1
|
Kim Y, Kim EK, Chey Y, Song MJ, Jang HH. Targeted Protein Degradation: Principles and Applications of the Proteasome. Cells 2023; 12:1846. [PMID: 37508510 PMCID: PMC10378610 DOI: 10.3390/cells12141846] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The proteasome is a multi-catalytic protease complex that is involved in protein quality control via three proteolytic activities (i.e., caspase-, trypsin-, and chymotrypsin-like activities). Most cellular proteins are selectively degraded by the proteasome via ubiquitination. Moreover, the ubiquitin-proteasome system is a critical process for maintaining protein homeostasis. Here, we briefly summarize the structure of the proteasome, its regulatory mechanisms, proteins that regulate proteasome activity, and alterations to proteasome activity found in diverse diseases, chemoresistant cells, and cancer stem cells. Finally, we describe potential therapeutic modalities that use the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Yosup Kim
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Eun-Kyung Kim
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Yoona Chey
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Min-Jeong Song
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Ho Hee Jang
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
2
|
Roura AJ, Szadkowska P, Poleszak K, Dabrowski MJ, Ellert-Miklaszewska A, Wojnicki K, Ciechomska IA, Stepniak K, Kaminska B, Wojtas B. Regulatory networks driving expression of genes critical for glioblastoma are controlled by the transcription factor c-Jun and the pre-existing epigenetic modifications. Clin Epigenetics 2023; 15:29. [PMID: 36850002 PMCID: PMC9972689 DOI: 10.1186/s13148-023-01446-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM, WHO grade IV) is an aggressive, primary brain tumor. Despite extensive tumor resection followed by radio- and chemotherapy, life expectancy of GBM patients did not improve over decades. Several studies reported transcription deregulation in GBMs, but regulatory mechanisms driving overexpression of GBM-specific genes remain largely unknown. Transcription in open chromatin regions is directed by transcription factors (TFs) that bind to specific motifs, recruit co-activators/repressors and the transcriptional machinery. Identification of GBM-related TFs-gene regulatory networks may reveal new and targetable mechanisms of gliomagenesis. RESULTS We predicted TFs-regulated networks in GBMs in silico and intersected them with putative TF binding sites identified in the accessible chromatin in human glioma cells and GBM patient samples. The Cancer Genome Atlas and Glioma Atlas datasets (DNA methylation, H3K27 acetylation, transcriptomic profiles) were explored to elucidate TFs-gene regulatory networks and effects of the epigenetic background. In contrast to the majority of tumors, c-Jun expression was higher in GBMs than in normal brain and c-Jun binding sites were found in multiple genes overexpressed in GBMs, including VIM, FOSL2 or UPP1. Binding of c-Jun to the VIM gene promoter was stronger in GBM-derived cells than in cells derived from benign glioma as evidenced by gel shift and supershift assays. Regulatory regions of the majority of c-Jun targets have distinct DNA methylation patterns in GBMs as compared to benign gliomas, suggesting the contribution of DNA methylation to the c-Jun-dependent gene expression. CONCLUSIONS GBM-specific TFs-gene networks identified in GBMs differ from regulatory pathways attributed to benign brain tumors and imply a decisive role of c-Jun in controlling genes that drive glioma growth and invasion as well as a modulatory role of DNA methylation.
Collapse
Affiliation(s)
- Adria-Jaume Roura
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Paulina Szadkowska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Poleszak
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Michal J. Dabrowski
- Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
| | | | - Kamil Wojnicki
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Iwona A. Ciechomska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Karolina Stepniak
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Bartosz Wojtas
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
- Laboratory of Sequencing, Nencki Institute of Experimental Biology, ul. Ludwika Pasteura 3, 02-093 Warsaw, Poland
| |
Collapse
|
3
|
Baskaran Y, Tay FPL, Ng EYW, Swa CLF, Wee S, Gunaratne J, Manser E. Proximity proteomics identifies PAK4 as a component of Afadin-Nectin junctions. Nat Commun 2021; 12:5315. [PMID: 34493720 PMCID: PMC8423818 DOI: 10.1038/s41467-021-25011-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/08/2021] [Indexed: 02/07/2023] Open
Abstract
Human PAK4 is an ubiquitously expressed p21-activated kinase which acts downstream of Cdc42. Since PAK4 is enriched in cell-cell junctions, we probed the local protein environment around the kinase with a view to understanding its location and substrates. We report that U2OS cells expressing PAK4-BirA-GFP identify a subset of 27 PAK4-proximal proteins that are primarily cell-cell junction components. Afadin/AF6 showed the highest relative biotin labelling and links to the nectin family of homophilic junctional proteins. Reciprocally >50% of the PAK4-proximal proteins were identified by Afadin BioID. Co-precipitation experiments failed to identify junctional proteins, emphasizing the advantage of the BioID method. Mechanistically PAK4 depended on Afadin for its junctional localization, which is similar to the situation in Drosophila. A highly ranked PAK4-proximal protein LZTS2 was immuno-localized with Afadin at cell-cell junctions. Though PAK4 and Cdc42 are junctional, BioID analysis did not yield conventional cadherins, indicating their spatial segregation. To identify cellular PAK4 substrates we then assessed rapid changes (12') in phospho-proteome after treatment with two PAK inhibitors. Among the PAK4-proximal junctional proteins seventeen PAK4 sites were identified. We anticipate mammalian group II PAKs are selective for the Afadin/nectin sub-compartment, with a demonstrably distinct localization from tight and cadherin junctions.
Collapse
Affiliation(s)
- Yohendran Baskaran
- sGSK Group, Institute of Molecular & Cell Biology, A*STAR, Singapore, Singapore
| | - Felicia Pei-Ling Tay
- FB Laboratory, Institute of Molecular & Cell Biology, A*STAR, Singapore, Singapore
| | - Elsa Yuen Wai Ng
- sGSK Group, Institute of Molecular & Cell Biology, A*STAR, Singapore, Singapore
| | - Claire Lee Foon Swa
- Quantitative Proteomics Group, Institute of Molecular & Cell Biology, Singapore, Singapore
| | - Sheena Wee
- Quantitative Proteomics Group, Institute of Molecular & Cell Biology, Singapore, Singapore
| | - Jayantha Gunaratne
- Quantitative Proteomics Group, Institute of Molecular & Cell Biology, Singapore, Singapore
| | - Edward Manser
- sGSK Group, Institute of Molecular & Cell Biology, A*STAR, Singapore, Singapore.
- Department of Pharmacology, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
4
|
Ong T, Trivedi N, Wakefield R, Frase S, Solecki DJ. Siah2 integrates mitogenic and extracellular matrix signals linking neuronal progenitor ciliogenesis with germinal zone occupancy. Nat Commun 2020; 11:5312. [PMID: 33082319 PMCID: PMC7576183 DOI: 10.1038/s41467-020-19063-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
Evidence is lacking as to how developing neurons integrate mitogenic signals with microenvironment cues to control proliferation and differentiation. We determine that the Siah2 E3 ubiquitin ligase functions in a coincidence detection circuit linking responses to the Shh mitogen and the extracellular matrix to control cerebellar granule neurons (CGN) GZ occupancy. We show that Shh signaling maintains Siah2 expression in CGN progenitors (GNPs) in a Ras/Mapk-dependent manner. Siah2 supports ciliogenesis in a feed-forward fashion by restraining cilium disassembly. Efforts to identify sources of the Ras/Mapk signaling led us to discover that GNPs respond to laminin, but not vitronectin, in the GZ microenvironment via integrin β1 receptors, which engages the Ras/Mapk cascade with Shh, and that this niche interaction is essential for promoting GNP ciliogenesis. As GNPs leave the GZ, differentiation is driven by changing extracellular cues that diminish Siah2-activity leading to primary cilia shortening and attenuation of the mitogenic response. In neural development, progenitors transition from a proliferative to a differentiated state. Here, the authors show that cerebellar granule neurons retract primary cilia as they exit their proliferative niche upon decreased ECM engagement, enabling radial migration due to loss of Shh sensitivity.
Collapse
Affiliation(s)
- Taren Ong
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Niraj Trivedi
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Randall Wakefield
- Cell and Tissue Imaging Center-EM, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Sharon Frase
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - David J Solecki
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
5
|
Li H, Xu X, Wang D, Zeng L, Li B, Zhang Y, Su S, Wei L, You H, Fang Y, Wang Y, Liu Y. miR-146b-5p regulates bone marrow mesenchymal stem cell differentiation by SIAH2/PPARγ in aplastic anemia children and benzene-induced aplastic anemia mouse model. Cell Cycle 2020; 19:2460-2471. [PMID: 32840137 PMCID: PMC7553565 DOI: 10.1080/15384101.2020.1807081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 07/16/2020] [Accepted: 07/23/2020] [Indexed: 12/26/2022] Open
Abstract
This study aimed to reveal the mechanism of miR-146b-5p in the differentiation of bone marrow mesenchymal stem cells (BMSCs) derived from children with aplastic anemia (AA). Here, we found that miR-146b-5p was highly expressed in BMSCs from children with AA, and the BMSCs surface markers expressions in BMSCs derived from children with AA and the healthy controls exerted no significant differences. Besides, the overexpression of miR-146b-5p in normal human-derived BMSCs promoted the adipogenic differentiation of BMSCs. Furthermore, miR-146b-5p negatively regulated SIAH2 luciferase activity, and the interference with miR-146b-5p reduced the stability of PPARγ protein and inhibited SIAH2-mediated ubiquitination of PPARγ protein. Besides, the interference with miR-146b-5p was beneficial for ameliorating AA in a mouse model of AA. Overall, our results found that miR-146b-5p was highly expressed in BMSCs from children with AA, and our further studies indicated that miR-146b-5p improved AA via promoting SIAH2-mediated ubiquitination of PPARγ protein.
Collapse
Affiliation(s)
- Huanhuan Li
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xueju Xu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dao Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Zeng
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bai Li
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuan Zhang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shufang Su
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Linlin Wei
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongliang You
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingqi Fang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingchao Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yufeng Liu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Scortegagna M, Hockemeyer K, Dolgalev I, Poźniak J, Rambow F, Li Y, Feng Y, Tinoco R, Otero DC, Zhang T, Brown K, Bosenberg M, Bradley LM, Marine JC, Aifantis I, Ronai ZA. Siah2 control of T-regulatory cells limits anti-tumor immunity. Nat Commun 2020; 11:99. [PMID: 31911617 PMCID: PMC6946684 DOI: 10.1038/s41467-019-13826-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 11/28/2019] [Indexed: 12/23/2022] Open
Abstract
Understanding the mechanisms underlying anti-tumor immunity is pivotal for improving immune-based cancer therapies. Here, we report that growth of BRAF-mutant melanoma cells is inhibited, up to complete rejection, in Siah2-/- mice. Growth-inhibited tumors exhibit increased numbers of intra-tumoral activated T cells and decreased expression of Ccl17, Ccl22, and Foxp3. Marked reduction in Treg proliferation and tumor infiltration coincide with G1 arrest in tumor infiltrated Siah2-/- Tregs in vivo or following T cell stimulation in culture, attributed to elevated expression of the cyclin-dependent kinase inhibitor p27, a Siah2 substrate. Growth of anti-PD-1 therapy resistant melanoma is effectively inhibited in Siah2-/- mice subjected to PD-1 blockade, indicating synergy between PD-1 blockade and Siah2 loss. Low SIAH2 and FOXP3 expression is identified in immune responsive human melanoma tumors. Overall, Siah2 regulation of Treg recruitment and cell cycle progression effectively controls melanoma development and Siah2 loss in the host sensitizes melanoma to anti-PD-1 therapy.
Collapse
Affiliation(s)
- Marzia Scortegagna
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA.
| | - Kathryn Hockemeyer
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, 10016, USA
| | - Igor Dolgalev
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, 10016, USA
| | - Joanna Poźniak
- VIB Center for Cancer Biology Laboratory for Molecular Cancer Biology, KU Leuven Oncology Department, Leuven, Belgium
| | - Florian Rambow
- VIB Center for Cancer Biology Laboratory for Molecular Cancer Biology, KU Leuven Oncology Department, Leuven, Belgium
| | | | - Yongmei Feng
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Roberto Tinoco
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA.,Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, 92697, USA
| | - Dennis C Otero
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Kevin Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Marcus Bosenberg
- Departments of Dermatology, Pathology, Yale University, School of Medicine, New Haven, CT, 06520, USA
| | - Linda M Bradley
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Jean-Christophe Marine
- VIB Center for Cancer Biology Laboratory for Molecular Cancer Biology, KU Leuven Oncology Department, Leuven, Belgium
| | - Ioannis Aifantis
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, 10016, USA.
| | - Ze'ev A Ronai
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
7
|
Identification and characterization of small molecule inhibitors of the ubiquitin ligases Siah1/2 in melanoma and prostate cancer cells. Cancer Lett 2019; 449:145-162. [PMID: 30771432 DOI: 10.1016/j.canlet.2019.02.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/10/2018] [Accepted: 02/10/2019] [Indexed: 12/12/2022]
Abstract
Inhibition of ubiquitin ligases with small molecule remains a very challenging task, given the lack of catalytic activity of the target and the requirement of disruption of its interactions with other proteins. Siah1/2, which are E3 ubiquitin ligases, are implicated in melanoma and prostate cancer and represent high-value drug targets. We utilized three independent screening approaches in our efforts to identify small-molecule Siah1/2 inhibitors: Affinity Selection-Mass Spectrometry, a protein thermal shift-based assay and an in silico based screen. Inhibitors were assessed for their effect on viability of melanoma and prostate cancer cultures, colony formation, prolyl-hydroxylase-HIF1α signaling, expression of selected Siah2-related transcripts, and Siah2 ubiquitin ligase activity. Several analogs were further characterized, demonstrating improved efficacy. Combination of the top hits identified in the different assays demonstrated an additive effect, pointing to complementing mechanisms that underlie each of these Siah1/2 inhibitors.
Collapse
|
8
|
Cheng X, Zheng J, Li G, Göbel V, Zhang H. Degradation for better survival? Role of ubiquitination in epithelial morphogenesis. Biol Rev Camb Philos Soc 2018; 93:1438-1460. [PMID: 29493067 DOI: 10.1111/brv.12404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/31/2018] [Accepted: 02/05/2018] [Indexed: 02/06/2023]
Abstract
As a prevalent post-translational modification, ubiquitination is essential for many developmental processes. Once covalently attached to the small and conserved polypeptide ubiquitin (Ub), a substrate protein can be directed to perform specific biological functions via its Ub-modified form. Three sequential catalytic reactions contribute to this process, among which E3 ligases serve to identify target substrates and promote the activated Ub to conjugate to substrate proteins. Ubiquitination has great plasticity, with diverse numbers, topologies and modifications of Ub chains conjugated at different substrate residues adding a layer of complexity that facilitates a huge range of cellular functions. Herein, we highlight key advances in the understanding of ubiquitination in epithelial morphogenesis, with an emphasis on the latest insights into its roles in cellular events involved in polarized epithelial tissue, including cell adhesion, asymmetric localization of polarity determinants and cytoskeletal organization. In addition, the physiological roles of ubiquitination are discussed for typical examples of epithelial morphogenesis, such as lung branching, vascular development and synaptic formation and plasticity. Our increased understanding of ubiquitination in epithelial morphogenesis may provide novel insights into the molecular mechanisms underlying epithelial regeneration and maintenance.
Collapse
Affiliation(s)
- Xiaoxiang Cheng
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Gang Li
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Verena Göbel
- Department of Pediatrics, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114,, U.S.A
| | - Hongjie Zhang
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| |
Collapse
|
9
|
Scortegagna M, Berthon A, Settas N, Giannakou A, Garcia G, Li JL, James B, Liddington RC, Vilches-Moure JG, Stratakis CA, Ronai ZA. The E3 ubiquitin ligase Siah1 regulates adrenal gland organization and aldosterone secretion. JCI Insight 2017; 2:97128. [PMID: 29212953 DOI: 10.1172/jci.insight.97128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/19/2017] [Indexed: 01/07/2023] Open
Abstract
Primary and secondary hypertension are major risk factors for cardiovascular disease, the leading cause of death worldwide. Elevated secretion of aldosterone resulting from primary aldosteronism (PA) is a key driver of secondary hypertension. Here, we report an unexpected role for the ubiquitin ligase Siah1 in adrenal gland development and PA. Siah1a-/- mice exhibit altered adrenal gland morphology, as reflected by a diminished X-zone, enlarged medulla, and dysregulated zonation of the glomerulosa as well as increased aldosterone levels and aldosterone target gene expression and reduced plasma potassium levels. Genes involved in catecholamine biosynthesis and cAMP signaling are upregulated in the adrenal glands of Siah1a-/- mice, while genes related to retinoic acid signaling and cholesterol biosynthesis are downregulated. Loss of Siah1 leads to increased expression of the Siah1 substrate PIAS1, an E3 SUMO protein ligase implicated in the suppression of LXR, a key regulator of cholesterol levels in the adrenal gland. In addition, SIAH1 sequence variants were identified in patients with PA; such variants impaired SIAH1 ubiquitin ligase activity, resulting in elevated PIAS1 expression. These data identify a role for the Siah1-PIAS1 axis in adrenal gland organization and function and point to possible therapeutic targets for hyperaldosteronism.
Collapse
Affiliation(s)
- Marzia Scortegagna
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Annabel Berthon
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Nikolaos Settas
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Andreas Giannakou
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Guillermina Garcia
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Jian-Liang Li
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Brian James
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Robert C Liddington
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - José G Vilches-Moure
- Department of Comparative Medicine, Stanford University Medical Center, Stanford, California, USA
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Ze'ev A Ronai
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.,Technion Integrated Cancer Center, Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
10
|
Ong T, Solecki DJ. Seven in Absentia E3 Ubiquitin Ligases: Central Regulators of Neural Cell Fate and Neuronal Polarity. Front Cell Neurosci 2017; 11:322. [PMID: 29081737 PMCID: PMC5646344 DOI: 10.3389/fncel.2017.00322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/26/2017] [Indexed: 12/31/2022] Open
Abstract
During neural development, neural precursors transition from a proliferative state within their germinal niches to a migratory state as they relocate to their final laminar positions. Transitions across these states are coupled with dynamic alterations in cellular polarity. This key feature can be seen throughout the developing vertebrate brain, in which neural stem cells give rise to multipolar or unpolarized transit-amplifying progenitors. These transit-amplifying progenitors then expand to give rise to mature neuronal lineages that become polarized as they initiate radial migration to their final laminar positions. The conventional understanding of the cellular polarity regulatory program has revolved around signaling cascades and transcriptional networks. In this review, we discuss recent discoveries concerning the role of the Siah2 ubiquitin ligase in initiating neuronal polarity during cerebellar development. Given the unique features of Siah ubiquitin ligases, we highlight some of the key substrates that play important roles in cellular polarity and propose a function for the Siah ubiquitin proteasome pathway in mediating a post-translational regulatory network to control the onset of polarization.
Collapse
Affiliation(s)
- Taren Ong
- Cancer and Developmental Biology Track, Integrated Biomedical Sciences Graduate Program, University of Tennessee Health Science Center, Memphis, TN, United States.,Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - David J Solecki
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
11
|
Huang W, Li X, Cai L. Effects of ASPP2 on proliferation and apoptosis of malignant spinal tumor cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:8023-8030. [PMID: 31966654 PMCID: PMC6965233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 12/27/2016] [Indexed: 06/10/2023]
Abstract
Malignant spinal tumors have rapid progression and destruct spines or other tissues, leading to metastasis of peripheral organs, causing high difficulty for surgery, recurrence and worse prognosis, thus severely affecting patient life quality and survival period. Apoptosis stimulating protein 2 of p53 (ASSP2) is one member of p53 binding protein family pro-apoptotic member, and can enhance apoptotic activity via modulating p53 pathway. Previous study found critical roles of ASPP2 in occurrence and progression of tumors, whilst the functional role of mechanism of ASPP2 on malignant spinal tumor cells has not been illustrated. Malignant spinal tumor tissue and adjacent tissues were collected for testing ASPP2 mRNA and protein expression in real-time PCR and Western blot. ASPP2 over-expression vector was used to transfect tumor cells, whilst MTT assay was employed for tumor proliferation, followed by p53 expression in Western blot. Caspase 3 activity assay was employed for testing the effect on cell apoptosis. Flow cytometry was employed for tumor cell apoptosis. Real-time PCR tested expressional change of Bcl2 and Bax. ASPP2 mRNA/protein level was significantly depressed in malignant spinal tumor tissues (P<0.05 compared to adjacent tissues). ASPP2-overexpression vector transfection tumor cells increased apoptosis and inhibited proliferation, accompanied with lower Bcl-2, higher Bax, Caspase 3 and p53 (P<0.05 compared to control group). ASPP2 is down-regulated in malignant spinal tumor tissues. ASPP2 can inhibit malignant spinal tumor cell proliferation via mediating p53 expression for cell apoptosis, thus can work as one molecular target for tumor diagnosis and prognostic analysis.
Collapse
Affiliation(s)
- Wei Huang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan UniversityWuhan, Hubei, China
| | - Xinzhi Li
- Department of Orthopedics, Renhe Hospital of Three Gorges UniversityYichang, Hubei, China
| | - Lin Cai
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan UniversityWuhan, Hubei, China
| |
Collapse
|
12
|
Wang X, Yu M, Zhao K, He M, Ge W, Sun Y, Wang Y, Sun H, Hu Y. Upregulation of MiR-205 under hypoxia promotes epithelial-mesenchymal transition by targeting ASPP2. Cell Death Dis 2016; 7:e2517. [PMID: 27929537 PMCID: PMC5261019 DOI: 10.1038/cddis.2016.412] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/24/2016] [Accepted: 11/10/2016] [Indexed: 12/22/2022]
Abstract
The epithelial–mesenchymal transition (EMT) is one of the crucial procedures for cancer invasion and distal metastasis. Despite undergoing intensive studies, the mechanisms underlying EMT remain to be completely elucidated. Here, we identified that apoptosis-stimulating protein of p53-2 (ASPP2) is a novel target of MiR-205 in various cancers. Interestingly, the binding site of MiR-205 at the 3′-untranslated region of ASPP2 was highly conserved among different species. An inverse correlation between MiR-205 and ASPP2 was further observed in vivo in cervical cancers, suggesting MiR-205 may be an important physiological inhibitor of ASPP2. Hypoxia is a hallmark of solid tumor microenvironment and one of such conditions to induce EMT. Notably, MiR-205 was remarkably induced by hypoxia in cervical and lung cancer cells. A marked suppression of ASPP2 was observed simultaneously. Further studies confirmed that hypoxia-induced ASPP2 suppression was mainly attributed to the elevated MiR-205. Interestingly, the alteration of MiR-205/ASPP2 under hypoxia was accompanied with the decreased epithelial marker E-cadherin and increased mesenchymal marker Vimentin, as well as a morphological transition from the typical cobblestone-like appearance to the mesenchymal-like structure. More importantly, MiR-205 mimics or ASPP2 silencing similarly promoted EMT process. By contrast, ASPP2 recovery or MiR-205 inhibitor reversed MiR-205-dependent EMT. Further studies demonstrated that the newly revealed MiR-205/ASPP2 axis promoted cell migration and also increased cell proliferation both in vivo and in vitro. These data together implicated a critical impact of MiR-205/ASPP2 on promoting EMT. MiR-205/ASPP2 may be potential diagnostic and therapeutic biomarkers in cervical and lung cancers.
Collapse
Affiliation(s)
- Xingwen Wang
- School of Life Science and Technology, Harbin Institute of Technology, Shenzhen, China.,Shenzhen Graduate School of Harbin Institute of Technology, Shenzhen, China
| | - Miao Yu
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, China
| | - Kunming Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Shenzhen, China
| | - Mengmeng He
- School of Life Science and Technology, Harbin Institute of Technology, Shenzhen, China
| | - Wenjie Ge
- School of Life Science and Technology, Harbin Institute of Technology, Shenzhen, China.,Shenzhen Graduate School of Harbin Institute of Technology, Shenzhen, China
| | - Yuhui Sun
- The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yihua Wang
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK
| | - Haizhu Sun
- The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Ying Hu
- School of Life Science and Technology, Harbin Institute of Technology, Shenzhen, China.,Shenzhen Graduate School of Harbin Institute of Technology, Shenzhen, China
| |
Collapse
|
13
|
Adam MG, Matt S, Christian S, Hess-Stumpp H, Haegebarth A, Hofmann TG, Algire C. SIAH ubiquitin ligases regulate breast cancer cell migration and invasion independent of the oxygen status. Cell Cycle 2016; 14:3734-47. [PMID: 26654769 PMCID: PMC4825722 DOI: 10.1080/15384101.2015.1104441] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Seven-in-absentia homolog (SIAH) proteins are evolutionary conserved RING type E3 ubiquitin ligases responsible for the degradation of key molecules regulating DNA damage response, hypoxic adaptation, apoptosis, angiogenesis, and cell proliferation. Many studies suggest a tumorigenic role for SIAH2. In breast cancer patients SIAH2 expression levels correlate with cancer aggressiveness and overall patient survival. In addition, SIAH inhibition reduced metastasis in melanoma. The role of SIAH1 in breast cancer is still ambiguous; both tumorigenic and tumor suppressive functions have been reported. Other studies categorized SIAH ligases as either pro- or antimigratory, while the significance for metastasis is largely unknown. Here, we re-evaluated the effects of SIAH1 and SIAH2 depletion in breast cancer cell lines, focusing on migration and invasion. We successfully knocked down SIAH1 and SIAH2 in several breast cancer cell lines. In luminal type MCF7 cells, this led to stabilization of the SIAH substrate Prolyl Hydroxylase Domain protein 3 (PHD3) and reduced Hypoxia-Inducible Factor 1α (HIF1α) protein levels. Both the knockdown of SIAH1 or SIAH2 led to increased apoptosis and reduced proliferation, with comparable effects. These results point to a tumor promoting role for SIAH1 in breast cancer similar to SIAH2. In addition, depletion of SIAH1 or SIAH2 also led to decreased cell migration and invasion in breast cancer cells. SIAH knockdown also controlled microtubule dynamics by markedly decreasing the protein levels of stathmin, most likely via p27(Kip1). Collectively, these results suggest that both SIAH ligases promote a migratory cancer cell phenotype and could contribute to metastasis in breast cancer.
Collapse
Affiliation(s)
- M Gordian Adam
- a Cellular Senescence Group ; German Cancer Research Center DKFZ ; Heidelberg , Germany.,b GTRG Oncology II; GDD; Bayer Pharma AG ; Berlin , Germany
| | - Sonja Matt
- a Cellular Senescence Group ; German Cancer Research Center DKFZ ; Heidelberg , Germany
| | - Sven Christian
- b GTRG Oncology II; GDD; Bayer Pharma AG ; Berlin , Germany
| | | | | | - Thomas G Hofmann
- a Cellular Senescence Group ; German Cancer Research Center DKFZ ; Heidelberg , Germany
| | - Carolyn Algire
- b GTRG Oncology II; GDD; Bayer Pharma AG ; Berlin , Germany
| |
Collapse
|
14
|
Coopman P, Djiane A. Adherens Junction and E-Cadherin complex regulation by epithelial polarity. Cell Mol Life Sci 2016; 73:3535-53. [PMID: 27151512 PMCID: PMC11108514 DOI: 10.1007/s00018-016-2260-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 12/29/2022]
Abstract
E-Cadherin-based Adherens Junctions (AJs) are a defining feature of all epithelial sheets. Through the homophilic association of E-Cadherin molecules expressed on neighboring cells, they ensure intercellular adhesion amongst epithelial cells, and regulate many key aspects of epithelial biology. While their adhesive role requires these structures to remain stable, AJs are also extremely plastic. This plasticity allows for the adaptation of the cell to its changing environment: changes in neighbors after cell division, cell death, or cell movement, and changes in cell shape during differentiation. In this review we focus on the recent advances highlighting the critical role of the apico-basal polarity machinery, and in particular of the Par3/Bazooka scaffold, in the regulation and remodeling of AJs. We propose that by regulating key phosphorylation events on the core E-Cadherin complex components, Par3 and epithelial polarity promote meta-stable protein complexes governing the correct formation, localization, and functioning of AJ.
Collapse
Affiliation(s)
- Peter Coopman
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France
- IRCM, INSERM U1194, Montpellier, F-34298, France
- Université de Montpellier, Montpellier, F-34090, France
- Institut régional du Cancer de Montpellier, Montpellier, F-34298, France
| | - Alexandre Djiane
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France.
- IRCM, INSERM U1194, Montpellier, F-34298, France.
- Université de Montpellier, Montpellier, F-34090, France.
- Institut régional du Cancer de Montpellier, Montpellier, F-34298, France.
| |
Collapse
|
15
|
Ahmed SM, Macara IG. Mechanisms of polarity protein expression control. Curr Opin Cell Biol 2016; 42:38-45. [PMID: 27092866 DOI: 10.1016/j.ceb.2016.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/03/2016] [Accepted: 04/04/2016] [Indexed: 01/09/2023]
Abstract
Polarity is a universal feature of cells during division and often at other stages of the cell cycle or after post-mitotic differentiation. A conserved machinery, present in all animals, initiates and maintains polarity. Multi-cellular animals organize themselves with respect to the axes of symmetry of the organism through the process of planar cell polarity, but many tissues also express a cell-intrinsic form of polarity, for instance to segregate the apical and basolateral membranes of epithelial cells. Although the genes and proteins involved in apical-basal polarity have been known for many years, the regulation of their expression remains ill-defined. Maintenance of the correct expression levels is essential for normal cell lineage allocation, tissue morphogenesis and cell survival. Here we summarize what is known about the transcriptional and post-transcriptional regulation of polarity protein expression, and discuss areas that remain to be understood.
Collapse
Affiliation(s)
- Syed Mukhtar Ahmed
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Ian G Macara
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA.
| |
Collapse
|
16
|
ETS2 and Twist1 promote invasiveness of Helicobacter pylori-infected gastric cancer cells by inducing Siah2. Biochem J 2016; 473:1629-40. [PMID: 27048589 PMCID: PMC4888467 DOI: 10.1042/bcj20160187] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 04/05/2016] [Indexed: 12/13/2022]
Abstract
H. pylori induce ETS2 and Twist1 expression in the infected GCC. ETS2 and Twist1 transcriptionally activate siah2 in the H. pylori-infected GCCs. H. pylori-mediated Siah2 induction enhances motility and invasiveness of the infected GCCs.
Helicobacter pylori infection is one of the most potent factors leading to gastric carcinogenesis. The seven in absentia homologue (Siah2) is an E3 ubiquitin ligase which has been implicated in various cancers but its role in H. pylori-mediated gastric carcinogenesis has not been established. We investigated the involvement of Siah2 in gastric cancer metastasis which was assessed by invasiveness and migration of H. pylori-infected gastric epithelial cancer cells. Cultured gastric cancer cells (GCCs) MKN45, AGS and Kato III showed significantly induced expression of Siah2, increased invasiveness and migration after being challenged with the pathogen. Siah2-expressing stable cells showed increased invasiveness and migration after H. pylori infection. Siah2 was transcriptionally activated by E26 transformation-specific sequence 2 (ETS2)- and Twist-related protein 1 (Twist1) induced in H. pylori-infected gastric epithelial cells. These transcription factors dose-dependently enhanced the aggressiveness of infected GCCs. Our data suggested that H. pylori-infected GCCs gained cell motility and invasiveness through Siah2 induction. As gastric cancer biopsy samples also showed highly induced expression of ETS2, Twist1 and Siah2 compared with noncancerous gastric tissue, we surmise that ETS2- and Twist1-mediated Siah2 up-regulation has potential diagnostic and prognostic significance and could be targeted for therapeutic purpose.
Collapse
|
17
|
Loss of Siah2 does not impact angiogenic potential of murine endothelial cells. Microvasc Res 2015; 102:38-45. [PMID: 26275748 DOI: 10.1016/j.mvr.2015.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 08/04/2015] [Accepted: 08/06/2015] [Indexed: 11/20/2022]
Abstract
Angiogenesis is triggered in response to hypoxia under many circumstances, from healthy cells and tissues during embryogenesis to pathological conditions like the formation of new blood vessels to supply tumours and promote invasive cancer. Siah2 has been shown to regulate the hypoxia pathway upstream of hypoxia-induced transcription factor subunit Hif-1alpha, and therefore may play an important role in angiogenesis in response to hypoxic stress in endothelial cells. This study aims to investigate the basic function of Siah2 in endothelial cells under hypoxia and to test the ability of Siah2 deficient cells to mount an angiogenic response when deprived of oxygen. We and others have previously shown that Siah2 is crucial for mediating the hypoxic response in many different cell types studied. In this study however, we describe that Siah2(-/-) endothelial cells have an intact hypoxic signalling pathway, including Hif-1alpha stabilisation and gene expression, the first report of a tissue or cell lineage in which the loss of Siah2 does not seem to impact hypoxic response signalling. In mice, the infiltration of Siah2(-/-) endothelial cells into a Matrigel plug containing a VEGF-A attractant was similar compared with wildtype endothelial cells. Ex vivo however, there was a reduced capacity of Siah2(-/-) aorta to form tubes or new vessels. Thus, we conclude that Siah2 is not essential for the hypoxic response of endothelial cells.
Collapse
|
18
|
Aspp1 Preserves Hematopoietic Stem Cell Pool Integrity and Prevents Malignant Transformation. Cell Stem Cell 2015; 17:23-34. [DOI: 10.1016/j.stem.2015.05.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 04/02/2015] [Accepted: 05/26/2015] [Indexed: 12/23/2022]
|
19
|
Downregulation of the Ubiquitin Ligase RNF125 Underlies Resistance of Melanoma Cells to BRAF Inhibitors via JAK1 Deregulation. Cell Rep 2015; 11:1458-73. [PMID: 26027934 PMCID: PMC4681438 DOI: 10.1016/j.celrep.2015.04.049] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 03/30/2015] [Accepted: 04/23/2015] [Indexed: 12/14/2022] Open
Abstract
Despite the remarkable clinical response of melanoma harboring BRAF mutations to BRAF inhibitors (BRAFi), most tumors become resistant. Here, we identified the downregulation of the ubiquitin ligase RNF125 in BRAFi-resistant melanomas and demonstrated its role in intrinsic and adaptive resistance to BRAFi in cultures as well as its association with resistance in tumor specimens. Sox10/MITF expression correlated with and contributed to RNF125 transcription. Reduced RNF125 was associated with elevated expression of receptor tyrosine kinases (RTKs), including EGFR. Notably, RNF125 altered RTK expression through JAK1, which we identified as an RNF125 substrate. RNF125 bound to and ubiquitinated JAK1, prompting its degradation and suppressing RTK expression. Inhibition of JAK1 and EGFR signaling overcame BRAFi resistance in melanoma with reduced RNF125 expression, as shown in culture and in in vivo xenografts. Our findings suggest that combination therapies targeting both JAK1 and EGFR could be effective against BRAFi-resistant tumors with de novo low RNF125 expression.
Collapse
|