1
|
Zhang J, Ma F, Li Z, Li Y, Sun X, Song M, Yang F, Wu E, Wei X, Wang Z, Yang L. NFKB2 mediates colorectal cancer cell immune escape and metastasis in a STAT2/PD‐L1‐dependent manner. MedComm (Beijing) 2024; 5:e521. [PMID: 38660687 PMCID: PMC11042535 DOI: 10.1002/mco2.521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 02/06/2024] [Accepted: 02/28/2024] [Indexed: 04/26/2024] Open
Abstract
This study systematically analyzed the molecular mechanism and function of nuclear factor kappa B subunit 2 (NFKB2) in colorectal cancer (CRC) to investigate the potential of NFKB2 as a therapeutic target for CRC. Various experimental techniques, including RNA sequencing, proteome chip assays, and small molecule analysis, were used to obtain a deeper understanding of the regulation of NFKB2 in CRC. The results revealed that NFKB2 was upregulated in a significant proportion of patients with advanced hepatic metastasis of CRC. NFKB2 played an important role in promoting tumor growth through CD8+ T-cell exhaustion. Moreover, NFKB2 directly interacted with signal transducer and activator of transcription 2 (STAT2), leading to increased phosphorylation of STAT2 and the upregulation of programmed death ligand 1 (PD-L1). Applying a small molecule inhibitor of NFKB2 (Rg5) led to a reduction in PD-L1 expression and improved response to programmed death-1 blockade-based immunotherapy. In conclusion, the facilitated NFKB2-STAT2/PD-L1 axis may suppress immune surveillance in CRC and targeting NFKB2 may enhance the efficacy of immunotherapeutic strategies. Our results provide novel insights into the molecular mechanisms underlying the contribution of NFKB2 in CRC immune escape.
Collapse
Affiliation(s)
- Jiwei Zhang
- Shanghai Key Laboratory of Compound Chinese MedicinesThe MOE Key Laboratory for Standardization of Chinese MedicinesInstitute of Chinese Materia MedicaShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Fen Ma
- Shanghai Key Laboratory of Compound Chinese MedicinesThe MOE Key Laboratory for Standardization of Chinese MedicinesInstitute of Chinese Materia MedicaShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Zhe Li
- Academy of Integrative MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yuan Li
- Shanghai Key Laboratory of Compound Chinese MedicinesThe MOE Key Laboratory for Standardization of Chinese MedicinesInstitute of Chinese Materia MedicaShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xun Sun
- Gastrointestinal SurgeryLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Mingxu Song
- Human Reproductive and Genetic CenterAffiliated Hospital of Jiangnan UniversityJiangsuChina
| | - Fan Yang
- Shanghai Key Laboratory of Compound Chinese MedicinesThe MOE Key Laboratory for Standardization of Chinese MedicinesInstitute of Chinese Materia MedicaShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Enjiang Wu
- Shanghai Key Laboratory of Compound Chinese MedicinesThe MOE Key Laboratory for Standardization of Chinese MedicinesInstitute of Chinese Materia MedicaShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xiaohui Wei
- Shanghai Key Laboratory of Compound Chinese MedicinesThe MOE Key Laboratory for Standardization of Chinese MedicinesInstitute of Chinese Materia MedicaShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Zhengtao Wang
- Shanghai Key Laboratory of Compound Chinese MedicinesThe MOE Key Laboratory for Standardization of Chinese MedicinesInstitute of Chinese Materia MedicaShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Li Yang
- Shanghai Key Laboratory of Compound Chinese MedicinesThe MOE Key Laboratory for Standardization of Chinese MedicinesInstitute of Chinese Materia MedicaShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
2
|
Wang J, Liang W, Wang X, Chen Z, Jiang L. LTBP2 regulates cisplatin resistance in GC cells via activation of the NF-κB2/BCL3 pathway. Genet Mol Biol 2024; 47:e20230231. [PMID: 38577985 PMCID: PMC10995769 DOI: 10.1590/1678-4685-gmb-2023-0231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/26/2024] [Indexed: 04/06/2024] Open
Abstract
Gastric cancer (GC) often develops resistance to cisplatin treatment, but while latent transforming growth factor β-binding protein (LTBP2) is recognized as a potential regulator in GC, its specific role in cisplatin resistance is not fully understood. This study investigated LTBP2's impact on cisplatin resistance in GC. LTBP2 expression was assessed in various GC cell lines, and its correlation with cisplatin sensitivity was determined through cell viability assays. Lentivirus-mediated LTBP2 silencing in HGC-27 cells demonstrated enhanced cisplatin sensitivity, reduced cell proliferation, and inhibition of the NF-κB2/Bcl-3/cyclin D1 pathway. Additionally, transient transfection overexpressed the NFκB2 gene in LTBP2-silenced HGC-27/DDPR cells, restoring cisplatin sensitivity and upregulating p52/Bcl-3/cyclin D1. In conclusion, silencing LTBP2 could effectively inhibit cell proliferation and mitigate cisplatin resistance via the NFKB noncanonical pathway NFKB2 p52/Bcl-3/cyclin D1. These findings propose LTBP2 as a potential therapeutic target for overcoming cisplatin resistance in GC patients.
Collapse
Affiliation(s)
- Jun Wang
- The First Hospital of Lanzhou University, Department of General Surgery, Ward 6, Lanzhou, Gansu, China
| | - Wenjia Liang
- Gansu Provincial Hospital, Department of Ultrasound, Lanzhou, Gansu, China
| | - Xiangwen Wang
- The First Hospital of Lanzhou University, Department of General Surgery, Ward 6, Lanzhou, Gansu, China
| | - Zhao Chen
- The First Hospital of Lanzhou University, Department of General Surgery, Ward 6, Lanzhou, Gansu, China
| | - Lei Jiang
- The First Hospital of Lanzhou University, Department of General Surgery, Ward 6, Lanzhou, Gansu, China
| |
Collapse
|
3
|
Xie D, Wu C, Wang D, Nisma Lena BA, Liu N, Ye G, Sun M. Wei-fu-chun tablet halted gastric intestinal metaplasia and dysplasia associated with inflammation by regulating the NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117020. [PMID: 37567428 DOI: 10.1016/j.jep.2023.117020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chi006Eese herbal medicine Weifuchun Tablets (WFC) approved by the State Food and Drug Administration in 1982 has been widely used in treating a variety of chronic stomach disorders including Chronic atrophic gastritis (CAG) and Gastric precancerous lesions in China clinically. This study aimed to investigate the efficacy and potential mechanism of WFC in treating Gastric intestinal metaplasia (GIM) and Gastric dysplasia (GDys). MATERIALS AND METHODS Rat GIM and GDys established by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) combined with hot paste, ethanol injury, and intermittent fasting were intervened by WFC. Body weight, histopathology, pH of gastric acid, pepsin activity, intestinal metaplasia index and inflammation were detected. Rat bone marrow derived macrophages (BMDMs) pretreated with WFC were stimulated by LPS. Inflammatory factors and the nuclear factor-kappa B (NF-κB) pathway were assessed. GES-1 cells pretreated by WFC were stimulated by MNNG and TNF-α, intestinal metaplasia index, the NF-κB pathway and interaction between P65 and CDX2 were detected. RESULTS WFC improved rat body weight, histopathology, pH value of gastric acid, activity of gastric pepsin, intestinal metaplasia (CDX2), inflammation (IL-1β, IL-6 and TNF-α), macrophage aggregation (CD68) in gastric mucosa in rat GIM and GDys. WFC inhibited inflammation (IL-1β and TNF-α) by inactivating the NF-κB pathway. WFC reduced the expression of CDX2 by inhibiting the binding of CDX2 promoter TSS upstream region with p65. CONCLUSION WFC blocked GIM and GDys associated with inflammation by regulating the NF-κB pathway.
Collapse
Affiliation(s)
- Dong Xie
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chao Wu
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dan Wang
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bahaji Azami Nisma Lena
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ningning Liu
- Department of Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guan Ye
- Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai, China.
| | - Mingyu Sun
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
4
|
Leslie J, Hunter JE, Collins A, Rushton A, Russell LG, Ramon‐Gil E, Laszczewska M, McCain M, Zaki MYW, Knox A, Seow Y, Sabater L, Geh D, Perkins ND, Reeves HL, Tiniakos D, Mann DA, Oakley F. c-Rel-dependent Chk2 signaling regulates the DNA damage response limiting hepatocarcinogenesis. Hepatology 2023; 78:1050-1063. [PMID: 36089330 PMCID: PMC10521790 DOI: 10.1002/hep.32781] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death. The NF-κB transcription factor family subunit c-Rel is typically protumorigenic; however, it has recently been reported as a tumor suppressor. Here, we investigated the role of c-Rel in HCC. APPROACH AND RESULTS Histological and transcriptional studies confirmed expression of c-Rel in human patients with HCC, but low c-Rel expression correlated with increased tumor cell proliferation and mutational burden and was associated with advanced disease. In vivo , global ( Rel-/- ) and epithelial specific ( RelAlb ) c-Rel knockout mice develop more tumors, with a higher proliferative rate and increased DNA damage, than wild-type (WT) controls 30 weeks after N-diethylnitrosamine injury. However, tumor burden was comparable when c-Rel was deleted in hepatocytes once tumors were established, suggesting c-Rel signaling is important for preventing HCC initiation after genotoxic injury, rather than for HCC progression. In vitro , Rel-/- hepatocytes were more susceptible to genotoxic injury than WT controls. ATM-CHK2 DNA damage response pathway proteins were suppressed in Rel-/- hepatocytes following genotoxic injury, suggesting that c-Rel is required for effective DNA repair. To determine if c-Rel inhibition sensitizes cancer cells to chemotherapy, by preventing repair of chemotherapy-induced DNA damage, thus increasing tumor cell death, we administered single or combination doxorubicin and IT-603 (c-Rel inhibitor) therapy in an orthotopic HCC model. Indeed, combination therapy was more efficacious than doxorubicin alone. CONCLUSION Hepatocyte c-Rel signaling limits genotoxic injury and subsequent HCC burden. Inhibiting c-Rel as an adjuvant therapy increased the effectiveness of DNA damaging agents and reduced HCC growth.
Collapse
Affiliation(s)
- Jack Leslie
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Jill E. Hunter
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Amy Collins
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Amelia Rushton
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Lauren G. Russell
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Erik Ramon‐Gil
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Maja Laszczewska
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Misti McCain
- Newcastle University Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Marco Y. W. Zaki
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
- Biochemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Amber Knox
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Yixin Seow
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Laura Sabater
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Daniel Geh
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
- Department of Medicine, Freeman Hospital, Newcastle‐upon‐Tyne Hospitals NHS Foundation Trust, Newcastle‐upon‐Tyne, UK
| | - Neil D. Perkins
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Helen L. Reeves
- Newcastle University Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
- Department of Medicine, Freeman Hospital, Newcastle‐upon‐Tyne Hospitals NHS Foundation Trust, Newcastle‐upon‐Tyne, UK
| | - Dina Tiniakos
- Newcastle University Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
- Department of Pathology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Derek A. Mann
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Fiona Oakley
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| |
Collapse
|
5
|
Lopes C, Almeida TC, Pimentel-Nunes P, Dinis-Ribeiro M, Pereira C. Linking dysbiosis to precancerous stomach through inflammation: Deeper than and beyond imaging. Front Immunol 2023; 14:1134785. [PMID: 37063848 PMCID: PMC10102473 DOI: 10.3389/fimmu.2023.1134785] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/17/2023] [Indexed: 04/03/2023] Open
Abstract
Upper gastrointestinal endoscopy is considered the gold standard for gastric lesions detection and surveillance, but it is still associated with a non-negligible rate of missing conditions. In the Era of Personalized Medicine, biomarkers could be the key to overcome missed lesions or to better predict recurrence, pushing the frontier of endoscopy to functional endoscopy. In the last decade, microbiota in gastric cancer has been extensively explored, with gastric carcinogenesis being associated with progressive dysbiosis. Helicobacter pylori infection has been considered the main causative agent of gastritis due to its interference in disrupting the acidic environment of the stomach through inflammatory mediators. Thus, does inflammation bridge the gap between gastric dysbiosis and the gastric carcinogenesis cascade and could the microbiota-inflammation axis-derived biomarkers be the answer to the unmet challenge of functional upper endoscopy? To address this question, in this review, the available evidence on the role of gastric dysbiosis and chronic inflammation in precancerous conditions of the stomach is summarized, particularly targeting the nuclear factor-κB (NF-κB), toll-like receptors (TLRs) and cyclooxygenase-2 (COX-2) pathways. Additionally, the potential of liquid biopsies as a non-invasive source and the clinical utility of studied biomarkers is also explored. Overall, and although most studies offer a mechanistic perspective linking a strong proinflammatory Th1 cell response associated with, but not limited to, chronic infection with Helicobacter pylori, promising data recently published highlights not only the diagnostic value of microbial biomarkers but also the potential of gastric juice as a liquid biopsy pushing forward the concept of functional endoscopy and personalized care in gastric cancer early diagnosis and surveillance.
Collapse
Affiliation(s)
- Catarina Lopes
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI‐IPOP)/Rise@CI‐IPOP (Health Research Group), Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
- CINTESIS – Center for Health Technology and Services Research, University of Porto, Porto, Portugal
- ICBAS-UP – Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Tatiana C. Almeida
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI‐IPOP)/Rise@CI‐IPOP (Health Research Group), Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
| | - Pedro Pimentel-Nunes
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto (FMUP), Porto, Portugal
- Department of Gastroenterology, Unilabs, Porto, Portugal
| | - Mário Dinis-Ribeiro
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI‐IPOP)/Rise@CI‐IPOP (Health Research Group), Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
- Department of Gastroenterology, Portuguese Institute of Oncology of Porto, Porto, Portugal
| | - Carina Pereira
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI‐IPOP)/Rise@CI‐IPOP (Health Research Group), Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
- CINTESIS – Center for Health Technology and Services Research, University of Porto, Porto, Portugal
- *Correspondence: Carina Pereira,
| |
Collapse
|
6
|
Xie D, Sun MY. Mechanism of action of NF-κB related cell signaling pathways in progression of gastritis to carcinoma. Shijie Huaren Xiaohua Zazhi 2022; 30:255-259. [DOI: 10.11569/wcjd.v30.i6.255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is a major global public health problem. The evolvement pattern of "superficial gastritis-chronic atrophic gastritis-intestinal metaplasia-dysplasia-gastric carcinoma" is common in related gastric diseases. As a key factor involved in systemic stress response, inflammatory response, and apoptosis, the regulation of NF-κB related to inflammation and apoptosis is a necessary link between inflammation and cancer progression. NF-κB is activated in most solid tumors and lymphomas. In the critical mechanism of gastric cancer induced by gastritis with various etiologies, the upstream and downstream molecules in the NF-κB signaling pathway are changed, and the cells are exposed to the microenvironment of inflammatory response for a long time, which ultimately leads to the development of their carcinogenic potential. This article discusses the mechanism of NF-κB in the key risk factors for the progression of gastric disease.
Collapse
Affiliation(s)
- Dong Xie
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Chinese Medicine, Shanghai 201203, China
| | - Ming-Yu Sun
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
7
|
NF-κB in Gastric Cancer Development and Therapy. Biomedicines 2021; 9:biomedicines9080870. [PMID: 34440074 PMCID: PMC8389569 DOI: 10.3390/biomedicines9080870] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer is considered one of the most common causes of cancer-related death worldwide and, thus, a major health problem. A variety of environmental factors including physical and chemical noxae, as well as pathogen infections could contribute to the development of gastric cancer. The transcription factor nuclear factor kappa B (NF-κB) and its dysregulation has a major impact on gastric carcinogenesis due to the regulation of cytokines/chemokines, growth factors, anti-apoptotic factors, cell cycle regulators, and metalloproteinases. Changes in NF-κB signaling are directed by genetic alterations in the transcription factors themselves, but also in NF-κB signaling molecules. NF-κB actively participates in the crosstalk of the cells in the tumor micromilieu with divergent effects on the heterogeneous tumor cell and immune cell populations. Thus, the benefits/consequences of therapeutic targeting of NF-κB have to be carefully evaluated. In this review, we address recent knowledge about the mechanisms and consequences of NF-κB dysregulation in gastric cancer development and therapy.
Collapse
|
8
|
Low JT, Christie M, Ernst M, Dumoutier L, Preaudet A, Ni Y, Griffin MDW, Mielke LA, Strasser A, Putoczki TL, O'Reilly LA. Loss of NFKB1 Results in Expression of Tumor Necrosis Factor and Activation of Signal Transducer and Activator of Transcription 1 to Promote Gastric Tumorigenesis in Mice. Gastroenterology 2020; 159:1444-1458.e15. [PMID: 32569771 DOI: 10.1053/j.gastro.2020.06.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Activity of nuclear factor κB transcription factors and signaling via signal transducer and activator of transcription (STAT) are frequently altered in gastric cancer cells. Mice lacking NFKB1 (Nfkb1-/- mice) develop invasive gastric cancer, and their gastric tissues have increased levels of cytokines, such as interleukin (IL) 6, IL22, IL11, and tumor necrosis factor (TNF), as well as increased activation of STAT1. We investigated whether these cytokines were required for STAT1 activation in gastric tissues of mice and critical for gastric tumorigenesis. METHODS We crossed Nfkb1-/- mice with Il6-/-, Il22-/-, Il11Rα-/-, and Tnf-/- mice. Stomach tissues from compound mutant mice were analyzed by histology, immunoblotting, and RNA sequencing. Lymphoid, myeloid, and epithelial cells were isolated from stomachs, and the levels of cytokines were determined by flow cytometric analysis. RESULTS Nfkb1-/- mice developed gastritis, oxyntic atrophy, gastric dysplasia, and invasive tumors, whereas Nfkb1-/-Stat1-/- mice did not, even when followed for as long as 2 years. The levels of Il6, Il11, Il22, and Tnf messenger RNA were increased in the body and antrum of the stomachs from Nfkb1-/- mice, from 3-6 months of age. However, Nfkb1-/-Il6-/-, Nfkb1-/-Il22-/-, and Nfkb1-/-Il11Rα-/- mice still developed gastric tumors, although the absence of IL11 receptor (IL11R) significantly reduced development of invasive gastric tumors. Stomachs from Nfkb1-/-Tnf-/- mice exhibited significantly less gastritis and oxyntic atrophy and fewer tumors than Nfkb1-/- mice. This correlated with reduced activation of STAT1 and STAT3 and fewer numbers of T cells and B cells infiltrating the gastric body. Loss of STAT1 or TNF significantly reduced expression of PD-L1 on epithelial and myeloid (CD11b+) cells in the gastric mucosa of Nfkb1-/- mice-indeed, to the levels observed on the corresponding cells from wild-type mice. CONCLUSIONS In studies of gastric tumor development in knockout mice, we found that loss of NFKB1 causes increased expression of TNF in the stomach and thereby drives activation of STAT1, resulting in an inflammatory immune response and the development of gastric cancer. IL11R appears to be required for the progression of gastric tumors to the invasive stage. These findings suggest that inhibitors of TNF, and possibly also inhibitors of IL11/IL11Rα, might be useful in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Jun T Low
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael Christie
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria, Australia
| | | | - Adele Preaudet
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Yanhong Ni
- Visiting scientist from Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China to The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Lisa A Mielke
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Tracy L Putoczki
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia; Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia
| | - Lorraine A O'Reilly
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
9
|
NF-κB2 signalling in enteroids modulates enterocyte responses to secreted factors from bone marrow-derived dendritic cells. Cell Death Dis 2019; 10:896. [PMID: 31772152 PMCID: PMC6879761 DOI: 10.1038/s41419-019-2129-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/23/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022]
Abstract
Alternative pathway NF-κB signalling regulates susceptibility towards developing inflammatory bowel disease (IBD), colitis-associated cancer and sepsis-associated intestinal epithelial cell apoptosis and shedding. However, the cell populations responsible for the perturbed alternative pathway NF-κB signalling in intestinal mucosal pathology remain unclear. In order to investigate the contribution of the epithelial compartment, we have tested whether NF-κB2 regulated transcription in intestinal epithelial cells controls the intestinal epithelial response to cytokines that are known to disrupt intestinal barrier permeability. Enteroids were generated from the proximal, middle and distal regions of small intestine (SI) from C57BL/6J wild-type mice and displayed region-specific morphology that was maintained during sub-culture. Enteroids treated with 100 ng/mL TNF were compared with corresponding regions of SI from C57BL/6J mice treated systemically with 0.33 mg/kg TNF for 1.5 h. TNF-induced apoptosis in all regions of the intestine in vitro and in vivo but resulted in Paneth cell degranulation only in proximal tissue-derived SI and enteroids. TNF also resulted in increased enteroid sphericity (quantified as circularity from two-dimensional bright field images). This response was dose and time-dependent and correlated with active caspase-3 immunopositivity. Proximal tissue-derived enteroids generated from Nfκb2−/− mice showed a significantly blunted circularity response following the addition of TNF, IFNγ, lipopolysaccharide (LPS) activated C57BL/6J-derived bone marrow-derived dendritic cells (BMDC) and secreted factors from LPS-activated BMDCs. However, Nfκb1−/− mouse-derived enteroids showed no significant changes in response to these stimuli. In conclusion, the selection of SI region is important when designing enteroid studies as region-specific identity and response to stimuli such as TNF are maintained in culture. Intestinal epithelial cells are at least partially responsible for regulating their own fate by modulating NF-κB2 signalling in response to stimuli known to be involved in multiple intestinal and systemic diseases. Future studies are warranted to investigate the therapeutic potential of intestinal epithelial NF-κB2 inhibition.
Collapse
|
10
|
MicroRNA-365a-3p inhibits c-Rel-mediated NF-κB signaling and the progression of pancreatic cancer. Cancer Lett 2019; 452:203-212. [DOI: 10.1016/j.canlet.2019.03.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 01/08/2023]
|
11
|
Mutated Rnf43 Aggravates Helicobacter Pylori-Induced Gastric Pathology. Cancers (Basel) 2019; 11:cancers11030372. [PMID: 30884828 PMCID: PMC6468876 DOI: 10.3390/cancers11030372] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/10/2019] [Accepted: 03/13/2019] [Indexed: 12/24/2022] Open
Abstract
The E3 ubiquitin ligase ring finger protein 43 (RNF43) is frequently mutated in gastric tumors and loss of RNF43 expression was suggested to be one of the key events during the transition from adenoma to gastric carcinoma. Functional studies on RNF43 have shown that it acts as a tumor suppressor by negatively regulating Wnt signaling. Interestingly, we observed that RNF43H292R/H295R mice bearing two point mutations in the ring domain displayed thickening of the mucosa at early age but did not develop neoplasia. In this study, we infected these mice for 6 months with Helicobacter pylori, which has been described as one of the major risk factors for gastric cancer. Mice bearing mutant RNF43H292R/H295R showed higher gastritis scores upon H. pylori infection compared to wild-type mice, accompanied by increased lymphocyte infiltration and Ifng levels. Furthermore, infected Rnf43 mutant mice developed atrophy, hyperplasia and MUC2 expressing metaplasia and displayed higher levels of the gastric stem cell marker CD44 and canonical NF-κB signaling. In summary, our results show that transactivating mutations in the tumor suppressor Rnf43 can worsen H. pylori induced pathology.
Collapse
|
12
|
Burkitt MD, Duckworth CA, Williams JM, Pritchard DM. Helicobacter pylori-induced gastric pathology: insights from in vivo and ex vivo models. Dis Model Mech 2017; 10:89-104. [PMID: 28151409 PMCID: PMC5312008 DOI: 10.1242/dmm.027649] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gastric colonization with Helicobacter pylori induces diverse human pathological conditions, including superficial gastritis, peptic ulcer disease, mucosa-associated lymphoid tissue (MALT) lymphoma, and gastric adenocarcinoma and its precursors. The treatment of these conditions often relies on the eradication of H. pylori, an intervention that is increasingly difficult to achieve and that does not prevent disease progression in some contexts. There is, therefore, a pressing need to develop new experimental models of H. pylori-associated gastric pathology to support novel drug development in this field. Here, we review the current status of in vivo and ex vivo models of gastric H. pylori colonization, and of Helicobacter-induced gastric pathology, focusing on models of gastric pathology induced by H. pylori, Helicobacter felis and Helicobacter suis in rodents and large animals. We also discuss the more recent development of gastric organoid cultures from murine and human gastric tissue, as well as from human pluripotent stem cells, and the outcomes of H. pylori infection in these systems.
Collapse
Affiliation(s)
- Michael D Burkitt
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK
| | - Carrie A Duckworth
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK
| | - Jonathan M Williams
- Pathology and Pathogen Biology, Royal Veterinary College, North Mymms AL9 7TA, UK
| | - D Mark Pritchard
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK
| |
Collapse
|
13
|
α-Actinin-4 promotes metastasis in gastric cancer. J Transl Med 2017; 97:1084-1094. [PMID: 28581489 DOI: 10.1038/labinvest.2017.28] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 12/08/2016] [Accepted: 01/16/2017] [Indexed: 12/12/2022] Open
Abstract
Metastasis increases the mortality rate of gastric cancer, which is the third leading cause of cancer-associated deaths worldwide. This study aims to identify the genes promoting metastasis of gastric cancer (GC). A human cell motility PCR array was used to analyze a pair of tumor and non-tumor tissue samples from a patient with stage IV GC (T3N3M1). Expression of the dysregulated genes was then evaluated in GC tissue samples (n=10) and cell lines (n=6) via qPCR. Expression of α-actinin-4 (ACTN4) was validated in a larger sample size (n=47) by qPCR, western blot and immunohistochemistry. Knockdown of ACTN4 with specific siRNAs was performed in GC cells, and adhesion assays, transwell invasion assays and migration assays were used to evaluate the function of these cells. Expression of potential targets of ACTN4 were then evaluated by qPCR. Thirty upregulated genes (greater than twofold) were revealed by the PCR array. We focused on ACTN4 because it was upregulated in 6 out of 10 pairs of tissue samples and 5 out of 6 GC cell lines. Further study indicated that ACTN4 was upregulated in 22/32 pairs of tissue samples at stage III &IV (P=0.0069). Knockdown of ACTN4 in GC cells showed no significant effect on cell proliferation, but significantly increased cell-matrix adhesion, as well as reduced migration and invasion of AGS, MKN7 and NCI-N87 cells. We found that NF-κB was downregulated in GC with the knockdown of ACTN4. In conclusion, this is the first study to indicate that ACTN4 is significantly upregulated in patients with metastatic GC. ACTN4 reduces cell adhesion and enhances migration and invasion of GC cells and may therefore be a novel therapeutic target for GC.
Collapse
|
14
|
Mejías-Luque R, Zöller J, Anderl F, Loew-Gil E, Vieth M, Adler T, Engler DB, Urban S, Browning JL, Müller A, Gerhard M, Heikenwalder M. Lymphotoxin β receptor signalling executes Helicobacter pylori-driven gastric inflammation in a T4SS-dependent manner. Gut 2017; 66:1369-1381. [PMID: 27196595 DOI: 10.1136/gutjnl-2015-310783] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 03/14/2016] [Accepted: 03/21/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Lymphotoxin β receptor (LTβR) signalling has been implicated in inflammation-associated tumour development in different tissues. We have analysed the role of LTβR and alternative NF-κB signalling in Helicobacter pylori-mediated gastric inflammation and pathology. DESIGN We analysed several ligands and receptors of the alternative NF-κB pathway, RelB, p52 nuclear translocation and target genes in tissue samples of H. pylori-infected patients with different degrees of gastritis or early gastric tumours by in situ hybridisation, immunohistochemistry, Western blot and real-time PCR analyses. Molecular mechanisms involved in LTβR activation by H. pylori were assessed in vitro using human gastric cancer cell lines and distinct H. pylori isolates. The effects of blocking or agonistically activating LTβR on gastric pathology during challenge with a human pathogenic H. pylori strain were studied in a mouse model. RESULTS Among the tested candidates, LT was significantly increased and activated alternative NF-κB signalling was observed in the gastric mucosa of H. pylori-infected patients. H. pyloriinduced LTβR-ligand expression in a type IV secretion system-dependent but CagA-independent manner, resulting in activation of the alternative NF-κB pathway, which was further enhanced by blocking canonical NF-κB during infection. Blocking LTβR signalling in vivo suppressed H. pylori-driven gastritis, whereas LTβR activation in gastric epithelial cells of infected mice induced a broadened pro-inflammatory chemokine milieu, resulting in exacerbated pathology. CONCLUSIONS LTβR-triggered activation of alternative NF-κB signalling in gastric epithelial cells executes H. pylori-induced chronic gastritis, representing a novel target to restrict gastric inflammation and pathology elicited by H. pylori, while exclusively targeting canonical NF-κB may aggravate pathology by enhancing the alternative pathway.
Collapse
Affiliation(s)
- Raquel Mejías-Luque
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany.,German Centre for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Jessica Zöller
- Institut für Virologie, Technische Universität München, Helmholtz Zentrum München, Neuherberg, Germany
| | - Florian Anderl
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Elena Loew-Gil
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Michael Vieth
- Institut für Pathologie, Klinikum Bayreuth, Bayreuth, Germany
| | - Thure Adler
- Immunology Screen, German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
| | - Daniela B Engler
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Sabine Urban
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | | | - Anne Müller
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Markus Gerhard
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany.,German Centre for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Mathias Heikenwalder
- Institut für Virologie, Technische Universität München, Helmholtz Zentrum München, Neuherberg, Germany.,Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
15
|
Burkitt MD, Williams JM, Townsend T, Hough R, Duckworth CA, Pritchard DM. Mice lacking NF-κB1 exhibit marked DNA damage responses and more severe gastric pathology in response to intraperitoneal tamoxifen administration. Cell Death Dis 2017; 8:e2939. [PMID: 28726772 PMCID: PMC5584614 DOI: 10.1038/cddis.2017.332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/14/2017] [Accepted: 06/15/2017] [Indexed: 01/15/2023]
Abstract
Tamoxifen (TAM) has recently been shown to cause acute gastric atrophy and metaplasia in mice. We have previously demonstrated that the outcome of Helicobacter felis infection, which induces similar gastric lesions in mice, is altered by deletion of specific NF-κB subunits. Nfkb1-/- mice developed more severe gastric atrophy than wild-type (WT) mice 6 weeks after H. felis infection. In contrast, Nfkb2-/- mice were protected from this pathology. We therefore hypothesized that gastric lesions induced by TAM may be similarly regulated by signaling via NF-κB subunits. Groups of five female C57BL/6 (WT), Nfkb1-/-, Nfkb2-/- and c-Rel-/- mice were administered 150 mg/kg TAM by IP injection. Seventy-two hours later, gastric corpus tissues were taken for quantitative histological assessment. In addition, groups of six female WT and Nfkb1-/- mice were exposed to 12 Gy γ-irradiation. Gastric epithelial apoptosis was quantified 6 and 48 h after irradiation. TAM induced gastric epithelial lesions in all strains of mice, but this was more severe in Nfkb1-/- mice than in WT mice. Nfkb1-/- mice exhibited more severe parietal cell loss than WT mice, had increased gastric epithelial expression of Ki67 and had an exaggerated gastric epithelial DNA damage response as quantified by γH2AX. To investigate whether the difference in gastric epithelial DNA damage response of Nfkb1-/- mice was unique to TAM-induced DNA damage or a generic consequence of DNA damage, we also assessed gastric epithelial apoptosis following γ-irradiation. Six hours after γ-irradiation, gastric epithelial apoptosis was increased in the gastric corpus and antrum of Nfkb1-/- mice. NF-κB1-mediated signaling regulates the development of gastric mucosal pathology following TAM administration. This is associated with an exaggerated gastric epithelial DNA damage response. This aberrant response appears to reflect a more generic sensitization of the gastric mucosa of Nfkb1-/- mice to DNA damage.
Collapse
Affiliation(s)
- Michael D Burkitt
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, The Henry Wellcome Laboratory, Liverpool, UK
| | | | - Tristan Townsend
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, The Henry Wellcome Laboratory, Liverpool, UK
| | - Rachael Hough
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, The Henry Wellcome Laboratory, Liverpool, UK
| | | | - D Mark Pritchard
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, The Henry Wellcome Laboratory, Liverpool, UK
| |
Collapse
|
16
|
Floch P, Izotte J, Guillemaud J, Sifré E, Costet P, Rousseau B, Laur AM, Giese A, Korolik V, Mégraud F, Dubus P, Hahne M, Lehours P. A New Animal Model of Gastric Lymphomagenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1473-1484. [DOI: 10.1016/j.ajpath.2017.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/27/2017] [Accepted: 03/09/2017] [Indexed: 12/29/2022]
|
17
|
Lemos LMS, Miyajima F, Castilho GRC, Martins DTO, Pritchard DM, Burkitt MD. Hexane Extracts of Calophyllum brasiliense Inhibit the Development of Gastric Preneoplasia in Helicobacter felis Infected INS-Gas Mice. Front Pharmacol 2017; 8:92. [PMID: 28289390 PMCID: PMC5326747 DOI: 10.3389/fphar.2017.00092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 02/13/2017] [Indexed: 01/26/2023] Open
Abstract
Objectives: Indigenous Latin American populations have used extracts from Calophyllum brasiliense, a native hardwood, to treat gastrointestinal symptoms for generations. The hexane extract of Calophyllum brasiliense stem bark (HECb) protects against ethanol-mediated gastric ulceration in Swiss–Webster mice. We investigated whether HECb inhibits the development of gastric epithelial pathology following Helicobacter felis infection of INS-Gas mice. Materials and Methods: Groups of five male, 6-week-old INS-Gas mice were colonized with H. felis by gavage. From 2 weeks after colonization their drinking water was supplemented with 2% Tween20 (vehicle), low dose HECb (33 mg/L, lHECb) or high dose HECb (133 mg/L, hHECb). Equivalent uninfected groups were studied. Animals were culled 6 weeks after H. felis colonization. Preneoplastic pathology was quantified using established histological criteria. Gastric epithelial cell turnover was quantified by immunohistochemistry for Ki67 and active-caspase 3. Cytokines were quantified using an electrochemiluminescence assay. Results: Vehicle-treated H. felis infected mice exhibited higher gastric atrophy scores than similarly treated uninfected mice (mean atrophy score 5.6 ± 0.87 SEM vs. 2.2 ± 0.58, p < 0.01). The same pattern was observed following lHECb. Following hHECb treatment, H. felis status did not significantly alter atrophy scores. Gastric epithelial apoptosis was not altered by H. felis or HECb administration. Amongst vehicle-treated mice, gastric epithelial cell proliferation was increased 2.8-fold in infected compared to uninfected animals (p < 0.01). Administration of either lHECb or hHECb reduced proliferation in infected mice to levels similar to uninfected mice. A Th17 polarized response to H. felis infection was observed in all infected groups. hHECb attenuated IFN-γ, IL-6, and TNF production following H. felis infection [70% (p < 0.01), 67% (p < 0.01), and 41% (p < 0.05) reduction vs. vehicle, respectively]. Conclusion: HECb modulates gastric epithelial pathology following H. felis infection of INS-Gas mice. Further studies are indicated to confirm the mechanisms underlying these observations.
Collapse
Affiliation(s)
- Larissa M S Lemos
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of LiverpoolLiverpool, UK; Department of Basic Sciences in Health, Federal University of Mato GrossoMato Grosso, Brazil
| | - Fabio Miyajima
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of LiverpoolLiverpool, UK; Group of Neuropharmacology, Drug Research and Development Center, Federal University of CearáFortaleza, Brazil
| | - Geovane R C Castilho
- Department of Basic Sciences in Health, Federal University of Mato Grosso Mato Grosso, Brazil
| | | | - D Mark Pritchard
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool Liverpool, UK
| | - Michael D Burkitt
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool Liverpool, UK
| |
Collapse
|
18
|
The innate immune signaling in cancer and cardiometabolic diseases: Friends or foes? Cancer Lett 2017; 387:46-60. [DOI: 10.1016/j.canlet.2016.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 06/03/2016] [Accepted: 06/05/2016] [Indexed: 12/16/2022]
|
19
|
Li L, Xu-Monette ZY, Ok CY, Tzankov A, Manyam GC, Sun R, Visco C, Zhang M, Montes-Moreno S, Dybkaer K, Chiu A, Orazi A, Zu Y, Bhagat G, Richards KL, Hsi ED, Choi WWL, van Krieken JH, Huh J, Ponzoni M, Ferreri AJM, Møller MB, Wang J, Parsons BM, Winter JN, Piris MA, Pham LV, Medeiros LJ, Young KH. Prognostic impact of c-Rel nuclear expression and REL amplification and crosstalk between c-Rel and the p53 pathway in diffuse large B-cell lymphoma. Oncotarget 2016; 6:23157-80. [PMID: 26324762 PMCID: PMC4695110 DOI: 10.18632/oncotarget.4319] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 06/16/2015] [Indexed: 02/06/2023] Open
Abstract
Dysregulated NF-κB signaling is critical for lymphomagenesis. The regulation, function, and clinical relevance of c-Rel/NF-κB activation in diffuse large B-cell lymphoma (DLBCL) have not been well studied. In this study we analyzed the prognostic significance and gene-expression signature of c-Rel nuclear expression as surrogate of c-Rel activation in 460 patients with de novo DLBCL. Nuclear c-Rel expression, observed in 137 (26.3%) DLBCL patients frequently associated with extranoal origin, did not show significantly prognostic impact in the overall- or germinal center B-like-DLBCL cohort, likely due to decreased pAKT and Myc levels, up-regulation of FOXP3, FOXO3, MEG3 and other tumor suppressors coincided with c-Rel nuclear expression, as well as the complicated relationships between NF-κB members and their overlapping function. However, c-Rel nuclear expression correlated with significantly poorer survival in p63+ and BCL-2− activated B-cell-like-DLBCL, and in DLBCL patients with TP53 mutations. Multivariate analysis indicated that after adjusting clinical parameters, c-Rel positivity was a significantly adverse prognostic factor in DLBCL patients with wild type TP53. Gene expression profiling suggested dysregulations of cell cycle, metabolism, adhesion, and migration associated with c-Rel activation. In contrast, REL amplification did not correlate with c-Rel nuclear expression and patient survival, likely due to co-amplification of genes that negatively regulate NF-κB activation. These insights into the expression, prognostic impact, regulation and function of c-Rel as well as its crosstalk with the p53 pathway underscore the importance of c-Rel and have significant therapeutic implications.
Collapse
Affiliation(s)
- Ling Li
- Zhengzhou University, The First Affiliated University Hospital, Zhengzhou, China.,Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zijun Y Xu-Monette
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chi Young Ok
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Ganiraju C Manyam
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ruifang Sun
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Mingzhi Zhang
- Zhengzhou University, The First Affiliated University Hospital, Zhengzhou, China
| | | | | | - April Chiu
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Attilio Orazi
- Weill Medical College of Cornell University, New York, NY, USA
| | - Youli Zu
- The Methodist Hospital, Houston, TX, USA
| | - Govind Bhagat
- Columbia University Medical Center and New York Presbyterian Hospital, New York, NY, USA
| | - Kristy L Richards
- University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | | | - William W L Choi
- University of Hong Kong Li Ka Shing Faculty of Medicine, Hong Kong, China
| | | | - Jooryung Huh
- Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea
| | | | | | | | | | | | - Jane N Winter
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Miguel A Piris
- Hospital Universitario Marques de Valdecilla, Santander, Spain
| | - Lan V Pham
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The University of Texas School of Medicine, Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
20
|
Merga YJ, O'Hara A, Burkitt MD, Duckworth CA, Probert CS, Campbell BJ, Pritchard DM. Importance of the alternative NF-κB activation pathway in inflammation-associated gastrointestinal carcinogenesis. Am J Physiol Gastrointest Liver Physiol 2016; 310:G1081-90. [PMID: 27102559 DOI: 10.1152/ajpgi.00026.2016] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/17/2016] [Indexed: 02/07/2023]
Abstract
Chronic inflammation is a common factor in the development of many gastrointestinal malignancies. Examples include inflammatory bowel disease predisposing to colorectal cancer, Barrett's esophagus as a precursor of esophageal adenocarcinoma, and Helicobacter pylori-induced gastric cancer. The classical activation pathway of NF-κB signaling has been identified as regulating several sporadic and inflammation-associated gastrointestinal tract malignancies. Emerging evidence suggests that the alternative NF-κB signaling pathway also exerts a distinct influence on these processes. This review brings together current knowledge of the role of the alternative NF-κB signaling pathway in the gastrointestinal tract, with a particular emphasis on inflammation-associated cancer development.
Collapse
Affiliation(s)
- Yvette J Merga
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Adrian O'Hara
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Michael D Burkitt
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Carrie A Duckworth
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Christopher S Probert
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Barry J Campbell
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - D Mark Pritchard
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
21
|
Hunter JE, Leslie J, Perkins ND. c-Rel and its many roles in cancer: an old story with new twists. Br J Cancer 2016; 114:1-6. [PMID: 26757421 PMCID: PMC4716536 DOI: 10.1038/bjc.2015.410] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/22/2015] [Accepted: 10/05/2015] [Indexed: 01/19/2023] Open
Abstract
When the genes encoding NF-κB subunits were first isolated, their homology to the previously identified c-Rel proto-oncogene and its viral homologue v-Rel was clear. This provided the first indication that these transcription factors also had a role in cancer. Because of its homology to v-Rel, which transforms chicken B cells together with the important role c-Rel can have as a regulator of B- and T-cell proliferation, most attention has focussed on its role in B-cell lymphomas, where the REL gene is frequently amplified. However, a growing number of reports now indicate that c-Rel has important functions in many solid tumours, although studies in mice suggest it may not always function as an oncogene. Moreover, c-Rel is a critical regulator of fibrosis, which provides an environment for tumour development in many settings. Overall, c-Rel is emerging as a complex regulator of tumorigenesis, and there is still much to learn about its functions in human malignancies and the response to cancer therapies.
Collapse
Affiliation(s)
- Jill E Hunter
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | - Jack Leslie
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | - Neil D Perkins
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| |
Collapse
|
22
|
de Valle E, Grigoriadis G, O'Reilly LA, Willis SN, Maxwell MJ, Corcoran LM, Tsantikos E, Cornish JKS, Fairfax KA, Vasanthakumar A, Febbraio MA, Hibbs ML, Pellegrini M, Banerjee A, Hodgkin PD, Kallies A, Mackay F, Strasser A, Gerondakis S, Gugasyan R. NFκB1 is essential to prevent the development of multiorgan autoimmunity by limiting IL-6 production in follicular B cells. J Exp Med 2016; 213:621-41. [PMID: 27022143 PMCID: PMC4821646 DOI: 10.1084/jem.20151182] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 03/01/2016] [Indexed: 12/15/2022] Open
Abstract
de Valle et al. show that, with age, NFκB1-deficient B cells spontaneously secrete IL-6 and cause a multiorgan autoimmune disease. We examined the role of NFκB1 in the homeostasis and function of peripheral follicular (Fo) B cells. Aging mice lacking NFκB1 (Nfκb1−/−) develop lymphoproliferative and multiorgan autoimmune disease attributed in large part to the deregulated activity of Nfκb1−/− Fo B cells that produce excessive levels of the proinflammatory cytokine interleukin 6 (IL-6). Despite enhanced germinal center (GC) B cell differentiation, the formation of GC structures was severely disrupted in the Nfκb1−/− mice. Bone marrow chimeric mice revealed that the Fo B cell–intrinsic loss of NFκB1 led to the spontaneous generation of GC B cells. This was primarily the result of an increase in IL-6 levels, which promotes the differentiation of Fo helper CD4+ T cells and acts in an autocrine manner to reduce antigen receptor and toll-like receptor activation thresholds in a population of proliferating IgM+Nfκb1−/− Fo B cells. We demonstrate that p50-NFκB1 represses Il-6 transcription in Fo B cells, with the loss of NFκB1 also resulting in the uncontrolled RELA-driven transcription of Il-6. Collectively, our findings identify a previously unrecognized role for NFκB1 in preventing multiorgan autoimmunity through its negative regulation of Il-6 gene expression in Fo B cells.
Collapse
Affiliation(s)
- Elisha de Valle
- Burnet Institute, Melbourne, VIC 3004, Australia Immunology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - George Grigoriadis
- School of Clinical Sciences, Monash University, Melbourne, VIC 3004, Australia Center for Cancer Research, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia Clinical Haematology, Monash and Alfred Health, Melbourne, VIC 3168, Australia
| | - Lorraine A O'Reilly
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia Department of Medical Biology, University of Melbourne, Melbourne, VIC 3050, Australia
| | - Simon N Willis
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia Department of Medical Biology, University of Melbourne, Melbourne, VIC 3050, Australia
| | - Mhairi J Maxwell
- Immunology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Lynn M Corcoran
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia Department of Medical Biology, University of Melbourne, Melbourne, VIC 3050, Australia
| | - Evelyn Tsantikos
- Immunology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Jasper K S Cornish
- Burnet Institute, Melbourne, VIC 3004, Australia Immunology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Kirsten A Fairfax
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia Department of Medical Biology, University of Melbourne, Melbourne, VIC 3050, Australia
| | - Ajithkumar Vasanthakumar
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia Department of Medical Biology, University of Melbourne, Melbourne, VIC 3050, Australia
| | - Mark A Febbraio
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Margaret L Hibbs
- Immunology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Marc Pellegrini
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia Department of Medical Biology, University of Melbourne, Melbourne, VIC 3050, Australia
| | - Ashish Banerjee
- Center for Cancer Research, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
| | - Philip D Hodgkin
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia Department of Medical Biology, University of Melbourne, Melbourne, VIC 3050, Australia
| | - Axel Kallies
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia Department of Medical Biology, University of Melbourne, Melbourne, VIC 3050, Australia
| | - Fabienne Mackay
- Immunology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Andreas Strasser
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia Department of Medical Biology, University of Melbourne, Melbourne, VIC 3050, Australia
| | - Steve Gerondakis
- Infection and Immunity Program, Monash Biomedical Discovery Institute, Monash University, Melbourne, VIC 3004, Australia Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3004, Australia
| | - Raffi Gugasyan
- Burnet Institute, Melbourne, VIC 3004, Australia Immunology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
23
|
Shi Z, Hu Z, Chen D, Huang J, Fan J, Zhou S, Wang X, Hu J, Huang F. MicroRNA-200a mediates nasopharyngeal carcinoma cell proliferation through the activation of nuclear factor-κB. Mol Med Rep 2015; 13:1732-8. [PMID: 26718506 DOI: 10.3892/mmr.2015.4738] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 08/07/2015] [Indexed: 11/05/2022] Open
Abstract
In nasopharyngeal carcinoma (NPC), the nuclear factor-κB (NF-κB) signaling pathway is highly active. The constitutive activation of NF-κB prompts malignant cell proliferation, and microRNAs are considered an important mediator in regulating the NF-κB signaling pathway. The current study investigated the effect of microRNA-200a (miR-200a) on NF-κB activation. Reverse transcription-quantitative polymerase chain reaction was used to quantify the relative level of miR-200a in NPC tissue samples and CNE2 cells. An MTT assay was used to investigate the effect of miR-200a on cell proliferation. To investigate the activation of NF-κB, western blotting was used to measure the protein levels of NF-κB and its downstream targets. To identify the target genes of miR-200a, a luciferase reporter assay was used. The current study demonstrated that miR-200a was upregulated in NPC tissue samples and cell lines. Overexpression of miR-200a resulted in the proliferation of CNE2 cells. Western blot analysis indicated that the protein levels of p65 increased when CNE2 cells were transfected with miR-200a mimics. Additionally, the downstream targets of miR-200a were upregulated, including vascular cell adhesion molecule, intercellular adhesion molecule and monocyte chemoattractant protein-1. The luciferase assay indicated that IκBα was the target gene of miR-200a. In conclusion, miR-200a was demonstrated to enhance NPC cell proliferation by activating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Zhuliang Shi
- Department of Ear, Nose and Throat, People's Liberation Army 113th Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Zhiqiang Hu
- Department of Ear, Nose and Throat, People's Liberation Army 113th Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Delu Chen
- Department of Ear, Nose and Throat, People's Liberation Army 113th Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Jie Huang
- Department of Ear, Nose and Throat, People's Liberation Army 113th Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Jie Fan
- Department of Ear, Nose and Throat, People's Liberation Army 113th Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Subo Zhou
- Department of Ear, Nose and Throat, People's Liberation Army 113th Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Xin Wang
- Department of Ear, Nose and Throat, People's Liberation Army 113th Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Jiandao Hu
- Department of Ear, Nose and Throat, Yinzhou Hospital Affiliated to The Medical School of Ningbo University, Ningbo, Zhejiang 315000, P.R. China
| | - Fei Huang
- Department of Stomatology, People's Liberation Army Navy General Hospital, Beijing 100048, P.R. China
| |
Collapse
|
24
|
Charron CS, Dawson HD, Albaugh GP, Solverson PM, Vinyard BT, Solano-Aguilar GI, Molokin A, Novotny JA. A Single Meal Containing Raw, Crushed Garlic Influences Expression of Immunity- and Cancer-Related Genes in Whole Blood of Humans. J Nutr 2015; 145:2448-55. [PMID: 26423732 PMCID: PMC4620724 DOI: 10.3945/jn.115.215392] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/20/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Preclinical and epidemiologic studies suggest that garlic intake is inversely associated with the progression of cancer and cardiovascular disease. OBJECTIVE We designed a study to probe the mechanisms of garlic action in humans. METHODS We conducted a randomized crossover feeding trial in which 17 volunteers consumed a garlic-containing meal (100 g white bread, 15 g butter, and 5 g raw, crushed garlic) or a garlic-free control meal (100 g white bread and 15 g butter) after 10 d of consuming a controlled, garlic-free diet. Blood was collected before and 3 h after test meal consumption for gene expression analysis in whole blood. Illumina BeadArray was used to screen for genes of interest, followed by real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) on selected genes. To augment human study findings, Mono Mac 6 cells were treated with a purified garlic extract (0.5 μL/mL), and mRNA was measured by qRT-PCR at 0, 3, 6, and 24 h. RESULTS The following 7 genes were found to be upregulated by garlic intake: aryl hydrocarbon receptor (AHR), aryl hydrocarbon receptor nuclear translocator (ARNT), hypoxia-inducible factor 1α (HIF1A), proto-oncogene c-Jun (JUN), nuclear factor of activated T cells (NFAT) activating protein with immunoreceptor tyrosine-based activation motif 1 (NFAM1), oncostatin M (OSM), and V-rel avian reticuloendotheliosis viral oncogene homolog (REL). Fold-increases in mRNA transcripts ranged from 1.6 (HIF1A) to 3.0 (NFAM1) (P < 0.05). The mRNA levels of 5 of the 7 genes that were upregulated in the human trial were also upregulated in cell culture at 3 and 6 h: AHR, HIF1A, JUN, OSM, and REL. Fold-increases in mRNA transcripts in cell culture ranged from 1.7 (HIF1A) to 12.1 (JUN) (P < 0.01). OSM protein was measured by ELISA and was significantly higher than the control at 3, 6, and 24 h (24 h: 19.5 ± 1.4 and 74.8 ± 1.4 pg/mL for control and garlic, respectively). OSM is a pleiotropic cytokine that inhibits several tumor cell lines in culture. CONCLUSION These data indicate that the bioactivity of garlic is multifaceted and includes activation of genes related to immunity, apoptosis, and xenobiotic metabolism in humans and Mono Mac 6 cells. This trial is registered at clinicaltrials.gov as NCT01293591.
Collapse
Affiliation(s)
| | | | | | | | - Bryan T Vinyard
- Biometrical Consulting Services, USDA, Agricultural Research Service, Beltsville, MD
| | | | | | | |
Collapse
|
25
|
Duckworth CA, Abuderman AA, Burkitt MD, Williams JM, O'Reilly LA, Pritchard DM. bak deletion stimulates gastric epithelial proliferation and enhances Helicobacter felis-induced gastric atrophy and dysplasia in mice. Am J Physiol Gastrointest Liver Physiol 2015; 309:G420-30. [PMID: 26159699 PMCID: PMC4572407 DOI: 10.1152/ajpgi.00404.2014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 07/01/2015] [Indexed: 01/31/2023]
Abstract
Helicobacter infection causes a chronic superficial gastritis that in some cases progresses via atrophic gastritis to adenocarcinoma. Proapoptotic bak has been shown to regulate radiation-induced apoptosis in the stomach and colon and also susceptibility to colorectal carcinogenesis in vivo. Therefore we investigated the gastric mucosal pathology following H. felis infection in bak-null mice at 6 or 48 wk postinfection. Primary gastric gland culture from bak-null mice was also used to assess the effects of bak deletion on IFN-γ-, TNF-α-, or IL-1β-induced apoptosis. bak-null gastric corpus glands were longer, had increased epithelial Ki-67 expression, and contained fewer parietal and enteroendocrine cells compared with the wild type (wt). In wt mice, bak was expressed at the luminal surface of gastric corpus glands, and this increased 2 wk post-H. felis infection. Apoptotic cell numbers were decreased in bak-null corpus 6 and 48 wk following infection and in primary gland cultures following cytokine administration. Increased gastric epithelial Ki-67 labeling index was observed in C57BL/6 mice after H. felis infection, whereas no such increase was detected in bak-null mice. More severe gastric atrophy was observed in bak-null compared with C57BL/6 mice 6 and 48 wk postinfection, and 76% of bak-null compared with 25% of C57BL/6 mice showed evidence of gastric dysplasia following long-term infection. Collectively, bak therefore regulates gastric epithelial cell apoptosis, proliferation, differentiation, mucosal thickness, and susceptibility to gastric atrophy and dysplasia following H. felis infection.
Collapse
Affiliation(s)
- C. A. Duckworth
- 1Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom;
| | - A. A. Abuderman
- 1Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom;
| | - M. D. Burkitt
- 1Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom;
| | - J. M. Williams
- 1Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom;
| | - L. A. O'Reilly
- 2The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; and ,3Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - D. M. Pritchard
- 1Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom;
| |
Collapse
|
26
|
Yang F, Wang H, Jiang Z, Hu A, Chu L, Sun Y, Han J. MicroRNA-19a mediates gastric carcinoma cell proliferation through the activation of nuclear factor-κB. Mol Med Rep 2015; 12:5780-6. [PMID: 26239140 PMCID: PMC4581753 DOI: 10.3892/mmr.2015.4151] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 06/22/2015] [Indexed: 12/20/2022] Open
Abstract
In gastric carcinoma, the nuclear factor-κB (NF-κB) signaling pathway is highly active, and the constitutive activation of NF-κB prompts malignant cell proliferation. MicroRNAs are considered to be important mediators in the regulation of the NF-κB signaling pathway. The present study predominantly focussed on the effects of microRNA (miR)-19a on NF-κB activation. Reverse transcription-quantitative polymerase chain reaction was used to quantify the relative levels of miR-19a in gastric carcinoma cells. MTT assays were used to determine the effect of miR-19a on cellular proliferation. To detect the activation of NF-κB, western blotting was performed to measure the protein levels of NF-κB and the products of its downstream target genes. To define the target genes, luciferase reporter assays were used. miR-19a was found to be markedly upregulated in gastric carcinoma cells. The overexpression of miR-19a resulted in proliferation and enhanced migratory capabilities of the MGC-803 gastric carcinoma cell line. The results of the western blot analysis demonstrated that the protein levels of p65 increased when the MGC-803 cells were transfected with miR-19a mimics. In addition, the downstream target genes of miR-19a, including intercellular adhesion molecule, vascular cell adhesion molecule and monocyte chemoattractant protein-1, were upregulated. The results of the luciferase assay indicated that IκB-α was the target gene of miR-19a. Therefore, the results of the present study suggested that miR-19a enhances malignant gastric cell proliferation by constitutively activating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Fan Yang
- Department of Tumor Research and Therapy Center, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Hongjian Wang
- Department of Oncology, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| | - Zhenyu Jiang
- Department of Oncology, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| | - Anxiang Hu
- Department of Oncology, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| | - Lisha Chu
- Department of Oncology, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| | - Yiling Sun
- Department of Oncology, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| | - Junqing Han
- Department of Tumor Research and Therapy Center, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
27
|
Duckworth CA, Burkitt MD, Williams JM, Parsons BN, Tang JMF, Pritchard DM. Murine Models of Helicobacter (pylori or felis)-associated Gastric Cancer. ACTA ACUST UNITED AC 2015; 69:14.34.1-14.34.35. [PMID: 26344212 DOI: 10.1002/0471141755.ph1434s69] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gastric adenocarcinoma is the fifth most common cancer and third most common cause of cancer-related death in the world. The majority of these cancers develop in genetically susceptible individuals who are chronically infected with the Gram-negative bacterium Helicobacter pylori. Often these individuals have also been exposed to certain environmental factors that increase susceptibility, such as dietary components. Murine models of Helicobacter-induced gastric cancer are valuable tools for investigating the mechanisms responsible for the stepwise pathological changes of chronic atrophic gastritis, intestinal metaplasia, dysplasia and gastric adenocarcinoma. Helicobacter felis colonization greatly accelerates the development of gastric neoplasia in mice, and causes pathologies similar to those observed with Helicobacter pylori-associated gastric carcinogenesis in humans. These mouse models are therefore useful for investigating genetic and environmental factors that may be involved in the pathogenesis and treatment of gastric cancer. Detailed in these protocols are procedures for inducing Helicobacter-associated carcinogenesis in mice as well as the histological analysis and interpretation of gastric pathology in these animals.
Collapse
Affiliation(s)
- Carrie A Duckworth
- Department of Cellular and Molecular Physiology, Gastroenterology Research Unit, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom.,Authors share first authorship
| | - Michael D Burkitt
- Department of Cellular and Molecular Physiology, Gastroenterology Research Unit, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom.,Authors share first authorship
| | - Jonathan M Williams
- Department of Cellular and Molecular Physiology, Gastroenterology Research Unit, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Bryony N Parsons
- Department of Cellular and Molecular Physiology, Gastroenterology Research Unit, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Joseph M F Tang
- Department of Cellular and Molecular Physiology, Gastroenterology Research Unit, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - D Mark Pritchard
- Department of Cellular and Molecular Physiology, Gastroenterology Research Unit, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom.,Correspondence: Prof D. Mark Pritchard, Department of Cellular and Molecular Physiology, Gastroenterology Research Unit, Institute of Translational Medicine, University of Liverpool, Ashton St, Liverpool, L69 3GE. Tel: 0151 794 5772; e-mail:
| |
Collapse
|
28
|
Burkitt MD, Hanedi AF, Duckworth CA, Williams JM, Tang JM, O'Reilly LA, Putoczki TL, Gerondakis S, Dimaline R, Caamano JH, Pritchard DM. NF-κB1, NF-κB2 and c-Rel differentially regulate susceptibility to colitis-associated adenoma development in C57BL/6 mice. J Pathol 2015; 236:326-36. [PMID: 25727407 PMCID: PMC4737252 DOI: 10.1002/path.4527] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/11/2015] [Accepted: 02/23/2015] [Indexed: 12/24/2022]
Abstract
NF-κB signalling is an important factor in the development of inflammation-associated cancers. Mouse models of Helicobacter-induced gastric cancer and colitis-associated colorectal cancer have demonstrated that classical NF-κB signalling is an important regulator of these processes. In the stomach, it has also been demonstrated that signalling involving specific NF-κB proteins, including NF-κB1/p50, NF-κB2/p52, and c-Rel, differentially regulate the development of gastric pre-neoplasia. To investigate the effect of NF-κB subunit loss on colitis-associated carcinogenesis, we administered azoxymethane followed by pulsed dextran sodium sulphate to C57BL/6, Nfkb1(-/-), Nfkb2(-/-), and c-Rel(-/-) mice. Animals lacking the c-Rel subunit were more susceptible to colitis-associated cancer than wild-type mice, developing 3.5 times more colonic polyps per animal than wild-type mice. Nfkb2(-/-) mice were resistant to colitis-associated cancer, developing fewer polyps per colon than wild-type mice (median 1 compared to 4). To investigate the mechanisms underlying these trends, azoxymethane and dextran sodium sulphate were administered separately to mice of each genotype. Nfkb2(-/-) mice developed fewer clinical signs of colitis and exhibited less severe colitis and an attenuated cytokine response compared with all other groups following DSS administration. Azoxymethane administration did not fully suppress colonic epithelial mitosis in c-Rel(-/-) mice and less colonic epithelial apoptosis was also observed in this genotype compared to wild-type counterparts. These observations demonstrate different functions of specific NF-κB subunits in this model of colitis-associated carcinogenesis. NF-κB2/p52 is necessary for the development of colitis, whilst c-Rel-mediated signalling regulates colonic epithelial cell turnover following DNA damage.
Collapse
Affiliation(s)
- Michael D Burkitt
- Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, UK
| | | | - Carrie A Duckworth
- Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, UK
| | - Jonathan M Williams
- Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, UK
| | - Joseph M Tang
- Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, UK
| | - Lorraine A O'Reilly
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, The University of Melbourne, Australia
| | - Tracy L Putoczki
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, The University of Melbourne, Australia
| | - Steve Gerondakis
- Australian Centre for Blood Diseases, Monash University Central Clinical School, Melbourne, Australia
| | - Rod Dimaline
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, UK
| | - Jorge H Caamano
- IBR-MRC Centre for Immune Regulation, College of Medicine and Dental Sciences, University of Birmingham, UK
| | - D Mark Pritchard
- Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, UK
| |
Collapse
|
29
|
Hu S, Jin D, Lu S, Liu S, Zhang J, Wang Y, Bai X, Xiong Y, Huang Y, Xu H, Wang Y, Du X, Ye C, Hänninen ML, Xu J. Helicobacter himalayensis sp. nov. isolated from gastric mucosa of Marmota himalayana. Int J Syst Evol Microbiol 2015; 65:1719-1725. [PMID: 25736414 DOI: 10.1099/ijs.0.000163] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A Gram-stain-negative, microaerophilic strain, 80(YS1)T, with a spiral-shaped morphology and 1-2 sheathed flagella at each end of the cells was isolated from the gastric mucosa of Marmota himalayana, the animal reservoir of Yersinia pestis in China, on the Qinghai-Tibet Plateau. The strain grew at 30, 35 and 42 °C, but not at 25 °C. Growth was in the form of a thinly spreading film on brain heart infusion agar containing 8 % sheep blood under microaerobic conditions. The strain did not hydrolyse urea or hippurate, and did not grow on media containing 1 % glycine. It reduced nitrate to nitrite, and was catalase- and alkaline-phosphatase-positive, susceptible to nalidixic acid and resistant to cefalotin. It was positive for genus-specific PCR for the genus Helicobacter, but could not be classified to any recognized species according biochemical tests results. Therefore, a phylogenetic study based on 16S rRNA, 23S rRNA, 60 kDa heat-shock protein (hsp60) and gyrase subunit B (gyrB) genes was conducted. The 16S rRNA gene sequence (1468 bp) analysis showed that strain 80(YS1)T was most closely related to Helicobacter marmotae (96.7 % similarity). The 23S rRNA gene sequence (2879 bp) analysis showed that the strain was most closely related to Helicobacter canis (96 % similarity). The complete gyrB gene sequence (2325 bp) analysis showed that it was related phylogenetically to Helicobacter cinaedi (79.4 % similarity) and H. marmotae (79.1 % similarity). Analysis of the partial sequence of the hsp60 gene of strain 80(YS1)T showed closest similarity to the sequences of Helicobacter equorum (82 %) and H. cinaedi (81 %), respectively. However, there was no hsp60 sequence of H. marmotae available for analysis. The data of morphological, biochemical and phylogenetic characteristics all supported that this strain represents a novel species. The name Helicobacter himalayensis sp. nov. is proposed for this novel species with the type strain 80(YS1)T ( = CGMCC 1.12864T = DSM 28742T).
Collapse
Affiliation(s)
- Shoukui Hu
- State Key Laboratory for Infectious Disease Prevention and Control, and National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, PR China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, PR China
| | - Dong Jin
- State Key Laboratory for Infectious Disease Prevention and Control, and National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, PR China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, PR China
| | - Shan Lu
- State Key Laboratory for Infectious Disease Prevention and Control, and National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, PR China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, PR China
| | - Sha Liu
- State Key Laboratory for Infectious Disease Prevention and Control, and National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, PR China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, PR China
| | - Ji Zhang
- Department of Food Hygiene and Environmental Health, Helsinki University, Finland
| | - Yiting Wang
- State Key Laboratory for Infectious Disease Prevention and Control, and National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, PR China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, PR China
| | - Xiangning Bai
- State Key Laboratory for Infectious Disease Prevention and Control, and National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, PR China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, PR China
| | - Yanwen Xiong
- State Key Laboratory for Infectious Disease Prevention and Control, and National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, PR China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, PR China
| | - Ying Huang
- State Key Laboratory for Infectious Disease Prevention and Control, and National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, PR China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, PR China
| | - Huaqing Xu
- State Key Laboratory for Infectious Disease Prevention and Control, and National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, PR China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, PR China
| | - Yi Wang
- State Key Laboratory for Infectious Disease Prevention and Control, and National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, PR China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, PR China
| | - Xiaoli Du
- State Key Laboratory for Infectious Disease Prevention and Control, and National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, PR China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, PR China
| | - Changyun Ye
- State Key Laboratory for Infectious Disease Prevention and Control, and National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, PR China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, PR China
| | - Marja-Liisa Hänninen
- Department of Food Hygiene and Environmental Health, Helsinki University, Finland
| | - Jianguo Xu
- State Key Laboratory for Infectious Disease Prevention and Control, and National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, PR China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, PR China
| |
Collapse
|
30
|
c-Rel is a critical mediator of NF-κB-dependent TRAIL resistance of pancreatic cancer cells. Cell Death Dis 2014; 5:e1455. [PMID: 25299780 PMCID: PMC4237244 DOI: 10.1038/cddis.2014.417] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 07/21/2014] [Accepted: 09/01/2014] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents one of the deadliest malignancies with an overall life expectancy of 6 months despite current therapies. NF-κB signalling has been shown to be critical for this profound cell-autonomous resistance against chemotherapeutic drugs and death receptor-induced apoptosis, but little is known about the role of the c-Rel subunit in solid cancer and PDAC apoptosis control. In the present study, by analysis of genome-wide patterns of c-Rel-dependent gene expression, we were able to establish c-Rel as a critical regulator of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in PDAC. TRAIL-resistant cells exhibited a strong TRAIL-inducible NF-κB activity, whereas TRAIL-sensitive cells displayed only a small increase in NF-κB-binding activity. Transfection with siRNA against c-Rel sensitized the TRAIL-resistant cells in a manner comparable to siRNA targeting the p65/RelA subunit. Gel-shift analysis revealed that c-Rel is part of the TRAIL-inducible NF-κB complex in PDAC. Array analysis identified NFATc2 as a c-Rel target gene among the 12 strongest TRAIL-inducible genes in apoptosis-resistant cells. In line, siRNA targeting c-Rel strongly reduced TRAIL-induced NFATc2 activity in TRAIL-resistant PDAC cells. Furthermore, siRNA targeting NFATc2 sensitized these PDAC cells against TRAIL-induced apoptosis. Finally, TRAIL-induced expression of COX-2 was diminished through siRNA targeting c-Rel or NFATc2 and pharmacologic inhibition of COX-2 with celecoxib or siRNA targeting COX-2, enhanced TRAIL apoptosis. In conclusion, we were able to delineate a novel c-Rel-, NFATc2- and COX-2-dependent antiapoptotic signalling pathway in PDAC with broad clinical implications for pharmaceutical intervention strategies.
Collapse
|
31
|
Ménard A, Péré-Védrenne C, Haesebrouck F, Flahou B. Gastric and enterohepatic helicobacters other than Helicobacter pylori. Helicobacter 2014; 19 Suppl 1:59-67. [PMID: 25167947 DOI: 10.1111/hel.12162] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
During the past year, research on non-Helicobacter pylori species has intensified. H. valdiviensis was isolated from wild birds, and putative novel species have been isolated from Bengal tigers and Australian marsupials. Various genomes have been sequenced: H. bilis, H. canis, H. macacae, H. fennelliae, H. cetorum, and H. suis. Several studies highlighted the virulence of non-H. pylori species including H. cinaedi in humans and hyperlipidemic mice or H. macacae in geriatric rhesus monkeys with intestinal adenocarcinoma. Not surprisingly, increased attention has been paid to the position of Helicobacter species in the microbiota of children and animal species (mice, chickens, penguins, and migrating birds). A large number of experimental studies have been performed in animal models of Helicobacter induced typhlocolitis, showing that the gastrointestinal microbial community is involved in modulation of host pathways leading to chronic inflammation. Animal models of H. suis, H. heilmannii, and H. felis infection have been used to study the development of severe inflammation-related pathologies, including gastric MALT lymphoma and adenocarcinoma.
Collapse
Affiliation(s)
- Armelle Ménard
- Laboratoire de Bactériologie, Centre National de Référence des Campylobacters et Hélicobacters, Université de Bordeaux, F33076, Bordeaux, France; INSERM U853, F33076, Bordeaux, France
| | | | | | | |
Collapse
|