1
|
Castro-Pando S, Howell RM, Li L, Mascaro M, Faraoni EY, Le Roux O, Romanin D, Tahan V, Riquelme E, Zhang Y, Kolls JK, Allison JP, Lozano G, Moghaddam SJ, McAllister F. Pancreatic Epithelial IL17/IL17RA Signaling Drives B7-H4 Expression to Promote Tumorigenesis. Cancer Immunol Res 2024; 12:1170-1183. [PMID: 38842383 PMCID: PMC11369627 DOI: 10.1158/2326-6066.cir-23-0527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 02/16/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
IL17 is required for the initiation and progression of pancreatic cancer, particularly in the context of inflammation, as previously shown by genetic and pharmacological approaches. However, the cellular compartment and downstream molecular mediators of IL17-mediated pancreatic tumorigenesis have not been fully identified. This study examined the cellular compartment required by generating transgenic animals with IL17 receptor A (IL17RA), which was genetically deleted from either the pancreatic epithelial compartment or the hematopoietic compartment via generation of IL17RA-deficient (IL17-RA-/-) bone marrow chimeras, in the context of embryonically activated or inducible Kras. Deletion of IL17RA from the pancreatic epithelial compartment, but not from hematopoietic compartment, resulted in delayed initiation and progression of premalignant lesions and increased infiltration of CD8+ cytotoxic T cells to the tumor microenvironment. Absence of IL17RA in the pancreatic compartment affected transcriptional profiles of epithelial cells, modulating stemness, and immunological pathways. B7-H4, a known inhibitor of T-cell activation encoded by the gene Vtcn1, was the checkpoint molecule most upregulated via IL17 early during pancreatic tumorigenesis, and its genetic deletion delayed the development of pancreatic premalignant lesions and reduced immunosuppression. Thus, our data reveal that pancreatic epithelial IL17RA promotes pancreatic tumorigenesis by reprogramming the immune pancreatic landscape, which is partially orchestrated by regulation of B7-H4. Our findings provide the foundation of the mechanisms triggered by IL17 to mediate pancreatic tumorigenesis and reveal the avenues for early pancreatic cancer immune interception. See related Spotlight by Lee and Pasca di Magliano, p. 1130.
Collapse
Affiliation(s)
- Susana Castro-Pando
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rian M. Howell
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Le Li
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Marilina Mascaro
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
- CONICET, Buenos Aires, Argentina.
| | - Erika Y. Faraoni
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Olivereen Le Roux
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - David Romanin
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Virginia Tahan
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Erick Riquelme
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yu Zhang
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jay K. Kolls
- Department of Medicine and Pediatrics, Tulane School of Medicine, New Orleans, Louisiana.
| | - James P. Allison
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Guillermina Lozano
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Seyed J. Moghaddam
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
2
|
Rodriguez Calleja L, Lavaud M, Tesfaye R, Brounais-Le-Royer B, Baud’huin M, Georges S, Lamoureux F, Verrecchia F, Ory B. The p53 Family Members p63 and p73 Roles in the Metastatic Dissemination: Interactions with microRNAs and TGFβ Pathway. Cancers (Basel) 2022; 14:cancers14235948. [PMID: 36497429 PMCID: PMC9741383 DOI: 10.3390/cancers14235948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
TP53 (TP53), p73 (TP73), and p63 (TP63) are members of the p53 transcription factor family, which has many activities spanning from embryonic development through to tumor suppression. The utilization of two promoters and alternative mRNA splicing has been shown to yield numerous isoforms in p53, p63, and p73. TAp73 is thought to mediate apoptosis as a result of nuclear accumulation following chemotherapy-induced DNA damage, according to a number of studies. Overexpression of the nuclear ΔNp63 and ΔNp73 isoforms, on the other hand, suppresses TAp73's pro-apoptotic activity in human malignancies, potentially leading to metastatic spread or inhibition. Another well-known pathway that has been associated to metastatic spread is the TGF pathway. TGFs are a family of structurally related polypeptide growth factors that regulate a variety of cellular functions including cell proliferation, lineage determination, differentiation, motility, adhesion, and cell death, making them significant players in development, homeostasis, and wound repair. Various studies have already identified several interactions between the p53 protein family and the TGFb pathway in the context of tumor growth and metastatic spread, beginning to shed light on this enigmatic intricacy.
Collapse
|
3
|
Wu HH, Wang B, Armstrong SR, Abuetabh Y, Leng S, Roa WHY, Atfi A, Marchese A, Wilson B, Sergi C, Flores ER, Eisenstat DD, Leng RP. Hsp70 acts as a fine-switch that controls E3 ligase CHIP-mediated TAp63 and ΔNp63 ubiquitination and degradation. Nucleic Acids Res 2021; 49:2740-2758. [PMID: 33619536 PMCID: PMC7969027 DOI: 10.1093/nar/gkab081] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/19/2021] [Accepted: 01/28/2021] [Indexed: 12/11/2022] Open
Abstract
The major clinical problem in human cancer is metastasis. Metastases are the cause of 90% of human cancer deaths. TAp63 is a critical suppressor of tumorigenesis and metastasis. ΔNp63 acts as a dominant-negative inhibitor to block the function of p53 and TAp63. Although several ubiquitin E3 ligases have been reported to regulate p63 stability, the mechanism of p63 regulation remains partially understood. Herein, we show that CHIP, an E3 ligase with a U-box domain, physically interacts with p63 and promotes p63 degradation. Notably, Hsp70 depletion by siRNA stabilizes TAp63 in H1299 cells and destabilizes ΔNp63 in SCC9 cells. Loss of Hsp70 results in a reduction in the TAp63-CHIP interaction in H1299 cells and an increase in the interaction between ΔNp63 and CHIP in SCC9 cells. Our results reveal that Hsp70 acts as a molecular switch to control CHIP-mediated ubiquitination and degradation of p63 isoforms. Furthermore, regulation of p63 by the Hsp70-CHIP axis contributes to the migration and invasion of tumor cells. Hence, our findings demonstrate that Hsp70 is a crucial regulator of CHIP-mediated ubiquitination and degradation of p63 isoforms and identify a new pathway for maintaining TAp63 or ΔNp63 stability in cancers.
Collapse
Affiliation(s)
- H Helena Wu
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Benfan Wang
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Stephen R Armstrong
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Yasser Abuetabh
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Sarah Leng
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Wilson H Y Roa
- Department of Oncology, Cross Cancer Institute, 11560 University Ave., University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - Azeddine Atfi
- Laboratory of Cell Signaling and Carcinogenesis, INSERM UMRS938, 184 Rue du Faubourg St-Antoine, 75571 Paris, France
| | - Adriano Marchese
- Department of Pharmacology, Stritch School of Medicine, Loyola University Chicago, 2160 S. First Ave., Maywood, IL 60153, USA
| | - Beverly Wilson
- Department of Pediatrics, University of Alberta, 11405 - 87 Ave., Edmonton, Alberta T6G 1C9, Canada
| | - Consolato Sergi
- Department of Laboratory Medicine and Pathology (5B4. 09), University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Elsa R Flores
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - David D Eisenstat
- Department of Oncology, Cross Cancer Institute, 11560 University Ave., University of Alberta, Edmonton, Alberta T6G 1Z2, Canada.,Department of Pediatrics, University of Alberta, 11405 - 87 Ave., Edmonton, Alberta T6G 1C9, Canada
| | - Roger P Leng
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| |
Collapse
|
4
|
Wu HH, Wang B, Armstrong SR, Abuetabh Y, Leng S, Roa WHY, Atfi A, Marchese A, Wilson B, Sergi C, Flores ER, Eisenstat DD, Leng RP. Hsp70 acts as a fine-switch that controls E3 ligase CHIP-mediated TAp63 and ΔNp63 ubiquitination and degradation. Nucleic Acids Res 2021; 49:2740-2758. [PMID: 33619536 DOI: 10.1093/nar/gkab081.pmid:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/19/2021] [Accepted: 01/28/2021] [Indexed: 10/04/2024] Open
Abstract
The major clinical problem in human cancer is metastasis. Metastases are the cause of 90% of human cancer deaths. TAp63 is a critical suppressor of tumorigenesis and metastasis. ΔNp63 acts as a dominant-negative inhibitor to block the function of p53 and TAp63. Although several ubiquitin E3 ligases have been reported to regulate p63 stability, the mechanism of p63 regulation remains partially understood. Herein, we show that CHIP, an E3 ligase with a U-box domain, physically interacts with p63 and promotes p63 degradation. Notably, Hsp70 depletion by siRNA stabilizes TAp63 in H1299 cells and destabilizes ΔNp63 in SCC9 cells. Loss of Hsp70 results in a reduction in the TAp63-CHIP interaction in H1299 cells and an increase in the interaction between ΔNp63 and CHIP in SCC9 cells. Our results reveal that Hsp70 acts as a molecular switch to control CHIP-mediated ubiquitination and degradation of p63 isoforms. Furthermore, regulation of p63 by the Hsp70-CHIP axis contributes to the migration and invasion of tumor cells. Hence, our findings demonstrate that Hsp70 is a crucial regulator of CHIP-mediated ubiquitination and degradation of p63 isoforms and identify a new pathway for maintaining TAp63 or ΔNp63 stability in cancers.
Collapse
Affiliation(s)
- H Helena Wu
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Benfan Wang
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Stephen R Armstrong
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Yasser Abuetabh
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Sarah Leng
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Wilson H Y Roa
- Department of Oncology, Cross Cancer Institute, 11560 University Ave., University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - Azeddine Atfi
- Laboratory of Cell Signaling and Carcinogenesis, INSERM UMRS938, 184 Rue du Faubourg St-Antoine, 75571 Paris, France
| | - Adriano Marchese
- Department of Pharmacology, Stritch School of Medicine, Loyola University Chicago, 2160 S. First Ave., Maywood, IL 60153, USA
| | - Beverly Wilson
- Department of Pediatrics, University of Alberta, 11405 - 87 Ave., Edmonton, Alberta T6G 1C9, Canada
| | - Consolato Sergi
- Department of Laboratory Medicine and Pathology (5B4. 09), University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Elsa R Flores
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - David D Eisenstat
- Department of Oncology, Cross Cancer Institute, 11560 University Ave., University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
- Department of Pediatrics, University of Alberta, 11405 - 87 Ave., Edmonton, Alberta T6G 1C9, Canada
| | - Roger P Leng
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| |
Collapse
|
5
|
Blagih J, Zani F, Chakravarty P, Hennequart M, Pilley S, Hobor S, Hock AK, Walton JB, Morton JP, Gronroos E, Mason S, Yang M, McNeish I, Swanton C, Blyth K, Vousden KH. Cancer-Specific Loss of p53 Leads to a Modulation of Myeloid and T Cell Responses. Cell Rep 2020; 30:481-496.e6. [PMID: 31940491 PMCID: PMC6963783 DOI: 10.1016/j.celrep.2019.12.028] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/19/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
Abstract
Loss of p53 function contributes to the development of many cancers. While cell-autonomous consequences of p53 mutation have been studied extensively, the role of p53 in regulating the anti-tumor immune response is still poorly understood. Here, we show that loss of p53 in cancer cells modulates the tumor-immune landscape to circumvent immune destruction. Deletion of p53 promotes the recruitment and instruction of suppressive myeloid CD11b+ cells, in part through increased expression of CXCR3/CCR2-associated chemokines and macrophage colony-stimulating factor (M-CSF), and attenuates the CD4+ T helper 1 (Th1) and CD8+ T cell responses in vivo. p53-null tumors also show an accumulation of suppressive regulatory T (Treg) cells. Finally, we show that two key drivers of tumorigenesis, activation of KRAS and deletion of p53, cooperate to promote immune tolerance.
Collapse
Affiliation(s)
- Julianna Blagih
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Fabio Zani
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Marc Hennequart
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Steven Pilley
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Andreas K Hock
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK; Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Cambridge CB4 0WG, UK
| | - Josephine B Walton
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| | - Jennifer P Morton
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| | - Eva Gronroos
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Susan Mason
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK
| | - Ming Yang
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Iain McNeish
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK; Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Charles Swanton
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| | - Karen H Vousden
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
6
|
Hall C, Muller PA. The Diverse Functions of Mutant 53, Its Family Members and Isoforms in Cancer. Int J Mol Sci 2019; 20:ijms20246188. [PMID: 31817935 PMCID: PMC6941067 DOI: 10.3390/ijms20246188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/29/2019] [Accepted: 12/05/2019] [Indexed: 02/08/2023] Open
Abstract
The p53 family of proteins has grown substantially over the last 40 years. It started with p53, then p63, p73, isoforms and mutants of these proteins. The function of p53 as a tumour suppressor has been thoroughly investigated, but the functions of all isoforms and mutants and the interplay between them are still poorly understood. Mutant p53 proteins lose p53 function, display dominant-negative (DN) activity and display gain-of-function (GOF) to varying degrees. GOF was originally attributed to mutant p53′s inhibitory function over the p53 family members p63 and p73. It has become apparent that this is not the only way in which mutant p53 operates as a large number of transcription factors that are not related to p53 are activated on mutant p53 binding. This raises the question to what extent mutant p53 binding to p63 and p73 plays a role in mutant p53 GOF. In this review, we discuss the literature around the interaction between mutant p53 and family members, including other binding partners, the functional consequences and potential therapeutics.
Collapse
|
7
|
Zinatizadeh MR, Miri SR, Zarandi PK, Chalbatani GM, Rapôso C, Mirzaei HR, Akbari ME, Mahmoodzadeh H. The Hippo Tumor Suppressor Pathway (YAP/TAZ/TEAD/MST/LATS) and EGFR-RAS-RAF-MEK in cancer metastasis. Genes Dis 2019; 8:48-60. [PMID: 33569513 PMCID: PMC7859453 DOI: 10.1016/j.gendis.2019.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/24/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023] Open
Abstract
Hippo Tumor Suppressor Pathway is the main pathway for cell growth that regulates tissue enlargement and organ size by limiting cell growth. This pathway is activated in response to cell cycle arrest signals (cell polarity, transduction, and DNA damage) and limited by growth factors or mitogens associated with EGF and LPA. The major pathway consists of the central kinase of Ste20 MAPK (Saccharomyces cerevisiae), Hpo (Drosophila melanogaster) or MST kinases (mammalian) that activates the mammalian AGC kinase dmWts or LATS effector (MST and LATS). YAP in the nucleus work as a cofactor for a wide range of transcription factors involved in proliferation (TEA domain family, TEAD1-4), stem cells (Oct4 mononuclear factor and SMAD-related TGFβ effector), differentiation (RUNX1), and Cell cycle/apoptosis control (p53, p63, and p73 family members). This is due to the diverse roles of YAP and may limit tumor progression and establishment. TEAD also coordinates various signal transduction pathways such as Hippo, WNT, TGFβ and EGFR, and effects on lack of regulation of TEAD cancerous genes, such as KRAS, BRAF, LKB1, NF2 and MYC, which play essential roles in tumor progression, metastasis, cancer metabolism, immunity, and drug resistance. However, RAS signaling is a pivotal factor in the inactivation of Hippo, which controls EGFR-RAS-RAF-MEK-ERK-mediated interaction of Hippo signaling. Thus, the loss of the Hippo pathway may have significant consequences on the targets of RAS-RAF mutations in cancer.
Collapse
Affiliation(s)
- Mohammad Reza Zinatizadeh
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
- Corresponding author. Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Rouhollah Miri
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | - Peyman Kheirandish Zarandi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | - Ghanbar Mahmoodi Chalbatani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Catarina Rapôso
- Faculty of Pharmaceutical Sciences State University of Campinas – UNICAMP Campinas, SP, Brazil
| | - Hamid Reza Mirzaei
- Cancer Research Center, Shohadae Tajrish Hospital, Department of Radiation Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Habibollah Mahmoodzadeh
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
- Corresponding author. Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
8
|
Vennin C, Mélénec P, Rouet R, Nobis M, Cazet AS, Murphy KJ, Herrmann D, Reed DA, Lucas MC, Warren SC, Elgundi Z, Pinese M, Kalna G, Roden D, Samuel M, Zaratzian A, Grey ST, Da Silva A, Leung W, Mathivanan S, Wang Y, Braithwaite AW, Christ D, Benda A, Parkin A, Phillips PA, Whitelock JM, Gill AJ, Sansom OJ, Croucher DR, Parker BL, Pajic M, Morton JP, Cox TR, Timpson P. CAF hierarchy driven by pancreatic cancer cell p53-status creates a pro-metastatic and chemoresistant environment via perlecan. Nat Commun 2019; 10:3637. [PMID: 31406163 PMCID: PMC6691013 DOI: 10.1038/s41467-019-10968-6] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 06/11/2019] [Indexed: 12/15/2022] Open
Abstract
Heterogeneous subtypes of cancer-associated fibroblasts (CAFs) coexist within pancreatic cancer tissues and can both promote and restrain disease progression. Here, we interrogate how cancer cells harboring distinct alterations in p53 manipulate CAFs. We reveal the existence of a p53-driven hierarchy, where cancer cells with a gain-of-function (GOF) mutant p53 educate a dominant population of CAFs that establish a pro-metastatic environment for GOF and null p53 cancer cells alike. We also demonstrate that CAFs educated by null p53 cancer cells may be reprogrammed by either GOF mutant p53 cells or their CAFs. We identify perlecan as a key component of this pro-metastatic environment. Using intravital imaging, we observe that these dominant CAFs delay cancer cell response to chemotherapy. Lastly, we reveal that depleting perlecan in the stroma combined with chemotherapy prolongs mouse survival, supporting it as a potential target for anti-stromal therapies in pancreatic cancer.
Collapse
Affiliation(s)
- Claire Vennin
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
- Molecular Pathology department, the Netherlands Cancer Institute, Amsterdam, 1066CX, the Netherlands
| | - Pauline Mélénec
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Romain Rouet
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Max Nobis
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Aurélie S Cazet
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Kendelle J Murphy
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - David Herrmann
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Daniel A Reed
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Morghan C Lucas
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Sean C Warren
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Zehra Elgundi
- Graduate school of Biomedical Engineering, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
| | - Mark Pinese
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Gabriella Kalna
- Cancer Research UK Beatson Institute, Glasgow Scotland, G61 BD, UK
| | - Daniel Roden
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Monisha Samuel
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Anaiis Zaratzian
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
| | - Shane T Grey
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Andrew Da Silva
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
| | - Wilfred Leung
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Suresh Mathivanan
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Yingxiao Wang
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, CA, 92121, USA
| | - Anthony W Braithwaite
- Children's Medical Research Institute, University of Sydney, Sydney, NSW, 2006, Australia
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
- Maurice Wilkins Centre, University of Otago, Dunedin, 9054, New Zealand
| | - Daniel Christ
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Ales Benda
- Biomedical imaging facility, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Ashleigh Parkin
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Phoebe A Phillips
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - John M Whitelock
- Graduate school of Biomedical Engineering, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
| | - Anthony J Gill
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, Sydney, NSW, 2065, Australia
- Cancer Diagnosis and Pathology Research Group, Kolling Institute of Medical Research, St Leonards, NSW, 2065, Australia
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow Scotland, G61 BD, UK
| | - David R Croucher
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Benjamin L Parker
- Schools of Life and Environmental Sciences, the Charles Perkin Centre, the University of Sydney, Sydney, NSW, 2006, Australia
| | - Marina Pajic
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | | | - Thomas R Cox
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia.
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia.
| | - Paul Timpson
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia.
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia.
| |
Collapse
|
9
|
Li X, Tian Z, Jin H, Xu J, Hua X, Yan H, Liufu H, Wang J, Li J, Zhu J, Huang H, Huang C. Decreased c-Myc mRNA Stability via the MicroRNA 141-3p/AUF1 Axis Is Crucial for p63α Inhibition of Cyclin D1 Gene Transcription and Bladder Cancer Cell Tumorigenicity. Mol Cell Biol 2018; 38:e00273-18. [PMID: 30104251 PMCID: PMC6189456 DOI: 10.1128/mcb.00273-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/15/2018] [Accepted: 08/01/2018] [Indexed: 12/16/2022] Open
Abstract
Bladder cancer (BC) ranks as the sixth most common cancer in the United States and is the leading cause of death in patients with urinary malignancies. p63 is a member of the p53 family and is believed to function as a tumor suppressor in human BCs. Our most recent studies revealed a previously unknown function of the RING of XIAP in promoting microRNA 4295 (miR-4295) transcription, thereby reducing p63α protein translation and enhancing normal urothelial transformation, whereas p63α upregulates hsp70 transcription, subsequently activating the HSP70/Wasf3/Wave3/matrix metalloproteinase 9 (MMP-9) axis and promoting BC cell invasion via initiating the transcription factor E2F1. In this study, we found that p63α inhibited cyclin D1 protein expression, subsequently decreasing the ability of BC cell anchorage-independent growth in vitro and tumorigenicity in vivo Mechanistic studies demonstrated that p63α expression is able to downregulate cyclin D1 gene transcription through attenuation of c-Myc mRNA stability. We further show that the reduction of miR-141-3p expression by p63α directly releases its inhibition of 3' untranslated region (UTR) activity of AU-rich element RNA-binding factor 1 (AUF1) mRNA, thereby increasing AUF1 protein translation and further resulting in degradation of c-Myc mRNA, which, in turn, reduces cyclin D1 gene transcription and BC cell anchorage-independent growth. Collectively, our results demonstrate that p63α is a negative regulator of BC cell tumorigenic growth, a distinctly different function than its promotion of BC invasion, thus providing further new insight into the "two faces" of p63α in regulation of BC cell tumorigenic growth and progression/invasion.
Collapse
Affiliation(s)
- Xin Li
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA
| | - Zhongxian Tian
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA
| | - Honglei Jin
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiheng Xu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA
| | - Xiaohui Hua
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA
| | - Huiying Yan
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huating Liufu
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingjing Wang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA
| | - Junlan Zhu
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA
| |
Collapse
|
10
|
D'Amico S, Shi J, Martin BL, Crawford HC, Petrenko O, Reich NC. STAT3 is a master regulator of epithelial identity and KRAS-driven tumorigenesis. Genes Dev 2018; 32:1175-1187. [PMID: 30135074 PMCID: PMC6120712 DOI: 10.1101/gad.311852.118] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/12/2018] [Indexed: 01/02/2023]
Abstract
A dichotomy exists regarding the role of signal transducer and activator of transcription 3 (STAT3) in cancer. Functional and genetic studies demonstrate either an intrinsic requirement for STAT3 or a suppressive effect on common types of cancer. These contrasting actions of STAT3 imply context dependency. To examine mechanisms that underlie STAT3 function in cancer, we evaluated the impact of STAT3 activity in KRAS-driven lung and pancreatic cancer. Our study defines a fundamental and previously unrecognized function of STAT3 in the maintenance of epithelial cell identity and differentiation. Loss of STAT3 preferentially associates with the acquisition of mesenchymal-like phenotypes and more aggressive tumor behavior. In contrast, persistent STAT3 activation through Tyr705 phosphorylation confers a differentiated epithelial morphology that impacts tumorigenic potential. Our results imply a mechanism in which quantitative differences of STAT3 Tyr705 phosphorylation, as compared with other activation modes, direct discrete outcomes in tumor progression.
Collapse
Affiliation(s)
- Stephen D'Amico
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Jiaqi Shi
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Benjamin L Martin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Howard C Crawford
- Department of Molecular and Integrative Physiology, Ann Arbor, Michigan 48109, USA.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Oleksi Petrenko
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Nancy C Reich
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794, USA
| |
Collapse
|
11
|
Physalin B induces cell cycle arrest and triggers apoptosis in breast cancer cells through modulating p53-dependent apoptotic pathway. Biomed Pharmacother 2018; 101:334-341. [DOI: 10.1016/j.biopha.2018.02.094] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/05/2018] [Accepted: 02/20/2018] [Indexed: 12/17/2022] Open
|
12
|
Luo Q, Liu H, Zhang Z, Basnet S, Dai Z, Li S, Wang Y, Xu B, Ge H. A dual-regulated oncolytic adenovirus carrying TAp63 gene exerts potent antitumor effect on colorectal cancer cells. Am J Transl Res 2017; 9:2966-2974. [PMID: 28670384 PMCID: PMC5489896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/18/2017] [Indexed: 06/07/2023]
Abstract
The purpose of this study is to evaluate possible antitumor activity of a dual-regulated oncolytic adenovirus carrying the TAp63 gene on colorectal cancer. The recombinant virus Ad-survivin-ZD55-TAp63 was constructed by inserting the TAp63 gene into the dual-regulated pshuttle-survivin-ZD55 vector. RT-PCR and western blot assays were used to verify the recombinant virus Ad-survivin-ZD55-TAp63. Crystal violet staining was carried out to detect the cytopathic effect of Ad-survivin-ZD55-TAp63 in human colorectal cancer cell line HCT-116 and normal liver cell line L-O2. MTT and cell apoptosis assays were applied to explore the biological functions of Ad-survivin-ZD55-TAp63 within HCT116 cells. To further identify the antitumor effects of Ad-survivin-ZD55-TAp63 on HCT116 xenograft in BALB/C nude mice, tumor volumes were calculated and tumor tissues from the xenograft models were examined by TUNEL assays. The results showed that Ad-survivin-ZD55-TAp63 was successfully constructed, and could selectively replicate in HCT116 cells without significant toxicity to L-02 cells. Furthermore, Ad-survivin-ZD55-TAp63 dose- and time-dependently inhibited cell proliferation and induced cell apoptosis in vitro. In HCT116 xenograft models, intratumoral injection of Ad-survivin-ZD55-TAp63 significantly suppressed tumor growth and caused tumor cell apoptosis. Therefore, these results suggest that the recombinant virus Ad-survivin-ZD55-TAp63 exhibits specific antitumor effects, and may be used in the future for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Qifeng Luo
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji UniversityShanghai 200120, P. R. China
| | - Heying Liu
- Department of Respiratory Medicine, The 85th Hospital of Chinese People’s Liberation ArmyShanghai 200052, P. R. China
| | - Zhenyu Zhang
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji UniversityShanghai 200120, P. R. China
| | - Shiva Basnet
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji UniversityShanghai 200120, P. R. China
| | - Zhenling Dai
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji UniversityShanghai 200120, P. R. China
| | - Shuping Li
- Department of Research Administration, Shanghai East Hospital, School of Medicine, Tongji UniversityShanghai 200120, P. R. China
| | - Yuxiang Wang
- Department of General Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji UniversityShanghai 200072, P. R. China
| | - Bin Xu
- Department of General Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji UniversityShanghai 200072, P. R. China
| | - Haiyan Ge
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji UniversityShanghai 200120, P. R. China
- Department of General Surgery, Pinghu Second People’s Hospital314200, Zhejiang Province, P. R. China
| |
Collapse
|
13
|
Badal B, Solovyov A, Di Cecilia S, Chan JM, Chang LW, Iqbal R, Aydin IT, Rajan GS, Chen C, Abbate F, Arora KS, Tanne A, Gruber SB, Johnson TM, Fullen DR, Raskin L, Phelps R, Bhardwaj N, Bernstein E, Ting DT, Brunner G, Schadt EE, Greenbaum BD, Celebi JT. Transcriptional dissection of melanoma identifies a high-risk subtype underlying TP53 family genes and epigenome deregulation. JCI Insight 2017; 2:92102. [PMID: 28469092 PMCID: PMC5414564 DOI: 10.1172/jci.insight.92102] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/07/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Melanoma is a heterogeneous malignancy. We set out to identify the molecular underpinnings of high-risk melanomas, those that are likely to progress rapidly, metastasize, and result in poor outcomes. METHODS We examined transcriptome changes from benign states to early-, intermediate-, and late-stage tumors using a set of 78 treatment-naive melanocytic tumors consisting of primary melanomas of the skin and benign melanocytic lesions. We utilized a next-generation sequencing platform that enabled a comprehensive analysis of protein-coding and -noncoding RNA transcripts. RESULTS Gene expression changes unequivocally discriminated between benign and malignant states, and a dual epigenetic and immune signature emerged defining this transition. To our knowledge, we discovered previously unrecognized melanoma subtypes. A high-risk primary melanoma subset was distinguished by a 122-epigenetic gene signature ("epigenetic" cluster) and TP53 family gene deregulation (TP53, TP63, and TP73). This subtype associated with poor overall survival and showed enrichment of cell cycle genes. Noncoding repetitive element transcripts (LINEs, SINEs, and ERVs) that can result in immunostimulatory signals recapitulating a state of "viral mimicry" were significantly repressed. The high-risk subtype and its poor predictive characteristics were validated in several independent cohorts. Additionally, primary melanomas distinguished by specific immune signatures ("immune" clusters) were identified. CONCLUSION The TP53 family of genes and genes regulating the epigenetic machinery demonstrate strong prognostic and biological relevance during progression of early disease. Gene expression profiling of protein-coding and -noncoding RNA transcripts may be a better predictor for disease course in melanoma. This study outlines the transcriptional interplay of the cancer cell's epigenome with the immune milieu with potential for future therapeutic targeting. FUNDING National Institutes of Health (CA154683, CA158557, CA177940, CA087497-13), Tisch Cancer Institute, Melanoma Research Foundation, the Dow Family Charitable Foundation, and the Icahn School of Medicine at Mount Sinai.
Collapse
Affiliation(s)
- Brateil Badal
- Department of Pathology
- Department of Dermatology
- Department of Oncological Sciences, and
| | - Alexander Solovyov
- Department of Pathology
- Department of Oncological Sciences, and
- Department of Hematology and Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Serena Di Cecilia
- Department of Pathology
- Department of Dermatology
- Department of Oncological Sciences, and
| | - Joseph Minhow Chan
- Department of Pathology
- Department of Dermatology
- Department of Oncological Sciences, and
| | - Li-Wei Chang
- Department of Pathology
- Department of Dermatology
- Department of Oncological Sciences, and
| | - Ramiz Iqbal
- Department of Pathology
- Department of Dermatology
- Department of Oncological Sciences, and
| | - Iraz T. Aydin
- Department of Pathology
- Department of Dermatology
- Department of Oncological Sciences, and
| | - Geena S. Rajan
- Department of Pathology
- Department of Dermatology
- Department of Oncological Sciences, and
| | | | - Franco Abbate
- Department of Pathology
- Department of Dermatology
- Department of Oncological Sciences, and
| | - Kshitij S. Arora
- Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Antoine Tanne
- Department of Hematology and Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stephen B. Gruber
- Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | | | - Douglas R. Fullen
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Leon Raskin
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Nina Bhardwaj
- Department of Hematology and Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Emily Bernstein
- Department of Dermatology
- Department of Oncological Sciences, and
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - David T. Ting
- Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Georg Brunner
- Department of Cancer Research, Fachklinik Hornheide, Munster, Germany
| | - Eric E. Schadt
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Benjamin D. Greenbaum
- Department of Pathology
- Department of Oncological Sciences, and
- Department of Hematology and Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Julide Tok Celebi
- Department of Pathology
- Department of Dermatology
- Department of Oncological Sciences, and
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
14
|
Candi E, Smirnov A, Panatta E, Lena AM, Novelli F, Mancini M, Viticchiè G, Piro MC, Di Daniele N, Annicchiarico-Petruzzelli M, Melino G. Metabolic pathways regulated by p63. Biochem Biophys Res Commun 2017; 482:440-444. [PMID: 28212728 DOI: 10.1016/j.bbrc.2016.10.094] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 10/24/2016] [Indexed: 01/18/2023]
Abstract
The transcription factor p63 belongs to the p53-family and is a master regulator of proliferative potential, lineage specification, and differentiation in epithelia during development and tissue homeostasis. In cancer, p63 contribution is isoform-specific, with both oncogenic and tumour suppressive roles attributed, for ΔNp63 and TAp63, respectively. Recently, p53 and TAp73, in line with other tumour suppressor genes, have emerged as important regulators of energy metabolism and metabolic reprogramming in cancer. To date, p63 contributions in controlling energy metabolism have been partially investigated; given the extensive interaction of the p53 family members, these studies have potential implications in tumour cells for metabolic reprogramming. Here, we review the role of p63 isoforms, TAp63 and ΔNp63, in controlling cell metabolism, focusing on their specific metabolic target genes and their physiological/functional context of action.
Collapse
Affiliation(s)
- Eleonora Candi
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy; IDI-IRCCS "Istituto Dermopatico dell'Immacolata", Biochemistry Laboratory, Rome, Italy.
| | - Artem Smirnov
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Emanuele Panatta
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Anna Maria Lena
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Flavia Novelli
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Mara Mancini
- Medical Research Council, Toxicology Unit, Leicester LE1 9HN, UK
| | | | - Maria Cristina Piro
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Nicola Di Daniele
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | - Gerry Melino
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy; Medical Research Council, Toxicology Unit, Leicester LE1 9HN, UK.
| |
Collapse
|
15
|
Novel targets and interaction partners of mutant p53 Gain-Of-Function. Biochem Soc Trans 2016; 44:460-6. [PMID: 27068955 DOI: 10.1042/bst20150261] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Indexed: 12/24/2022]
Abstract
In many human cancers p53 expression is lost or a mutant p53 protein is expressed. Over the past 15 years it has become apparent that a large number of these mutant p53 proteins have lost wild type function, but more importantly have gained functions that promote tumorigenesis and drive chemo-resistance, invasion and metastasis. Many researchers have investigated the underlying mechanisms of these Gain-Of-Functions (GOFs) and it has become apparent that many of these functions are the result of mutant p53 hijacking other transcription factors. In this review, we summarize the latest research on p53 GOF and categorize these in light of the hallmarks of cancer as presented by Hannahan and Weinberg.
Collapse
|
16
|
Armstrong SR, Wu H, Wang B, Abuetabh Y, Sergi C, Leng RP. The Regulation of Tumor Suppressor p63 by the Ubiquitin-Proteasome System. Int J Mol Sci 2016; 17:ijms17122041. [PMID: 27929429 PMCID: PMC5187841 DOI: 10.3390/ijms17122041] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/23/2016] [Accepted: 11/30/2016] [Indexed: 12/18/2022] Open
Abstract
The protein p63 has been identified as a homolog of the tumor suppressor protein p53 and is capable of inducing apoptosis, cell cycle arrest, or senescence. p63 has at least six isoforms, which can be divided into two major groups: the TAp63 variants that contain the N-terminal transactivation domain and the ΔNp63 variants that lack the N-terminal transactivation domain. The TAp63 variants are generally considered to be tumor suppressors involved in activating apoptosis and suppressing metastasis. ΔNp63 variants cannot induce apoptosis but can act as dominant negative inhibitors to block the function of TAp53, TAp73, and TAp63. p63 is rarely mutated in human tumors and is predominately regulated at the post-translational level by phosphorylation and ubiquitination. This review focuses primarily on regulation of p63 by the ubiquitin E-3 ligase family of enzymes via ubiquitination and proteasome-mediated degradation, and introduces a new key regulator of the p63 protein.
Collapse
Affiliation(s)
- Stephen R Armstrong
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2S2, Canada.
| | - Hong Wu
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2S2, Canada.
| | - Benfan Wang
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2S2, Canada.
| | - Yasser Abuetabh
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2S2, Canada.
| | - Consolato Sergi
- Department of Laboratory Medicine and Pathology (5B4. 09), University of Alberta, Edmonton, AB T6G 2B7, Canada.
| | - Roger P Leng
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2S2, Canada.
| |
Collapse
|
17
|
Kehrloesser S, Osterburg C, Tuppi M, Schäfer B, Vousden KH, Dötsch V. Intrinsic aggregation propensity of the p63 and p73 TI domains correlates with p53R175H interaction and suggests further significance of aggregation events in the p53 family. Cell Death Differ 2016; 23:1952-1960. [PMID: 27447112 PMCID: PMC5136486 DOI: 10.1038/cdd.2016.75] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/19/2016] [Accepted: 06/24/2016] [Indexed: 12/20/2022] Open
Abstract
The high percentage of p53 missense mutations found in cancer has been attributed to mutant acquired oncogenic gain of functions. Different aspects of these tumour-promoting functions are caused by repression of the transcriptional activity of p53 family members p63 and p73. A subset of frequently occurring p53 mutations results in thermodynamic destabilisation of the DNA-binding domain (DBD) rendering this domain highly unstable. These conformational mutants (such as p53R175H) have been suggested to directly bind to p63 and p73 via a co-aggregation mechanism mediated by their DBDs. Although the DBDs of p63 and p73 are in fact not sufficient for the interaction as shown previously, we demonstrate here that the transactivation inhibitory (TI) domains within the α-isoform-specific C termini of p63 and p73 are essential for binding to p53R175H. Hence, the closed dimeric conformation of inactive TAp63α that renders the TI domain inaccessible prevents efficient interaction. We further show that binding to p53R175H correlates with an intrinsic aggregation propensity of the tetrameric α-isoforms conferred by an openly accessible TI domain again supporting interaction via a co-aggregation mechanism.
Collapse
Affiliation(s)
- Sebastian Kehrloesser
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance and Cluster of Excellence Macromolecular Complexes (CEF), Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Christian Osterburg
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance and Cluster of Excellence Macromolecular Complexes (CEF), Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Marcel Tuppi
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance and Cluster of Excellence Macromolecular Complexes (CEF), Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Birgit Schäfer
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance and Cluster of Excellence Macromolecular Complexes (CEF), Goethe University Frankfurt, Frankfurt/Main, Germany
| | | | - Volker Dötsch
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance and Cluster of Excellence Macromolecular Complexes (CEF), Goethe University Frankfurt, Frankfurt/Main, Germany
| |
Collapse
|
18
|
Abstract
The TP63 gene codes for two major isoform types, TAp63 and ΔNp63, with probable opposite roles in tumorigenesis. The ΔNp63α protein is frequently amplified and overexpressed in different epithelial tumors. Accordingly, it has been considered a potential oncogene. Nonetheless, a possible metastatic suppressor activity has also been suggested based on the experimental observation that its expression is reduced or even absent in advanced invasive tumors. Such metastatic suppressor activities are often related to tumors bearing point mutated TP53 gene. However, its potential roles in TP53-deficient tumors are poorly characterized. Here we show that in spontaneous tumors, induced by the epidermal-specific Trp53 ablation, the reduction of ΔNp63 expression is an early event, whereas it is re-expressed in the lung metastatic lesions. Using knock down and ectopic expression approaches, we show that ΔNp63 expression opposes the epithelial-mesenchymal transition and reduces the metastatic potential of the cells. This process occurs through the modulation of ΔNp63-dependent downstream targets (including transcription factors and microRNAs) likely to play metastatic roles. Further, ΔNp63 also favors the expression of factors involved in iPS reprogramming, thus suggesting that it can also modulate specific stem cell traits in mouse epidermal tumor cells. Overall, our data assign antimetastatic roles to ΔNp63 in the context of p53 deficiency and epidermis.
Collapse
|
19
|
Bailey P, Chang DK, Nones K, Johns AL, Patch AM, Gingras MC, Miller DK, Christ AN, Bruxner TJC, Quinn MC, Nourse C, Murtaugh LC, Harliwong I, Idrisoglu S, Manning S, Nourbakhsh E, Wani S, Fink L, Holmes O, Chin V, Anderson MJ, Kazakoff S, Leonard C, Newell F, Waddell N, Wood S, Xu Q, Wilson PJ, Cloonan N, Kassahn KS, Taylor D, Quek K, Robertson A, Pantano L, Mincarelli L, Sanchez LN, Evers L, Wu J, Pinese M, Cowley MJ, Jones MD, Colvin EK, Nagrial AM, Humphrey ES, Chantrill LA, Mawson A, Humphris J, Chou A, Pajic M, Scarlett CJ, Pinho AV, Giry-Laterriere M, Rooman I, Samra JS, Kench JG, Lovell JA, Merrett ND, Toon CW, Epari K, Nguyen NQ, Barbour A, Zeps N, Moran-Jones K, Jamieson NB, Graham JS, Duthie F, Oien K, Hair J, Grützmann R, Maitra A, Iacobuzio-Donahue CA, Wolfgang CL, Morgan RA, Lawlor RT, Corbo V, Bassi C, Rusev B, Capelli P, Salvia R, Tortora G, Mukhopadhyay D, Petersen GM, Munzy DM, Fisher WE, Karim SA, Eshleman JR, Hruban RH, Pilarsky C, Morton JP, Sansom OJ, Scarpa A, Musgrove EA, Bailey UMH, Hofmann O, Sutherland RL, Wheeler DA, Gill AJ, Gibbs RA, Pearson JV, Waddell N, Biankin AV, Grimmond SM. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 2016; 531:47-52. [PMID: 26909576 DOI: 10.1038/nature16965] [Citation(s) in RCA: 2350] [Impact Index Per Article: 293.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 12/30/2015] [Indexed: 12/12/2022]
Abstract
Integrated genomic analysis of 456 pancreatic ductal adenocarcinomas identified 32 recurrently mutated genes that aggregate into 10 pathways: KRAS, TGF-β, WNT, NOTCH, ROBO/SLIT signalling, G1/S transition, SWI-SNF, chromatin modification, DNA repair and RNA processing. Expression analysis defined 4 subtypes: (1) squamous; (2) pancreatic progenitor; (3) immunogenic; and (4) aberrantly differentiated endocrine exocrine (ADEX) that correlate with histopathological characteristics. Squamous tumours are enriched for TP53 and KDM6A mutations, upregulation of the TP63∆N transcriptional network, hypermethylation of pancreatic endodermal cell-fate determining genes and have a poor prognosis. Pancreatic progenitor tumours preferentially express genes involved in early pancreatic development (FOXA2/3, PDX1 and MNX1). ADEX tumours displayed upregulation of genes that regulate networks involved in KRAS activation, exocrine (NR5A2 and RBPJL), and endocrine differentiation (NEUROD1 and NKX2-2). Immunogenic tumours contained upregulated immune networks including pathways involved in acquired immune suppression. These data infer differences in the molecular evolution of pancreatic cancer subtypes and identify opportunities for therapeutic development.
Collapse
MESH Headings
- Animals
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Carcinoma, Pancreatic Ductal/classification
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- DNA Methylation
- DNA-Binding Proteins/genetics
- Gene Expression Regulation, Neoplastic
- Gene Regulatory Networks
- Genes, Neoplasm/genetics
- Genome, Human/genetics
- Genomics
- Hepatocyte Nuclear Factor 3-beta/genetics
- Hepatocyte Nuclear Factor 3-gamma/genetics
- Histone Demethylases/genetics
- Homeobox Protein Nkx-2.2
- Homeodomain Proteins/genetics
- Humans
- Mice
- Mutation/genetics
- Nuclear Proteins/genetics
- Pancreatic Neoplasms/classification
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Prognosis
- Receptors, Cytoplasmic and Nuclear/genetics
- Survival Analysis
- Trans-Activators/genetics
- Transcription Factors/genetics
- Transcription, Genetic
- Transcriptome
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Proteins/genetics
- Zebrafish Proteins
Collapse
Affiliation(s)
- Peter Bailey
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - David K Chang
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
- The Kinghorn Cancer Centre, 370 Victoria St, Darlinghurst, and the Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
- Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, New South Wales 2200, Australia
- South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, New South Wales 2170, Australia
| | - Katia Nones
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
- QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Amber L Johns
- The Kinghorn Cancer Centre, 370 Victoria St, Darlinghurst, and the Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Ann-Marie Patch
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
- QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Marie-Claude Gingras
- Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Michael DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - David K Miller
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
- The Kinghorn Cancer Centre, 370 Victoria St, Darlinghurst, and the Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Angelika N Christ
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Tim J C Bruxner
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Michael C Quinn
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
- QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Craig Nourse
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - L Charles Murtaugh
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
| | - Ivon Harliwong
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Senel Idrisoglu
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Suzanne Manning
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Ehsan Nourbakhsh
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Shivangi Wani
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
- QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Lynn Fink
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Oliver Holmes
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
- QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Venessa Chin
- The Kinghorn Cancer Centre, 370 Victoria St, Darlinghurst, and the Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Matthew J Anderson
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Stephen Kazakoff
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
- QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Conrad Leonard
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
- QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Felicity Newell
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Nick Waddell
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Scott Wood
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
- QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Qinying Xu
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
- QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Peter J Wilson
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Nicole Cloonan
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
- QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Karin S Kassahn
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
- Genetic and Molecular Pathology, SA Pathology, Adelaide, South Australia 5000, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Darrin Taylor
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Kelly Quek
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Alan Robertson
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Lorena Pantano
- Harvard Chan Bioinformatics Core, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Laura Mincarelli
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Luis N Sanchez
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Lisa Evers
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Jianmin Wu
- The Kinghorn Cancer Centre, 370 Victoria St, Darlinghurst, and the Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Mark Pinese
- The Kinghorn Cancer Centre, 370 Victoria St, Darlinghurst, and the Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Mark J Cowley
- The Kinghorn Cancer Centre, 370 Victoria St, Darlinghurst, and the Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Marc D Jones
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
- The Kinghorn Cancer Centre, 370 Victoria St, Darlinghurst, and the Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Emily K Colvin
- The Kinghorn Cancer Centre, 370 Victoria St, Darlinghurst, and the Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Adnan M Nagrial
- The Kinghorn Cancer Centre, 370 Victoria St, Darlinghurst, and the Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Emily S Humphrey
- The Kinghorn Cancer Centre, 370 Victoria St, Darlinghurst, and the Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Lorraine A Chantrill
- The Kinghorn Cancer Centre, 370 Victoria St, Darlinghurst, and the Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
- Macarthur Cancer Therapy Centre, Campbelltown Hospital, New South Wales 2560, Australia
| | - Amanda Mawson
- The Kinghorn Cancer Centre, 370 Victoria St, Darlinghurst, and the Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Jeremy Humphris
- The Kinghorn Cancer Centre, 370 Victoria St, Darlinghurst, and the Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Angela Chou
- The Kinghorn Cancer Centre, 370 Victoria St, Darlinghurst, and the Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
- Department of Pathology. SydPath, St Vincent's Hospital, Sydney, NSW 2010, Australia
| | - Marina Pajic
- The Kinghorn Cancer Centre, 370 Victoria St, Darlinghurst, and the Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, New South Wales 2052, Australia
| | - Christopher J Scarlett
- The Kinghorn Cancer Centre, 370 Victoria St, Darlinghurst, and the Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
- School of Environmental &Life Sciences, University of Newcastle, Ourimbah, New South Wales 2258, Australia
| | - Andreia V Pinho
- The Kinghorn Cancer Centre, 370 Victoria St, Darlinghurst, and the Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Marc Giry-Laterriere
- The Kinghorn Cancer Centre, 370 Victoria St, Darlinghurst, and the Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Ilse Rooman
- The Kinghorn Cancer Centre, 370 Victoria St, Darlinghurst, and the Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Jaswinder S Samra
- Department of Surgery, Royal North Shore Hospital, St Leonards, Sydney, New South Wales 2065, Australia
- University of Sydney, Sydney, New South Wales 2006, Australia
| | - James G Kench
- The Kinghorn Cancer Centre, 370 Victoria St, Darlinghurst, and the Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
- University of Sydney, Sydney, New South Wales 2006, Australia
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown New South Wales 2050, Australia
| | - Jessica A Lovell
- The Kinghorn Cancer Centre, 370 Victoria St, Darlinghurst, and the Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Neil D Merrett
- South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, New South Wales 2170, Australia
- School of Medicine, University of Western Sydney, Penrith, New South Wales 2175, Australia
| | - Christopher W Toon
- The Kinghorn Cancer Centre, 370 Victoria St, Darlinghurst, and the Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Krishna Epari
- Fiona Stanley Hospital, Robin Warren Drive, Murdoch, Western Australia 6150, Australia
| | - Nam Q Nguyen
- Department of Gastroenterology, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia 5000, Australia
| | - Andrew Barbour
- Department of Surgery, Princess Alexandra Hospital, Ipswich Rd, Woollongabba, Queensland 4102, Australia
| | - Nikolajs Zeps
- School of Surgery M507, University of Western Australia, 35 Stirling Hwy, Nedlands 6009, Australia and St John of God Pathology, 12 Salvado Rd, Subiaco, Western Australia 6008, Australia
| | - Kim Moran-Jones
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Nigel B Jamieson
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
- Academic Unit of Surgery, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow G4 OSF, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow G31 2ER, UK
| | - Janet S Graham
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
- Department of Medical Oncology, Beatson West of Scotland Cancer Centre, 1053 Great Western Road, Glasgow G12 0YN, UK
| | - Fraser Duthie
- Department of Pathology, Southern General Hospital, Greater Glasgow &Clyde NHS, Glasgow G51 4TF, UK
| | - Karin Oien
- The Kinghorn Cancer Centre, 370 Victoria St, Darlinghurst, and the Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
- Department of Pathology, Southern General Hospital, Greater Glasgow &Clyde NHS, Glasgow G51 4TF, UK
| | - Jane Hair
- GGC Bio-repository, Pathology Department, Southern General Hospital, 1345 Govan Road, Glasgow G51 4TY, UK
| | - Robert Grützmann
- Department of Surgery, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Anirban Maitra
- Departments of Pathology and Translational Molecular Pathology, UT MD Anderson Cancer Center, Houston Texas 77030, USA
| | - Christine A Iacobuzio-Donahue
- The David M. Rubenstein Pancreatic Cancer Research Center and Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Christopher L Wolfgang
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
- Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | - Richard A Morgan
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | - Rita T Lawlor
- ARC-Net Applied Research on Cancer Centre, University and Hospital Trust of Verona, Verona 37134, Italy
- Department of Pathology and Diagnostics, University of Verona, Verona 37134, Italy
| | - Vincenzo Corbo
- ARC-Net Applied Research on Cancer Centre, University and Hospital Trust of Verona, Verona 37134, Italy
| | - Claudio Bassi
- Department of Surgery, Pancreas Institute, University and Hospital Trust of Verona, Verona 37134, Italy
| | - Borislav Rusev
- ARC-Net Applied Research on Cancer Centre, University and Hospital Trust of Verona, Verona 37134, Italy
| | - Paola Capelli
- Department of Pathology and Diagnostics, University of Verona, Verona 37134, Italy
| | - Roberto Salvia
- Department of Surgery, Pancreas Institute, University and Hospital Trust of Verona, Verona 37134, Italy
| | - Giampaolo Tortora
- Department of Medical Oncology, Comprehensive Cancer Centre, University and Hospital Trust of Verona, Verona 37134, Italy
| | | | | | - Donna M Munzy
- Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Michael DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | - William E Fisher
- Elkins Pancreas Center, Baylor College of Medicine, One Baylor Plaza, MS226, Houston, Texas 77030-3411, USA
| | - Saadia A Karim
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - James R Eshleman
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | - Ralph H Hruban
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | - Christian Pilarsky
- Department of Surgery, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | | | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
- Institute for Cancer Science, University of Glasgow, Glasgow G12 8QQ, UK
| | - Aldo Scarpa
- ARC-Net Applied Research on Cancer Centre, University and Hospital Trust of Verona, Verona 37134, Italy
- Department of Pathology and Diagnostics, University of Verona, Verona 37134, Italy
| | - Elizabeth A Musgrove
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Ulla-Maja Hagbo Bailey
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Oliver Hofmann
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
- Harvard Chan Bioinformatics Core, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Robert L Sutherland
- The Kinghorn Cancer Centre, 370 Victoria St, Darlinghurst, and the Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - David A Wheeler
- Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Michael DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Anthony J Gill
- The Kinghorn Cancer Centre, 370 Victoria St, Darlinghurst, and the Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
- University of Sydney, Sydney, New South Wales 2006, Australia
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Michael DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | - John V Pearson
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
- QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Nicola Waddell
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
- QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Andrew V Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
- The Kinghorn Cancer Centre, 370 Victoria St, Darlinghurst, and the Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
- Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, New South Wales 2200, Australia
- South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, New South Wales 2170, Australia
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow G31 2ER, UK
| | - Sean M Grimmond
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
- University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
20
|
Erami Z, Herrmann D, Warren SC, Nobis M, McGhee EJ, Lucas MC, Leung W, Reischmann N, Mrowinska A, Schwarz JP, Kadir S, Conway JRW, Vennin C, Karim SA, Campbell AD, Gallego-Ortega D, Magenau A, Murphy KJ, Ridgway RA, Law AM, Walters SN, Grey ST, Croucher DR, Zhang L, Herzog H, Hardeman EC, Gunning PW, Ormandy CJ, Evans TRJ, Strathdee D, Sansom OJ, Morton JP, Anderson KI, Timpson P. Intravital FRAP Imaging using an E-cadherin-GFP Mouse Reveals Disease- and Drug-Dependent Dynamic Regulation of Cell-Cell Junctions in Live Tissue. Cell Rep 2016; 14:152-167. [PMID: 26725115 PMCID: PMC4709331 DOI: 10.1016/j.celrep.2015.12.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/21/2015] [Accepted: 11/23/2015] [Indexed: 12/29/2022] Open
Abstract
E-cadherin-mediated cell-cell junctions play a prominent role in maintaining the epithelial architecture. The disruption or deregulation of these adhesions in cancer can lead to the collapse of tumor epithelia that precedes invasion and subsequent metastasis. Here we generated an E-cadherin-GFP mouse that enables intravital photobleaching and quantification of E-cadherin mobility in live tissue without affecting normal biology. We demonstrate the broad applications of this mouse by examining E-cadherin regulation in multiple tissues, including mammary, brain, liver, and kidney tissue, while specifically monitoring E-cadherin mobility during disease progression in the pancreas. We assess E-cadherin stability in native pancreatic tissue upon genetic manipulation involving Kras and p53 or in response to anti-invasive drug treatment and gain insights into the dynamic remodeling of E-cadherin during in situ cancer progression. FRAP in the E-cadherin-GFP mouse, therefore, promises to be a valuable tool to fundamentally expand our understanding of E-cadherin-mediated events in native microenvironments.
Collapse
Affiliation(s)
- Zahra Erami
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - David Herrmann
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Sean C Warren
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Max Nobis
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Ewan J McGhee
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Morghan C Lucas
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Wilfred Leung
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Nadine Reischmann
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Agata Mrowinska
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Juliane P Schwarz
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Shereen Kadir
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - James R W Conway
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Claire Vennin
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Saadia A Karim
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Andrew D Campbell
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - David Gallego-Ortega
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Astrid Magenau
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Kendelle J Murphy
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Rachel A Ridgway
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Andrew M Law
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Stacey N Walters
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Shane T Grey
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - David R Croucher
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Lei Zhang
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Herbert Herzog
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Edna C Hardeman
- Neuromuscular and Regenerative Medicine Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Peter W Gunning
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Christopher J Ormandy
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - T R Jeffry Evans
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Douglas Strathdee
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Jennifer P Morton
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Kurt I Anderson
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK.
| | - Paul Timpson
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia.
| |
Collapse
|
21
|
Inhibition of Cell Proliferation and Growth of Pancreatic Cancer by Silencing of Carbohydrate Sulfotransferase 15 In Vitro and in a Xenograft Model. PLoS One 2015; 10:e0142981. [PMID: 26642349 PMCID: PMC4671730 DOI: 10.1371/journal.pone.0142981] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 10/29/2015] [Indexed: 12/11/2022] Open
Abstract
Chondroitin sulfate E (CS-E), a highly sulfated glycosaminoglycan, is known to promote tumor invasion and metastasis. Because the presence of CS-E is detected in both tumor and stromal cells in pancreatic ductal adenocarcinoma (PDAC), multistage involvement of CS-E in the development of PDAC has been considered. However, its involvement in the early stage of PDAC progression is still not fully understood. In this study, to clarify the direct role of CS-E in tumor, but not stromal, cells of PDAC, we focused on carbohydrate sulfotransferase 15 (CHST15), a specific enzyme that biosynthesizes CS-E, and investigated the effects of the CHST15 siRNA on tumor cell proliferation in vitro and growth in vivo. CHST15 mRNA is highly expressed in the human pancreatic cancer cell lines PANC-1, MIA PaCa-2, Capan-1 and Capan-2. CHST15 siRNA significantly inhibited the expression of CHST15 mRNA in these four cells in vitro. Silencing of the CHST15 gene in the cells was associated with significant reduction of proliferation and up-regulation of the cell cycle inhibitor-related gene p21CIP1/WAF1. In a subcutaneous xenograft tumor model of PANC-1 in nude mice, a single intratumoral injection of CHST15 siRNA almost completely suppressed tumor growth. Reduced CHST15 protein signals associated with tumor necrosis were observed with the treatment with CHST15 siRNA. These results provide evidence of the direct action of CHST15 on the proliferation of pancreatic tumor cells partly through the p21CIP1/WAF1 pathway. Thus, CHST15-CS-E axis-mediated tumor cell proliferation could be a novel therapeutic target in the early stage of PDAC progression.
Collapse
|
22
|
The p53 tetramer shows an induced-fit interaction of the C-terminal domain with the DNA-binding domain. Oncogene 2015; 35:3272-81. [PMID: 26477317 PMCID: PMC4929483 DOI: 10.1038/onc.2015.388] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 08/08/2015] [Accepted: 09/03/2015] [Indexed: 12/15/2022]
Abstract
The Trp53 gene is the most frequently mutated gene in all human cancers. Its protein product p53 is a very powerful transcription factor that can activate different biochemical pathways and affect the regulation of metabolism, senescence, DNA damage response, cell cycle and cell death. The understanding of its function at the molecular level could be of pivotal relevance for therapy. Investigation of long-range intra- and interdomain communications in the p53 tetramer–DNA complex was performed by means of an atomistic model that included the tetramerization helices in the C-terminal domain, the DNA-binding domains and a consensus DNA-binding site of 18 base pairs. Nonsymmetric dynamics are illustrated in the four DNA-binding domains, with loop L1 switching from inward to outward conformations with respect to the DNA major groove. Direct intra- and intermonomeric long-range communications between the tetramerization and DNA-binding domains are noted. These long-distance conformational changes link the C terminus with the DNA-binding domain and provide a biophysical rationale for the reported functional regulation of the p53 C-terminal region. A fine characterization of the DNA deformation caused by p53 binding is obtained, with ‘static' deformations always present and measured by the slide parameter in the central thymine–adenine base pairs; we also detect ‘dynamic' deformations switched on and off by particular p53 tetrameric conformations and measured by the roll and twist parameters in the same base pairs. These different conformations can indeed modulate the electrostatic potential isosurfaces of the whole p53–DNA complex. These results provide a molecular/biophysical understanding of the evident role of the C terminus in post-translational modification that regulates the transcriptional function of p53. Furthermore, the unstructured C terminus is able to facilitate contacts between the core DNA-binding domains of the tetramer.
Collapse
|
23
|
Gurpinar E, Vousden KH. Hitting cancers' weak spots: vulnerabilities imposed by p53 mutation. Trends Cell Biol 2015; 25:486-95. [PMID: 25960041 DOI: 10.1016/j.tcb.2015.04.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/27/2015] [Accepted: 04/01/2015] [Indexed: 12/23/2022]
Abstract
The tumor suppressor protein p53 plays a critical role in limiting malignant development and progression. Almost all cancers show loss of p53 function, through either mutation in the p53 gene itself or defects in the mechanisms that activate p53. While reactivation of p53 can effectively limit tumor growth, this is a difficult therapeutic goal to achieve in the many cancers that do not retain wild type p53. An alternative approach focuses on identifying vulnerabilities imposed on cancers by virtue of the loss of or alterations in p53, to identify additional pathways that can be targeted to specifically kill or inhibit the growth of p53 mutated cells. These indirect ways of exploiting mutations in p53 - which occur in more than half of all human cancers - provide numerous exciting therapeutic possibilities.
Collapse
|
24
|
Tan BS, Tiong KH, Choo HL, Chung FFL, Hii LW, Tan SH, Yap IKS, Pani S, Khor NTW, Wong SF, Rosli R, Cheong SK, Leong CO. Mutant p53-R273H mediates cancer cell survival and anoikis resistance through AKT-dependent suppression of BCL2-modifying factor (BMF). Cell Death Dis 2015; 6:e1826. [PMID: 26181206 PMCID: PMC4650736 DOI: 10.1038/cddis.2015.191] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/25/2015] [Accepted: 06/09/2015] [Indexed: 12/31/2022]
Abstract
p53 is the most frequently mutated tumor-suppressor gene in human cancers. Unlike other tumor-suppressor genes, p53 mutations mainly occur as missense mutations within the DNA-binding domain, leading to the expression of full-length mutant p53 protein. Mutant p53 proteins not only lose their tumor-suppressor function, but may also gain new oncogenic functions and promote tumorigenesis. Here, we showed that silencing of endogenous p53-R273H contact mutant, but not p53-R175H conformational mutant, reduced AKT phosphorylation, induced BCL2-modifying factor (BMF) expression, sensitized BIM dissociation from BCL-XL and induced mitochondria-dependent apoptosis in cancer cells. Importantly, cancer cells harboring endogenous p53-R273H mutant were also found to be inherently resistant to anoikis and lack BMF induction following culture in suspension. Underlying these activities is the ability of p53-R273H mutant to suppress BMF expression that is dependent on constitutively active PI3K/AKT signaling. Collectively, these findings suggest that p53-R273H can specifically drive AKT signaling and suppress BMF expression, resulting in enhanced cell survivability and anoikis resistance. These findings open the possibility that blocking of PI3K/AKT will have therapeutic benefit in mutant p53-R273H expressing cancers.
Collapse
Affiliation(s)
- B S Tan
- 1] School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia [2] Center for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - K H Tiong
- 1] School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia [2] Oral Cancer Research and Co-ordinating Center (OCRCC), Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia [3] Cancer Research Initiatives Foundation, Sime Darby Medical Centre, Subang Jaya, Malaysia
| | - H L Choo
- 1] School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia [2] Center for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - F Fei-Lei Chung
- Center for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - L-W Hii
- 1] School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia [2] Center for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - S H Tan
- 1] School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia [2] Center for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - I K S Yap
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - S Pani
- ANU Medical School, Canberra Hospital Campus, The Canberra Hospital Building 4, Garran, Australia
| | - N T W Khor
- School of Medicine, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - S F Wong
- School of Medicine, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - R Rosli
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - S-K Cheong
- Faculty of Medicine and Health Sciences, University Tunku Abdul Rahman, Bandar Sungai Long, Selangor, Malaysia
| | - C-O Leong
- 1] School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia [2] Center for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia [3] School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| |
Collapse
|
25
|
Kikuchi K, Noguchi A, Kasajima R, Miyagi Y, Hoshino D, Koshikawa N, Kubota A, Yokose T, Takano Y. Association of SIRT1 and tumor suppressor gene TAp63 expression in head and neck squamous cell carcinoma. Tumour Biol 2015; 36:7865-72. [DOI: 10.1007/s13277-015-3515-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 04/27/2015] [Indexed: 12/31/2022] Open
|
26
|
Evasion of anti-growth signaling: A key step in tumorigenesis and potential target for treatment and prophylaxis by natural compounds. Semin Cancer Biol 2015; 35 Suppl:S55-S77. [PMID: 25749195 DOI: 10.1016/j.semcancer.2015.02.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 02/11/2015] [Accepted: 02/13/2015] [Indexed: 12/14/2022]
Abstract
The evasion of anti-growth signaling is an important characteristic of cancer cells. In order to continue to proliferate, cancer cells must somehow uncouple themselves from the many signals that exist to slow down cell growth. Here, we define the anti-growth signaling process, and review several important pathways involved in growth signaling: p53, phosphatase and tensin homolog (PTEN), retinoblastoma protein (Rb), Hippo, growth differentiation factor 15 (GDF15), AT-rich interactive domain 1A (ARID1A), Notch, insulin-like growth factor (IGF), and Krüppel-like factor 5 (KLF5) pathways. Aberrations in these processes in cancer cells involve mutations and thus the suppression of genes that prevent growth, as well as mutation and activation of genes involved in driving cell growth. Using these pathways as examples, we prioritize molecular targets that might be leveraged to promote anti-growth signaling in cancer cells. Interestingly, naturally occurring phytochemicals found in human diets (either singly or as mixtures) may promote anti-growth signaling, and do so without the potentially adverse effects associated with synthetic chemicals. We review examples of naturally occurring phytochemicals that may be applied to prevent cancer by antagonizing growth signaling, and propose one phytochemical for each pathway. These are: epigallocatechin-3-gallate (EGCG) for the Rb pathway, luteolin for p53, curcumin for PTEN, porphyrins for Hippo, genistein for GDF15, resveratrol for ARID1A, withaferin A for Notch and diguelin for the IGF1-receptor pathway. The coordination of anti-growth signaling and natural compound studies will provide insight into the future application of these compounds in the clinical setting.
Collapse
|
27
|
ArhGAP30 promotes p53 acetylation and function in colorectal cancer. Nat Commun 2014; 5:4735. [PMID: 25156493 DOI: 10.1038/ncomms5735] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 07/17/2014] [Indexed: 12/16/2022] Open
Abstract
Covalent modification adding acetyl groups to the C terminus of the p53 protein has been suggested to be required for its functional activation as a tumour suppressor. However, it remains largely unknown how p53 acetylation is deregulated in colorectal cancer (CRC), which is the third most commonly diagnosed cancer worldwide. Here we show that ArhGAP30, a Rho GTPase-activating protein, is a pivotal regulator for p53 acetylation and functional activation in CRC. ArhGAP30 binds to p53 C-terminal domain and P300, facilitating P300-mediated acetylation of p53 at lysine 382. ArhGAP30 expression is required for p53 activation upon DNA damage stress, and the level of ArhGAP30 correlates with p53 acetylation and functional activation in CRC tissues. Moreover, low level of ArhGAP30 expression associates with poor survival of CRC patients. In summary, ArhGAP30 is required for p53 acetylation and functional activation in CRC, and the expression of ArhGAP30 is a potential prognostic marker for CRC.
Collapse
|
28
|
Wu J, Liang S, Bergholz J, He H, Walsh EM, Zhang Y, Xiao ZX. ΔNp63α activates CD82 metastasis suppressor to inhibit cancer cell invasion. Cell Death Dis 2014; 5:e1280. [PMID: 24901051 PMCID: PMC4611714 DOI: 10.1038/cddis.2014.239] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 04/02/2014] [Accepted: 04/22/2014] [Indexed: 12/21/2022]
Abstract
P63 is a p53 family member involved in multiple facets of biology, including embryonic development, cell proliferation, differentiation, survival, apoptosis, senescence and aging. The p63 gene encodes multiple protein isoforms either with (TAp63) or without (ΔNp63) the N-terminal transactivation domain. Amounting evidence suggests that p63 can function as a tumor suppressor, yet the precise molecular mechanisms, and particularly the specific roles of TAp63 and ΔNp63 in cancer progression, are still largely unclear. Here, we demonstrated that ΔNp63α, the predominant isoform expressed in epithelial cells and squamous cell carcinomas, inhibits cell invasion. Affymetrix gene expression profiling, combined with gain- and loss-of-function analyses and chromatin immunoprecipitation, indicated that cluster of differentiation 82 (CD82), a documented metastasis suppressor, is a direct transcriptional target of ΔNp63α. Expression of ΔNp63α inhibited outgrowth in Matrigel and cancer cell invasion, which was largely reversed by specific ablation of CD82. Conversely, ΔNp63α knockdown led to increased cell invasion, which was reversed by ectopic expression of CD82. Moreover, inhibition of glycogen synthase kinase-3β (GSK3β) by either pharmacological inhibitors or by RNA interference resulted in the downregulation of ΔNp63α and CD82 expression, concomitant with increased cell invasion, independently of β-catenin. Furthermore, decreased expression of p63 and CD82 is correlated with cancer progression. Taken together, this study reveals that ΔNp63α upregulates CD82 to inhibit cell invasion, and suggests that GSK3β can regulate cell invasion by modulating the ΔNp63α–CD82 axis.
Collapse
Affiliation(s)
- J Wu
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - S Liang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610014, China
| | - J Bergholz
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610014, China
| | - H He
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610014, China
| | - E M Walsh
- Department of Pathology, Brigham and Women's Hospital/Harvard Medical School, Boston, MA 02115, USA
| | - Y Zhang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610014, China
| | - Z-X Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610014, China
| |
Collapse
|
29
|
Muller PAJ, Vousden KH. Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell 2014; 25:304-17. [PMID: 24651012 PMCID: PMC3970583 DOI: 10.1016/j.ccr.2014.01.021] [Citation(s) in RCA: 1105] [Impact Index Per Article: 110.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/13/2013] [Accepted: 01/13/2014] [Indexed: 12/11/2022]
Abstract
Many different types of cancer show a high incidence of TP53 mutations, leading to the expression of mutant p53 proteins. There is growing evidence that these mutant p53s have both lost wild-type p53 tumor suppressor activity and gained functions that help to contribute to malignant progression. Understanding the functions of mutant p53 will help in the development of new therapeutic approaches that may be useful in a broad range of cancer types.
Collapse
Affiliation(s)
- Patricia A J Muller
- Medical Research Council Toxicology Unit, Hodgkin Building, Lancaster Road, Leicester LE1 9HN, UK.
| | - Karen H Vousden
- CR-UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK.
| |
Collapse
|