1
|
Shah ZA, Nouroz F, Ejaz S, Tayyeb A. An Insight into the Role of E2F1 in Breast Cancer Progression, Drug Resistance, and Metastasis. Curr Mol Med 2023; 23:365-376. [PMID: 35260053 DOI: 10.2174/1566524022666220308095834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 11/25/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022]
Abstract
AIMS This study aimed to investigate the role of E2F1 in breast cancer biology. BACKGROUND Expression of E2F1, a transcription factor of many oncogenes and tumor suppressor genes, is lowered in several malignancies, including breast carcinoma. OBJECTIVES In the present study, we analyzed the status of E2F1 expression in association with diverse attributes of breast malignancy and its impact on cancer progression. METHODS For this purpose, we used various freely available online applications for gene enrichment, expression, and methylation analysis to extract mutation-based E2F1 map, to measure E2F1 drug sensitivity, and to determine E2F1 association with DNA damage response proteins. RESULTS Results revealed tissue-specific regulatory behavior of E2F1. Moreover, the key role of E2F1 in the promotion of metastasis, stem cell-mediated carcinogenesis, estrogen-mediated cell proliferation, and cellular defense system, has therefore highlighted it as a metaplastic marker and hot member of key resistome pathways. CONCLUSION The information thus generated can be employed for future implications in devising rational therapeutic strategies. Moreover, this study has provided a more detailed insight into the diagnostic and prognostic potential of E2F1.
Collapse
Affiliation(s)
- Zafar Abbas Shah
- Department of Bioinformatics, Hazara University Mansehra, Mansehra, Pakistan
| | - Faisal Nouroz
- Department of Bioinformatics, Hazara University Mansehra, Mansehra, Pakistan
| | - Samina Ejaz
- Department of Biochemistry, Institute of Biochemistry, Biotechnology and Bioinformatics (IBBB), The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Asima Tayyeb
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
2
|
Saad D, Paissoni C, Chaves-Sanjuan A, Nardini M, Mantovani R, Gnesutta N, Camilloni C. High Conformational Flexibility of the E2F1/DP1/DNA Complex. J Mol Biol 2021; 433:167119. [PMID: 34181981 DOI: 10.1016/j.jmb.2021.167119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
The E2F1 transcription factor is a master regulator of cell-cycle progression whose uncontrolled activation contributes to tumor cells growth. E2F1 binds DNA as a heterodimer with DP partners, resulting in a multi-domain quaternary-structure complex composed of DNA binding domains, a coiled coil domain and a marked box domain separated by short linkers. Building on the 3D knowledge of the single domains of E2F and DPs, we characterized the structure and dynamics of the complete E2F1/DP1/DNA complex by a combination of small-angle X-ray scattering and molecular dynamics simulations. It shows an asymmetric contribution of the dynamics of the two proteins. Namely, the coiled-coil domain leans toward the DP1 side of the complex; the DP1 loop between α2 and α3 of the DBD partially populates a helical structure leaning far from the DNA and in the same direction of the coiled-coil domain; and the N-terminal disordered region of DP1, rich in basic residues, contributes to DNA binding stabilization. Intriguingly, tumor mutations in the flexible regions of the complex suggest that perturbation of protein dynamics could affect protein function in a context-dependent way. Our data suggest fundamental contributions of DP proteins in distinct aspects of E2F biology.
Collapse
Affiliation(s)
- Dana Saad
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Cristina Paissoni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Antonio Chaves-Sanjuan
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Marco Nardini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Nerina Gnesutta
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| | - Carlo Camilloni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| |
Collapse
|
3
|
Erbaba B, Arslan-Ergul A, Adams MM. Effects of caloric restriction on the antagonistic and integrative hallmarks of aging. Ageing Res Rev 2021; 66:101228. [PMID: 33246078 DOI: 10.1016/j.arr.2020.101228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/09/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022]
Abstract
Aging is a significant risk factor for cognitive decline associated with neurodegenerative diseases, which makes understanding what promotes 'healthy brain aging' very important. Studies suggest that caloric restriction (CR) is a non-genetic intervention that reliably extends life- and healthspan. Here, we review the CR literature related to both the subject of aging and alterations in cell cycle machinery, especially surrounding the regulation of the E2F/DP1 complex, to elucidate the cellular protection mechanisms in the brain induced via dietary applications. The alterations extending lifespan via CR appear to exert their effects by promoting survival of individual cells, downregulating cell proliferation, and inducing stem cell quiescence, which results in keeping the stem cell reserve for extreme needs. This survival instinct of cells is believed to cause some molecular adaptations for their maintenance of the system. Avoiding energy waste of proliferation machinery promotes the long term survival of the individual cells and this is due to adaptations to the limited nutrient supply in the environment. Such a protective mechanism induced by diet could be promoted via the downregulation of crucial cell cycle-related transcription activators. This review article aims to bring attention to the importance of molecular adaptations induced by diet that promote healthy brain aging. It will provide insights into alternative targets for new treatments or neuroprotective approaches against neurodegenerative pathophysiologies.
Collapse
Affiliation(s)
- Begun Erbaba
- Interdisciplinary Graduate Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey
| | - Ayca Arslan-Ergul
- National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey
| | - Michelle M Adams
- Interdisciplinary Graduate Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey; Department of Psychology, Bilkent University, Ankara, Turkey.
| |
Collapse
|
4
|
Jibrim RLM, de Carvalho CV, Invitti AL, Schor E. Expression of the TFDP1 gene in the endometrium of women with deep infiltrating endometriosis. Gynecol Endocrinol 2019; 35:490-493. [PMID: 30638096 DOI: 10.1080/09513590.2018.1540569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The field of endometriosis etiopathogenesis aims to identify the origin of disease in endometrial disorders. Changes in gene and protein expression related to cell adhesion, collagenases, and, mainly, cell cycle regulators have been identified. We set out to analyze the expression of the transcription factor DP-1 (TFDP1) gene, which encodes a protein that controls the G1/S phase passage of the cell cycle, in the endometrium of women with deep infiltrating endometriosis (DIE). Samples of endometrium from both endometriosis-affected women and healthy women were collected, cultured and maintained at the Cell Bank of the Pelvic Pain and Endometriosis Unit of the Federal University of Sao Paulo. This study analyzed five samples from the endometrium cell culture of healthy patients (i.e. no pelvic disease, as determined by means of laparoscopic tubal ligation) and six samples from women diagnosed with DIE. Samples were evaluated for TFDP1 gene expression by real-time PCR. We observed a downregulation of TFDP1 in the endometrium cells of women with DIE when compared to the control (a fold-change of -2.05, p value=.011). The TFDP1 gene is part of the cell cycle pathway, but its function is not yet clear. Additional studies are necessary to clarify the function of TFDP1 in endometriosis etiopathogenesis.
Collapse
Affiliation(s)
- Rodrigo Lopes Meime Jibrim
- a Gynecology Department, Pelvic Pain and Endometriosis Unit , Universidade Federal de São Paulo - Escola Paulista de Medicina (UNIFESP-EPM) , Sao Paulo , Brazil
| | - Cristina Valletta de Carvalho
- a Gynecology Department, Pelvic Pain and Endometriosis Unit , Universidade Federal de São Paulo - Escola Paulista de Medicina (UNIFESP-EPM) , Sao Paulo , Brazil
| | - Adriana Luckow Invitti
- a Gynecology Department, Pelvic Pain and Endometriosis Unit , Universidade Federal de São Paulo - Escola Paulista de Medicina (UNIFESP-EPM) , Sao Paulo , Brazil
| | - Eduardo Schor
- a Gynecology Department, Pelvic Pain and Endometriosis Unit , Universidade Federal de São Paulo - Escola Paulista de Medicina (UNIFESP-EPM) , Sao Paulo , Brazil
| |
Collapse
|
5
|
Jiao Y, Ding L, Chu M, Wang T, Kang J, Zhao X, Li H, Chen X, Gao Z, Gao L, Wang Y. Effects of cancer-testis antigen, TFDP3, on cell cycle regulation and its mechanism in L-02 and HepG2 cell lines in vitro. PLoS One 2017; 12:e0182781. [PMID: 28797103 PMCID: PMC5552311 DOI: 10.1371/journal.pone.0182781] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/24/2017] [Indexed: 12/31/2022] Open
Abstract
TFDP3, also be known as HCA661, was one of the cancer-testis antigens, which only expressed in human tissues. The recent researches about TFDP3 mostly focused on its ability to control the drug resistance and apoptosis of tumor cells. However, the role of TFDP3 in the progress of the cell cycle is rarely involved. In this study, we examined the expression of TFDP3 in human liver tissues firstly. After that, we detect the expression of TFDP3 at the RNA level and protein level in L-02 cell line and HepG2 cell line, and the location of TFDP3 was defined by immunofluorescence technique. Furthermore, we synchronized the cells to G1 phase, S phase and G2 phase, and arrested cell mitosis. The localization of TFDP3 and co-localization with E2F1 molecules in different phases of hepatocyte lines. Finally, TFDP3 gene knockout was performed on L-02 and HepG2 cell lines, and detected the new cell cycles by flow cytometry. The result showed that the expression of TFDP3 molecule is negative in normal liver tissue, but positive in immortalized human hepatocyte cell line, and the expression level is lower than in hepatocellular carcinoma cell line. The expression level of TFDP3 was in the dynamic change of L-02 and HepG2 cell lines, and was related to the phase transition. TFDP3 can bind to E2F1 molecule to form E2F/TFDP3 complex; and the localizations of TFDP3 and E2F1 molecules and the co-localization were different in different phases of cell cycle in the nucleus and cytoplasm, which indicated that the E2F/TFDP3 complex involved in the process of regulating the cell cycle. By knocking down the TFDP3 expression level in L-02 and HepG2 cell lines, the cell cycle would be arrested in S phase, which confirmed that TFDP3 can be a potential target for tumor therapy.
Collapse
Affiliation(s)
- Yunshen Jiao
- Department of Immunology, School of Basic Medical Science, Peking University, Beijing, China
- Key Laboratory of Medical Immunology, Ministry of Health, Beijing, China
| | - Lingyu Ding
- Department of Immunology, School of Basic Medical Science, Peking University, Beijing, China
- Key Laboratory of Medical Immunology, Ministry of Health, Beijing, China
| | - Ming Chu
- Department of Immunology, School of Basic Medical Science, Peking University, Beijing, China
- Key Laboratory of Medical Immunology, Ministry of Health, Beijing, China
- * E-mail: (MC); (YDW)
| | - Tieshan Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jiarui Kang
- Department of Pathology, the First Affiliated Hospital of General Hospital of Chinese People’s Liberation Army, Beijing, China
| | - Xiaofan Zhao
- Department of Immunology, School of Basic Medical Science, Peking University, Beijing, China
| | - Huanhuan Li
- Department of Immunology, School of Basic Medical Science, Peking University, Beijing, China
- Key Laboratory of Medical Immunology, Ministry of Health, Beijing, China
| | - Xi Chen
- Department of Immunology, School of Basic Medical Science, Peking University, Beijing, China
| | - Zirui Gao
- Department of Immunology, School of Basic Medical Science, Peking University, Beijing, China
| | - Likai Gao
- Department of Immunology, School of Basic Medical Science, Peking University, Beijing, China
| | - Yuedan Wang
- Department of Immunology, School of Basic Medical Science, Peking University, Beijing, China
- Key Laboratory of Medical Immunology, Ministry of Health, Beijing, China
- * E-mail: (MC); (YDW)
| |
Collapse
|
6
|
Ishak CA, Marshall AE, Passos DT, White CR, Kim SJ, Cecchini MJ, Ferwati S, MacDonald WA, Howlett CJ, Welch ID, Rubin SM, Mann MRW, Dick FA. An RB-EZH2 Complex Mediates Silencing of Repetitive DNA Sequences. Mol Cell 2016; 64:1074-1087. [PMID: 27889452 DOI: 10.1016/j.molcel.2016.10.021] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/17/2016] [Accepted: 10/17/2016] [Indexed: 12/21/2022]
Abstract
Repetitive genomic regions include tandem sequence repeats and interspersed repeats, such as endogenous retroviruses and LINE-1 elements. Repressive heterochromatin domains silence expression of these sequences through mechanisms that remain poorly understood. Here, we present evidence that the retinoblastoma protein (pRB) utilizes a cell-cycle-independent interaction with E2F1 to recruit enhancer of zeste homolog 2 (EZH2) to diverse repeat sequences. These include simple repeats, satellites, LINEs, and endogenous retroviruses as well as transposon fragments. We generated a mutant mouse strain carrying an F832A mutation in Rb1 that is defective for recruitment to repetitive sequences. Loss of pRB-EZH2 complexes from repeats disperses H3K27me3 from these genomic locations and permits repeat expression. Consistent with maintenance of H3K27me3 at the Hox clusters, these mice are developmentally normal. However, susceptibility to lymphoma suggests that pRB-EZH2 recruitment to repetitive elements may be cancer relevant.
Collapse
Affiliation(s)
- Charles A Ishak
- London Regional Cancer Program, London, ON N6A 4L6, Canada; Department of Biochemistry, Western University, London, ON N6A 3K7, Canada
| | - Aren E Marshall
- London Regional Cancer Program, London, ON N6A 4L6, Canada; Department of Biochemistry, Western University, London, ON N6A 3K7, Canada
| | - Daniel T Passos
- London Regional Cancer Program, London, ON N6A 4L6, Canada; Department of Biochemistry, Western University, London, ON N6A 3K7, Canada
| | - Carlee R White
- Children's Health Research Institute, London, ON N6A 4L6, Canada; Department of Biochemistry, Western University, London, ON N6A 3K7, Canada
| | - Seung J Kim
- London Regional Cancer Program, London, ON N6A 4L6, Canada; Department of Biochemistry, Western University, London, ON N6A 3K7, Canada
| | - Matthew J Cecchini
- London Regional Cancer Program, London, ON N6A 4L6, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Sara Ferwati
- London Regional Cancer Program, London, ON N6A 4L6, Canada; Department of Biochemistry, Western University, London, ON N6A 3K7, Canada
| | - William A MacDonald
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Christopher J Howlett
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Ian D Welch
- Animal Care Services, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Mellissa R W Mann
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Frederick A Dick
- London Regional Cancer Program, London, ON N6A 4L6, Canada; Children's Health Research Institute, London, ON N6A 4L6, Canada; Department of Biochemistry, Western University, London, ON N6A 3K7, Canada.
| |
Collapse
|
7
|
Mota A, Triviño JC, Rojo-Sebastian A, Martínez-Ramírez Á, Chiva L, González-Martín A, Garcia JF, Garcia-Sanz P, Moreno-Bueno G. Intra-tumor heterogeneity in TP53 null High Grade Serous Ovarian Carcinoma progression. BMC Cancer 2015; 15:940. [PMID: 26620706 PMCID: PMC4666042 DOI: 10.1186/s12885-015-1952-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 11/23/2015] [Indexed: 12/20/2022] Open
Abstract
Background High grade serous ovarian cancer is characterised by high initial response to chemotherapy but poor outcome in the long term due to acquired resistance. One of the main genetic features of this disease is TP53 mutation. The majority of TP53 mutated tumors harbor missense mutations in this gene, correlated with p53 accumulation. TP53 null tumors constitute a specific subgroup characterised by nonsense, frameshift or splice-site mutations associated to complete absence of p53 expression. Different studies show that this kind of tumors may have a worse prognosis than other TP53 mutated HGSC. Methods In this study, we sought to characterise the intra-tumor heterogeneity of a TP53 null HGSC consisting of six primary tumor samples, two intra-pelvic and four extra-pelvic recurrences using exome sequencing and comparative genome hybridisation. Results Significant heterogeneity was found among the different tumor samples, both at the mutational and copy number levels. Exome sequencing identified 102 variants, of which only 42 were common to all three samples; whereas 7 of the 18 copy number changes found by CGH analysis were presented in all samples. Sanger validation of 20 variants found by exome sequencing in additional regions of the primary tumor and the recurrence allowed us to establish a sequence of the tumor clonal evolution, identifying those populations that most likely gave rise to recurrences and genes potentially involved in this process, like GPNMB and TFDP1. Using functional annotation and network analysis, we identified those biological functions most significantly altered in this tumor. Remarkably, unexpected functions such as microtubule-based movement and lipid metabolism emerged as important for tumor development and progression, suggesting its potential interest as therapeutic targets. Conclusions Altogether, our results shed light on the clonal evolution of the distinct tumor regions identifying the most aggressive subpopulations and at least some of the genes that may be implicated in its progression and recurrence, and highlights the importance of considering intra-tumor heterogeneity when carrying out genetic and genomic studies, especially when these are aimed to diagnostic procedures or to uncover possible therapeutic strategies. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1952-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alba Mota
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), IdiPAZ, Madrid, Spain. .,MD Anderson International Foundation, Madrid, Spain.
| | | | | | | | - Luis Chiva
- Department of Gynecologic Oncology, MD Anderson Cancer Center, Madrid, Spain.
| | | | - Juan F Garcia
- MD Anderson International Foundation, Madrid, Spain. .,Department of Pathology, MD Anderson Cancer Center, Madrid, Spain.
| | - Pablo Garcia-Sanz
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), IdiPAZ, Madrid, Spain. .,MD Anderson International Foundation, Madrid, Spain.
| | - Gema Moreno-Bueno
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), IdiPAZ, Madrid, Spain. .,MD Anderson International Foundation, Madrid, Spain.
| |
Collapse
|
8
|
Poppy Roworth A, Ghari F, La Thangue NB. To live or let die - complexity within the E2F1 pathway. Mol Cell Oncol 2015; 2:e970480. [PMID: 27308406 PMCID: PMC4905241 DOI: 10.4161/23723548.2014.970480] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/11/2014] [Accepted: 09/11/2014] [Indexed: 04/21/2023]
Abstract
The E2F1 transcription factor is a recognized regulator of the cell cycle as well as a potent mediator of DNA damage-induced apoptosis and the checkpoint response. Understanding the diverse and seemingly dichotomous functions of E2F1 activity has been the focus of extensive ongoing research. Although the E2F pathway is frequently deregulated in cancer, the contributions of E2F1 itself to tumorigenesis, as a promoter of proliferation or cell death, are far from understood. In this review we aim to provide an update on our current understanding of E2F1, with particular insight into its novel interaction partners and post-translational modifications, as a means to explaining its diverse functional complexity.
Collapse
Affiliation(s)
- A Poppy Roworth
- Laboratory of Cancer Biology; Department of Oncology; University of Oxford; Oxford, UK
| | - Fatemeh Ghari
- Laboratory of Cancer Biology; Department of Oncology; University of Oxford; Oxford, UK
| | - Nicholas B La Thangue
- Laboratory of Cancer Biology; Department of Oncology; University of Oxford; Oxford, UK
- Correspondence to: Nicholas B La Thangue;
| |
Collapse
|