1
|
Lerma-Martin C, Badia-I-Mompel P, Ramirez Flores RO, Sekol P, Schäfer PSL, Riedl CJ, Hofmann A, Thäwel T, Wünnemann F, Ibarra-Arellano MA, Trobisch T, Eisele P, Schapiro D, Haeussler M, Hametner S, Saez-Rodriguez J, Schirmer L. Cell type mapping reveals tissue niches and interactions in subcortical multiple sclerosis lesions. Nat Neurosci 2024; 27:2354-2365. [PMID: 39501036 PMCID: PMC11614744 DOI: 10.1038/s41593-024-01796-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 09/30/2024] [Indexed: 11/08/2024]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system. Inflammation is gradually compartmentalized and restricted to specific tissue niches such as the lesion rim. However, the precise cell type composition of such niches, their interactions and changes between chronic active and inactive stages are incompletely understood. We used single-nucleus and spatial transcriptomics from subcortical MS and corresponding control tissues to map cell types and associated pathways to lesion and nonlesion areas. We identified niches such as perivascular spaces, the inflamed lesion rim or the lesion core that are associated with the glial scar and a cilia-forming astrocyte subtype. Focusing on the inflamed rim of chronic active lesions, we uncovered cell-cell communication events between myeloid, endothelial and glial cell types. Our results provide insight into the cellular composition, multicellular programs and intercellular communication in tissue niches along the conversion from a homeostatic to a dysfunctional state underlying lesion progression in MS.
Collapse
Affiliation(s)
- Celia Lerma-Martin
- Department of Neurology, Division of Neuroimmunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Pau Badia-I-Mompel
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany
- GSK, Cellzome, Heidelberg, Germany
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - Ricardo O Ramirez Flores
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - Patricia Sekol
- Department of Neurology, Division of Neuroimmunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Philipp S L Schäfer
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - Christian J Riedl
- Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Annika Hofmann
- Department of Neurology, Division of Neuroimmunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Thomas Thäwel
- Department of Neurology, Division of Neuroimmunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Florian Wünnemann
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany
| | - Miguel A Ibarra-Arellano
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany
| | - Tim Trobisch
- Department of Neurology, Division of Neuroimmunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Philipp Eisele
- Department of Neurology, Division of Neuroimmunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Center for Translational Neuroscience, Medical Faculty, Mannheim Heidelberg University, Mannheim, Germany
| | - Denis Schapiro
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany
- Institute of Pathology, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany
- Translational Spatial Profiling Center (TSPC), Heidelberg, Germany
| | | | - Simon Hametner
- Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany.
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK.
| | - Lucas Schirmer
- Department of Neurology, Division of Neuroimmunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- Mannheim Center for Translational Neuroscience, Medical Faculty, Mannheim Heidelberg University, Mannheim, Germany.
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
2
|
Jang JY, Park MK, Lee CH, Lee H. The Multifaceted Role of Epithelial Membrane Protein 2 in Cancer: from Biomarker to Therapeutic Target. Biomol Ther (Seoul) 2024; 32:697-707. [PMID: 39428387 PMCID: PMC11535296 DOI: 10.4062/biomolther.2024.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024] Open
Abstract
Tetraspanin superfamily proteins not only facilitate the trafficking of specific proteins to distinct plasma membrane domains but also influence cell-to-cell and cell-extracellular matrix interactions. Among these proteins, Epithelial Membrane Protein 2 (EMP2), a member of the growth arrest-specific gene 3/peripheral myelin protein 22 (GAS3/PMP22) family, is known to affect key cellular processes. Recent studies have revealed that EMP2 modulates critical signaling pathways and interacts with adhesion molecules and growth factor receptors, underscoring its potential as a biomarker for cancer diagnosis and prognosis. These findings suggest that EMP2 expression patterns could provide valuable insights into tumorigenesis and metastasis. Moreover, EMP2 has emerged as a promising therapeutic target, with approaches aimed at inhibiting or modulating its activity showing potential to disrupt tumor growth and metastasis. This review provides a comprehensive overview of recent advances in understanding the multifaceted roles of EMP2 in cancer, with a focus on its underlying mechanisms and clinical significance.
Collapse
Affiliation(s)
- Ji Yun Jang
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea
- Pharmaceutical Biochemistry, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Mi Kyung Park
- Department of Biomedical Science, Hwasung Medi-Science University, Hwaseong 18274, Republic of Korea
| | - Chang Hoon Lee
- Pharmaceutical Biochemistry, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Ho Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea
| |
Collapse
|
3
|
Chan AM, Aguirre B, Liu L, Mah V, Balko JM, Tsui J, Wadehra NP, Moatamed NA, Khoshchehreh M, Dillard CM, Kiyohara M, Elshimali Y, Chang HR, Marquez-Garban D, Hamilton N, Pietras RJ, Gordon LK, Wadehra M. EMP2 Serves as a Functional Biomarker for Chemotherapy-Resistant Triple-Negative Breast Cancer. Cancers (Basel) 2024; 16:1481. [PMID: 38672563 PMCID: PMC11048488 DOI: 10.3390/cancers16081481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Breast cancer (BC) remains among the most commonly diagnosed cancers in women worldwide. Triple-negative BC (TNBC) is a subset of BC characterized by aggressive behavior, a high risk of distant recurrence, and poor overall survival rates. Chemotherapy is the backbone for treatment in patients with TNBC, but outcomes remain poor compared to other BC subtypes, in part due to the lack of recognized functional targets. In this study, the expression of the tetraspan protein epithelial membrane protein 2 (EMP2) was explored as a predictor of TNBC response to standard chemotherapy. We demonstrate that EMP2 functions as a prognostic biomarker for patients treated with taxane-based chemotherapy, with high expression at both transcriptomic and protein levels following treatment correlating with poor overall survival. Moreover, we show that targeting EMP2 in combination with docetaxel reduces tumor load in syngeneic and xenograft models of TNBC. These results provide support for the prognostic and therapeutic potential of this tetraspan protein, suggesting that anti-EMP2 therapy may be beneficial for the treatment of select chemotherapy-resistant TNBC tumors.
Collapse
Affiliation(s)
- Ann M. Chan
- Department of Pathology Lab Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA (V.M.)
- UCLA Stein Eye Institute and the Department of Ophthalmology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Brian Aguirre
- Department of Pathology Lab Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA (V.M.)
| | - Lucia Liu
- Department of Pathology Lab Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA (V.M.)
| | - Vei Mah
- Department of Pathology Lab Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA (V.M.)
| | - Justin M. Balko
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jessica Tsui
- Department of Pathology Lab Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA (V.M.)
| | - Navin P. Wadehra
- Department of Pathology Lab Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA (V.M.)
| | - Neda A. Moatamed
- Department of Pathology Lab Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA (V.M.)
| | - Mahdi Khoshchehreh
- Department of Pathology Lab Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA (V.M.)
| | - Christen M. Dillard
- Department of Pathology Lab Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA (V.M.)
| | - Meagan Kiyohara
- Department of Pathology Lab Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA (V.M.)
| | - Yahya Elshimali
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, 1720 East 120th Street, Los Angeles, CA 90059, USA
| | - Helena R. Chang
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Diana Marquez-Garban
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Nalo Hamilton
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
- School of Nursing, UCLA, Los Angeles, CA 90095, USA
| | - Richard J. Pietras
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, 1720 East 120th Street, Los Angeles, CA 90059, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Lynn K. Gordon
- UCLA Stein Eye Institute and the Department of Ophthalmology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Madhuri Wadehra
- Department of Pathology Lab Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA (V.M.)
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, 1720 East 120th Street, Los Angeles, CA 90059, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Yang Z, Guo D, Zhao J, Li J, Zhang R, Zhang Y, Xu C, Ke T, Wang QK. Aggf1 Specifies Hemangioblasts at the Top of Regulatory Hierarchy via Npas4l and mTOR-S6K-Emp2-ERK Signaling. Arterioscler Thromb Vasc Biol 2023; 43:2348-2368. [PMID: 37881938 DOI: 10.1161/atvbaha.123.318818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Hemangioblasts are mesoderm-derived multipotent stem cells for differentiation of all hematopoietic and endothelial cells in the circulation system. However, the underlying molecular mechanism is poorly understood. METHODS CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (type II CRISPR RNA-guided endonuclease) editing was used to develop aggf1-/- and emp2-/- knockout zebra fish. Whole-mount in situ hybridization and transgenic Tg(gata1-EGFP [enhanced green fluorescent protein]), Tg(mpx-EGFP), Tg(rag2-DsRed [discosoma sp. red fluorescent protein]), Tg(cd41-EGFP), Tg(kdrl-EGFP), and Tg(aggf1-/-;kdrl-EGFP) zebra fish were used to examine specification of hemangioblasts and hematopoietic stem and progenitor cells (HSPCs), hematopoiesis, and vascular development. Quantitative real-time polymerase chain reaction and Western blot analyses were used for expression analysis of genes and proteins. RESULTS Knockout of aggf1 impaired specification of hemangioblasts and HSPCs, hematopoiesis, and vascular development in zebra fish. Expression of npas4l/cloche-the presumed earliest marker for hemangioblast specification-was significantly reduced in aggf1-/- embryos and increased by overexpression of aggf1 in embryos. Overexpression of npas4l rescued the impaired specification of hemangioblasts and HSPCs and development of hematopoiesis and intersegmental vessels in aggf1-/- embryos, placing aggf1 upstream of npas4l in hemangioblast specification. To identify the underlying molecular mechanism, we identified emp2 as a key aggf1 downstream gene. Similar to aggf1, emp2 knockout impaired the specification of hemangioblasts and HSPCs, hematopoiesis, and angiogenesis by increasing the phosphorylation of ERK1/2 (extracellular signal-regulated protein kinase 1/2). Mechanistic studies showed that aggf1 knockdown and knockout significantly decreased the phosphorylated levels of mTOR (mammalian target of rapamycin) and p70 S6K (ribosomal protein S6 kinase), resulting in reduced protein synthesis of Emp2 (epithelial membrane protein 2), whereas mTOR activator MHY1485 (4,6-dimorpholino-N-(4-nitrophenyl)-1,3,5-triazin-2-amine) rescued the impaired specification of hemangioblasts and HSPCs and development of hematopoiesis and intersegmental vessels and reduced Emp2 expression induced by aggf1 knockdown. CONCLUSIONS These results indicate that aggf1 acts at the top of npas4l and becomes the earliest marker during specification of hemangioblasts. Our data identify a novel signaling axis of Aggf1 (angiogenic factor with G-patch and FHA domain 1)-mTOR-S6K-ERK1/2 for specification of hemangioblasts and HSPCs, primitive and definitive hematopoiesis, and vascular development. Our findings provide important insights into specification of hemangioblasts and HSPCs essential for the development of the circulation system.
Collapse
Affiliation(s)
- Zhongcheng Yang
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China (Z.Y., D.G., J.L., R.Z., Y.Z., C.X., T.K., Q.K.W.)
| | - Di Guo
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China (Z.Y., D.G., J.L., R.Z., Y.Z., C.X., T.K., Q.K.W.)
| | - Jinyan Zhao
- Hebei Key Laboratory of Nerve Injury and Repair, Chengde Medical University, China (J.Z.)
| | - Jia Li
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China (Z.Y., D.G., J.L., R.Z., Y.Z., C.X., T.K., Q.K.W.)
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University, Chongqing, China (J.L.)
| | - Rui Zhang
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China (Z.Y., D.G., J.L., R.Z., Y.Z., C.X., T.K., Q.K.W.)
| | - Yidan Zhang
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China (Z.Y., D.G., J.L., R.Z., Y.Z., C.X., T.K., Q.K.W.)
| | - Chengqi Xu
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China (Z.Y., D.G., J.L., R.Z., Y.Z., C.X., T.K., Q.K.W.)
| | - Tie Ke
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China (Z.Y., D.G., J.L., R.Z., Y.Z., C.X., T.K., Q.K.W.)
| | - Qing K Wang
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China (Z.Y., D.G., J.L., R.Z., Y.Z., C.X., T.K., Q.K.W.)
- Shaoxing Institute of Innovation, Zhejiang University, China (Q.K.W.)
| |
Collapse
|
5
|
Sakkers TR, Mokry M, Civelek M, Erdmann J, Pasterkamp G, Diez Benavente E, den Ruijter HM. Sex differences in the genetic and molecular mechanisms of coronary artery disease. Atherosclerosis 2023; 384:117279. [PMID: 37805337 DOI: 10.1016/j.atherosclerosis.2023.117279] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/09/2023] [Accepted: 09/01/2023] [Indexed: 10/09/2023]
Abstract
Sex differences in coronary artery disease (CAD) presentation, risk factors and prognosis have been widely studied. Similarly, studies on atherosclerosis have shown prominent sex differences in plaque biology. Our understanding of the underlying genetic and molecular mechanisms that drive these differences remains fragmented and largely understudied. Through reviewing genetic and epigenetic studies, we identified more than 40 sex-differential candidate genes (13 within known CAD loci) that may explain, at least in part, sex differences in vascular remodeling, lipid metabolism and endothelial dysfunction. Studies with transcriptomic and single-cell RNA sequencing data from atherosclerotic plaques highlight potential sex differences in smooth muscle cell and endothelial cell biology. Especially, phenotypic switching of smooth muscle cells seems to play a crucial role in female atherosclerosis. This matches the known sex differences in atherosclerotic phenotypes, with men being more prone to lipid-rich plaques, while women are more likely to develop fibrous plaques with endothelial dysfunction. To unravel the complex mechanisms that drive sex differences in CAD, increased statistical power and adjustments to study designs and analysis strategies are required. This entails increasing inclusion rates of women, performing well-defined sex-stratified analyses and the integration of multi-omics data.
Collapse
Affiliation(s)
- Tim R Sakkers
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, the Netherlands
| | - Michal Mokry
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, the Netherlands; Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, the Netherlands
| | - Mete Civelek
- Center for Public Health Genomics, University of Virginia, 1335 Lee St, Charlottesville, VA, 22908, USA; Department of Biomedical Engineering, University of Virginia, 351 McCormick Road, Charlottesville, VA, 22904, USA
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Gerard Pasterkamp
- Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, the Netherlands
| | - Ernest Diez Benavente
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, the Netherlands
| | - Hester M den Ruijter
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, the Netherlands.
| |
Collapse
|
6
|
Cha YJ, Koo JS. Expression of EMP 1, 2, and 3 in Adrenal Cortical Neoplasm and Pheochromocytoma. Int J Mol Sci 2023; 24:13016. [PMID: 37629198 PMCID: PMC10455306 DOI: 10.3390/ijms241613016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
The purpose of this study is to investigate the expression of the epithelial membrane proteins (EMP) 1, 2, and 3 in adrenal gland neoplasm and to explore the broader implications of this. Tissue microarrays were constructed for 132 cases of adrenal cortical neoplasms (ACN) (adrenal cortical adenoma (115 cases), and carcinoma (17 cases)) and 189 cases of pheochromocytoma. Immunohistochemical staining was performed to identify EMP 1, 2, and 3, and was compared with clinicopathological parameters. The H-score of EMP 3 (p < 0.001) was higher in pheochromocytoma when compared to that of ACN, and the H-score of EMP 1 (p < 0.001) and EMP 3 (p < 0.001) was higher in adrenal cortical carcinomas when compared to that of adrenal cortical adenomas. A higher EMP 1 H-score was observed in pheochromocytomas with a GAPP score ≥3 (p = 0.018). In univariate analysis, high levels of EMP 1 and EMP 3 expression in ACN were associated with shorter overall survival (p = 0.001). Differences were observed in the expression of EMPs between ACN and pheochromocytoma. EMPs are associated with malignant tumor biology in adrenal cortical neoplasm and pheochromocytoma, suggesting the role of a prognostic and/or predictive factor for EMPs in adrenal tumor.
Collapse
Affiliation(s)
| | - Ja Seung Koo
- Department of Pathology, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea;
| |
Collapse
|
7
|
Tian Z, Yang S. Integrating the characteristic genes of macrophage pseudotime analysis in single-cell RNA-seq to construct a prediction model of atherosclerosis. Aging (Albany NY) 2023; 15:6361-6379. [PMID: 37421595 PMCID: PMC10373969 DOI: 10.18632/aging.204856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/19/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND Macrophages play an important role in the occurrence and development of atherosclerosis. However, few existing studies have deliberately analyzed the changes in characteristic genes in the process of macrophage phenotype transformation. METHOD Carotid atherosclerotic plaque single-cell RNA (scRNA) sequencing data were analyzed to define the cells involved and determine their transcriptomic characteristics. KEGG enrichment analysis, CIBERSORT, ESTIMATE, support vector machine (SVM), random forest (RF), and weighted correlation network analysis (WGCNA) were applied to bulk sequencing data. All data were downloaded from Gene Expression Omnibus (GEO). RESULT Nine cell clusters were identified. M1 macrophages, M2 macrophages, and M2/M1 macrophages were identified as three clusters within the macrophages. According to pseudotime analysis, M2/M1 macrophages and M2 macrophages can be transformed into M1 macrophages. The ROC curve values of the six genes in the test group were statistically significant (AUC (IL1RN): 0.899, 95% CI: 0.764-0.990; AUC (NRP1): 0.817, 95% CI: 0.620-0.971; AUC (TAGLN): 0.846, 95% CI: 0.678-0.971; AUC (SPARCL1): 0.825, 95% CI: 0.620-0.988; AUC (EMP2): 0.808, 95% CI: 0.630-0.947; AUC (ACTA2): 0.784, 95% CI: 0.591-0.938). The atherosclerosis prediction model showed significant statistical significance in both the train group (AUC: 0.909, 95% CI: 0.842-0.967) and the test group (AUC: 0.812, 95% CI: 0.630-0.966). CONCLUSIONS IL1RNHigh M1, NRP1High M2, ACTA2High M2/M1, EMP2High M1/M1, SPACL1High M2/M1 and TAGLNHigh M2/M1 macrophages play key roles in the occurrence and development of arterial atherosclerosis. These marker genes of macrophage phenotypic transformation can also be used to establish a model to predict the occurrence of atherosclerosis.
Collapse
Affiliation(s)
- Zemin Tian
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Shize Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| |
Collapse
|
8
|
Exploring the Past, Present, and Future of Anti-Angiogenic Therapy in Glioblastoma. Cancers (Basel) 2023; 15:cancers15030830. [PMID: 36765787 PMCID: PMC9913517 DOI: 10.3390/cancers15030830] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Glioblastoma, a WHO grade IV astrocytoma, constitutes approximately half of malignant tumors of the central nervous system. Despite technological advancements and aggressive multimodal treatment, prognosis remains dismal. The highly vascularized nature of glioblastoma enables the tumor cells to grow and invade the surrounding tissue, and vascular endothelial growth factor-A (VEGF-A) is a critical mediator of this process. Therefore, over the past decade, angiogenesis, and more specifically, the VEGF signaling pathway, has emerged as a therapeutic target for glioblastoma therapy. This led to the FDA approval of bevacizumab, a monoclonal antibody designed against VEGF-A, for treatment of recurrent glioblastoma. Despite the promising preclinical data and its theoretical effectiveness, bevacizumab has failed to improve patients' overall survival. Furthermore, several other anti-angiogenic agents that target the VEGF signaling pathway have also not demonstrated survival improvement. This suggests the presence of other compensatory angiogenic signaling pathways that surpass the anti-angiogenic effects of these agents and facilitate vascularization despite ongoing VEGF signaling inhibition. Herein, we review the current state of anti-angiogenic agents, discuss potential mechanisms of anti-angiogenic resistance, and suggest potential avenues to increase the efficacy of this therapeutic approach.
Collapse
|
9
|
Mozaffari K, Mekonnen M, Harary M, Lum M, Aguirre B, Chandla A, Wadehra M, Yang I. Epithelial membrane protein 2 (EMP2): A systematic review of its implications in pathogenesis. Acta Histochem 2023; 125:151976. [PMID: 36455339 DOI: 10.1016/j.acthis.2022.151976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Epithelial membrane protein 2 (EMP2) is a cell surface protein composed of approximately 160 amino acids and encoded by the growth arrest-specific 3 (GAS3)/peripheral myelin protein 22 kDa (PMP22) gene family. Although EMP2 expression has been investigated in several diseases, much remains unknown regarding its mechanism of action and the extent of its role in pathogenesis. Our aim was to perform a systematic review on the involvement of EMP2 in disease processes and the current usage of anti-EMP2 therapies. METHODS A Boolean search of the English-language medical literature was performed. PubMed, Scopus, Cochrane, and Web of Science were used to identify relevant citations. This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. RESULTS 52 studies met the inclusion criteria for qualitative analysis. Of those, 28 (53.8%) were human-only studies, 11 (21.2%) were animal-only studies, and 13 (25%) studies included both human and animal models. Furthermore, 34 (65.4%) studies focused on EMP2's role in neoplasms, while the remaining 18 (34.6%) articles evaluated its role in other pathologies. CONCLUSION Overall, the evidence suggests the mechanisms of action of EMP2 are context dependent. Promising results have been produced by utilizing EMP2 as a biomarker and therapeutic target. More studies are warranted to better understand the mechanism and comprehend the role of EMP2 in the pathogenesis of diseases.
Collapse
Affiliation(s)
- Khashayar Mozaffari
- Department of Neurosurgery, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Mahlet Mekonnen
- Department of Neurosurgery, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Maya Harary
- Department of Neurosurgery, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Meachelle Lum
- Department of Neurosurgery, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Brian Aguirre
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Anubhav Chandla
- Department of Neurosurgery, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Madhuri Wadehra
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Isaac Yang
- Department of Neurosurgery, University of California, Los Angeles (UCLA), Los Angeles, CA, United States.
| |
Collapse
|
10
|
Sun M, Cherian N, Liu L, Chan AM, Aguirre B, Chu A, Strawbridge J, Kim ES, Lin MC, Tsui I, Gordon LK, Wadehra M. Epithelial membrane protein 2 (EMP2) regulates hypoxia-induced angiogenesis in the adult retinal pigment epithelial cell lines. Sci Rep 2022; 12:19432. [PMID: 36371458 PMCID: PMC9653491 DOI: 10.1038/s41598-022-22696-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022] Open
Abstract
Pathologic retinal neovascularization is a potentially blinding consequence seen in many common diseases including diabetic retinopathy, retinopathy of prematurity, and retinal vaso-occlusive diseases. This study investigates epithelial membrane protein 2 (EMP2) and its role as a possible modulator of angiogenesis in human retinal pigment epithelium (RPE) under hypoxic conditions. To study its effects, the RPE cell line ARPE-19 was genetically modified to either overexpress EMP2 or knock down its levels, and RNA sequencing and western blot analysis was performed to confirm the changes in expression at the RNA and protein level, respectively. Protein expression was evaluated under both normoxic conditions or hypoxic stress. Capillary tube formation assays with human umbilical vein endothelial cells (HUVEC) were used to evaluate functional responses. EMP2 expression was found to positively correlate with expression of pro-angiogenic factors HIF1α and VEGF at both mRNA and protein levels under hypoxic conditions. Mechanistically, EMP2 stabilized HIF1α expression through downregulation of von Hippel Lindau protein (pVHL). EMP2 mediated changes in ARPE-19 cells were also found to alter the secretion of a paracrine factor(s) in conditioned media that can regulate HUVEC migration and capillary tube formation in in vitro functional angiogenesis assays. This study identifies EMP2 as a potential mediator of angiogenesis in a human RPE cell line. EMP2 levels positively correlate with pro-angiogenic mediators HIF1α and VEGF, and mechanistically, EMP2 regulates HIF1α through downregulation of pVHL. This study supports further investigation of EMP2 as a promising novel target for therapeutic treatment of pathologic neovascularization in the retina.
Collapse
Affiliation(s)
- Michel Sun
- UCLA Stein Eye Institute and the Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Nina Cherian
- UCLA Stein Eye Institute and the Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Pathology Lab Medicine, 4525 MacDonald Research Laboratories, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Lucia Liu
- Department of Pathology Lab Medicine, 4525 MacDonald Research Laboratories, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Ann M Chan
- UCLA Stein Eye Institute and the Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Brian Aguirre
- Department of Pathology Lab Medicine, 4525 MacDonald Research Laboratories, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Alison Chu
- Division of Neonatology and Developmental Biology, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jason Strawbridge
- UCLA Stein Eye Institute and the Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Esther S Kim
- Division of Neonatology and Developmental Biology, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Meng-Chin Lin
- Division of Neonatology and Developmental Biology, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Irena Tsui
- UCLA Stein Eye Institute and the Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Lynn K Gordon
- UCLA Stein Eye Institute and the Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Madhuri Wadehra
- Department of Pathology Lab Medicine, 4525 MacDonald Research Laboratories, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Retraction: Epithelial Membrane Protein-2 Promotes Endometrial Tumor Formation through Activation of FAK and Src. PLoS One 2022; 17:e0276151. [PMID: 36219627 PMCID: PMC9553052 DOI: 10.1371/journal.pone.0276151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|
12
|
Zhang N, Zhu HP, Huang W, Wen X, Xie X, Jiang X, Peng C, Han B, He G. Unraveling the structures, functions and mechanisms of epithelial membrane protein family in human cancers. Exp Hematol Oncol 2022; 11:69. [PMID: 36217151 PMCID: PMC9552464 DOI: 10.1186/s40164-022-00321-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/20/2022] [Indexed: 02/07/2023] Open
Abstract
Peripheral myelin protein 22 (PMP22) and epithelial membrane proteins (EMP-1, -2, and -3) belong to a small hydrophobic membrane protein subfamily, with four transmembrane structures. PMP22 and EMPs are widely expressed in various tissues and play important roles in cell growth, differentiation, programmed cell death, and metastasis. PMP22 presents its highest expression in the peripheral nerve and participates in normal physiological and pathological processes of the peripheral nervous system. The progress of molecular genetics has shown that the genetic changes of the PMP22 gene, including duplication, deletion, and point mutation, are behind various hereditary peripheral neuropathies. EMPs have different expression patterns in diverse tissues and are closely related to the risk of malignant tumor progression. In this review, we focus on the four members in this protein family which are related to disease pathogenesis and discuss gene mutations and post-translational modification of them. Further research into the interactions between structural alterations and function of PMP22 and EMPs will help understand their normal physiological function and role in diseases and might contribute to developing novel therapeutic tools.
Collapse
Affiliation(s)
- Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hong-Ping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.,Antibiotics Research and Re‑Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610106, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiang Wen
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Gu He
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China. .,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
13
|
Dungan JR, Qin X, Gregory SG, Cooper-Dehoff R, Duarte JD, Qin H, Gulati M, Taylor JY, Pepine CJ, Hauser ER, Kraus WE. Sex-dimorphic gene effects on survival outcomes in people with coronary artery disease. AMERICAN HEART JOURNAL PLUS: CARDIOLOGY RESEARCH AND PRACTICE 2022; 17. [PMID: 35959094 PMCID: PMC9365120 DOI: 10.1016/j.ahjo.2022.100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background: Ischemic coronary heart disease (IHD) is the leading cause of death worldwide. Genetic variation is presumed to be a major factor underlying sex differences for IHD events, including mortality. The purpose of this study was to identify sex-specific candidate genes associated with all-cause mortality among people diagnosed with coronary artery disease (CAD). Methods: We performed a sex-stratified, exploratory genome-wide association (GWAS) screen using existing data from CAD-diagnosed males (n = 510) and females (n = 174) who reported European ancestry from the Duke Catheterization Genetics biorepository. Extant genotype data for 785,945 autosomal SNPs generated with the Human Omni1-Quad BeadChip (Illumina, CA, USA) were analyzed using an additive inheritance model. We estimated instantaneous risk of all-cause mortality by genotype groups across the 11-year follow-up using Cox multivariate regression, covarying for age and genomic ancestry. Results: The top GWAS hits associated with all-cause mortality among people with CAD included 8 SNPs among males and 15 among females (p = 1 × 10−6 or 10−7), adjusted for covariates. Cross-sex comparisons revealed distinct candidate genes. Biologically relevant candidates included rs9932462 (EMP2/TEKT5) and rs2835913 (KCNJ6) among males and rs7217169 (RAP1GAP2), rs8021816 (PRKD1), rs8133010 (PDE9A), and rs12145981 (LPGAT1) among females. Conclusions: We report 20 sex-specific candidate genes having suggestive association with all-cause mortality among CAD-diagnosed subjects. Findings demonstrate proof of principle for identifying sex-associated genetic factors that may help explain differential mortality risk in people with CAD. Replication and meta-analyses in larger studies with more diverse samples will strengthen future work in this area.
Collapse
|
14
|
Ferrer AI, Einstein E, Morelli SS. Bone Marrow-Derived Cells in Endometrial Cancer Pathogenesis: Insights from Breast Cancer. Cells 2022; 11:cells11040714. [PMID: 35203363 PMCID: PMC8869947 DOI: 10.3390/cells11040714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/08/2022] [Accepted: 02/13/2022] [Indexed: 02/04/2023] Open
Abstract
Endometrial cancer is the most common gynecological cancer, representing 3.5% of all new cancer cases in the United States. Abnormal stem cell-like cells, referred to as cancer stem cells (CSCs), reside in the endometrium and possess the capacity to self-renew and differentiate into cancer progenitors, leading to tumor progression. Herein we review the role of the endometrial microenvironment and sex hormone signaling in sustaining EC progenitors and potentially promoting dormancy, a cellular state characterized by cell cycle quiescence and resistance to conventional treatments. We offer perspective on mechanisms by which bone marrow-derived cells (BMDCs) within the endometrial microenvironment could promote endometrial CSC (eCSC) survival and/or dormancy. Our perspective relies on the well-established example of another sex hormone-driven cancer, breast cancer, in which the BM microenvironment plays a crucial role in acquisition of CSC phenotype and dormancy. Our previous studies demonstrate that BMDCs migrate to the endometrium and express sex hormone (estrogen and progesterone) receptors. Whether the BM is a source of eCSCs is unknown; alternatively, crosstalk between BMDCs and CSCs within the endometrial microenvironment could be an additional mechanism supporting eCSCs and tumorigenesis. Elucidating these mechanisms will provide avenues to develop novel therapeutic interventions for EC.
Collapse
Affiliation(s)
- Alejandra I. Ferrer
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (A.I.F.); (E.E.)
- School of Graduate Studies Newark, Rutgers University, Newark, NJ 07103, USA
| | - Ella Einstein
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (A.I.F.); (E.E.)
| | - Sara S. Morelli
- Department of Obstetrics, Gynecology and Reproductive Health, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Correspondence:
| |
Collapse
|
15
|
Effect of Regorafenib on P2X7 Receptor Expression and Different Oncogenic Signaling Pathways in a Human Breast Cancer Cell Line: A Potential of New Insight of the Antitumor Effects of Regorafenib. Curr Issues Mol Biol 2021; 43:2199-2209. [PMID: 34940128 PMCID: PMC8929109 DOI: 10.3390/cimb43030154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Breast cancer is the most common malignancy in women worldwide. P2X7 is a transmembrane receptor expressed in breast cancer and activated by the ATP tumor microenvironment, driving cell proliferation, angiogenesis, and metastasis via different signaling pathways. The role of the P2X7 receptor, hypoxia, and autophagy in regulating tumor progression is controversial. The multikinase inhibitor regorafenib prevents the activation of numerous kinases involved in angiogenesis, proliferation, and metastasis. The present study aimed to evaluate the modulatory effect of regorafenib on the hypoxia/angiogenesis/P2X7R/autophagy axis on the MCF7 breast cancer cell line and its impact on different signaling pathways involved in breast cancer pathogenesis. METHODS The levels of VEGF, VEGFR, PI3K, NF-κB, HIF-1α, and LC3-II were analyzed using ELISA, and caspase-3 activity was also assessed colorimetrically. Phosphorylated (p)-p38 MAPK and purinergic ligand-gated ion channel 7 (P2X7) receptor protein expression levels were analyzed via Western blotting. Reverse transcription-quantitative PCR was used to determine the mRNA expression levels of Beclin 1 (BECN1), LC3-II, and sequestosome 1 (p62). RESULTS Regorafenib reduced MCF7 cell viability in a dose-dependent manner. Furthermore, regorafenib significantly reduced levels of PI3K, NF-κB, VEGF, VEGFR, P2X7 receptor, and p-p38 MAPK protein expression, and markedly reduced p62 mRNA expression levels. However, regorafenib significantly increased caspase-3 activity, as well as BECN1 and LC3-II mRNA expression levels. CONCLUSIONS Regorafenib was demonstrated to possibly exhibit antitumor activity on the breast cancer cell line via modulation of the P2X7/HIF-1α/VEGF, P2X7/P38, P2X7/ERK/NF-κB, and P2X7/beclin 1 pathways.
Collapse
|
16
|
Pan J, Luo X, Zhao S, Li J, Jiang Z. miR-340-5p mediates the therapeutic effect of mesenchymal stem cells on corneal neovascularization. Graefes Arch Clin Exp Ophthalmol 2021; 260:497-507. [PMID: 34495369 DOI: 10.1007/s00417-021-05394-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/09/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Our previous study revealed that mesenchymal stem cells (MSCs) inhibited angiogenesis via miRNA-mediated repression of prospero homeobox 1 (PROX1). This study aimed to verify whether miR-340-5p participates in the therapeutic effect of MSCs on corneal neovascularization (CNV) via repressing PROX1 and epithelial membrane protein 2 (EMP2). MATERIALS AND METHODS The rat CNV model was established by corneal alkali burn. The binding relationship between miR-340-5p and 3'-untranslational regions (3'UTRs) of EMP2 and PROX1 was confirmed using dual-luciferase reporter assay. After culturing corneal epithelial cells (CECs) using MSC supernatants, the vascular endothelial growth factor (VEGF) level in CEC supernatants and the CEC viability were detected. The role of miR-340-5p in the therapeutic effect of MSC on CNV was determined via lentivirus-mediated miR-340-5p intervention in vivo. RESULTS The expression of miR-340-5p was reduced and EMP2 and PROX1 were increased in CNV corneal tissues. The lentivirus-mediated overexpression of miR-340-5p inhibited the expressions of EMP2 and PROX1. The dual-luciferase reporter assay confirmed that miR-340-5p could bind with the 3'UTRs of EMP2 and PROX1. miR-340-5p was enriched in MSC supernatants and the culture of CECs using MSC supernatants increased the miR-340-5p expression in CECs. After being cultured in miR-340-5p-knocking down MSC supernatants, the expressions of EMP2 and PROX1 were increased, and the VEGF level and CEC viability were restored. The in vivo experiments also indicated that the therapeutic effect of MSCs was mediated by miR-340-5p. CONCLUSIONS miR-340-5p mediates the therapeutic effect of MSCs on CNV via binding and repressing the expressions of EMP2 and PROX1.
Collapse
Affiliation(s)
- Jian Pan
- Department of Ophthalmology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou, 325000, Zhejiang, China
| | - Xu Luo
- Burn and Wound Healing Center, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou, 325000, Zhejiang, China.,Wound Repair Department, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, No. 2 Zhongloudi Street, Kecheng District, Quzhou, 324000, Zhejiang, China
| | - Shujue Zhao
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou, 325000, Zhejiang, China
| | - Jianmin Li
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou, 325000, Zhejiang, China
| | - Zipei Jiang
- Department of Ophthalmology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
17
|
Chu A, Kok SY, Tsui J, Lin MC, Aguirre B, Wadehra M. Epithelial membrane protein 2 (Emp2) modulates innate immune cell population recruitment at the maternal-fetal interface. J Reprod Immunol 2021; 145:103309. [PMID: 33774530 DOI: 10.1016/j.jri.2021.103309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 01/28/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022]
Abstract
Epithelial membrane protein 2 (EMP2) is a tetraspan membrane protein that has been revealed in cancer and placental models to mediate a number of vascular responses. Recently, Emp2 modulation has been shown to have an immunologic effect on uterine NK cell recruitment in the mouse placenta. Given the importance of immune cell populations on both placental vascularization and maternal immune tolerance of the developing fetus, we wanted to better characterize the immunologic effects of Emp2 at the placental-fetal interface. We performed flow cytometry of WT and Emp2 KO C57Bl/6 mouse uterine horns at GD12.5 to characterize immune cell populations localized to the various components of the maternal-fetal interface. We found that Emp2 KO decidua and placenta showed an elevated overall percentage of CD45+ cells compared to WT. Characterization of CD45+ cells in the decidua of Emp2 KO dams revealed an increase in NK cells, whereas in the placenta, Emp2 KO dams showed an increased percentage of M1 macrophages (with an increased ratio of M1/M2 macrophages). Given the differences detected in uNK cell populations in the decidua, we further characterized the interaction between Emp2 genetic KO and NK cell deletion via anti-asialo GM1 antibody injections. While the double knock-out of Emp2 and NK cells did not alter individual pup birthweight, it significantly reduced total litter weight and size by ∼50 %. In conclusion, Emp2 appears to regulate uNK and macrophage cell populations in pregnancy.
Collapse
Affiliation(s)
- Alison Chu
- Division of Neonatology and Developmental Biology, Department of Pediatrics, David Geffen School of Medicine, University of California-Los Angeles, 10833 Le Conte Avenue, MDCC B2-411, Los Angeles, CA, 90095, USA.
| | - Su-Yin Kok
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, 4525 MacDonald Research Laboratories, Los Angeles, CA, 90095, USA.
| | - Jessica Tsui
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, 4525 MacDonald Research Laboratories, Los Angeles, CA, 90095, USA.
| | - Meng-Chin Lin
- Division of Neonatology and Developmental Biology, Department of Pediatrics, David Geffen School of Medicine, University of California-Los Angeles, 10833 Le Conte Avenue, MDCC B2-411, Los Angeles, CA, 90095, USA.
| | - Brian Aguirre
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, 4525 MacDonald Research Laboratories, Los Angeles, CA, 90095, USA.
| | - Madhuri Wadehra
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, 4525 MacDonald Research Laboratories, Los Angeles, CA, 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California-Los Angeles, 4525 MacDonald Research Laboratories, Los Angeles, CA, 90095, USA.
| |
Collapse
|
18
|
Wang Y, Li Z, Teng M, Liu J. Dihydroartemisinin inhibits activation of the AIM2 inflammasome pathway and NF-κB/HIF-1α/VEGF pathway by inducing autophagy in A431 human cutaneous squamous cell carcinoma cells. Int J Med Sci 2021; 18:2705-2715. [PMID: 34104103 PMCID: PMC8176175 DOI: 10.7150/ijms.57167] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/19/2021] [Indexed: 12/27/2022] Open
Abstract
The therapeutic effect of dihydroartemisinin (DHA) against cutaneous squamous cell carcinoma (cSCC) has been previously demonstrated; however, the underlying mechanism remains unclear. This study sought to verify the therapeutic effect of DHA against cSCC and explore its underlying mechanism in A431 cSCC cells. This study reported that DHA inhibited A431 cells proliferation in a time- and concentration-dependent manner and promoted A431 cells apoptosis. Moreover, DHA inhibited the invasion and migration of A431 cells. Mechanistically, DHA promoted autophagy and inhibited activation of the absent in melanoma 2 (AIM2) inflammasome pathway and NF-κB/HIF-1α/VEGF pathway. Treatment of A431 cells with the mTOR inhibitor, and autophagy promoter, rapamycin also inhibited these two pathways. In conclusion, DHA inhibited activation of the AIM2 inflammasome pathway and NF-κB/HIF-1α/VEGF pathway by promoting autophagy in A431 cells, thus accounting for its therapeutic effect. Induction of autophagy by DHA may be mediated by inhibiting the mTOR pathway and promoting reactive oxygen species production.
Collapse
Affiliation(s)
- Yajie Wang
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, 518101, Guangdong, China
| | - Zhijia Li
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, 510091, Guangdong, China
| | - Muzhou Teng
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, 510091, Guangdong, China
| | - Junlin Liu
- Department of Dermatology, the Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, Hainan, China
| |
Collapse
|
19
|
Qiu Y, Lu G, Wu Y. Coexpression of PBX1 and EMP2 as Prognostic Biomarkers in Estrogen Receptor-Negative Breast Cancer via Data Mining. J Comput Biol 2020; 27:1509-1518. [PMID: 32216630 DOI: 10.1089/cmb.2019.0491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Previous studies revealed that PBX1 ranked the third in the differentially expressed genes about development and progression of breast cancer (BC). Nevertheless, the role of PBX1 contributing to progression of BC has been unevaluated. Here, on the basis of ONCOMINE and GOBO databases, we compared BC samples with normal controls about the expression of PBX1 in various types of cancers, as well as their related expression levels in cancer cell lines by Cancer Cell Line Encyclopedia (CCLE) analysis. It was also found that, when compared with normal controls, PBX1 was markedly higher expressed not only in BC samples but also in BC cell lines, and coexpressed with EMP2 by ONCOMINE and CCLE coexpression analysis, which was also expressed higher in BC samples and BC cell lines similarly. According to Kaplan-Meier plotter, we further explored the prognostic functions of PBX1 and EMP2 in different molecular subtypes of BC, respectively. We demonstrated that overexpression of PBX1 mRNA was correlated with worse survival in luminal B subtype BC, whereas increased EMP2 expression was associated with shorter relapse-free survival in estrogen receptor (ER)-negative patients. Combining with previous studies, we could make a conclusion that coexpression of PBX1 and EMP2 predicts poor prognosis in ER-negative BC, which could be effective biomarkers for BC.
Collapse
Affiliation(s)
- Yier Qiu
- Department of Endoscopic Surgery of Thyroid Gland and Breast, The Yinzhou People's Hospital, Ningbo, P.R. China
| | - Guowen Lu
- Department of Endoscopic Surgery of Thyroid Gland and Breast, The Yinzhou People's Hospital, Ningbo, P.R. China
| | - Yingjie Wu
- Department of Endoscopic Surgery of Thyroid Gland and Breast, The Yinzhou People's Hospital, Ningbo, P.R. China
| |
Collapse
|
20
|
Human-Derived Model Systems in Gynecological Cancer Research. Trends Cancer 2020; 6:1031-1043. [PMID: 32855097 DOI: 10.1016/j.trecan.2020.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/24/2022]
Abstract
The human female reproductive tract (FRT) is a complex system that combines series of organs, including ovaries, fallopian tubes, uterus, cervix, vagina, and vulva; each of which possesses unique cellular characteristics and functions. This versatility, in turn, allows for the development of a wide range of epithelial gynecological cancers with distinct features. Thus, reliable model systems are required to better understand the diverse mechanisms involved in the regional pathogenesis of the reproductive tract and improve treatment strategies. Here, we review the current human-derived model systems available to study the multitude of gynecological cancers, including ovarian, endometrial, cervical, vaginal, and vulvar cancer, and the recent advances in the push towards personalized therapy.
Collapse
|
21
|
Dillard C, Kiyohara M, Mah V, McDermott SP, Bazzoun D, Tsui J, Chan AM, Haddad G, Pellegrini M, Chang YL, Elshimali Y, Wu Y, Vadgama JV, Kim SR, Goodglick L, Law SM, Patel DD, Dhawan P, O'Brien NA, Gordon LK, Braun J, Lazar G, Wicha MS, Wadehra M. EMP2 Is a Novel Regulator of Stemness in Breast Cancer Cells. Mol Cancer Ther 2020; 19:1682-1695. [PMID: 32451329 PMCID: PMC7415657 DOI: 10.1158/1535-7163.mct-19-0850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/24/2020] [Accepted: 05/19/2020] [Indexed: 01/08/2023]
Abstract
Little is known about the role of epithelial membrane protein-2 (EMP2) in breast cancer development or progression. In this study, we tested the hypothesis that EMP2 may regulate the formation or self-renewal of breast cancer stem cells (BCSC) in the tumor microenvironment. In silico analysis of gene expression data demonstrated a correlation of EMP2 expression with known metastasis-related genes and markers of cancer stem cells (CSC) including aldehyde dehydrogenase (ALDH). In breast cancer cell lines, EMP2 overexpression increased and EMP2 knockdown decreased the proportion of stem-like cells as assessed by the expression of the CSC markers CD44+/CD24-, ALDH activity, or by tumor sphere formation. In vivo, upregulation of EMP2 promoted tumor growth, whereas knockdown reduced the ALDHhigh CSC population as well as retarded tumor growth. Mechanistically, EMP2 functionally regulated the response to hypoxia through the upregulation of HIF-1α, a transcription factor previously shown to regulate the self-renewal of ALDHhigh CSCs. Furthermore, in syngeneic mouse models and primary human tumor xenografts, mAbs directed against EMP2 effectively targeted CSCs, reducing the ALDH+ population and blocking their tumor-initiating capacity when implanted into secondary untreated mice. Collectively, our results show that EMP2 increases the proportion of tumor-initiating cells, providing a rationale for the continued development of EMP2-targeting agents.
Collapse
Affiliation(s)
- Christen Dillard
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Meagan Kiyohara
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Vei Mah
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Sean P McDermott
- Department of Internal Medicine-Hematology/Oncology, University of Michigan, Ann Arbor, MI
| | - Dana Bazzoun
- Department of Internal Medicine-Hematology/Oncology, University of Michigan, Ann Arbor, MI
| | - Jessica Tsui
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Ann M Chan
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Department of Internal Medicine-Hematology/Oncology, University of Michigan, Ann Arbor, MI
| | - Ghassan Haddad
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Matteo Pellegrini
- Department of Molecular, Cell & Developmental Biology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Yu-Ling Chang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Yahya Elshimali
- Center to Eliminate Cancer Health Disparities, Charles Drew University, Los Angeles, CA
| | - Yanyuan Wu
- Center to Eliminate Cancer Health Disparities, Charles Drew University, Los Angeles, CA
| | - Jaydutt V Vadgama
- Center to Eliminate Cancer Health Disparities, Charles Drew University, Los Angeles, CA
| | - Sara R Kim
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Lee Goodglick
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Samuel M Law
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Deven D Patel
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | | | - Neil A O'Brien
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Lynn K Gordon
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Jonathan Braun
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Gary Lazar
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Max S Wicha
- Department of Internal Medicine-Hematology/Oncology, University of Michigan, Ann Arbor, MI
| | - Madhuri Wadehra
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA.
- Center to Eliminate Cancer Health Disparities, Charles Drew University, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA
| |
Collapse
|
22
|
Cai WL, Greer CB, Chen JF, Arnal-Estapé A, Cao J, Yan Q, Nguyen DX. Specific chromatin landscapes and transcription factors couple breast cancer subtype with metastatic relapse to lung or brain. BMC Med Genomics 2020; 13:33. [PMID: 32143622 PMCID: PMC7060551 DOI: 10.1186/s12920-020-0695-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/11/2020] [Indexed: 12/17/2022] Open
Abstract
Background Few somatic mutations have been linked to breast cancer metastasis, whereas transcriptomic differences among primary tumors correlate with incidence of metastasis, especially to the lungs and brain. However, the epigenomic alterations and transcription factors (TFs) which underlie these alterations remain unclear. Methods To identify these, we performed RNA-seq, Chromatin Immunoprecipitation and sequencing (ChIP-seq) and Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) of the MDA-MB-231 cell line and its brain (BrM2) and lung (LM2) metastatic sub-populations. We incorporated ATAC-seq data from TCGA to assess metastatic open chromatin signatures, and gene expression data from human metastatic datasets to nominate transcription factor biomarkers. Results Our integrated epigenomic analyses found that lung and brain metastatic cells exhibit both shared and distinctive signatures of active chromatin. Notably, metastatic sub-populations exhibit increased activation of both promoters and enhancers. We also integrated these data with chromosome conformation capture coupled with ChIP-seq (HiChIP) derived enhancer-promoter interactions to predict enhancer-controlled pathway alterations. We found that enhancer changes are associated with endothelial cell migration in LM2, and negative regulation of epithelial cell proliferation in BrM2. Promoter changes are associated with vasculature development in LM2 and homophilic cell adhesion in BrM2. Using ATAC-seq, we identified a metastasis open-chromatin signature that is elevated in basal-like and HER2-enriched breast cancer subtypes and associates with worse prognosis in human samples. We further uncovered TFs associated with the open chromatin landscapes of metastatic cells and whose expression correlates with risk for metastasis. While some of these TFs are associated with primary breast tumor subtypes, others more specifically correlate with lung or brain metastasis. Conclusions We identify distinctive epigenomic properties of breast cancer cells that metastasize to the lung and brain. We also demonstrate that signatures of active chromatin sites are partially linked to human breast cancer subtypes with poor prognosis, and that specific TFs can independently distinguish lung and brain relapse.
Collapse
Affiliation(s)
- Wesley L Cai
- Department of Pathology, Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA
| | - Celeste B Greer
- Department of Pathology, Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA.,Present address: Department of Pharmacology, Vanderbilt University School of Medicine, 2209 Garland Ave, Nashville, TN, 37240-0002, USA
| | - Jocelyn F Chen
- Department of Pathology, Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA
| | - Anna Arnal-Estapé
- Department of Pathology, Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA.,Yale Cancer Center, Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA
| | - Jian Cao
- Department of Pathology, Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA.,Yale Cancer Center, Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA.,Present address: Rutgers Cancer Institute of New Jersey, Rutgers, 195 Little Albany St, New Brunswick, NJ, 08903-2681, USA
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA. .,Yale Cancer Center, Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA. .,Yale Stem Cell Center, Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA. .,Department of Pathology, Yale School of Medicine, P.O. Box 208023, New Haven, CT, 06520-8023, USA.
| | - Don X Nguyen
- Department of Pathology, Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA. .,Yale Cancer Center, Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA. .,Yale Stem Cell Center, Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA. .,Department of Pathology, Yale School of Medicine, P.O. Box 208023, New Haven, CT, 06520-8023, USA. .,Department of Medicine (Medical Oncology), Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA.
| |
Collapse
|
23
|
Sun M, Wadehra M, Casero D, Lin MC, Aguirre B, Parikh S, Matynia A, Gordon L, Chu A. Epithelial Membrane Protein 2 (EMP2) Promotes VEGF-Induced Pathological Neovascularization in Murine Oxygen-Induced Retinopathy. Invest Ophthalmol Vis Sci 2020; 61:3. [PMID: 32031575 PMCID: PMC7325623 DOI: 10.1167/iovs.61.2.3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023] Open
Abstract
Purpose Retinopathy of prematurity (ROP) is a leading cause of childhood blindness. ROP occurs as a consequence of postnatal hyperoxia exposure in premature infants, resulting in vasoproliferation in the retina. The tetraspan protein epithelial membrane protein-2 (EMP2) is highly expressed in the retinal pigment epithelium (RPE) in adults, and it controls vascular endothelial growth factor (VEGF) production in the ARPE-19 cell line. We, therefore, hypothesized that Emp2 knockout (Emp2 KO) protects against neovascularization in murine oxygen-induced retinopathy (OIR). Methods Eyes were obtained from wildtype (WT) and Emp2 KO mouse pups at P7, P12, P17, and P21 after normoxia or hyperoxia (P7-P12) exposure. Following hyperoxia exposure, RNA sequencing was performed using the retina/choroid layers obtained from WT and Emp2 KO at P17. Retinal sections from P7, P12, P17, and P21 were evaluated for Emp2, hypoxia-inducible factor 1α (Hif1α), and VEGF expression. Whole mount images were generated to assess vaso-obliteration at P12 and neovascularization at P17. Results Emp2 KO OIR mice demonstrated a decrease in pathologic neovascularization at P17 compared with WT OIR mice through evaluation of retinal vascular whole mount images. This protection was accompanied by a decrease in Hif1α at P12 and VEGFA expression at P17 in Emp2 KO animals compared with the WT animals in OIR conditions. Collectively, our results suggest that EMP2 enhances the effects of neovascularization through modulation of angiogenic signaling. Conclusions The protection of Emp2 KO mice against pathologic neovascularization through attenuation of HIF and VEGF upregulation in OIR suggests that hypoxia-induced upregulation of EMP2 expression in the neuroretina modulates HIF-mediated neuroretinal VEGF expression.
Collapse
Affiliation(s)
- Michel Sun
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, United States
| | - Madhuri Wadehra
- Department of Pathology Lab Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, United States
- Jonsson Comprehensive Cancer, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, United States
| | - David Casero
- Department of Pathology Lab Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, United States
| | - Meng-Chin Lin
- Division of Neonatology and Developmental Biology, Department of Pediatrics, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, United States
| | - Brian Aguirre
- Department of Pathology Lab Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, United States
| | - Sachin Parikh
- Laboratory of Ocular and Molecular Biology and Genetics, Jules Stein Institute, University of California-Los Angeles, Los Angeles, California, United States
| | - Anna Matynia
- Laboratory of Ocular and Molecular Biology and Genetics, Jules Stein Institute, University of California-Los Angeles, Los Angeles, California, United States
| | - Lynn Gordon
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, United States
| | - Alison Chu
- Division of Neonatology and Developmental Biology, Department of Pediatrics, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, United States
| |
Collapse
|
24
|
A Mechanogenetic Model of Exercise-Induced Pulmonary Haemorrhage in the Thoroughbred Horse. Genes (Basel) 2019; 10:genes10110880. [PMID: 31683933 PMCID: PMC6895809 DOI: 10.3390/genes10110880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 12/28/2022] Open
Abstract
Exercise-induced pulmonary haemorrhage (EIPH) occurs in horses performing high-intensity athletic activity. The application of physics principles to derive a ‘physical model’, which is coherent with existing physiology and cell biology data, shows that critical parameters for capillary rupture are cell–cell adhesion and cell stiffness (cytoskeleton organisation). Specifically, length of fracture in the capillary is a ratio between the energy involved in cell–cell adhesion and the stiffness of cells suggesting that if the adhesion diminishes and/or that the stiffness of cells increases EIPH is more likely to occur. To identify genes associated with relevant cellular or physiological phenotypes, the physical model was used in a post-genome-wide association study (GWAS) to define gene sets associated with the model parameters. The primary study was a GWAS of EIPH where the phenotype was based on weekly tracheal wash samples collected over a two-year period from 72 horses in a flat race training yard. The EIPH phenotype was determined from cytological analysis of the tracheal wash samples, by scoring for the presence of red blood cells and haemosiderophages. Genotyping was performed using the Illumina Equine SNP50 BeadChip and analysed using linear regression in PLINK. Genes within significant genome regions were selected for sets based on their GeneOntology biological process, and analysed using fastBAT. The gene set analysis showed that genes associated with cell stiffness (cytoskeleton organisation) and blood flow have the most significant impact on EIPH risk.
Collapse
|
25
|
Ahmat Amin MKB, Shimizu A, Ogita H. The Pivotal Roles of the Epithelial Membrane Protein Family in Cancer Invasiveness and Metastasis. Cancers (Basel) 2019; 11:E1620. [PMID: 31652725 PMCID: PMC6893843 DOI: 10.3390/cancers11111620] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/08/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022] Open
Abstract
The members of the family of epithelial membrane proteins (EMPs), EMP1, EMP2, and EMP3, possess four putative transmembrane domain structures and are composed of approximately 160 amino acid residues. EMPs are encoded by the growth arrest-specific 3 (GAS3)/peripheral myelin protein 22 kDa (PMP22) gene family. The GAS3/PMP22 family members play roles in cell migration, growth, and differentiation. Evidence indicates an association of these molecules with cancer progression and metastasis. Each EMP has pro- and anti-metastatic functions that are likely involved in the complex mechanisms of cancer progression. We have recently demonstrated that the upregulation of EMP1 expression facilitates cancer cell migration and invasion through the activation of a small GTPase, Rac1. The inoculation of prostate cancer cells overexpressing EMP1 into nude mice leads to metastasis to the lymph nodes and lungs, indicating that EMP1 contributes to metastasis. Pro-metastatic properties of EMP2 and EMP3 have also been proposed. Thus, targeting EMPs may provide new insights into their clinical utility. Here, we highlight the important aspects of EMPs in cancer biology, particularly invasiveness and metastasis, and describe recent therapeutic approaches.
Collapse
Affiliation(s)
- Mohammad Khusni B Ahmat Amin
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu 520-2192, Japan.
- Translational Research Unit, Department of International Collaborative Research, Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu 520-2192, Japan.
| | - Akio Shimizu
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu 520-2192, Japan.
| | - Hisakazu Ogita
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu 520-2192, Japan.
| |
Collapse
|
26
|
Abdelwahab EMM, Rapp J, Feller D, Csongei V, Pal S, Bartis D, Thickett DR, Pongracz JE. Wnt signaling regulates trans-differentiation of stem cell like type 2 alveolar epithelial cells to type 1 epithelial cells. Respir Res 2019; 20:204. [PMID: 31492143 PMCID: PMC6731587 DOI: 10.1186/s12931-019-1176-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/02/2019] [Indexed: 12/18/2022] Open
Abstract
Background Type 2 alveolar epithelial cells (AT2s) behave as stem cells and show clonal proliferation upon alveolar injury followed by trans-differentiation (TD) into Type 1 alveolar epithelial cells (AT1s). In the present study we identified signaling pathways involved in the physiological AT2-to-AT1 TD process. Methods AT2 cells can be isolated from human lungs and cultured in vitro where they undergo TD into AT1s. In the present study we identified signaling pathways involved in the physiological AT2-to-AT1 TD process using Affymetrix microarray, qRT-PCR, fluorescence microscopy, and an in vitro lung aggregate culture. Results Affymetrix microarray revealed Wnt signaling to play a crucial role in the TD process. Wnt7a was identified as a ligand regulating the AT1 marker, Aquaporin 5 (AQP5). Artificial Neural Network (ANN) analysis of the Affymetrix data exposed ITGAV: Integrin alpha V (ITGAV), thrombospondin 1 (THBS1) and epithelial membrane protein 2 (EMP2) as Wnt signaling targets. Conclusions Wnt signaling targets that can serve as potential alveolar epithelial repair targets in future therapies of the gas exchange surface after injury. As ITGAV is significantly increases during TD and is regulated by Wnt signaling, ITGAV might be a potential target to speed up the alveolar healing process.
Collapse
Affiliation(s)
- Elhusseiny Mohamed Mahmud Abdelwahab
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, 2 Rokus Str, Pecs, H-7624, Hungary.,Szentagothai Research Centre, University of Pecs, 20 Ifjusag Str, Pecs, H-7624, Hungary
| | - Judit Rapp
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, 2 Rokus Str, Pecs, H-7624, Hungary.,Szentagothai Research Centre, University of Pecs, 20 Ifjusag Str, Pecs, H-7624, Hungary
| | - Diana Feller
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, 2 Rokus Str, Pecs, H-7624, Hungary.,Szentagothai Research Centre, University of Pecs, 20 Ifjusag Str, Pecs, H-7624, Hungary
| | - Veronika Csongei
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, 2 Rokus Str, Pecs, H-7624, Hungary.,Szentagothai Research Centre, University of Pecs, 20 Ifjusag Str, Pecs, H-7624, Hungary
| | - Szilard Pal
- Department of Pharmaceutical Technology, School of Pharmacy, University of Pecs, 2 Rokus Str, Pecs, H-7624, Hungary
| | - Domokos Bartis
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, 2 Rokus Str, Pecs, H-7624, Hungary.,Szentagothai Research Centre, University of Pecs, 20 Ifjusag Str, Pecs, H-7624, Hungary.,Respiratory Research Group, Institute of Inflammation and Aging, University of Birmingham, Birmingham, B15 2TT, UK
| | - David R Thickett
- Respiratory Research Group, Institute of Inflammation and Aging, University of Birmingham, Birmingham, B15 2TT, UK
| | - Judit Erzsebet Pongracz
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, 2 Rokus Str, Pecs, H-7624, Hungary. .,Szentagothai Research Centre, University of Pecs, 20 Ifjusag Str, Pecs, H-7624, Hungary.
| |
Collapse
|
27
|
Donnan MD, Scott RP, Onay T, Tarjus A, Onay UV, Quaggin SE. Genetic Deletion of Emp2 Does Not Cause Proteinuric Kidney Disease in Mice. Front Med (Lausanne) 2019; 6:189. [PMID: 31508419 PMCID: PMC6718710 DOI: 10.3389/fmed.2019.00189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/09/2019] [Indexed: 12/15/2022] Open
Abstract
Nephrotic syndrome is one of the most common glomerular diseases in children and can be classified on the basis of steroid responsiveness. While multiple genetic causes have been discovered for steroid resistant nephrotic syndrome, the genetics of steroid sensitive nephrotic syndrome remains elusive. Mutations in Epithelial Membrane Protein 2 (EMP2), a member of the GAS3/PMP22 tetraspan family of proteins, were recently implicated as putative monogenic cause of steroid sensitive nephrotic syndrome. We investigated this hypothesis by developing Emp2 reporter and knockout mouse models. In lacZ reporter mice (engineered to drive expression of the enzyme β-galactosidase under the control of the endogenous murine Emp2 promoter), Emp2 promoter activity was not observed in podocytes but was particularly prominent in medium- and large-caliber arterial vessels in the kidney and other tissues where it localizes specifically in vascular smooth muscle cells (vSMCs) but not in the endothelium. Strong Emp2 expression was also found in non-vascular smooth muscle cells found in other organs like the stomach, bladder, and uterus. Global and podocyte-specific Emp2 knockout mice were viable and did not develop nephrotic syndrome showing no evidence of abnormal glomerular histology or ultrastructure. Altogether, our results do not support that loss of function of EMP2 represent a monogenic cause of proteinuric kidney disease. However, the expression pattern of Emp2 indicates that it may be relevant in smooth muscle function in various organs and tissues including the vasculature.
Collapse
Affiliation(s)
- Michael D Donnan
- Division of Nephrology and Hypertension, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Rizaldy P Scott
- Division of Nephrology and Hypertension, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Tuncer Onay
- Division of Nephrology and Hypertension, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Antoine Tarjus
- Division of Nephrology and Hypertension, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Ummiye Venus Onay
- Division of Nephrology and Hypertension, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Susan E Quaggin
- Division of Nephrology and Hypertension, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
28
|
Wang M, Li S, Zhang P, Wang Y, Wang C, Bai D, Jiang X. EMP2 acts as a suppressor of melanoma and is negatively regulated by mTOR-mediated autophagy. J Cancer 2019; 10:3582-3592. [PMID: 31333775 PMCID: PMC6636303 DOI: 10.7150/jca.30342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 05/07/2019] [Indexed: 02/06/2023] Open
Abstract
Cutaneous melanoma is one of the most common malignant skin tumors and advanced melanoma is usually associated with a poor prognosis. In the current study, we demonstrated the tumor suppressing role of epithelial membrane protein-2 (EMP2) by inducing apoptosis in a A375 human melanoma cell line. Mechanistically, the low expression of EMP2 in melanoma is partially due to autophagic protein degradation mediated by the mTOR pathway. These results suggest there is regulation of autophagy as well as EMP2 levels might be an interesting novel targeted therapeutic strategy for melanoma. Although the further investigation is needed to deeply understand the regulatory mechanisms of EMP2 in melanoma progression and metastasis, our results clarify the functions and mechanisms of autophagy in melanoma, and shed new light on novel targeted therapeutics for melanoma.
Collapse
Affiliation(s)
- Manyi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Paediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Sijia Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Paediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Peng Zhang
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu 610041, PR China
| | - Yujia Wang
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| | - Chunting Wang
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| | - Ding Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Paediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Xian Jiang
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| |
Collapse
|
29
|
Chiu HC, Li CJ, Yiang GT, Tsai APY, Wu MY. Epithelial to Mesenchymal Transition and Cell Biology of Molecular Regulation in Endometrial Carcinogenesis. J Clin Med 2019; 8:E439. [PMID: 30935077 PMCID: PMC6518354 DOI: 10.3390/jcm8040439] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 12/15/2022] Open
Abstract
Endometrial carcinogenesis is involved in several signaling pathways and it comprises multiple steps. The four major signaling pathways-PI3K/AKT, Ras/Raf/MEK/ERK, WNT/β-catenin, and vascular endothelial growth factor (VEGF)-are involved in tumor cell metabolism, growth, proliferation, survival, and angiogenesis. The genetic mutation and germline mitochondrial DNA mutations also impair cell proliferation, anti-apoptosis signaling, and epithelial⁻mesenchymal transition by several transcription factors, leading to endometrial carcinogenesis and distant metastasis. The PI3K/AKT pathway activates the ransforming growth factor beta (TGF-β)-mediated endothelial-to-mesenchymal transition (EMT) and it interacts with downstream signals to upregulate EMT-associated factors. Estrogen and progesterone signaling in EMT also play key roles in the prognosis of endometrial carcinogenesis. In this review article, we summarize the current clinical and basic research efforts regarding the detailed molecular regulation in endometrial carcinogenesis, especially in EMT, to provide novel targets for further anti-carcinogenesis treatment.
Collapse
Affiliation(s)
- Hsiao-Chen Chiu
- Department of Obstetrics and Gynecology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei 231, Taiwan.
- Department of Obstetrics and Gynecology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| | - Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.
| | - Giou-Teng Yiang
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan.
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| | - Andy Po-Yi Tsai
- Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan.
| | - Meng-Yu Wu
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan.
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| |
Collapse
|
30
|
Sun MM, Chan AM, Law SM, Duarte S, Diaz-Aguilar D, Wadehra M, Gordon LK. Epithelial Membrane Protein-2 (EMP2) Antibody Blockade Reduces Corneal Neovascularization in an In Vivo Model. Invest Ophthalmol Vis Sci 2019; 60:245-254. [PMID: 30646013 PMCID: PMC6336205 DOI: 10.1167/iovs.18-24345] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 12/03/2018] [Indexed: 12/15/2022] Open
Abstract
Purpose Pathologic corneal neovascularization is a major cause of blindness worldwide, and treatment options are currently limited. VEGF is one of the critical mediators of corneal neovascularization but current anti-VEGF therapies have produced limited results in the cornea. Thus, additional therapeutic agents are needed to enhance the antiangiogenic arsenal. Our group previously demonstrated epithelial membrane protein-2 (EMP2) involvement in pathologic angiogenesis in multiple cancer models including breast cancer and glioblastoma. In this paper, we investigate the efficacy of anti-EMP2 immunotherapy in the prevention of corneal neovascularization. Methods An in vivo murine cornea alkali burn model was used to study pathologic neovascularization. A unilateral corneal burn was induced using NaOH, and subconjunctival injection of either anti-EMP2 antibody, control antibody, or sterile saline was performed after corneal burn. Neovascularization was clinically scored at 7 days postalkali burn, and eyes were enucleated for histologic analysis and immunostaining including VEGF, CD31, and CD34 expression. Results Anti-EMP2 antibody, compared to control antibody or vehicle, significantly reduced neovascularization as measured by clinical score and central cornea thickness, as well as by histologic reduction of neovascularization, decreased CD34 staining, and decreased CD31 staining. Incubation of corneal limbal cells in vitro with anti-EMP2 blocking antibody significantly decreased EMP2 expression, VEGF expression and secretion, and cell migration. Conclusions This work demonstrates the effectiveness of EMP2 as a novel target in pathologic corneal neovascularization in an animal model and supports additional investigation into EMP2 antibody blockade as a potential new therapeutic option.
Collapse
Affiliation(s)
- Michel M. Sun
- Department of Ophthalmology, Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States
| | - Ann M. Chan
- Department of Ophthalmology, Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States
| | - Samuel M. Law
- Department of Ophthalmology, Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States
| | - Sergio Duarte
- Department of Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States
| | - Daniel Diaz-Aguilar
- Department of Ophthalmology, Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States
| | - Madhuri Wadehra
- Departments of Pathology and Laboratory Medicine, and Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States
| | - Lynn K. Gordon
- Department of Ophthalmology, Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States
| |
Collapse
|
31
|
The Emerging Role of the Microenvironment in Endometrial Cancer. Cancers (Basel) 2018; 10:cancers10110408. [PMID: 30380719 PMCID: PMC6266917 DOI: 10.3390/cancers10110408] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 12/24/2022] Open
Abstract
Endometrial cancer (EC) is one of the most frequently diagnosed cancers in women, and despite recent therapeutic advances, in many cases, treatment failure results in cancer recurrence, metastasis, and death. Current research demonstrates that the interactive crosstalk between two discrete cell types (tumor and stroma) promotes tumor growth and investigations have uncovered the dual role of the stromal cells in the normal and cancerous state. In contrast to tumor cells, stromal cells within the tumor microenvironment (TME) are genetically stable. However, tumor cells modify adjacent stromal cells in the TME. The alteration in signaling cascades of TME from anti-tumorigenic to pro-tumorigenic enhances metastatic potential and/or confers therapeutic resistance. Therefore, the TME is a fertile ground for the development of novel therapies. Furthermore, disrupting cancer-promoting signals from the TME or re-educating stromal cells may be an effective strategy to impair metastatic progression. Here, we review the paradoxical role of different non-neoplastic stromal cells during specific stages of EC progression. We also suggest that the inhibition of microenvironment-derived signals may suppress metastatic EC progression and offer novel potential therapeutic interventions.
Collapse
|
32
|
Ersoy AO, Oztas E, Ozler S, Tokmak A, Ersoy E, Ergin M, Danisman N. Maternal venous SHARP1 levels in preeclampsia. J Perinat Med 2017; 45:803-808. [PMID: 27845885 DOI: 10.1515/jpm-2015-0437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 10/12/2016] [Indexed: 11/15/2022]
Abstract
AIM Owing to its mysterious etiology, pathogenesis of preeclampsia (PE) remains controversial. Here we aimed to compare the levels of an angiogenesis marker, split and hairy related protein-1 (SHARP1), in PE vs. normal pregnancy. METHODS Thirty-one patients with early-onset PE (EOPE), 26 patients with late-onset PE (LOPE), and 33 patients as a control group were recruited for this study in a tertiary referral center in Ankara, Turkey. Maternal venous SHARP1 levels and individual characteristics of the three groups were compared. RESULTS Age and body mass indices were similar among the three groups. SHARP1 levels in patients with PE (27.7±13.2 ng/mL) were significantly lower than in the control group (34.7±17 ng/mL) (P=0.006). Additionally, SHARP1 levels were significantly different among patients in EOPE, LOPE, and control groups (P=0.022). Birth weights and Apgar scores in patients in EOPE group were significantly lower than the other two groups and showed a gradual increase from the EOPE group to the LOPE and the control group. Binary logistic regression method demonstrated that maternal venous SHARP1 level was a risk factor for PE. CONCLUSIONS Maternal venous SHARP1 levels in PE are lower than a normal pregnancy. Its clinical applicability and role as a candidate for making sense of the distinctive pathogenesis of the EOPE and LOPE remain to be elucidated.
Collapse
|
33
|
Kiyohara MH, Dillard C, Tsui J, Kim SR, Lu J, Sachdev D, Goodglick L, Tong M, Torous VF, Aryasomayajula C, Wang W, Najafzadeh P, Gordon LK, Braun J, McDermott S, Wicha MS, Wadehra M. EMP2 is a novel therapeutic target for endometrial cancer stem cells. Oncogene 2017; 36:5793-5807. [PMID: 28604744 PMCID: PMC5648618 DOI: 10.1038/onc.2017.142] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/21/2017] [Accepted: 03/25/2017] [Indexed: 12/12/2022]
Abstract
Previous studies have suggested that overexpression of the oncogenic protein epithelial membrane protein-2 (EMP2) correlates with endometrial carcinoma progression and ultimately poor survival from disease. To understand the role of EMP2 in the etiology of disease, gene analysis was performed to show transcripts that are reciprocally regulated by EMP2 levels. In particular, EMP2 expression correlates with and helps regulate the expression of several cancer stem cell associated markers including aldehyde dehydrogenase 1 (ALDH1). ALDH expression significantly promotes tumor initiation and correlates with the levels of EMP2 expression in both patient samples and tumor cell lines. As therapy against cancer stem cells in endometrial cancer is lacking, the ability of anti-EMP2 IgG1 therapy to reduce primary and secondary tumor formation using xenograft HEC1A models was determined. Anti-EMP2 IgG1 reduced the expression and activity of ALDH and correspondingly reduced both primary and secondary tumor load. Our results collectively suggest that anti-EMP2 therapy may be a novel method of reducing endometrial cancer stem cells.
Collapse
Affiliation(s)
- Meagan H. Kiyohara
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| | - Christen Dillard
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| | - Jessica Tsui
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| | - Sara Ruth Kim
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| | - Jianyi Lu
- Center to Eliminate Cancer Health Disparities, Charles Drew University, Los Angeles, California 90059
| | - Divya Sachdev
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| | - Lee Goodglick
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| | - Maomeng Tong
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| | - Vanda Farahmand Torous
- Department of Pathology and Laboratory Medicine, Beth Israel Deaconess Medical Center. Boston, MA 02215
| | - Chinmayi Aryasomayajula
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| | - Wei Wang
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| | - Parisa Najafzadeh
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| | - Lynn K. Gordon
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| | - Jonathan Braun
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| | - Sean McDermott
- Medical Oncology, University of Michigan, Ann Arbor, Michigan 48109
| | - Max S. Wicha
- Medical Oncology, University of Michigan, Ann Arbor, Michigan 48109
| | - Madhuri Wadehra
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
- Center to Eliminate Cancer Health Disparities, Charles Drew University, Los Angeles, California 90059
| |
Collapse
|
34
|
Chung LK, Pelargos PE, Chan AM, Demos JV, Lagman C, Sheppard JP, Nguyen T, Chang YL, Hojat SA, Prins RM, Liau LM, Nghiemphu L, Lai A, Cloughesy TF, Yong WH, Gordon LK, Wadehra M, Yang I. Tissue microarray analysis for epithelial membrane protein-2 as a novel biomarker for gliomas. Brain Tumor Pathol 2017; 35:1-9. [PMID: 28887715 DOI: 10.1007/s10014-017-0300-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 08/28/2017] [Indexed: 12/16/2022]
Abstract
Epithelial membrane protein-2 (EMP2) expression is noted in many human cancers. We evaluated EMP2 as a biomarker in gliomas. A large tissue microarray of lower grade glioma (WHO grades II-III, n = 19 patients) and glioblastoma (GBM) (WHO grade IV, n = 50 patients) was stained for EMP2. EMP2 expression was dichotomized to low or high expression scores and correlated with clinical data. The mean EMP2 expression was 1.68 in lower grade gliomas versus 2.20 in GBMs (P = 0.01). The percentage of samples with high EMP2 expression was greater in GBMs than lower grade gliomas (90.0 vs. 52.6%, P = 0.001). No significant difference was found between median survival among patients with GBM tumors exhibiting high EMP2 expression and survival of those with low EMP2 expression (8.38 vs. 10.98 months, P = 0.39). However, EMP2 expression ≥2 correlated with decreased survival (r = -0.39, P = 0.001). The EMP2 expression level also correlated with Ki-67 positivity (r = 0.34, P = 0.008). The mortality hazard ratio for GBM patients with EMP2 score of 3 or higher was 1.92 (CI 0.69-5.30). Our findings suggest that elevated EMP2 expression is associated with GBM. With other biomarkers, EMP2 may have use as a molecular target for the diagnosis and treatment of gliomas.
Collapse
Affiliation(s)
- Lawrance K Chung
- Department of Neurosurgery, University of California, Los Angeles, 300 Stein Plaza, Los Angeles, CA, 90095, USA
| | - Panayiotis E Pelargos
- Department of Neurosurgery, University of California, Los Angeles, 300 Stein Plaza, Los Angeles, CA, 90095, USA
| | - Ann M Chan
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, 924 Westwood Blvd, Seventh Floor, Los Angeles, CA, 90095, USA
| | - Joanna V Demos
- Department of Neurosurgery, University of California, Los Angeles, 300 Stein Plaza, Los Angeles, CA, 90095, USA
| | - Carlito Lagman
- Department of Neurosurgery, University of California, Los Angeles, 300 Stein Plaza, Los Angeles, CA, 90095, USA
| | - John P Sheppard
- Department of Neurosurgery, University of California, Los Angeles, 300 Stein Plaza, Los Angeles, CA, 90095, USA
| | - Thien Nguyen
- Department of Neurosurgery, University of California, Los Angeles, 300 Stein Plaza, Los Angeles, CA, 90095, USA
| | - Yu-Ling Chang
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, 924 Westwood Blvd, Seventh Floor, Los Angeles, CA, 90095, USA
| | - Seyed A Hojat
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, 924 Westwood Blvd, Seventh Floor, Los Angeles, CA, 90095, USA
| | - Robert M Prins
- Department of Neurosurgery, University of California, Los Angeles, 300 Stein Plaza, Los Angeles, CA, 90095, USA
| | - Linda M Liau
- Department of Neurosurgery, University of California, Los Angeles, 300 Stein Plaza, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, 8-684 Factor Building, Los Angeles, CA, 90095, USA
| | - Leia Nghiemphu
- Department of Neurology, University of California, Los Angeles, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Albert Lai
- Department of Neurology, University of California, Los Angeles, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Timothy F Cloughesy
- Department of Neurology, University of California, Los Angeles, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - William H Yong
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, 924 Westwood Blvd, Seventh Floor, Los Angeles, CA, 90095, USA
| | - Lynn K Gordon
- Department of Ophthalmology, University of California, Los Angeles, 100 Stein Plaza, Los Angeles, CA, 90095, USA
| | - Madhuri Wadehra
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, 924 Westwood Blvd, Seventh Floor, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, 8-684 Factor Building, Los Angeles, CA, 90095, USA
| | - Isaac Yang
- Department of Neurosurgery, University of California, Los Angeles, 300 Stein Plaza, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, 8-684 Factor Building, Los Angeles, CA, 90095, USA.
| |
Collapse
|
35
|
Chung LK, Bhatt NS, Lagman C, Pelargos PE, Qin Y, Gordon LK, Wadehra M, Yang I. Epithelial membrane protein 2: Molecular interactions and clinical implications. J Clin Neurosci 2017; 44:84-88. [PMID: 28720310 DOI: 10.1016/j.jocn.2017.06.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/19/2017] [Indexed: 12/15/2022]
Abstract
Epithelial membrane protein 2 (EMP2) is a cell surface protein that has recently emerged as an object of neuro-oncological interest due to its potential to be utilized as a biomarker and target for antibody therapies. Preclinical studies have demonstrated that EMP2 is associated with disease prognosis in a number of human cancers, including glioblastoma. The four large extracellular domains of EMP2 and its association with the extracellular matrix makes it an attractive target for future cancer therapies. Translational research suggests that EMP2 may be targeted with antibodies to improve tumor control and survival in a variety of murine models and cancer types. However, in order to translate these preclinical findings into the clinic, future research will need to focus on elucidating the role EMP2 in the normal human body by better understanding its molecular and chemical interactions. The focus of this review is to provide a comprehensive insight into current research endeavors, discuss the potential for clinically translatable applications, and predict the future directions of such research.
Collapse
Affiliation(s)
- Lawrance K Chung
- Department of Neurosurgery, University of California, Los Angeles, 300 Stein Plaza, Suite 420, Los Angeles, CA 90095, USA
| | - Nikhilesh S Bhatt
- Department of Neurosurgery, University of California, Los Angeles, 300 Stein Plaza, Suite 420, Los Angeles, CA 90095, USA
| | - Carlito Lagman
- Department of Neurosurgery, University of California, Los Angeles, 300 Stein Plaza, Suite 420, Los Angeles, CA 90095, USA
| | - Panayiotis E Pelargos
- Department of Neurosurgery, University of California, Los Angeles, 300 Stein Plaza, Suite 420, Los Angeles, CA 90095, USA
| | - Yu Qin
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, 924 Westwood Blvd, Seventh Floor, Los Angeles, CA 90095, USA
| | - Lynn K Gordon
- Department of Ophthalmology, University of California, Los Angeles, 100 Stein Plaza, Los Angeles, CA 90095, USA
| | - Madhuri Wadehra
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, 924 Westwood Blvd, Seventh Floor, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, 200 UCLA Medical Plaza, Suite B265, Los Angeles, CA 90095, USA
| | - Isaac Yang
- Department of Neurosurgery, University of California, Los Angeles, 300 Stein Plaza, Suite 420, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, 200 UCLA Medical Plaza, Suite B265, Los Angeles, CA 90095, USA; Department of Radiation Oncology, University of California, Los Angeles, 200 UCLA Medical Plaza, Suite B265, Los Angeles, CA 90095, USA; Department of Head and Neck Surgery, University of California, Los Angeles, 200 UCLA Medical Plaza, Suite 550, Los Angeles, CA 90095, USA.
| |
Collapse
|
36
|
Williams CJ, Chu A, Jefferson WN, Casero D, Sudhakar D, Khurana N, Hogue CP, Aryasomayajula C, Patel P, Sullivan P, Padilla-Banks E, Mohandessi S, Janzen C, Wadehra M. Epithelial membrane protein 2 (EMP2) deficiency alters placental angiogenesis, mimicking features of human placental insufficiency. J Pathol 2017; 242:246-259. [PMID: 28295343 DOI: 10.1002/path.4893] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 02/07/2017] [Accepted: 02/23/2017] [Indexed: 01/21/2023]
Abstract
Epithelial membrane protein-2 (EMP2) is a tetraspan protein predicted to regulate placental development. Highly expressed in secretory endometrium and trophectoderm cells, previous studies suggest that it may regulate implantation by orchestrating the surface expression of integrins and other membrane proteins. In order to test the role of EMP2 in pregnancy, mice lacking EMP2 (Emp2-/- ) were generated. Emp2-/- females are fertile but have reduced litter sizes when carrying Emp2-/- but not Emp2+/- fetuses. Placentas of Emp2-/- fetuses exhibit dysregulation in pathways related to neoangiogenesis, coagulation, and oxidative stress, and have increased fibrin deposition and altered vasculature. Given that these findings often occur due to placental insufficiency resulting in an oxygen-poor environment, the expression of hypoxia-inducible factor-1 alpha (HIF-1α) was examined. Placentas from Emp2-/- fetuses had increased total HIF-1α expression in large part through an increase in uterine NK (uNK) cells, demonstrating a unique interplay between uNK cells and trophoblasts modulated through EMP2. To determine if these results translated to human pregnancy, placentas from normal, term deliveries or those complicated by placental insufficiency resulting in intrauterine growth restriction (IUGR) were stained for EMP2. EMP2 was significantly reduced in both villous and extravillous trophoblast populations in IUGR placentas. Experiments in vitro using human trophoblast cells lines indicate that EMP2 modulates angiogenesis by altering HIF-1α expression. Our results reveal a novel role for EMP2 in regulating trophoblast function and vascular development in mice and humans, and suggest that it may be a new biomarker for placental insufficiency. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Carmen J Williams
- Reproductive Medicine Group, Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Alison Chu
- Department of Pediatrics and Neonatology, Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Wendy N Jefferson
- Reproductive Medicine Group, Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - David Casero
- Department of Pathology and Laboratory Medicine, Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Deepthi Sudhakar
- Department of Pathology and Laboratory Medicine, Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Nevil Khurana
- Department of Pathology and Laboratory Medicine, Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Claire P Hogue
- Department of Pathology and Laboratory Medicine, Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Chinmayi Aryasomayajula
- Department of Pathology and Laboratory Medicine, Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Priya Patel
- Department of Pathology and Laboratory Medicine, Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Peggy Sullivan
- Department of Pathology and Laboratory Medicine, Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Elizabeth Padilla-Banks
- Reproductive Medicine Group, Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Shabnam Mohandessi
- Department of Pathology and Laboratory Medicine, Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Carla Janzen
- Obstetrics and Gynecology, Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Madhuri Wadehra
- Department of Pathology and Laboratory Medicine, Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.,Jonsson Comprehensive Cancer Center, Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| |
Collapse
|
37
|
Wang YW, Cheng HL, Ding YR, Chou LH, Chow NH. EMP1, EMP 2, and EMP3 as novel therapeutic targets in human cancer. Biochim Biophys Acta Rev Cancer 2017; 1868:199-211. [PMID: 28408326 DOI: 10.1016/j.bbcan.2017.04.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/15/2017] [Accepted: 04/08/2017] [Indexed: 02/09/2023]
Abstract
The epithelial membrane protein genes 1, 2, and 3 (EMP1, EMP2, and EMP3) belong to the peripheral myelin protein 22-kDa (PMP22) gene family, which consists of at least seven members: PMP22, EMP1, EMP2, EMP3, PERP, brain cell membrane protein 1, and MP20. This review addresses the structural and functional features of EMPs, detailing their tissue distribution and functions in the human body, their expression pattern in a variety of tumors, and highlighting the underlying mechanisms involved in carcinogenesis. The implications in cancer biology, patient prognosis prediction, and potential application in disease therapy are discussed. For example, EMP1 was reported to be a biomarker of gefitinib resistance in lung cancer and contributes to prednisolone resistance in acute lymphoblastic leukemia patients. EMP2 functions as an oncogene in human endometrial and ovarian cancers; however, characteristics of EMP2 in urothelial cancer fulfill the criteria of a suppressor gene. Of particular interest, EMP3 overexpression in breast cancer is significantly related to strong HER-2 expression. Co-expression of HER-2 and EMP3 is the most important indicator of progression-free and metastasis-free survival for patients with urothelial carcinoma of the upper urinary tract. Altogether, discovery of pharmacological inhibitors and/or regulators of EMP protein activity could open novel strategies for enhanced therapy against EMP-mediated human diseases.
Collapse
Affiliation(s)
- Yi-Wen Wang
- Department of Pathology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Hong-Ling Cheng
- National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | - Ya-Rou Ding
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Lien-Hsuan Chou
- School of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
| | - Nan-Haw Chow
- Department of Pathology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
38
|
Lee EJ, Park MK, Kim HJ, Kim EJ, Kang GJ, Byun HJ, Lee CH. Epithelial membrane protein 2 regulates sphingosylphosphorylcholine-induced keratin 8 phosphorylation and reorganization: Changes of PP2A expression by interaction with alpha4 and caveolin-1 in lung cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1157-69. [PMID: 26876307 DOI: 10.1016/j.bbamcr.2016.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 02/06/2016] [Accepted: 02/09/2016] [Indexed: 12/13/2022]
Abstract
Sphingosylphosphorylcholine (SPC) is found at increased in the malignant ascites of tumor patients and induces perinuclear reorganization of keratin 8 (K8) filaments that contribute to the viscoelasticity of metastatic cancer cells. However, the detailed mechanism of SPC-induced K8 phosphorylation and reorganization is not clear. We observed that SPC dose-dependently reduced the expression of epithelial membrane protein 2 (EMP2) in lung cancer cells. Then, we examined the role of EMP2 in SPC-induced phosphorylation and reorganization of K8 in lung cancer cells. We found that SPC concentration-dependently reduced EMP2 in A549, H1299, and other lung cancer cells. This was verified at the mRNA level by RT-PCR and real-time PCR (qPCR), and intracellular variation through confocal microscopy. EMP2 gene silencing and stable lung cancer cell lines established using EMP2 lentiviral shRNA induced K8 phosphorylation and reorganization. EMP2 overexpression reduced K8 phosphorylation and reorganization. We also observed that SPC-induced loss of EMP2 induces phosphorylation of JNK and ERK via reduced expression of protein phosphatase 2A (PP2A). Loss of EMP2 induces ubiquitination of protein phosphatase 2A (PP2A). SPC induced caveolin-1 (cav-1) expression and EEA1 endosome marker protein but not cav-2. SPC treatment enhanced the binding of cav-1 and PP2A and lowered binding of PP2A and alpha4. Gene silencing of EMP2 increased and gene silencing of cav-1 reduced migration of A549 lung cancer cells. Overall, these results suggest that SPC induces EMP2 down-regulation which reduces the PP2A via ubiquitination induced by cav-1, which sequestered alpha4, leading to the activation of ERK and JNK.
Collapse
Affiliation(s)
- Eun Ji Lee
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| | - Mi Kyung Park
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| | - Hyun Ji Kim
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| | - Eun Ji Kim
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| | - Gyeoung-Jin Kang
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| | - Hyun Jung Byun
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| | - Chang Hoon Lee
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea.
| |
Collapse
|
39
|
Buhtoiarova TN, Brenner CA, Singh M. Endometrial Carcinoma: Role of Current and Emerging Biomarkers in Resolving Persistent Clinical Dilemmas. Am J Clin Pathol 2016; 145:8-21. [PMID: 26712866 DOI: 10.1093/ajcp/aqv014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES Type II and other high-grade endometrial carcinomas may challenge conventional treatment due to recurrence and metastatic spread and therefore are a persistent clinical dilemma. Effective targeted therapy for these is a goal for clinicians and researchers alike. METHODS An extensive review of the literature has been performed for obtaining an in-depth understanding of the clinicopathological characteristics, etiologic factors, and molecular profile of these subsets of endometrial carcinoma. Progress made with current and emerging biomarkers for prognosis assessment and therapeutic targeting has been summarized. RESULTS There has been a significant increase in research on potential biomarkers of endometrial cancer, and beneficial targeted therapies have been identified. CONCLUSIONS Clinical trials are leading the charge for substantial gains toward personalized treatment of aggressive endometrial carcinoma subtypes.
Collapse
Affiliation(s)
| | - Carol A Brenner
- Office of the Vice Dean for Faculty Affairs and Faculty Development, Stony Brook University School of Medicine, State University of New York at Stony Brook, Stony Brook
| | - Meenakshi Singh
- From the Department of Pathology Department of Pathology, University of Kansas School of Medicine, Kansas City.
| |
Collapse
|
40
|
Sianou A, Galyfos G, Moragianni D, Andromidas P, Kaparos G, Baka S, Kouskouni E. The role of microRNAs in the pathogenesis of endometrial cancer: a systematic review. Arch Gynecol Obstet 2015; 292:271-82. [PMID: 25697925 DOI: 10.1007/s00404-015-3660-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 02/09/2015] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Epigenetics seem to play a primary role in the current research on the pathogenesis of different types of endometrial cancer. Data so far indicate that microRNAs regulate different pathways that could lead to carcinogenesis when not functioning properly. The aim of this review is to summarize current knowledge on microRNAs that have been associated with endometrial cancer development. MATERIAL AND METHODS From July 2014 to August 2014, we conducted a comprehensive research utilizing major online search engines (Pubmed, Crossref, Google Scholar). The main keywords used in our search were endometrial cancer/carcinoma; microRNA; epigenetics; novel biomarkers; pathogenesis. RESULTS Overall, we identified 155 studies, although only 77 were eligible for this review. Different miRNAs were identified to contribute either promoting the carcinogenesis in the endometrium or inhibiting different steps of endometrial cancer development. Tumour growth, cell proliferation, apoptosis and invasion metastasis have been identified as the main processes where miRNAs seem to be implicated. CONCLUSIONS microRNAs are effective regulators of gene expression that has a significant role in the pathogenesis of endometrial cancer. Research concerning possible therapeutic implications has been promising, although there is still a significant distance to be covered between research observations and clinical results. Extensive preclinical and translational research is still required to improve the efficacy and minimize unwanted effects of miRNAs-based therapy.
Collapse
Affiliation(s)
- Argiri Sianou
- Department of Microbiology, Areteion Hospital, University of Athens Medical School, Athens, Greece,
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The GAS3 family of tetraspan proteins has recently been implicated in the progression of cancer. Currently, six members of the GAS3 family have been identified in humans and mice, and while their expressions in disease vary, data suggest that they play a role in epithelial cell structure and function. In this review, we highlight the studies implicating four of the members in disease pathogenesis as well as probe the structural similarities between the family members. Finally, the impact of targeting select members of the family such as PMP22 and EMP2 is discussed.
Collapse
Affiliation(s)
- Negin Ashki
- Department of Ophthalmology, Jules Stein Eye Institute, Los Angeles, CA
| | - Lynn Gordon
- Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Madhuri Wadehra
- Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Address all correspondence to: Madhuri Wadehra, PhD, Pathology and Lab Medicine, 14-127 Center for Health Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095; Tel.: 310-825-1590; Fax: 310-825-5674;
| |
Collapse
|
42
|
Qin Y, Fu M, Takahashi M, Iwanami A, Kuga D, Rao RG, Sudhakar D, Huang T, Kiyohara M, Torres K, Dillard C, Inagaki A, Kasahara N, Goodglick L, Braun J, Mischel PS, Gordon LK, Wadehra M. Epithelial membrane protein-2 (EMP2) activates Src protein and is a novel therapeutic target for glioblastoma. J Biol Chem 2014; 289:13974-85. [PMID: 24644285 DOI: 10.1074/jbc.m113.543728] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Despite recent advances in molecular classification, surgery, radiotherapy, and targeted therapies, the clinical outcome of patients with malignant brain tumors remains extremely poor. In this study, we have identified the tetraspan protein epithelial membrane protein-2 (EMP2) as a potential target for glioblastoma (GBM) killing. EMP2 had low or undetectable expression in normal brain but was highly expressed in GBM as 95% of patients showed some expression of the protein. In GBM cells, EMP2 enhanced tumor growth in vivo in part by up-regulating αvβ3 integrin surface expression, activating focal adhesion kinase and Src kinases, and promoting cell migration and invasion. Consistent with these findings, EMP2 expression significantly correlated with activated Src kinase in patient samples and promoted tumor cell invasion using intracranial mouse models. As a proof of principle to determine whether EMP2 could serve as a target for therapy, cells were treated using specific anti-EMP2 antibody reagents. These reagents were effective in killing GBM cells in vitro and in reducing tumor load in subcutaneous mouse models. These results support the role of EMP2 in the pathogenesis of GBM and suggest that anti-EMP2 treatment may be a novel therapeutic treatment.
Collapse
Affiliation(s)
- Yu Qin
- From the Departments of Ophthalmology and
| | | | - Masamichi Takahashi
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095 and
| | | | | | | | | | | | | | | | | | - Akihito Inagaki
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095 and
| | - Noriyuki Kasahara
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095 and
| | - Lee Goodglick
- Pathology and Laboratory Medicine, Jonsson Comprehensive Cancer Center, and
| | - Jonathan Braun
- Pathology and Laboratory Medicine, Jonsson Comprehensive Cancer Center, and
| | - Paul S Mischel
- the Ludwig Institute for Cancer Research, Department of Pathology, University of California at San Diego, La Jolla, California 92093
| | | | - Madhuri Wadehra
- Pathology and Laboratory Medicine, Jonsson Comprehensive Cancer Center, and
| |
Collapse
|
43
|
Fu M, Maresh EL, Helguera GF, Kiyohara M, Qin Y, Ashki N, Daniels-Wells TR, Aziz N, Gordon LK, Braun J, Elshimali Y, Soslow RA, Penichet ML, Goodglick L, Wadehra M. Rationale and preclinical efficacy of a novel anti-EMP2 antibody for the treatment of invasive breast cancer. Mol Cancer Ther 2014; 13:902-15. [PMID: 24448822 DOI: 10.1158/1535-7163.mct-13-0199] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite significant advances in biology and medicine, the incidence and mortality due to breast cancer worldwide is still unacceptably high. Thus, there is an urgent need to discover new molecular targets. In this article, we show evidence for a novel target in human breast cancer, the tetraspan protein epithelial membrane protein-2 (EMP2). Using tissue tumor arrays, protein expression of EMP2 was measured and found to be minimal in normal mammary tissue, but it was upregulated in 63% of invasive breast cancer tumors and in 73% of triple-negative tumors tested. To test the hypothesis that EMP2 may be a suitable target for therapy, we constructed a fully human immunoglobulin G1 (IgG1) antibody specific for a conserved domain of human and murine EMP2. Treatment of breast cancer cells with the anti-EMP2 IgG1 significantly inhibited EMP2-mediated signaling, blocked FAK/Src signaling, inhibited invasion, and promoted apoptosis in vitro. In both human xenograft and syngeneic metastatic tumor monotherapy models, anti-EMP2 IgG1 retarded tumor growth without detectable systemic toxicity. This antitumor effect was, in part, attributable to a potent antibody-dependent cell-mediated cytotoxicity response as well as direct cytotoxicity induced by the monoclonal antibody. Together, these results identify EMP2 as a novel therapeutic target for invasive breast cancer.
Collapse
Affiliation(s)
- Maoyong Fu
- Authors' Affiliations: Departments of Pathology and Laboratory Medicine, Surgery, Division of Surgical Oncology, Ophthalmology, and Microbiology, Immunology, and Molecular Genetics, and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA; Department of Surgery, Greater Los Angeles Veterans Affairs Healthcare System; Department of Pathology, Charles Drew University, Los Angeles, California; Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York; and Institute of Experimental Biology and Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Liu T, Du X, Sheng X. Gene expression changes after ionizing radiation in endothelial cells derived from human endometrial cancer-preliminary outcomes. Arch Gynecol Obstet 2014; 289:1315-23. [PMID: 24385285 DOI: 10.1007/s00404-013-3136-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 12/16/2013] [Indexed: 01/09/2023]
Abstract
BACKGROUND Accumulating evidence has demonstrated that death of microvascular endothelial cells plays a decisive role in the tumor response against radiotherapy. Nevertheless, radiation-induced gene alterations on cancer-associated endothelial cells of human endometrial carcinoma remain poorly understood. The purpose of this study was to elucidate the gene expression changes after X-ray radiation in human endometrial carcinoma vascular endothelial cells and to provide new targets for combined treatment of radiation and anti-angiogenesis in human endometrial carcinoma. MATERIALS AND METHODS Endometrial cancer-derived endothelial cells, which obtained before and 4 h after 400 cGy X-ray radiation from four endometrial carcinomas, were analyzed by gene expression profile. The selected meaningful genes from gene microarray experiments were validated by real-time quantitative PCR. RESULTS Microarray analyses showed 49 significantly changed genes which were common to all the microarray experiments. There into, 14 genes were found to be in persistent up-regulation and 14 in persistent down-regulation 4 h after X-ray radiation when compared with the control group. These genes were involved in cell cycle and growth regulation, cell-apoptosis, chemokine, cell signaling, cellular stress response, angiogenesis, DNA synthesis and repair and cell adhesion. Eight randomly selected genes were validated by real-time PCR. DISCUSSION The genes of cancer-derived endothelial cells regulated by X-ray radiation as well as their related signal pathways, which obtained from gene expression profiling data, were relevant to radiosensitivity of endometrial cancer. This study shows that the identified genes and their related signaling pathways are candidated biomarkers for radiation and anti-angiogenesis of human endometrial carcinoma.
Collapse
Affiliation(s)
- Ting Liu
- Department of Gynecologic Oncology, Shandong Cancer Hospital, Jinan, 250117, Shandong, People's Republic of China
| | | | | |
Collapse
|
45
|
Esser-von Bieren J, Mosconi I, Guiet R, Piersgilli A, Volpe B, Chen F, Gause WC, Seitz A, Verbeek JS, Harris NL. Antibodies trap tissue migrating helminth larvae and prevent tissue damage by driving IL-4Rα-independent alternative differentiation of macrophages. PLoS Pathog 2013; 9:e1003771. [PMID: 24244174 PMCID: PMC3828184 DOI: 10.1371/journal.ppat.1003771] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 10/02/2013] [Indexed: 12/18/2022] Open
Abstract
Approximately one-third of the world's population suffers from chronic helminth infections with no effective vaccines currently available. Antibodies and alternatively activated macrophages (AAM) form crucial components of protective immunity against challenge infections with intestinal helminths. However, the mechanisms by which antibodies target these large multi-cellular parasites remain obscure. Alternative activation of macrophages during helminth infection has been linked to signaling through the IL-4 receptor alpha chain (IL-4Rα), but the potential effects of antibodies on macrophage differentiation have not been explored. We demonstrate that helminth-specific antibodies induce the rapid trapping of tissue migrating helminth larvae and prevent tissue necrosis following challenge infection with the natural murine parasite Heligmosomoides polygyrus bakeri (Hp). Mice lacking antibodies (JH−/−) or activating Fc receptors (FcRγ−/−) harbored highly motile larvae, developed extensive tissue damage and accumulated less Arginase-1 expressing macrophages around the larvae. Moreover, Hp-specific antibodies induced FcRγ- and complement-dependent adherence of macrophages to larvae in vitro, resulting in complete larval immobilization. Antibodies together with helminth larvae reprogrammed macrophages to express wound-healing associated genes, including Arginase-1, and the Arginase-1 product L-ornithine directly impaired larval motility. Antibody-induced expression of Arginase-1 in vitro and in vivo occurred independently of IL-4Rα signaling. In summary, we present a novel IL-4Rα-independent mechanism of alternative macrophage activation that is antibody-dependent and which both mediates anti-helminth immunity and prevents tissue disruption caused by migrating larvae. Intestinal helminths present a pressing problem in developing countries with approximately 2 billion people suffering from chronic infection. To date no successful vaccines are available and a detailed mechanistic understanding of anti-helminth immunity is urgently needed to improve strategies for prevention and therapy. Antibodies form a crucial component of protective immunity against challenge infections with intestinal helminths. However, the exact mechanisms by which antibodies target these large multi-cellular parasites have remained obscure. We now demonstrate that helminth-specific antibodies induce the rapid trapping of tissue migrating helminth larvae by activating phagocytes. In the absence of antibodies or their receptors, helminth-infected mice developed extensive tissue damage, revealing a novel role for antibodies in limiting parasite-caused tissue disruption. Furthermore, helminth-specific antibodies reprogrammed macrophages to express wound-healing factors such as the arginine-metabolizing enzyme Arginase-1. Interestingly, the Arginase-1 product L-ornithine directly impaired the motility of helminth larvae. In summary, our study provides detailed mechanistic insights into how antibodies can modulate phagocyte function to provide protection against a large multi-cellular parasite. Our findings suggest that novel anti-helminth vaccines should target the larval surface and activate wound-healing macrophages to provide rapid protection against tissue-disruptive larvae.
Collapse
Affiliation(s)
- Julia Esser-von Bieren
- Swiss Vaccine Research Institute and Global Health Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ilaria Mosconi
- Swiss Vaccine Research Institute and Global Health Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Romain Guiet
- Bioimaging and Optics Core Facility, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Beatrice Volpe
- Swiss Vaccine Research Institute and Global Health Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Fei Chen
- Center for Immunity and Inflammation, New Jersey Medical School, Newark, New Jersey, United States of America
| | - William C. Gause
- Center for Immunity and Inflammation, New Jersey Medical School, Newark, New Jersey, United States of America
| | - Arne Seitz
- Bioimaging and Optics Core Facility, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - J. Sjef Verbeek
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Nicola L. Harris
- Swiss Vaccine Research Institute and Global Health Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- * E-mail:
| |
Collapse
|