (ESCC). However, the molecular mechanisms underlying its functions remain unclear. In this study, we confirm that overexpression of NF45 was frequently detected in ESCC tissues and was associated with poor outcome. Overexpression studies revealed that NF-45 promoted cell growth and invasion and upregulated Rac1/Tiam1 signalling via 14-3-3ε protein in ESCC cell lines. This novel mechanism linking upregulated NF45 expression to increased 14-3-3ε/Rac1/Tiam1 signalling and subsequent growth and invasion in ESCC may aid in identification of new therapeutic targets for this disease.
Collapse
Affiliation(s)
- Yao Wen-Jian
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Tong Song
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Tan Jun
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xu Kai-Ying
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wang Jian-Jun
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wang Si-Hua
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
22
|
Biological Effect of Organically Coated Grias neuberthii and Persea americana Silver Nanoparticles on HeLa and MCF-7 Cancer Cell Lines. JOURNAL OF NANOTECHNOLOGY 2018. [DOI: 10.1155/2018/9689131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to assess the biological effect of organically coated Grias neuberthii (piton) fruit and Persea americana (avocado) leaves nanoparticles (NPs) on cervical cancer (HeLa) and breast adenocarcinoma (MCF-7) cells with an emphasis on gene expression (p53 transcription factor and glutathione-S-transferase GST) and cell viability. UV-Vis spectroscopy analysis showed that synthesized AgNPs remained partially stable under cell culture conditions. HeLa cells remained viable when exposed to piton and avocado AgNPs. A statistically significant, dose-dependent cytotoxic response to both AgNPs was found on the breast cancer (MCF-7) cell line at concentrations above 50 µM. While expression levels of transcription factor p53 showed downregulation in treated MCF-7 and HeLa cells, GST expression was not affected in both cell lines treated. Cell viability assays along with gene expression levels in treated MCF-7 cells support a cancer cell population undergoing cell cycle arrest. The selective toxicity of biosynthesized piton/avocado AgNPs on MCF-7 cells might be of value for novel therapeutics.
Collapse
|
23
|
Jin Z, Xu L, Zhang L, Zhao M, Li D, Ye L, Ma Y, Ren S, Yu H, Wang D, Liang C, Chen B. Interleukin enhancer binding factor 2 is a prognostic biomarker for breast cancer that also predicts neoadjuvant chemotherapy responses. Am J Transl Res 2018; 10:1677-1689. [PMID: 30018709 PMCID: PMC6038075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/01/2018] [Indexed: 06/08/2023]
Abstract
Interleukin enhancer binding factor 2 (ILF2) participates in several aspects of DNA and RNA metabolism and regulates gene expression at multiple levels; however, its role in breast cancer remains undefined. The variant statuses of ILF2 in human breast cancer were evaluated using the COSMIC database. Altered ILF2 expression in normal breast tissue relative to cancer tissue and in breast cancer patients with different clinicopathological characteristics, molecular subtypes, clinical outcomes and chemotherapy responses were examined using the Oncomine, GOBO, Kaplan-Meier plotter and GEO datasets. To explore possible biological networks connected to ILF2 in breast cancer, we performed ingenuity pathway analysis on ILF2-related differentially expressed genes. We found that many breast cancers had increased ILF2 copy number variations and increased ILF2 expression. We also observed that elevated ILF2 expression was correlated with aggressive features, such as high histological grade, BRCA1 mutations, and the triple-negative/basal-like subtype, which resulted in shorter survival in these cases. Moreover, ILF2 expression predicted responses to anthracycline/taxane-based treatment. Ingenuity pathway analysis revealed that ILF2-related biological functions included promoting cell survival, viability, and proliferation, as well as cell cycle progression and DNA repair. Certain well-known oncogenes (MYC and HGF), cytokines (CSF2, IFNG and IL5) and microRNAs (miR-21, miR-155-5p and let-7) may participate in the ILF2 expression network in breast cancer. In summary, ILF2 is involved in the development and progression of breast cancer and may be a predictive biomarker for better responses to anthracycline/taxane-based treatments.
Collapse
Affiliation(s)
- Zining Jin
- Department of Breast Surgery, The First Hospital of China Medical UniversityShenyang 110001, Liaoning Province, China
| | - Lu Xu
- Department of Medical Oncology, The First Hospital of China Medical UniversityShenyang 110001, Liaoning Province, China
| | - Lei Zhang
- Department of Breast Surgery, The First Hospital of China Medical UniversityShenyang 110001, Liaoning Province, China
| | - Min Zhao
- Department of Breast Surgery, The First Hospital of China Medical UniversityShenyang 110001, Liaoning Province, China
| | - Dongbao Li
- Department of Breast Surgery, The First Hospital of China Medical UniversityShenyang 110001, Liaoning Province, China
| | - Lijun Ye
- Department of Breast Surgery, The First Hospital of China Medical UniversityShenyang 110001, Liaoning Province, China
| | - Ying Ma
- Department of Breast Surgery, The First Hospital of China Medical UniversityShenyang 110001, Liaoning Province, China
| | - Siyu Ren
- Department of Breast Surgery, The First Hospital of China Medical UniversityShenyang 110001, Liaoning Province, China
| | - Hailan Yu
- Department of Breast Surgery, The First Hospital of China Medical UniversityShenyang 110001, Liaoning Province, China
| | - Danyu Wang
- Department of Breast Surgery, The First Hospital of China Medical UniversityShenyang 110001, Liaoning Province, China
| | - Chunyan Liang
- Department of Breast Surgery, The First Hospital of China Medical UniversityShenyang 110001, Liaoning Province, China
| | - Bo Chen
- Department of Breast Surgery, The First Hospital of China Medical UniversityShenyang 110001, Liaoning Province, China
| |
Collapse
|
24
|
Kong YH, Xu SP. Salidroside prevents skin carcinogenesis induced by DMBA/TPA in a mouse model through suppression of inflammation and promotion of apoptosis. Oncol Rep 2018; 39:2513-2526. [PMID: 29693192 PMCID: PMC5983924 DOI: 10.3892/or.2018.6381] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 03/20/2018] [Indexed: 01/24/2023] Open
Abstract
Salidroside (SR) is a main component of Rhodiola rosea L. and exhibits a variety of pharmacologic properties. The present study was carried out to explore the potential effect of SR against skin cancer induced by 7,12-dimethylbenz(a)anthracene (DMBA) and 12-O-tetradecanoylphorbol-13‑acetate (TPA) in female Institute for Cancer Research (ICR) mice and to reveal the underlying molecular targets regulated by SR. The mice were randomly divided into 4 groups: control, DMBA/TPA, DMBA/TPA+SR (20 mg/kg) and DMBA/TPA+SR (40 mg/kg). SR was administered to mice five times a week after DMBA treatments. In our study, we found that SR dose-dependently ameliorated skin cancer incidence and the multiplicity in the animal models by reducing the release of inflammation-related cytokines, including tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), interleukin-18 (IL-18), interleukin-6 (IL-6), cyclooxygenase 2 (COX2) and transforming growth factor β-1 (TGF-β1). Suppression of the nuclear factor (NF)-κB signaling pathway by SR was effective to prevent skin carcinogenesis. Furthermore, TUNEL analysis indicated that compared to the DMBA/TPA group, enhanced apoptosis was observed in the DMBA/TPA+SR group. In addition, p53 expression levels were increased by SR in the DMBA/TPA-induced mice. Therefore, SR was effective for inducing apoptosis during skin cancer progression triggered by DMBA/TPA. Consistently, p21, p53 upregulated modulator of apoptosis (PUMA), Bax and caspase-3 were highly induced by SR to enhance the apoptotic response for preventing skin cancer. Moreover, in vitro, we found that SR dramatically reduced the inflammatory response, while enhancing the aoptotic response by blocking NF-κB and activating caspase-3 pathways, respectively. In addition, flow cytometric analysis further confirmed the induction of apoptosis by SR in DMBA-treated cells in vitro. Taken together, the in vivo and in vitro studies illustrated that SR might be a promising compound to reduce skin cancer risk.
Collapse
Affiliation(s)
- Ying-Hui Kong
- Department of Dermatology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Su-Ping Xu
- Department of Dermatology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
25
|
Nuclear factor 90 promotes angiogenesis by regulating HIF-1α/VEGF-A expression through the PI3K/Akt signaling pathway in human cervical cancer. Cell Death Dis 2018; 9:276. [PMID: 29449553 PMCID: PMC5833414 DOI: 10.1038/s41419-018-0334-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 01/28/2023]
Abstract
Vascular endothelial growth factor A (VEGF-A), a fundamental component of angiogenesis, provides nutrients and oxygen to solid tumors, and enhances tumor cell survival, invasion, and migration. Nuclear factor 90 (NF90), a double-stranded RNA-binding protein, is strongly expressed in several human cancers, promotes tumor growth by reducing apoptosis, and increasing cell cycle process. The mechanisms by which cervical cancer cells inducing VEGF-A expression and angiogenesis upon NF90 upregulation remain to be fully established. We demonstrated that NF90 is upregulated in human cervical cancer specimens and the expression of NF90 is paralleled with that of VEGF-A under hypoxia. The expressions of hypoxia inducible factor-1α (HIF-1α) and VEGF-A are downregulated upon NF90 knockdown, which can be rescued by ectopic expression of NF90. Suppression of NF90 decreases the tube formation and cell migration of HUVECs. Moreover, the PI3K/Akt signaling pathway participates in the regulation. Knockdown of NF90 also reduces the tumor growth and angiogenesis of cervical cancer cell line in the mouse xenograft model. Taken together, suppression of NF90 in cervical cancer cell lines can decrease VEGF-A expression, inhibit angiogenesis, and reduce tumorigenic capacity in vivo.
Collapse
|
26
|
Benatti P, Basile V, Dolfini D, Belluti S, Tomei M, Imbriano C. NF-Y loss triggers p53 stabilization and apoptosis in HPV18-positive cells by affecting E6 transcription. Oncotarget 2018; 7:45901-45915. [PMID: 27323853 PMCID: PMC5216769 DOI: 10.18632/oncotarget.9974] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 06/01/2016] [Indexed: 12/28/2022] Open
Abstract
The expression of the high risk HPV18 E6 and E7 oncogenic proteins induces the transformation of epithelial cells, through the disruption of p53 and Rb function. The binding of cellular transcription factors to cis-regulatory elements in the viral Upstream Regulatory Region (URR) stimulates E6/E7 transcription. Here, we demonstrate that the CCAAT-transcription factor NF-Y binds to a non-canonical motif within the URR and activates viral gene expression. In addition, NF-Y indirectly up-regulates HPV18 transcription through the transactivation of multiple cellular transcription factors. NF-YA depletion inhibits the expression of E6 and E7 genes and re-establishes functional p53. The activation of p53 target genes in turn leads to apoptotic cell death. Finally, we show that NF-YA loss sensitizes HPV18-positive cells toward the DNA damaging agent Doxorubicin, via p53-mediated transcriptional response.
Collapse
Affiliation(s)
- Paolo Benatti
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, 41125 Modena, Italy
| | - Valentina Basile
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, 41125 Modena, Italy
| | - Diletta Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Silvia Belluti
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, 41125 Modena, Italy
| | - Margherita Tomei
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, 41125 Modena, Italy
| | - Carol Imbriano
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
27
|
Shen S, Bai J, Wei Y, Wang G, Li Q, Zhang R, Duan W, Yang S, Du M, Zhao Y, Christiani DC, Chen F. A seven-gene prognostic signature for rapid determination of head and neck squamous cell carcinoma survival. Oncol Rep 2017; 38:3403-3411. [PMID: 29130107 PMCID: PMC5783586 DOI: 10.3892/or.2017.6057] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 10/02/2017] [Indexed: 12/15/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer and displays divergent clinical outcomes. Prognostic biomarkers might improve risk stratification and survival prediction. We aimed to investigate the prognostic genes associated with overall survival. A two-step gene selection method was used to develop a seven-gene-based prognostic model based on the training set collected from The Cancer Genome Atlas (TCGA). In addition, the prognostic model was validated in an independent testing set from Gene Expression Omnibus (GEO). The score based on the model successfully distinguished HNSCC survival into high-risk and low-risk groups in the training set (HR, 2.79; 95% CI, 1.98–3.92; P=4.05×10−9) and the testing set (HR, 2.05; 95% CI, 1.35–3.11; P=7.98×10−4). In addition, the score could significantly predict 5-year survival by ROC curves (AUCs for training set, 0.73; testing set, 0.66). Combining risk scores with clinical characteristics improved the AUCs beyond using clinical characteristics alone (training set, from 0.57 to 0.75; testing set, from 0.63 to 0.72). A subgroup sensitivity analysis with HPV status and tumor sites revealed that the risk score was significant in all subgroups except oral cavity tumors of the testing set. Furthermore, HPV-positive status improves survival in oropharyngeal HNSCC but not non-oropharyngeal HNSCC. In conclusion, the seven-gene prognostic signature is a reliable and practical prognostic tool for HNSCC. This approach can add prognostic value to clinical characteristics and provides a new possibility for individualized treatment.
Collapse
Affiliation(s)
- Sipeng Shen
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Jianling Bai
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Yongyue Wei
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Guanrong Wang
- NPFPC Contraceptive Adverse Reaction Surveillance Center, Jiangsu Institute of Planned Parenthood Research, Nanjing, Jiangsu, P.R. China
| | - Qingya Li
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Ruyang Zhang
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Weiwei Duan
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Sheng Yang
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Mulong Du
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Yang Zhao
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - David C Christiani
- China International Cooperation Center of Environment and Human Health, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Feng Chen
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
28
|
Expression and Clinical Significance of ILF2 in Gastric Cancer. DISEASE MARKERS 2017; 2017:4387081. [PMID: 28831206 PMCID: PMC5555027 DOI: 10.1155/2017/4387081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/30/2017] [Accepted: 07/02/2017] [Indexed: 01/29/2023]
Abstract
The aim of this study is to investigate the expression levels and clinical significance of ILF2 in gastric cancer. The mRNA and protein expression levels of ILF2 were, respectively, examined by quantitative real-time PCR (qRT-PCR) and Western blot from 21 paired fresh frozen GC tissues and corresponding normal gastric tissues. In order to analyze the expression pattern of ILF2 in GC, 60 paired paraffin-embedded GC slides and corresponding normal gastric slides were detected by immunohistochemistry (IHC) assay. The correlation between ILF2 protein expression levels and clinicopathological parameters, overall survival (OS), disease-free survival (DFS), and clinical prognosis were analyzed by statistical methods. Significantly higher levels of ILF2 were detected in GC tissues compared with normal controls at both mRNA and protein level. High expression of ILF2 was tightly correlated with depth of invasion, lymph node metastasis, pathological stage, and histological differentiation. Log-rank test showed that high expression of ILF2 was positively associated with poor clinical prognosis. Multivariate analysis identified that ILF2 was an independent prognostic factor for OS and DFS. Our findings suggest that ILF2 may be a valuable biomarker and a novel potential prognosis predictor for GC patients.
Collapse
|
29
|
Jiang Z, Slater CM, Zhou Y, Devarajan K, Ruth KJ, Li Y, Cai KQ, Daly M, Chen X. LincIN, a novel NF90-binding long non-coding RNA, is overexpressed in advanced breast tumors and involved in metastasis. Breast Cancer Res 2017; 19:62. [PMID: 28558830 PMCID: PMC5450112 DOI: 10.1186/s13058-017-0853-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 05/05/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Recent genome-wide profiling by sequencing and distinctive chromatin signatures has identified thousands of long non-coding RNA (lncRNA) species (>200 nt). LncRNAs have emerged as important regulators of gene expression, involving in both developmental and pathological processes. While altered expression of lncRNAs has been observed in breast cancer development, their roles in breast cancer progression and metastasis are still poorly understood. METHODS To identify novel breast cancer-associated lncRNA candidates, we employed a high-density SNP array-based approach to uncover intergenic lncRNA genes that are aberrantly expressed in breast cancer. We first evaluated the potential value as a breast cancer prognostic biomarker for one breast cancer-associated lncRNA, LincIN, using a breast cancer cohort retrieved from The Cancer Genome Atlas (TCGA) Data Portal. Then we characterized the role of LincIN in breast cancer progression and metastasis by in vitro invasion assay and a mouse tail vein injection metastasis model. To study the action of LincIN, we identified LincIN-interacting protein partner(s) by RNA pull-down experiments followed with protein identification by mass spectrometry. RESULTS High levels of LincIN expression are frequently observed in tumors compared to adjacent normal tissues, and are strongly associated with aggressive breast cancer. Importantly, analysis of TCGA data further suggest that high expression of LincIN is associated with poor overall survival in patients with breast cancer (P = 0.044 and P = 0.011 after adjustment for age). The functional experiments demonstrate that knockdown of LincIN inhibits tumor cell migration and invasion in vitro, which is supported by the results of transcriptome analysis in the LincIN-knockdown cells. Furthermore, knockdown of LincIN diminishes lung metastasis in a mouse tail vein injection model. We also identified a LincIN-binding protein, NF90, through which overexpression of LincIN may repress p21 protein expression by inhibiting its translation, and upregulation of p21 by LincIN knockdown may be associated with less aggressive metastasis phenotypes. CONCLUSIONS Our studies provide clear evidence to support LincIN as a new regulator of tumor progression-metastasis at both transcriptional and translational levels and as a promising prognostic biomarker for breast cancer.
Collapse
Affiliation(s)
- Zhengyu Jiang
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA.,Present Address: Department of Medicine, Irving Cancer Research Center, Columbia University, New York, NY, 10032, USA
| | - Carolyn M Slater
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Yan Zhou
- Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Karthik Devarajan
- Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Karen J Ruth
- Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Yueran Li
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA.,Present Address: The Third Xiangya Hospital of Central South University, Changsha, China
| | - Kathy Q Cai
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Mary Daly
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Xiaowei Chen
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA.
| |
Collapse
|
30
|
Gao Y, Li F, Zhou H, Yang Y, Wu R, Chen Y, Li W, Li Y, Xu X, Ke C, Pei Z. Down-regulation of MRPS23 inhibits rat breast cancer proliferation and metastasis. Oncotarget 2017; 8:71772-71781. [PMID: 29069745 PMCID: PMC5641088 DOI: 10.18632/oncotarget.17888] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 04/28/2017] [Indexed: 11/25/2022] Open
Abstract
Mitochondrial ribosomal protein S23 (MRPS23) has been shown to be involved in breast cancer cell proliferation and metastatic phenotypes of cervical cancer. Here we investigated its biological features in breast cancer for the first time. It demonstrated that knockdown of MRPS23 reduced breast cancer cell proliferation and induced apoptosis in vitro. Besides, shRNA targeting MRPS23 (shMRPS23) inhibited tumour proliferation and metastasis by blocking tumor angiogenesis in breast cancer xenograft rat model. Small animal positron emission tomography/computed tomography (PET/CT) with 2′-deoxy-2′-[18F] fluoro-D-glucose (FDG) was performed at four weeks after tumour cell injection. We found that FDG maximum standardized uptake value (SUVmax) significantly decreased by 31 ± 3% in the shMRPS23-treated group. But this change was not independent of metabolic tumour size. In addition, we also found that shMRPS23 could significantly suppress breast cancer metastasis through inhibiting epithelial mesenchymal transition (EMT) phenotype. The epithelial marker E-cadherin was increased, whereas the metastasis associated gene vimentin was decreased. Mechanistically, shMRPS23-treated tumours failed to progress through p53 and p21WAF1/CIP1 activation, but not cytochrome c-mediated pathway. These findings suggest that MRPS23 is a potential therapeutic target for interference of breast cancer proliferation, angiogenesis and metastasis.
Collapse
Affiliation(s)
- Yan Gao
- Department of PET Center and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of medicine, Hubei, China
| | - Fuyan Li
- Department of PET Center and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of medicine, Hubei, China
| | - Hong Zhou
- Department of PET Center and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of medicine, Hubei, China
| | - Yi Yang
- Department of PET Center and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of medicine, Hubei, China
| | - Ruimin Wu
- Department of PET Center and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of medicine, Hubei, China
| | - Yijia Chen
- Department of PET Center and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of medicine, Hubei, China
| | - Wei Li
- Department of PET Center and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of medicine, Hubei, China
| | - Yang Li
- Department of PET Center and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of medicine, Hubei, China
| | - Xueqin Xu
- Department of PET Center and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of medicine, Hubei, China
| | - Changbin Ke
- Department of PET Center and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of medicine, Hubei, China
| | - Zhijun Pei
- Department of PET Center and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of medicine, Hubei, China
| |
Collapse
|
31
|
Song D, Huang H, Wang J, Zhao Y, Hu X, He F, Yu L, Wu J. NF90 regulates PARP1 mRNA stability in hepatocellular carcinoma. Biochem Biophys Res Commun 2017; 488:211-217. [PMID: 28487110 DOI: 10.1016/j.bbrc.2017.05.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 05/06/2017] [Indexed: 02/05/2023]
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) is an ADP- ribosylation enzyme and plays important roles in a variety of cellular processes, including DNA damage response and tumor development. However, the post-transcriptional regulation of PARP1 remains largely unknown. In this study, we identified that the mRNA of PARP1 is associated with nuclear factor 90 (NF90) by RNA immunoprecipitation plus sequencing (RIP-seq) assay. The mRNA and protein levels of PARP1 are dramatically decreased in NF90-depleted cells, and NF90 stabilizes PARP1's mRNA through its 3'UTR. Moreover, the expression levels of PARP1 and NF90 are positively correlated in hepatocellular carcinoma (HCC). Finally, we demonstrated that NF90-depleted cells are sensitive to PARP inhibitor Olaparib (AZD2281) and DNA damage agents. Taken together, these results suggest that NF90 regulates PARP1 mRNA stability in hepatocellular carcinoma cells, and NF90 is a potential target to inhibit PARP1 activity.
Collapse
Affiliation(s)
- Dan Song
- Zhongshan Hospital and School of Life Science, Fudan University, Shanghai, PR China
| | - Huixing Huang
- Zhongshan Hospital and School of Life Science, Fudan University, Shanghai, PR China
| | - Juanjuan Wang
- Zhongshan Hospital and School of Life Science, Fudan University, Shanghai, PR China
| | - Yahui Zhao
- Zhongshan Hospital and School of Life Science, Fudan University, Shanghai, PR China
| | - Xiaoding Hu
- Zhongshan Hospital and School of Life Science, Fudan University, Shanghai, PR China
| | - Funan He
- Zhongshan Hospital and School of Life Science, Fudan University, Shanghai, PR China
| | - Long Yu
- Zhongshan Hospital and School of Life Science, Fudan University, Shanghai, PR China
| | - Jiaxue Wu
- Zhongshan Hospital and School of Life Science, Fudan University, Shanghai, PR China.
| |
Collapse
|
32
|
Bi Y, Shen W, Min M, Liu Y. MicroRNA-7 functions as a tumor-suppressor gene by regulating ILF2 in pancreatic carcinoma. Int J Mol Med 2017; 39:900-906. [PMID: 28259961 PMCID: PMC5360436 DOI: 10.3892/ijmm.2017.2894] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 01/11/2017] [Indexed: 12/31/2022] Open
Abstract
Interleukin enhancer binding factor 2 (ILF2) has been found to be markedly upregulated in pancreatic carcinoma and is involved in the pathogenesis of pancreatic carcinoma. Thus, ILF2 may be a potential target for therapy. Yet, the regulatory mechanisms of ILF2 in pancreatic carcinoma remain largely elusive. In the present study, we demonstrated that ILF2 functioned as an oncogene and regulated epithelial-mesenchymal transition (EMT)-associated genes in pancreatic carcinoma PANC-1 cells. MicroRNA-7 (miR-7) suppressed ILF2 mRNA expression and the protein level in PANC-1 cells. Contrary to ILF2, miRNA-7 functioned as a tumor-suppressor gene and negatively regulated EMT-associated genes in the PANC-1 cells. Curcumin, a polyphenol natural product isolated from the rhizome of the plant Curcuma longa, has emerged as a promising anticancer therapeutic agent. We found that treatment with curcumin increased miR-7 expression and suppressed ILF2 protein in the PANC-1 cells. Thus, we identified ILF2 as a new downstream target gene of curcumin. The results revealed that ILF2 is regulated by miR-7 and suggest that downregulation of miR-7 may be an important factor for the ILF2 overexpression in pancreatic carcinoma.
Collapse
Affiliation(s)
- Yiliang Bi
- Department of Gastroenterology, 307 Hospital of PLA, Academy of Military Medical Science, Beijing 100071, P.R. China
| | - Wei Shen
- Department of Gastroenterology, 307 Hospital of PLA, Academy of Military Medical Science, Beijing 100071, P.R. China
| | - Min Min
- Department of Gastroenterology, 307 Hospital of PLA, Academy of Military Medical Science, Beijing 100071, P.R. China
| | - Yan Liu
- Department of Gastroenterology, 307 Hospital of PLA, Academy of Military Medical Science, Beijing 100071, P.R. China
| |
Collapse
|
33
|
Araldi RP, Assaf SMR, Carvalho RFD, Carvalho MACRD, Souza JMD, Magnelli RF, Módolo DG, Roperto FP, Stocco RDC, Beçak W. Papillomaviruses: a systematic review. Genet Mol Biol 2017; 40:1-21. [PMID: 28212457 PMCID: PMC5409773 DOI: 10.1590/1678-4685-gmb-2016-0128] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/28/2016] [Indexed: 12/15/2022] Open
Abstract
In the last decades, a group of viruses has received great attention due to its
relationship with cancer development and its wide distribution throughout the
vertebrates: the papillomaviruses. In this article, we aim to review some of the most
relevant reports concerning the use of bovines as an experimental model for studies
related to papillomaviruses. Moreover, the obtained data contributes to the
development of strategies against the clinical consequences of bovine
papillomaviruses (BPV) that have led to drastic hazards to the herds. To overcome the
problem, the vaccines that we have been developing involve recombinant DNA
technology, aiming at prophylactic and therapeutic procedures. It is important to
point out that these strategies can be used as models for innovative procedures
against HPV, as this virus is the main causal agent of cervical cancer, the second
most fatal cancer in women.
Collapse
Affiliation(s)
- Rodrigo Pinheiro Araldi
- Laboratório de Genética, Instituto Butantan, São Paulo, SP, Brazil.,Programa de Pós-graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas (ICB), Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | | | | | | | - Jacqueline Mazzuchelli de Souza
- Laboratório de Genética, Instituto Butantan, São Paulo, SP, Brazil.,Programa de Pós-graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas (ICB), Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Roberta Fiusa Magnelli
- Laboratório de Genética, Instituto Butantan, São Paulo, SP, Brazil.,Programa de Pós-graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas (ICB), Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | | | - Franco Peppino Roperto
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università degli Studi di Napoli Federico II, Napoli, Campania, Italy
| | | | - Willy Beçak
- Laboratório de Genética, Instituto Butantan, São Paulo, SP, Brazil
| |
Collapse
|
34
|
Wu S, Wang S, Fu Y, Tang W, Jin H, Meng Q, Zhang C, Cui M, Cao X, Li X, Zhang Z, Chen R. A novel mechanism of rs763110 polymorphism contributing to cervical cancer risk by affecting the binding affinity of C/EBPβ and OCT1 complex to chromatin. Int J Cancer 2016; 140:756-763. [DOI: 10.1002/ijc.30490] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/18/2016] [Indexed: 01/28/2023]
Affiliation(s)
- Shenshen Wu
- State Key Laboratory of Bioelectronics; Southeast University; Nanjing China
- Key Laboratory of Environmental Medicine Engineering; Ministry of Education, School of Public Health, Southeast University; Nanjing China
| | - Shizhi Wang
- Key Laboratory of Environmental Medicine Engineering; Ministry of Education, School of Public Health, Southeast University; Nanjing China
| | - You Fu
- School of Continuing Education; Nanjing Medical University; Nanjing China
| | - Weiyan Tang
- Medical Oncology; Jiangsu Cancer Hospital; Nanjing China
| | - Hua Jin
- Core Laboratory; Nantong Tumor Hospital; Nantong China
| | - Qingtao Meng
- Key Laboratory of Environmental Medicine Engineering; Ministry of Education, School of Public Health, Southeast University; Nanjing China
| | - Chengcheng Zhang
- Key Laboratory of Environmental Medicine Engineering; Ministry of Education, School of Public Health, Southeast University; Nanjing China
| | - Mengjing Cui
- Key Laboratory of Environmental Medicine Engineering; Ministry of Education, School of Public Health, Southeast University; Nanjing China
| | - Xiaoli Cao
- Clinical Lab; Nantong Tumor Hospital; Nantong China
| | - Xiaobo Li
- Key Laboratory of Environmental Medicine Engineering; Ministry of Education, School of Public Health, Southeast University; Nanjing China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment; Cancer Center, Nanjing Medical University; Nanjing China
| | - Rui Chen
- State Key Laboratory of Bioelectronics; Southeast University; Nanjing China
- Key Laboratory of Environmental Medicine Engineering; Ministry of Education, School of Public Health, Southeast University; Nanjing China
| |
Collapse
|
35
|
Zhou Q, Zhu Y, Wei X, Zhou J, Chang L, Sui H, Han Y, Piao D, Sha R, Bai Y. MiR-590-5p inhibits colorectal cancer angiogenesis and metastasis by regulating nuclear factor 90/vascular endothelial growth factor A axis. Cell Death Dis 2016; 7:e2413. [PMID: 27735951 PMCID: PMC5133975 DOI: 10.1038/cddis.2016.306] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/16/2016] [Accepted: 08/31/2016] [Indexed: 12/19/2022]
Abstract
Altered expression of microRNA-590-5p (miR-590-5p) is involved in tumorigenesis, however, its role in colorectal cancer (CRC) remains to be determined. In this study, we focused on examining the effects of different expression levels of miR-590-5p in cancer cells and normal cells. Results showed that there are lower expression levels of miR-590-5p in human CRC cells and tissues than in normal control cells and tissues. Similarly, in our xenograft mouse model, knockdown of miR-590-5p promoted the progression of CRC. However, an overexpression of miR-590-5p in the mice inhibited angiogenesis, tumor growth, and lung metastasis. Nuclear factor 90 (NF90), a positive regulator of vascular endothelial growth factor (VEGF) mRNA stability and protein synthesis, was shown to be a direct target of miR-590-5p. The overexpression of NF90 restored VEGFA expression and rescued the loss of tumor angiogenesis caused by miR-590-5p. Conversely, the NF90-shRNA attenuated the increased tumor progression caused by the miR-590-5p inhibitor. Clinically, the levels of miR-590-5p were inversely correlated with those of NF90 and VEGFA in CRC tissues. Furthermore, knockdown of NF90 lead to a reduction of pri-miR-590 and an increase of mature miR-590-5p, suggesting a negative feedback loop between miR-590-5p and NF90. Collectively, these data establish miR-590-5p as an anti-onco-miR that inhibits CRC angiogenesis and metastasis through a new mechanism involving NF90/VEGFA signaling axis, highlighting the potential of miR-590-5p as a target for human CRC therapy.
Collapse
Affiliation(s)
- Qingxin Zhou
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yuekun Zhu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoli Wei
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jianhua Zhou
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Liang Chang
- Department of Neurosurgery, The Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Hong Sui
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yu Han
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Daxun Piao
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ruihua Sha
- Department of Digestive Disease, Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, China
| | - Yuxian Bai
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
36
|
Cheng S, Jiang X, Ding C, Du C, Owusu-Ansah KG, Weng X, Hu W, Peng C, Lv Z, Tong R, Xiao H, Xie H, Zhou L, Wu J, Zheng S. Expression and Critical Role of Interleukin Enhancer Binding Factor 2 in Hepatocellular Carcinoma. Int J Mol Sci 2016; 17:1373. [PMID: 27556459 PMCID: PMC5000768 DOI: 10.3390/ijms17081373] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 02/05/2023] Open
Abstract
Interleukin enhancer binding factor 2 (ILF2), a transcription factor, regulates cell growth by inhibiting the stabilization of mRNA. Currently, its role has gained recognition as a factor in the tumorigenic process. However, until now, little has been known about the detailed role ILF2 plays in hepatocellular carcinoma (HCC). In this study, we investigated the expression levels of ILF2 in HCC tissue with Western blot and immunohistochemical assays. To examine the effect of ILF2 on liver cancer cell growth and apoptosis, small interfering RNAs (siRNAs) targeting ILF2 were recombined to create lentiviral overexpression vectors. Our results showed higher expression levels of ILF2 mRNA and ILF2 protein in HCC tissue compared with matched peritumoral tissue. Expression of ILF2 may regulate cell growth and apoptosis in liver cancer cells via regulation of B-cell lymphoma 2 (Bcl-2), Bcl-2 related ovarian killer (Bok), Bcl-2-associated X protein (BAX), and cellular inhibitor of apoptosis 1 (cIAP1). Moreover, we inoculated nude mice with liver cancer cells to investigate the effect of ILF2 on tumorigenesis in vivo. As expected, a rapid growth was observed in cancer cells inoculated with a lentiviral vector coding Flag-ILF2 (Lenti-ILF2) compared with the control cells. Hence, these results promote a better understanding of ILF2's potential role as a therapeutic target in HCC.
Collapse
Affiliation(s)
- Shaobing Cheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Hangzhou 310003, China.
| | - Xu Jiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Chaofeng Ding
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Chengli Du
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Kwabena Gyabaah Owusu-Ansah
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Xiaoyu Weng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Wendi Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Chuanhui Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Zhen Lv
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Rongliang Tong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Heng Xiao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Haiyang Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Lin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Jian Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Shusen Zheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Hangzhou 310003, China.
| |
Collapse
|
37
|
Li T, Li X, Zhu W, Wang H, Mei L, Wu S, Lin X, Han X. NF90 is a novel influenza A virus NS1-interacting protein that antagonizes the inhibitory role of NS1 on PKR phosphorylation. FEBS Lett 2016; 590:2797-810. [PMID: 27423063 DOI: 10.1002/1873-3468.12311] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/01/2016] [Accepted: 07/06/2016] [Indexed: 12/24/2022]
Abstract
NF90 is a novel host antiviral factor that regulates PKR activation and stress granule formation in influenza A virus (IAV)-infected cells, but the precise mechanisms by which it operates remain unclear. We identified NF90 as a novel interacting protein of IAV nonstructural protein 1 (NS1). The interaction was dependent on the RNA-binding properties of NS1. NS1 associated with NF90 and PKR simultaneously; however, the interaction between NF90 and PKR was restricted by NS1. Knockdown of NF90 promoted inhibition of PKR phosphorylation induced by NS1, while coexpression of NF90 impeded reduction of PKR phosphorylation and stress granule formation triggered by NS1. In summary, NF90 exerts its antiviral activity by antagonizing the inhibitory role of NS1 on PKR phosphorylation.
Collapse
Affiliation(s)
- Ting Li
- Chinese Academy of Inspection and Quarantine, Institute of Animal Quarantine, Chaoyang District, Beijing, China
| | - Xi Li
- Chinese Academy of Inspection and Quarantine, Institute of Animal Quarantine, Chaoyang District, Beijing, China
| | - WenFei Zhu
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - HuiYu Wang
- Chinese Academy of Inspection and Quarantine, Institute of Animal Quarantine, Chaoyang District, Beijing, China
| | - Lin Mei
- Chinese Academy of Inspection and Quarantine, Institute of Animal Quarantine, Chaoyang District, Beijing, China
| | - ShaoQiang Wu
- Chinese Academy of Inspection and Quarantine, Institute of Animal Quarantine, Chaoyang District, Beijing, China
| | - XiangMei Lin
- Chinese Academy of Inspection and Quarantine, Institute of Animal Quarantine, Chaoyang District, Beijing, China
| | - XueQing Han
- Chinese Academy of Inspection and Quarantine, Institute of Animal Quarantine, Chaoyang District, Beijing, China
| |
Collapse
|
38
|
Wang J, Li X, Wang L, Li J, Zhao Y, Bou G, Li Y, Jiao G, Shen X, Wei R, Liu S, Xie B, Lei L, Li W, Zhou Q, Liu Z. A novel long intergenic noncoding RNA indispensable for the cleavage of mouse two-cell embryos. EMBO Rep 2016; 17:1452-1470. [PMID: 27496889 DOI: 10.15252/embr.201642051] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 07/07/2016] [Indexed: 01/30/2023] Open
Abstract
Endogenous retroviruses (ERVs) are transcriptionally active in cleavage stage embryos, yet their functions are unknown. ERV sequences are present in the majority of long intergenic noncoding RNAs (lincRNAs) in mouse and humans, playing key roles in many cellular processes and diseases. Here, we identify LincGET as a nuclear lincRNA that is GLN-, MERVL-, and ERVK-associated and essential for mouse embryonic development beyond the two-cell stage. LincGET is expressed in late two- to four-cell mouse embryos. Its depletion leads to developmental arrest at the late G2 phase of the two-cell stage and to MAPK signaling pathway inhibition. LincGET forms an RNA-protein complex with hnRNP U, FUBP1, and ILF2, promoting the cis-regulatory activity of long terminal repeats (LTRs) in GLN, MERVL, and ERVK (GLKLTRs), and inhibiting RNA alternative splicing, partially by downregulating hnRNP U, FUBP1, and ILF2 protein levels. Hnrnpu or Ilf2 mRNA injection at the pronuclear stage also decreases the preimplantation developmental rate, and Fubp1 mRNA injection at the pronuclear stage causes a block at the two-cell stage. Thus, as the first functional ERV-associated lincRNA, LincGET provides clues for ERV functions in cleavage stage embryonic development.
Collapse
Affiliation(s)
- Jiaqiang Wang
- College of Life Science, Northeast Agricultural University, Harbin, China State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xin Li
- College of Life Science, Northeast Agricultural University, Harbin, China State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Leyun Wang
- College of Life Science, Northeast Agricultural University, Harbin, China State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jingyu Li
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Yanhua Zhao
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Gerelchimeg Bou
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Yufei Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Guanyi Jiao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xinghui Shen
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| | - Renyue Wei
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Shichao Liu
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Bingteng Xie
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Lei Lei
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| | - Wei Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qi Zhou
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhonghua Liu
- College of Life Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
39
|
Carter DR, Murray J, Cheung BB, Gamble L, Koach J, Tsang J, Sutton S, Kalla H, Syed S, Gifford AJ, Issaeva N, Biktasova A, Atmadibrata B, Sun Y, Sokolowski N, Ling D, Kim PY, Webber H, Clark A, Ruhle M, Liu B, Oberthuer A, Fischer M, Byrne J, Saletta F, Thwe LM, Purmal A, Haderski G, Burkhart C, Speleman F, De Preter K, Beckers A, Ziegler DS, Liu T, Gurova KV, Gudkov AV, Norris MD, Haber M, Marshall GM. Therapeutic targeting of the MYC signal by inhibition of histone chaperone FACT in neuroblastoma. Sci Transl Med 2016; 7:312ra176. [PMID: 26537256 DOI: 10.1126/scitranslmed.aab1803] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amplification of the MYCN oncogene predicts treatment resistance in childhood neuroblastoma. We used a MYC target gene signature that predicts poor neuroblastoma prognosis to identify the histone chaperone FACT (facilitates chromatin transcription) as a crucial mediator of the MYC signal and a therapeutic target in the disease. FACT and MYCN expression created a forward feedback loop in neuroblastoma cells that was essential for maintaining mutual high expression. FACT inhibition by the small-molecule curaxin compound CBL0137 markedly reduced tumor initiation and progression in vivo. CBL0137 exhibited strong synergy with standard chemotherapy by blocking repair of DNA damage caused by genotoxic drugs, thus creating a synthetic lethal environment in MYCN-amplified neuroblastoma cells and suggesting a treatment strategy for MYCN-driven neuroblastoma.
Collapse
Affiliation(s)
- Daniel R Carter
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia. School of Women's and Children's Health, UNSW Australia, Randwick, New South Wales 2031, Australia
| | - Jayne Murray
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Belamy B Cheung
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia. School of Women's and Children's Health, UNSW Australia, Randwick, New South Wales 2031, Australia
| | - Laura Gamble
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Jessica Koach
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Joanna Tsang
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Selina Sutton
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Heyam Kalla
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Sarah Syed
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Andrew J Gifford
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia. Department of Anatomical Pathology (SEALS), Prince of Wales Hospital, Randwick, New South Wales 2031, Australia
| | - Natalia Issaeva
- Department of Surgery, Otolaryngology, and Yale Cancer Center, Yale University, New Haven, CT 06511, USA
| | - Asel Biktasova
- Department of Surgery, Otolaryngology, and Yale Cancer Center, Yale University, New Haven, CT 06511, USA
| | - Bernard Atmadibrata
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Yuting Sun
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Nicolas Sokolowski
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Dora Ling
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Patrick Y Kim
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Hannah Webber
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Ashleigh Clark
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Michelle Ruhle
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Bing Liu
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - André Oberthuer
- Department of Pediatric Oncology and Hematology, Children's Hospital, University of Cologne, 50931 Cologne, Germany. Department of Neonatology and Pediatric Intensive Care Medicine, Children's Hospital, University of Cologne, 50931 Cologne, Germany
| | - Matthias Fischer
- Department of Pediatric Oncology and Hematology, Children's Hospital, University of Cologne, 50931 Cologne, Germany. Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| | - Jennifer Byrne
- Children's Cancer Research Unit, Kids Research Institute, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, New South Wales 2145, Australia. University of Sydney Discipline of Paediatrics and Child Health, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, New South Wales 2145, Australia
| | - Federica Saletta
- Children's Cancer Research Unit, Kids Research Institute, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, New South Wales 2145, Australia
| | - Le Myo Thwe
- Children's Cancer Research Unit, Kids Research Institute, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, New South Wales 2145, Australia. University of Sydney Discipline of Paediatrics and Child Health, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, New South Wales 2145, Australia
| | | | | | | | - Frank Speleman
- Center for Medical Genetics (CMGG), Ghent University, Medical Research Building (MRB1), De Pintelaan 185, 9000 Ghent, Belgium
| | - Katleen De Preter
- Center for Medical Genetics (CMGG), Ghent University, Medical Research Building (MRB1), De Pintelaan 185, 9000 Ghent, Belgium
| | - Anneleen Beckers
- Center for Medical Genetics (CMGG), Ghent University, Medical Research Building (MRB1), De Pintelaan 185, 9000 Ghent, Belgium
| | - David S Ziegler
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia. School of Women's and Children's Health, UNSW Australia, Randwick, New South Wales 2031, Australia. Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales 2031, Australia
| | - Tao Liu
- Center for Medical Genetics (CMGG), Ghent University, Medical Research Building (MRB1), De Pintelaan 185, 9000 Ghent, Belgium
| | - Katerina V Gurova
- Incuron, LLC, Buffalo, NY 14203, USA. Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Andrei V Gudkov
- Incuron, LLC, Buffalo, NY 14203, USA. Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Murray D Norris
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia. University of New South Wales Centre for Childhood Cancer Research, Randwick, New South Wales 2031, Australia
| | - Michelle Haber
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia.
| | - Glenn M Marshall
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia. Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales 2031, Australia.
| |
Collapse
|
40
|
Jeon YM, Lee MY. Airborne nanoparticles (PM0.1 ) induce autophagic cell death of human neuronal cells. J Appl Toxicol 2016; 36:1332-42. [PMID: 27080386 DOI: 10.1002/jat.3324] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 12/21/2022]
Abstract
Airborne nanoparticles PM0.1 (<100 nm in diameter) were collected and their chemical composition was determined. Al was by far the most abundant metal in the PM0.1 followed by Zn, Cr, Mn, Cu, Pb and Ni. Exposure to PM0.1 resulted in a cell viability decrease in human neuronal cells SH-SY5Y in a concentration-dependent manner. Upon treatment with N-acetylcysteine, however, cell viability was significantly recovered, suggesting the involvement of reactive oxygen species (ROS). Cellular DNA damage by PM0.1 was also detected by the Comet assay. PM0.1 -induced autophagic cell death was explained by an increase in the expression of microtubule-associated protein light chain 3A-ІІ (LC3A-ІІ) and autophagy-related protein Atg 3 and Atg 7. Analysis of 2-DE gels revealed that six proteins were upregulated, whereas eight proteins were downregulated by PM0.1 exposure. Neuroinflammation-related lithostathine and cyclophilin A complexed with dipeptide Gly-Pro, autophagy-related heat shock protein gp96 and neurodegeneration-related triosephosphate isomerase were significantly changed upon exposure to PM0.1 . These results, taken together, suggest that PM0.1 -induced oxidative stress via ROS generation plays a key role in autophagic cell death and differential protein expressions in SH-SY5Y cells. This might provide a plausible explanation for the underlying mechanisms of PM0.1 toxicity in neuronal cells and even the pathogenesis of diseases associated with its exposure. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yu-Mi Jeon
- Department of Medical Science, Graduate School of Soonchunhyang University, Asan, Chungnam, 336-745, Republic of Korea.,Korea Brain Research Institute, Research Division, Daegu, 700-010, Republic of Korea
| | - Mi-Young Lee
- Department of Medical Science, Graduate School of Soonchunhyang University, Asan, Chungnam, 336-745, Republic of Korea.,Department of Medical Biotechnology, Soonchunhyang University, Asan, Chungnam, 336-745, Republic of Korea
| |
Collapse
|
41
|
Li Y, Belshan M. NF45 and NF90 Bind HIV-1 RNA and Modulate HIV Gene Expression. Viruses 2016; 8:v8020047. [PMID: 26891316 PMCID: PMC4776202 DOI: 10.3390/v8020047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/27/2016] [Accepted: 02/04/2016] [Indexed: 01/03/2023] Open
Abstract
A previous proteomic screen in our laboratory identified nuclear factor 45 (NF45) and nuclear factor 90 (NF90) as potential cellular factors involved in human immunodeficiency virus type 1 (HIV-1) replication. Both are RNA binding proteins that regulate gene expression; and NF90 has been shown to regulate the expression of cyclin T1 which is required for Tat-dependent trans-activation of viral gene expression. In this study the roles of NF45 and NF90 in HIV replication were investigated through overexpression studies. Ectopic expression of either factor potentiated HIV infection, gene expression, and virus production. Deletion of the RNA binding domains of NF45 and NF90 diminished the enhancement of HIV infection and gene expression. Both proteins were found to interact with the HIV RNA. RNA decay assays demonstrated that NF90, but not NF45, increased the half-life of the HIV RNA. Overall, these studies indicate that both NF45 and NF90 potentiate HIV infection through their RNA binding domains.
Collapse
Affiliation(s)
- Yan Li
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE 68178, USA.
| | - Michael Belshan
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE 68178, USA.
- The Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583, USA.
| |
Collapse
|
42
|
Liu LX, Deng W, Zhou XT, Chen RP, Xiang MQ, Guo YT, Pu ZJ, Li R, Wang GF, Wu LF. The mechanism of adenosine-mediated activation of lncRNA MEG3 and its antitumor effects in human hepatoma cells. Int J Oncol 2016; 48:421-9. [PMID: 26647875 DOI: 10.3892/ijo.2015.3248] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/30/2015] [Indexed: 02/05/2023] Open
Abstract
Long non-coding RNA MEG3 is suggested to function as a tumor suppressor. However, the activation mechanism of MEG3 is still not well understood and data are not available on its role under adenosine-induced apoptosis. In this study, HepG2 cells were treated with adenosine or 5-Aza‑cdR. Methylation status of MEG3 promoter was detected by methylation specific PCR (MSP) and MEG3 expression was determined by qRT-PCR. PcDNA3.1-MEG3 recombinant plasmid was constructed and transfected to hepatoma HepG2 and Huh7 cells. Cell growth, morphological changes, cell-cycle distribution and apoptosis were analyzed by MTT assay, fluorescence microscopy and flow cytometry. The mRNA and protein expression levels were detected by qRT-PCR and western blot analysis. MEG3 binding proteins were screened by the improved MS2 biotin tagged RNA affinity purification method. The co-expression network of MEG3 was generated by GO analysis and ILF3 was identified as MEG3 binding protein by RNA pulldown and western blot analysis. Both adenosine and 5-Aza-CdR increased MEG3 mRNA expression and the CpG island of MEG3 gene in HepG2 cells was typical hypermethylation. Ectopic expression of MEG3 inhibited hepatoma cell growth in a time-dependent manner, resulted in cell cycle arrest and induced apoptosis. Ectopic expression of MEG3 increased p53, caspase-3 mRNA and protein levels, decreased MDM2 and cyclin D1 mRNA and protein levels, as well as ILF3 protein expression in HepG2 cells. These findings are the first to identify that adenosine increases MEG3 expression by inhibition of DNA methylation and its antitumor effects is involved in MEG3 activation. ILF3 may participate in the anticancer regulation of MEG3 by interacting with MEG3.
Collapse
Affiliation(s)
- Li-Xuan Liu
- Department of Gastroenterology, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Wei Deng
- Department of Gastroenterology, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Xiao-Tao Zhou
- Department of Gastroenterology, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Rui-Pei Chen
- Department of Gastroenterology, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Meng-Qi Xiang
- Department of Gastroenterology, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Yi-Tian Guo
- Department of Gastroenterology, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Ze-Jin Pu
- Department of Gastroenterology, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Rui Li
- Key Laboratory of Infectious Diseases and Immunopathology of Guangdong Province, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Ge-Fei Wang
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Ling-Fei Wu
- Department of Gastroenterology, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| |
Collapse
|
43
|
Stake M, Singh D, Singh G, Marcela Hernandez J, Kaddis Maldonado R, Parent LJ, Boris-Lawrie K. HIV-1 and two avian retroviral 5' untranslated regions bind orthologous human and chicken RNA binding proteins. Virology 2015; 486:307-20. [PMID: 26584240 DOI: 10.1016/j.virol.2015.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 05/31/2015] [Accepted: 06/01/2015] [Indexed: 01/12/2023]
Abstract
Essential host cofactors in retrovirus replication bind cis-acting sequences in the 5'untranslated region (UTR). Although host RBPs are crucial to all aspects of virus biology, elucidating their roles in replication remains a challenge to the field. Here RNA affinity-coupled-proteomics generated a comprehensive, unbiased inventory of human and avian RNA binding proteins (RBPs) co-isolating with 5'UTRs of HIV-1, spleen necrosis virus and Rous sarcoma virus. Applying stringent biochemical and statistical criteria, we identified 185 RBP; 122 were previously implicated in retrovirus biology and 63 are new to the 5'UTR proteome. RNA electrophoretic mobility assays investigated paralogs present in the common ancestor of vertebrates and one hnRNP was identified as a central node to the biological process-anchored networks of HIV-1, SNV, and RSV 5' UTR-proteomes. This comprehensive view of the host constituents of retroviral RNPs is broadly applicable to investigation of viral replication and antiviral response in both human and avian cell lineages.
Collapse
Affiliation(s)
- Matthew Stake
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Deepali Singh
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201312, India.
| | - Gatikrushna Singh
- Department Veterinary & Biomedical Sciences, University of Minnesota, 205 VSB, 1971 Commonwealth Avenue, Saint Paul, MN 55108.
| | - J Marcela Hernandez
- Department of Veterinary Biosciences, Center for Retrovirus Research, Center for RNA Biology, Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA.
| | - Rebecca Kaddis Maldonado
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Leslie J Parent
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; Department Microbiology & Immunology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Kathleen Boris-Lawrie
- Department Veterinary & Biomedical Sciences, University of Minnesota, 205 VSB, 1971 Commonwealth Avenue, Saint Paul, MN 55108.
| |
Collapse
|
44
|
Liu X, Zhang C, Qian L, Zhang C, Wu K, Yang C, Yan D, Wu X, Shi J. NF45 inhibits cardiomyocyte apoptosis following myocardial ischemia-reperfusion injury. Pathol Res Pract 2015; 211:955-62. [PMID: 26573128 DOI: 10.1016/j.prp.2015.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 08/11/2015] [Accepted: 09/22/2015] [Indexed: 11/19/2022]
Abstract
Cardiomyocyte apoptosis, which occurs during ischemia and reperfusion injury, can cause irreversible damage to cardiac function. There is accumulating evidence that nuclear factor 45 (NF45) and regulatory pathways are important in understanding reparative processes in the myocardium. NF45 is a multifunctional regulator of gene expression that participates in the regulation of DNA break repair. Recently, NF45 has been proved to be associated with tumor cell apoptosis in various human malignancies. However, the underlying mechanism of NF45 regulating myocardial ischemia-reperfusion (I/R) injury remains unclear. In this study, western blot showed that NF45 expression decreased after myocardial I/R in vivo. Double immunofluorescent staining revealed that NF45, located in the nucleus of cardiomyocyes, was correlated with cardiomyocyte apoptosis. Furthermore, NF45 expression decreased in H9c2 cells after hypoxia-reoxygenation (H/R) treatment in vitro, which was in line with the results in vivo. Overexpression of NF45 in H9c2 cells reduced cell apoptosis, as evidenced by increased Bcl-2 level, as well as decreased cleaved caspase-3, p53 and p21 expression. The expression of NF45 was reduced by LY294002 (a PI3K/Akt inhibitor), but not SB203580 (a p38 inhibitor), suggesting that NF45 prevented H/R-induced H9c2 cell apoptosis via PI3K/Akt pathway. Our data may supply a novel molecular target for acute myocardial infarction (AMI) therapy.
Collapse
Affiliation(s)
- Xiaojuan Liu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, China
| | - Chi Zhang
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, China
| | - Long Qian
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, China
| | - Chao Zhang
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, China
| | - Kunpeng Wu
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, China
| | - Chen Yang
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, China
| | - Daliang Yan
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, China
| | - Xiang Wu
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, China.
| | - Jiahai Shi
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, China.
| |
Collapse
|
45
|
Wan C, Gong C, Ji L, Liu X, Wang Y, Wang L, Shao M, Yang L, Fan S, Xiao Y, Wang X, Li M, Zhou G, Zhang Y. NF45 overexpression is associated with poor prognosis and enhanced cell proliferation of pancreatic ductal adenocarcinoma. Mol Cell Biochem 2015; 410:25-35. [PMID: 26276310 DOI: 10.1007/s11010-015-2535-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/06/2015] [Indexed: 02/04/2023]
Abstract
NF45, also referred to as nuclear factor of activated T cells, has been reported to promote the progression of multiple cancer types. However, the expression and physiological significance of NF45 in pancreatic ductal adenocarcinoma (PDAC) remain largely elusive. In this study, we investigated the clinical relevance and potential role of NF45 expression in PDAC development. Western blot analysis revealed that NF45 was remarkably upregulated in PDAC tissues, compared with the adjacent non-tumorous ones. In addition, the expression of NF45 in 122 patients with PDAC was evaluated using immunohistochemistry. In this way, we found that NF45 was abundantly expressed in PDAC tissues, and the expression of NF45 was correlated with tumor size (p = 0.007), histological differentiation (p = 0.033), and TNM stage (p = 0.001). Importantly, patients with low levels of NF45 expression exhibited better postoperative prognosis as compared with those with high NF45 expression. Furthermore, using PDAC cell cultures, we found that interference of NF45 expression using siRNA oligos suppressed PDAC cell proliferation and retarded cell cycle progression. Moreover, depletion of NF45 impaired the levels of cellular cyclin E and proliferating cell nuclear antigen (PCNA). Conversely, overexpression of NF45 facilitated the cell growth and accelerated cell cycle progression. Our results establish NF45 as an important indicator of PDAC prognosis with potential utility as a therapeutic target in this lethal disease.
Collapse
Affiliation(s)
- Chunhua Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, 226001, Jiangsu, China.,Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu, China
| | - Chen Gong
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Li Ji
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Xiaorong Liu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yayun Wang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu, China
| | - Liang Wang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu, China
| | - Mengting Shao
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu, China
| | - Linlin Yang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu, China
| | - Shaoqing Fan
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Yin Xiao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Xiaotong Wang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Manhua Li
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Guoxiong Zhou
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Yixin Zhang
- Department of General Surgery, Nantong University Cancer Hospital, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
46
|
The NF45/NF90 Heterodimer Contributes to the Biogenesis of 60S Ribosomal Subunits and Influences Nucleolar Morphology. Mol Cell Biol 2015; 35:3491-503. [PMID: 26240280 DOI: 10.1128/mcb.00306-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 07/21/2015] [Indexed: 01/06/2023] Open
Abstract
The interleukin enhancer binding factors ILF2 (NF45) and ILF3 (NF90/NF110) have been implicated in various cellular pathways, such as transcription, microRNA (miRNA) processing, DNA repair, and translation, in mammalian cells. Using tandem affinity purification, we identified human NF45 and NF90 as components of precursors to 60S (pre-60S) ribosomal subunits. NF45 and NF90 are enriched in nucleoli and cosediment with pre-60S ribosomal particles in density gradient analysis. We show that association of the NF45/NF90 heterodimer with pre-60S ribosomal particles requires the double-stranded RNA binding domains of NF90, while depletion of NF45 and NF90 by RNA interference leads to a defect in 60S biogenesis. Nucleoli of cells depleted of NF45 and NF90 have altered morphology and display a characteristic spherical shape. These effects are not due to impaired rRNA transcription or processing of the precursors to 28S rRNA. Consistent with a role of the NF45/NF90 heterodimer in nucleolar steps of 60S subunit biogenesis, downregulation of NF45 and NF90 leads to a p53 response, accompanied by induction of the cyclin-dependent kinase inhibitor p21/CIP1, which can be counteracted by depletion of RPL11. Together, these data indicate that NF45 and NF90 are novel higher-eukaryote-specific factors required for the maturation of 60S ribosomal subunits.
Collapse
|
47
|
Ni S, Zhu J, Zhang J, Zhang S, Li M, Ni R, Liu J, Qiu H, Chen W, Wang H, Guo W. Expression and clinical role of NF45 as a novel cell cycle protein in esophageal squamous cell carcinoma (ESCC). Tumour Biol 2015; 36:747-756. [PMID: 25286760 DOI: 10.1007/s13277-014-2683-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 09/25/2014] [Indexed: 12/15/2022] Open
Abstract
NF45 (also known as ILF2), as one subunit of NF-AT (nuclear factor of activated T cells), repairs DNA breaks, inhibits viral replication, and also functions as a negative regulator in the microRNA processing pathway in combination with NF90. Recently, it was found that implicated in the mitotic control of HeLa cells and deletion of endogenous NF45 decreases growth of HeLa cells. While the role of NF45 in cancer biology remains under debate. In this study, we analyzed the expression and clinical significance of NF45 in esophageal squamous cell carcinoma ESCC. The expression of NF45 was evaluated by Western blot in 8 paired fresh ESCC tissues and immunohistochemistry on 105 paraffin-embedded slices. NF45 was highly expressed in ESCC and significantly associated with ESCC cells tumor stage and Ki-67. Besides, high NF45 expression was an independent prognostic factor for ESCC patients' poor survival. To determine whether NF45 could regulate the proliferation of ESCC cells, we increased endogenous NF45 and analyzed the proliferation of TE1 ESCC cells using Western blot, CCK8, flow cytometry assays and colony formation analyses, which together indicated that overexpression of NF45 favors cell cycle progress of TE1 ESCC cells. While knockdown of NF45 resulted in cell cycle arrest at G0/G1-phase and thus abolished the cell growth. These findings suggested that NF45 might play an important role in promoting the tumorigenesis of ESCC, and thus be a promising therapeutic target to prevent ESCC progression.
Collapse
Affiliation(s)
- Sujie Ni
- Department of Medical Oncology, Shanghai Cancer Center, Fudan University, No. 270 Dong An Road, Shanghai, 200032, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Up-Regulation of NF45 Correlates with Schwann Cell Proliferation After Sciatic Nerve Crush. J Mol Neurosci 2015; 56:216-27. [DOI: 10.1007/s12031-014-0484-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/17/2014] [Indexed: 12/13/2022]
|
49
|
NF90 isoforms, a new family of cellular proteins involved in viral replication? Biochimie 2015; 108:20-4. [DOI: 10.1016/j.biochi.2014.10.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/26/2014] [Indexed: 01/09/2023]
|
50
|
Regulation of cell cycle of hepatocellular carcinoma by NF90 through modulation of cyclin E1 mRNA stability. Oncogene 2014; 34:4460-70. [PMID: 25399696 DOI: 10.1038/onc.2014.373] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/04/2014] [Accepted: 10/06/2014] [Indexed: 12/14/2022]
Abstract
Activation of cyclin E1, a key regulator of the G1/S cell-cycle transition, has been implicated in many cancers including hepatocellular carcinoma (HCC). Although much is known about the regulation of cyclin E1 expression and stability, its post-transcriptional regulation mechanism remains incompletely understood. Here, we report that nuclear factor 90 (NF90), a double-stranded RNA (dsRNA) binding protein, regulates cyclin E1 in HCC. We demonstrate that NF90 is upregulated in HCC specimens and that suppression of NF90 decreases HCC cell growth and delays G1/S transition. We identified cyclin E1 as a new target of NF90 and found a significant correlation between NF90 and cyclin E1 expression in HCC. The mRNA and protein levels of cyclin E1 were downregulated upon NF90 knockdown. Suppression of NF90 caused a decrease in the half-life of cyclin E1 mRNA, which was rescued by ectopic expression of NF90. Furthermore, NF90 bound to the 3' untranslated regions (3'UTRs) of cyclin E1 mRNA in vitro and in vivo. Knockdown of NF90 also inhibited tumor growth of HCC cell lines in mouse xenograft model. Moreover, we showed that inhibition of NF90 sensitized HCC cells to the cyclin-dependent kinase 2 (CDK2) inhibitor, roscovitine. Taken together, downregulation of NF90 in HCC cell lines can delay cell-cycle progression, inhibit cell proliferation, and reduce tumorigenic capacity in vivo. These results suggest that NF90 has an important role in HCC pathogenesis and that it can serve as a novel therapeutic target for HCC.
Collapse
|