1
|
Li J, Wang Y, Zhang X, Yang X, Qi Q, Mi Q, Feng M, Wang Y, Wang C, Li P, Du L. Characterisation of a novel transcript LNPPS acting as tumour suppressor in bladder cancer via PDCD5-mediated p53 degradation blockage. Clin Transl Med 2023; 13:e1149. [PMID: 36578176 PMCID: PMC9797767 DOI: 10.1002/ctm2.1149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) play a crucial role in tumour initiation and progression. However, little is known about their contributions to p53-related bladder cancer (BC) inhibition. METHODS By using high-throughput sequencing, we screened the expression profiles of lncRNAs in BC and adjacent non-tumour tissues. The roles of a novel lncRNA, named LNPPS [a lncRNA for programmed cell death 5 (PDCD5) and p53 stability], were determined by gain- and loss-of-function assays. RNA pull-down followed by mass spectrometry analysis, RNA immunoprecipitation assays and other immunoprecipitation assays were performed to reveal the interactions among LNPPS, PDCD5 and p53, and the regulatory effect of LNPPS on the complex ubiquitination network comprising PDCD5, p53 and mouse double minute 2 homologue (MDM2). RESULTS LNPPS was downregulated in BC and markedly inhibited the viability of BC cells by inducing PDCD5/p53-related apoptosis in vivo and in vitro. Mechanistically, LNPPS, serving as a scaffold, connected PDCD5 and p53 with nucleotides (nt) located at 121-251 nt and 251-306 nt of LNPPS, respectively. This process allowed LNPPS to protect PDCD5 from proteasomal degradation by blocking its K20 site ubiquitination. On the other hand, the increased interaction between PDCD5 and p53 displaced p53 from the MDM2-p53 ubiquitination complex, resulting in an increase in p53 expression and related apoptosis levels. Moreover, LNPPS could induce the accumulation of PDCD5 and p53 in the nucleus and exert a synergistic effect on the prevention of protein degradation. In addition, we confirmed that the downregulation of LNPPS in BC was mediated by the decreased N6-methyladenosine (m6 A) modification. CONCLUSION Our findings highlight a novel cross-talk between LNPPS and the PDCD5/p53/MDM2 ubiquitination axis in BC development, indicating its potential as a therapeutic target for BC patients.
Collapse
Affiliation(s)
- Juan Li
- Department of Clinical LaboratoryThe Second HospitalCheeloo College of MedicineShandong UniversityJinanShandongChina
- Shandong Engineering & Technology Research Center for Tumor Marker DetectionJinanShandongChina
| | - Yifan Wang
- Department of Clinical LaboratoryThe Second HospitalCheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Xinya Zhang
- Department of Clinical LaboratoryThe Second HospitalCheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Xuemei Yang
- Department of Clinical LaboratoryThe Second HospitalCheeloo College of MedicineShandong UniversityJinanShandongChina
- Shandong Engineering & Technology Research Center for Tumor Marker DetectionJinanShandongChina
| | - Qiuchen Qi
- Department of Clinical LaboratoryThe Second HospitalCheeloo College of MedicineShandong UniversityJinanShandongChina
- Shandong Engineering & Technology Research Center for Tumor Marker DetectionJinanShandongChina
| | - Qi Mi
- Department of Clinical LaboratoryThe Second HospitalCheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Maoxiao Feng
- Department of Clinical LaboratoryThe Second HospitalCheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Yunshan Wang
- Department of Clinical LaboratoryThe Second HospitalCheeloo College of MedicineShandong UniversityJinanShandongChina
- Shandong Engineering & Technology Research Center for Tumor Marker DetectionJinanShandongChina
- Shandong Provincial Clinical Medicine Research Center for Clinical LaboratoryJinanShandongChina
| | - Chuanxin Wang
- Department of Clinical LaboratoryThe Second HospitalCheeloo College of MedicineShandong UniversityJinanShandongChina
- Shandong Engineering & Technology Research Center for Tumor Marker DetectionJinanShandongChina
- Shandong Provincial Clinical Medicine Research Center for Clinical LaboratoryJinanShandongChina
| | - Peilong Li
- Department of Clinical LaboratoryThe Second HospitalCheeloo College of MedicineShandong UniversityJinanShandongChina
- Shandong Engineering & Technology Research Center for Tumor Marker DetectionJinanShandongChina
| | - Lutao Du
- Department of Clinical LaboratoryThe Second HospitalCheeloo College of MedicineShandong UniversityJinanShandongChina
- Shandong Engineering & Technology Research Center for Tumor Marker DetectionJinanShandongChina
- Shandong Provincial Clinical Medicine Research Center for Clinical LaboratoryJinanShandongChina
| |
Collapse
|
2
|
Acharya N, Singh KP. Recent advances in the molecular basis of chemotherapy resistance and potential application of epigenetic therapeutics in chemorefractory renal cell carcinoma. WIREs Mech Dis 2022; 14:e1575. [DOI: 10.1002/wsbm.1575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 06/11/2022] [Accepted: 06/22/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Narayan Acharya
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH) Texas Tech University Lubbock Texas USA
| | - Kamaleshwar P. Singh
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH) Texas Tech University Lubbock Texas USA
| |
Collapse
|
3
|
Kang XY, Zhang J, Tang L, Huang L, Tong J, Fu Q. OTU deubiquitinase 5 inhibits the progression of non-small cell lung cancer via regulating p53 and PDCD5. Chem Biol Drug Des 2020; 96:790-800. [PMID: 32248621 PMCID: PMC7496622 DOI: 10.1111/cbdd.13688] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/31/2020] [Accepted: 02/23/2020] [Indexed: 12/14/2022]
Abstract
Non-small cell lung cancer (NSCLC) has the highest morbidity and mortality worldwide. OTU deubiquitinase 5 (OTUD5), a deubiquitinating enzyme, can enhance the stability of p53 and programmed cell death 5 (PDCD5), a protein related to the apoptosis, by deubiquitination. This study aimed to explore the biological function and underlying mechanism of OTUD5 in NSCLC. Western blot and qRT-PCR were used to detect the expression of OTUD5 protein and mRNA in NSCLC tissues and cells, respectively. RNAi was adopted to construct an OTUD5 low-expression model while the plasmids overexpressing p53 and PDCD5 were used to establish the overexpression models, respectively. CCK-8 assay, transwell assay, and apoptosis assay were carried out to analyze the changes in the proliferation, migration, and chemoresistance of A549 and HCC827 cells. The mechanism of OTUD5 in NSCLC was studied by Western blot. Down-regulated OTUD5 in NSCLC tissues was significantly correlated to a poor prognosis. The knockdown of OTUD5 inactivated p53 and PDCD5, promoting the proliferation and metastasis of NSCLC cells while inhibiting their apoptosis. OTUD5 knockdown also enhanced the resistance of NSCLC cells to doxorubicin and cisplatin. OTUD5 acted as a tumor suppressor in NSCLC by regulating the p53 and PDCD5 pathways.
Collapse
Affiliation(s)
- Xiao-Yun Kang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Oncology, Xinfeng County People's Hospital, Xinfeng, China
| | - Jing Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Tang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Tong
- Department of PICC, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Fu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Kwak S, Lee S, Han E, Park S, Jeong M, Seo J, Park S, Sung G, Yoo J, Yoon H, Choi K. Serine/threonine kinase 31 promotes PDCD5‐mediated apoptosis in p53‐dependent human colon cancer cells. J Cell Physiol 2018; 234:2649-2658. [DOI: 10.1002/jcp.27079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/29/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Sungmin Kwak
- Department of Biomedical SciencesAsan Medical Center, AMIST, University of Ulsan College of MedicineSeoul Korea
- Department of PharmacologyUniversity of Ulsan College of MedicineSeoul Korea
| | - Seung‐Hyun Lee
- Department of Biochemistry and Molecular BiologyCenter for Chronic Metabolic Disease Research, Brain Korea 21 Plus Project for Medical Sciences, Severance Medical Research Institute, Yonsei University College of MedicineSeoul Korea
| | - Eun‐Jung Han
- Department of Biochemistry and Molecular BiologyCenter for Chronic Metabolic Disease Research, Brain Korea 21 Plus Project for Medical Sciences, Severance Medical Research Institute, Yonsei University College of MedicineSeoul Korea
| | - Soo‐Yeon Park
- Department of Biochemistry and Molecular BiologyCenter for Chronic Metabolic Disease Research, Brain Korea 21 Plus Project for Medical Sciences, Severance Medical Research Institute, Yonsei University College of MedicineSeoul Korea
| | - Mi‐Hyeon Jeong
- Department of Biochemistry and Molecular BiologyCenter for Chronic Metabolic Disease Research, Brain Korea 21 Plus Project for Medical Sciences, Severance Medical Research Institute, Yonsei University College of MedicineSeoul Korea
| | - Jaesung Seo
- Department of Biochemistry and Molecular BiologyCenter for Chronic Metabolic Disease Research, Brain Korea 21 Plus Project for Medical Sciences, Severance Medical Research Institute, Yonsei University College of MedicineSeoul Korea
| | - Seung‐Ho Park
- Department of Biomedical SciencesAsan Medical Center, AMIST, University of Ulsan College of MedicineSeoul Korea
- Department of PharmacologyUniversity of Ulsan College of MedicineSeoul Korea
| | - Gi‐Jun Sung
- Department of Biomedical SciencesAsan Medical Center, AMIST, University of Ulsan College of MedicineSeoul Korea
- Department of PharmacologyUniversity of Ulsan College of MedicineSeoul Korea
| | - Jung‐Yoon Yoo
- Department of Biochemistry and Molecular BiologyCenter for Chronic Metabolic Disease Research, Brain Korea 21 Plus Project for Medical Sciences, Severance Medical Research Institute, Yonsei University College of MedicineSeoul Korea
| | - Ho‐Geun Yoon
- Department of Biochemistry and Molecular BiologyCenter for Chronic Metabolic Disease Research, Brain Korea 21 Plus Project for Medical Sciences, Severance Medical Research Institute, Yonsei University College of MedicineSeoul Korea
| | - Kyung‐Chul Choi
- Department of Biomedical SciencesAsan Medical Center, AMIST, University of Ulsan College of MedicineSeoul Korea
- Department of PharmacologyUniversity of Ulsan College of MedicineSeoul Korea
| |
Collapse
|
5
|
PDCD5 regulates iNKT cell terminal maturation and iNKT1 fate decision. Cell Mol Immunol 2018; 16:746-756. [PMID: 29921968 DOI: 10.1038/s41423-018-0059-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/30/2018] [Indexed: 01/24/2023] Open
Abstract
Invariant natural killer T1 (iNKT1) cells are characterized by the preferential expression of T-box transcription factor T-bet (encoded by Tbx21) and the production of cytokine IFN-γ, but the relationship between the developmental process and iNKT1 lineage diversification in the thymus remains elusive. We report in the present study a crucial role of programmed cell death 5 (PDCD5) in iNKT cell terminal maturation and iNKT1 fate determination. Mice with T cell-specific deletion of PDCD5 had decreased numbers of thymic and peripheral iNKT cells with a predominantly immature phenotype and defects in response to α-galactosylceramide. Loss of PDCD5 also selectively abolished the iNKT1 lineage by reducing T-bet expression in iNKT cells at an early thymic developmental stage (before CD44 upregulation). We further demonstrated that TOX2, one of the high mobility group proteins that was highly expressed in iNKT cells at stage 1 and could be stabilized by PDCD5, promoted the permissive histone H3K4me3 modification in the promoter region of Tbx21. These data indicate a pivotal and unique role of PDCD5/TOX2 in iNKT1 lineage determination. They also suggest that the fate of iNKT1 may be programmed at the developmental stage of iNKT cells in the thymus.
Collapse
|
6
|
Martin-Sanchez D, Fontecha-Barriuso M, Sanchez-Niño MD, Ramos AM, Cabello R, Gonzalez-Enguita C, Linkermann A, Sanz AB, Ortiz A. Cell death-based approaches in treatment of the urinary tract-associated diseases: a fight for survival in the killing fields. Cell Death Dis 2018; 9:118. [PMID: 29371637 PMCID: PMC5833412 DOI: 10.1038/s41419-017-0043-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/26/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
Abstract
Urinary tract-associated diseases comprise a complex set of disorders with a variety of etiologic agents and therapeutic approaches and a huge global burden of disease, estimated at around 1 million deaths per year. These diseases include cancer (mainly prostate, renal, and bladder), urinary tract infections, and urolithiasis. Cell death plays a key role in the pathogenesis and therapy of these conditions. During urinary tract infections, invading bacteria may either promote or prevent host cell death by interfering with cell death pathways. This has been studied in detail for uropathogenic E. coli (UPEC). Inhibition of host cell death may allow intracellular persistence of live bacteria, while promoting host cell death causes tissue damage and releases the microbes. Both crystals and urinary tract obstruction lead to tubular cell death and kidney injury. Among the pathomechanisms, apoptosis, necroptosis, and autophagy represent key processes. With respect to malignant disorders, traditional therapeutic efforts have focused on directly promoting cancer cell death. This may exploit tumor-specific characteristics, such as targeting Vascular Endothelial Growth Factor (VEGF) signaling and mammalian Target of Rapamycin (mTOR) activity in renal cancer and inducing survival factor deprivation by targeting androgen signaling in prostate cancer. An area of intense research is the use of immune checkpoint inhibitors, aiming at unleashing the full potential of immune cells to kill cancer cells. In the future, this may be combined with additional approaches exploiting intrinsic sensitivities to specific modes of cell death such as necroptosis and ferroptosis. Here, we review the contribution of diverse cell death mechanisms to the pathogenesis of urinary tract-associated diseases as well as the potential for novel therapeutic approaches based on an improved molecular understanding of these mechanisms.
Collapse
Affiliation(s)
- Diego Martin-Sanchez
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- IRSIN, Madrid, Spain
- REDINREN, Madrid, Spain
| | - Miguel Fontecha-Barriuso
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- IRSIN, Madrid, Spain
- REDINREN, Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- IRSIN, Madrid, Spain
- REDINREN, Madrid, Spain
| | - Adrian M Ramos
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- IRSIN, Madrid, Spain
- REDINREN, Madrid, Spain
| | - Ramiro Cabello
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
| | | | - Andreas Linkermann
- Department of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Ana Belén Sanz
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.
- IRSIN, Madrid, Spain.
- REDINREN, Madrid, Spain.
| | - Alberto Ortiz
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.
- IRSIN, Madrid, Spain.
- REDINREN, Madrid, Spain.
| |
Collapse
|
7
|
Wang M, Yang C, Zhang X, Li X. Characterizing genomic differences of human cancer stratified by the TP53 mutation status. Mol Genet Genomics 2018; 293:737-746. [PMID: 29330617 DOI: 10.1007/s00438-018-1416-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 01/02/2018] [Indexed: 01/17/2023]
Abstract
The key roles of the TP53 mutation in cancer have been well established. TP53 is the most frequently mutated gene, and its inactivation is widespread among human cancer types. However, the landscape of genomic alterations in human cancers stratified by the TP53 mutation has not yet been described. We obtained somatic mutation and copy number change data of 6551 regular-mutated samples from the Cancer Genome Atlas (TCGA) and compared significantly mutated genes (SMGs), copy number alterations, mutational signatures and mutational strand asymmetries between cancer samples with and without the TP53 mutation. We identified 126 SMGs, 30 of which were statistically significant in both the TP53 mutant and wild-type groups. Several SMGs, such as VHL, SMAD4 and PTEN, showed a mutation bias towards the TP53 wild-type group, whereas ATRX, IDH1 and RB1 were more prevalent in the TP53 mutant group. Five mutational signatures were extracted from the combined TCGA dataset on which mutational asymmetry analysis was performed, revealing that the TP53 mutant group exhibited substantially greater replication and transcription biases. Furthermore, we found that alterations of multiple genes in a merged mutually exclusive network composed of BRAF, EGFR, PAK1, PIK3CA, PTEN, APC and TERT were related to shortened survival in the TP53 wild-type group. In summary, we characterized the genomic differences and similarities underlying human cancers stratified by the TP53 mutation and identified multi-gene alterations of a merged mutually exclusive network to be a poor prognostic factor for the TP53 wild-type group.
Collapse
Affiliation(s)
- Mengyao Wang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China.,BGI Genomics BGI-Shenzhen, Shenzhen, 518083, China
| | - Chao Yang
- BGI Genomics BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Xiangchun Li
- BGI Genomics BGI-Shenzhen, Shenzhen, 518083, China.
| |
Collapse
|
8
|
Li P, Fei H, Wang L, Xu H, Zhang H, Zheng L. PDCD5 regulates cell proliferation, cell cycle progression and apoptosis. Oncol Lett 2017; 15:1177-1183. [PMID: 29403562 DOI: 10.3892/ol.2017.7401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 08/03/2017] [Indexed: 12/14/2022] Open
Abstract
Programmed cell death (PDCD)5 is cloned from human leukemia cell line TF-1. PDCD5 is one of the members of the programmed cell death protein family that is frequently involved in tumor growth and apoptosis. To investigate the molecular and cellular functions of PDCD5, the present study established a PDCD5 stably overexpressing A431 cell line and examined the role of PDCD5 in cell proliferation, cell cycle progression and apoptosis. The data demonstrated that overexpression of PDCD5 significantly inhibited cell proliferation, induced cell cycle arrest at G2/M phase and apoptosis in A431 cells. The expression profiles of certain key regulators of these cellular events were further investigated, including P53, B cell lymphoma (BCL)-2, BCL-2 associated X protein (BAX) and caspase (CASP)3. The data demonstrated that at the transcript and protein levels, P53, BAX and CASP3 were all upregulated in the PDCD5 stably overexpressing A431 cells whereas BCL-2 was downregulated, indicating that PDCD5 acts as an important upstream regulator of P53, BCL-2, BAX and CASP3. The data suggest that PDCD5 regulates cell proliferation, cell cycle progression and apoptosis in A431 cells. PDCD5 may be a novel tumor suppressor gene, and may be potentially used for cancer treatment in the future.
Collapse
Affiliation(s)
- Penghui Li
- Department of Biogenetics, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Hongxin Fei
- Department of Histology and Embryology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Lihong Wang
- Department of Immunology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Huiyu Xu
- Department of Immunology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Haiyan Zhang
- Department of Histology and Embryology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Lihong Zheng
- Department of Biogenetics, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| |
Collapse
|
9
|
Hascoet P, Chesnel F, Jouan F, Le Goff C, Couturier A, Darrigrand E, Mahe F, Rioux-Leclercq N, Le Goff X, Arlot-Bonnemains Y. The pVHL 172 isoform is not a tumor suppressor and up-regulates a subset of pro-tumorigenic genes including TGFB1 and MMP13. Oncotarget 2017; 8:75989-76002. [PMID: 29100286 PMCID: PMC5652680 DOI: 10.18632/oncotarget.18376] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/26/2017] [Indexed: 01/24/2023] Open
Abstract
The von Hippel-Lindau (VHL) tumor suppressor gene is often deleted or mutated in ccRCC (clear cell renal cell carcinoma) producing a non-functional protein. The gene encodes two mRNA, and three protein isoforms (pVHL213, pVHL160 and pVHL172). The pVHL protein is part of an E3 ligase complex involved in the ubiquitination and proteasomal degradation of different proteins, particularly hypoxia inducible factors (HIF) that drive the transcription of genes involved in the regulation of cell proliferation, angiogenesis or extracellular matrix remodelling. Other non-canonical (HIF-independent) pVHL functions have been described. A recent work reported the expression of the uncharacterized protein isoform pVHL172 which is translated from the variant 2 by alternative splicing of the exon 2. This splice variant is sometimes enriched in the ccRCCs and the protein has been identified in the respective samples of ccRCCs and different renal cell lines. Functional studies on pVHL have only concerned the pVHL213 and pVHL160 isoforms, but no function was assigned to pVHL172. Here we show that pVHL172 stable expression in renal cancer cells does not regulate the level of HIF, exacerbates tumorigenicity when 786-O-pVHL172 cells were xenografted in mice. The pVHL172-induced tumors developed a sarcomatoid phenotype. Moreover, pVHL172 expression was shown to up regulate a subset of pro-tumorigenic genes including TGFB1, MMP1 and MMP13. In summary we identified that pVHL172 is not a tumor suppressor. Furthermore our findings suggest an antagonistic function of this pVHL isoform in the HIF-independent aggressiveness of renal tumors compared to pVHL213.
Collapse
Affiliation(s)
- Pauline Hascoet
- CNRS, UMR 6290 IGDR, Université Rennes 1, BIOSIT, Rennes, France
| | - Franck Chesnel
- CNRS, UMR 6290 IGDR, Université Rennes 1, BIOSIT, Rennes, France
| | - Florence Jouan
- CNRS, UMR 6290 IGDR, Université Rennes 1, BIOSIT, Rennes, France
| | - Cathy Le Goff
- CNRS, UMR 6290 IGDR, Université Rennes 1, BIOSIT, Rennes, France
| | - Anne Couturier
- CNRS, UMR 6290 IGDR, Université Rennes 1, BIOSIT, Rennes, France
| | | | | | | | - Xavier Le Goff
- CNRS, UMR 6290 IGDR, Université Rennes 1, BIOSIT, Rennes, France
| | | |
Collapse
|
10
|
Kim H, Greenald D, Vettori A, Markham E, Santhakumar K, Argenton F, van Eeden F. Zebrafish as a model for von Hippel Lindau and hypoxia-inducible factor signaling. Methods Cell Biol 2017; 138:497-523. [DOI: 10.1016/bs.mcb.2016.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
11
|
Lu J, Jiang Z, Chen Y, Zhou C, Chen C. Knockout of programmed cell death 5 (PDCD5) gene attenuates neuron injury after middle cerebral artery occlusion in mice. Brain Res 2016; 1650:152-161. [DOI: 10.1016/j.brainres.2016.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 08/30/2016] [Accepted: 09/04/2016] [Indexed: 10/21/2022]
|
12
|
Wang W, Song XW, Zhao CH. Roles of programmed cell death protein 5 in inflammation and cancer (Review). Int J Oncol 2016; 49:1801-1806. [PMID: 27826615 DOI: 10.3892/ijo.2016.3706] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/19/2016] [Indexed: 11/06/2022] Open
Abstract
PDCD5 (programmed cell death 5) is an apoptosis related gene cloned in 1999 from a human leukemic cell line. PDCD5 protein containing 125 amino acid (aa) residues sharing significant homology to the corresponding proteins of species. Decreased expression of PDCD5 has been found in many human tumors, including breast, gastric cancer, astrocytic glioma, chronic myelogenous leukemia and hepatocellular carcinoma. In recent years, increased number of studies have shown the functions and mechanisms of PDCD5 protein in cancer cells, such as paraptosis, cell cycle and immunoregulation. In the present review, we provide a comprehensive review on the role of PDCD5 in cancer tissues and cells. This review summarizes the recent studies of the roles of PDCD5 in inflammation and cancer. We mainly focus on discoveries related to molecular mechanisms of PDCD5 protein. We also discuss some discrepancies between the current studies. Overall, the current available data will open new perspectives for a better understanding of PDCD5 in cancer.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Xiao-Wen Song
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Cheng-Hai Zhao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
13
|
Li G, Ma D, Chen Y. Cellular functions of programmed cell death 5. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:572-80. [PMID: 26775586 DOI: 10.1016/j.bbamcr.2015.12.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 12/24/2015] [Accepted: 12/29/2015] [Indexed: 01/01/2023]
Abstract
Programmed cell death 5 (PDCD5) was originally identified as an apoptosis-accelerating protein that is widely expressed and has been well conserved during the process of evolution. PDCD5 has complex biological functions, including programmed cell death and immune regulation. It can accelerate apoptosis in different type of cells in response to different stimuli. During this process, PDCD5 rapidly translocates from the cytoplasm to the nucleus. PDCD5 regulates the activities of TIP60, HDAC3, MDM2 and TP53 transcription factors. These proteins form part of a signaling network that is disrupted in most, if not all, cancer cells. Recent evidence suggests that PDCD5 participates in immune regulation by promoting regulatory T cell function via the PDCD5-TIP60-FOXP3 pathway. The stability and expression of PDCD5 are finely regulated by other molecules, such as NF-κB p65, OTUD5, YAF2 and DNAJB1. PDCD5 is phosphorylated by CK2 at Ser119, which is required for nuclear translocation in response to genotoxic stress. In this review, we describe what is known about PDCD5 and its cellular functions.
Collapse
Affiliation(s)
- Ge Li
- Department of Immunology, Peking University School of Basic Medical Sciences, 38 Xueyuan Road, Beijing 100191, China; Center for Human Disease Genomics, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Dalong Ma
- Department of Immunology, Peking University School of Basic Medical Sciences, 38 Xueyuan Road, Beijing 100191, China; Center for Human Disease Genomics, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Yingyu Chen
- Department of Immunology, Peking University School of Basic Medical Sciences, 38 Xueyuan Road, Beijing 100191, China; Center for Human Disease Genomics, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
14
|
Choi HK, Choi Y, Park ES, Park SY, Lee SH, Seo J, Jeong MH, Jeong JW, Jeong JH, Lee PCW, Choi KC, Yoon HG. Programmed cell death 5 mediates HDAC3 decay to promote genotoxic stress response. Nat Commun 2015; 6:7390. [PMID: 26077467 PMCID: PMC4490383 DOI: 10.1038/ncomms8390] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 05/04/2015] [Indexed: 01/09/2023] Open
Abstract
The inhibition of p53 activity by histone deacetylase 3 (HDAC3) has been reported, but the precise molecular mechanism is unknown. Here we show that programmed cell death 5 (PDCD5) selectively mediates HDAC3 dissociation from p53, which induces HDAC3 cleavage and ubiquitin-dependent proteasomal degradation. Casein kinase 2 alpha phosphorylates PDCD5 at Ser-119 to enhance its stability and importin 13-mediated nuclear translocation of PDCD5. Genetic deletion of PDCD5 abrogates etoposide (ET)-induced p53 stabilization and HDAC3 cleavage, indicating an essential role of PDCD5 in p53 activation. Restoration of PDCD5WT in PDCD5−/− MEFs restores ET-induced HDAC3 cleavage. Reduction of both PDCD5 and p53, but not reduction of either protein alone, significantly enhances in vivo tumorigenicity of AGS gastric cancer cells and correlates with poor prognosis in gastric cancer patients. Our results define a mechanism for p53 activation via PDCD5-dependent HDAC3 decay under genotoxic stress conditions. The tumour suppressor p53 is known to be inhibited by histone deacetylase 3 but the molecular mechanism is poorly understood. Here Choi et al. show regulation by programmed cell death 5 and an essential role in activating p53 following DNA damage.
Collapse
Affiliation(s)
- Hyo-Kyoung Choi
- Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Youngsok Choi
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 436-400, Korea
| | - Eun Sung Park
- Medical Convergence Research Institute, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Soo-Yeon Park
- Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Seung-Hyun Lee
- Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Jaesung Seo
- Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Mi-Hyeon Jeong
- Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University College of Human Medicine, Lansing, Michigan 49503, USA
| | - Jae-Ho Jeong
- Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Peter C W Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Kyung-Chul Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Ho-Geun Yoon
- Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 120-752, Korea
| |
Collapse
|
15
|
Leão TL, da Fonseca FG. Subversion of cellular stress responses by poxviruses. World J Clin Infect Dis 2014; 4:27-40. [DOI: 10.5495/wjcid.v4.i4.27] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 07/26/2014] [Accepted: 09/10/2014] [Indexed: 02/06/2023] Open
Abstract
Cellular stress responses are powerful mechanisms that prevent and cope with the accumulation of macromolecular damage in the cells and also boost host defenses against pathogens. Cells can initiate either protective or destructive stress responses depending, to a large extent, on the nature and duration of the stressing stimulus as well as the cell type. The productive replication of a virus within a given cell places inordinate stress on the metabolism machinery of the host and, to assure the continuity of its replication, many viruses have developed ways to modulate the cell stress responses. Poxviruses are among the viruses that have evolved a large number of strategies to manipulate host stress responses in order to control cell fate and enhance their replicative success. Remarkably, nearly every step of the stress responses that is mounted during infection can be targeted by virally encoded functions. The fine-tuned interactions between poxviruses and the host stress responses has aided virologists to understand specific aspects of viral replication; has helped cell biologists to evaluate the role of stress signaling in the uninfected cell; and has tipped immunologists on how these signals contribute to alert the cells against pathogen invasion and boost subsequent immune responses. This review discusses the diverse strategies that poxviruses use to subvert host cell stress responses.
Collapse
|
16
|
Mangiavini L, Merceron C, Araldi E, Khatri R, Gerard-O'Riley R, Wilson TL, Rankin EB, Giaccia AJ, Schipani E. Loss of VHL in mesenchymal progenitors of the limb bud alters multiple steps of endochondral bone development. Dev Biol 2014; 393:124-36. [PMID: 24972088 DOI: 10.1016/j.ydbio.2014.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 05/24/2014] [Accepted: 06/17/2014] [Indexed: 01/21/2023]
Abstract
Adaptation to low oxygen tension (hypoxia) is a critical event during development. The transcription factors Hypoxia Inducible Factor-1α (HIF-1α) and HIF-2α are essential mediators of the homeostatic responses that allow hypoxic cells to survive and differentiate. Von Hippel-Lindau protein (VHL) is the E3 ubiquitin ligase that targets HIFs to the proteasome for degradation in normoxia. We have previously demonstrated that the transcription factor HIF-1α is essential for survival and differentiation of growth plate chondrocytes, whereas HIF-2α is not necessary for fetal growth plate development. We have also shown that VHL is important for endochondral bone development, since loss of VHL in chondrocytes causes severe dwarfism. In this study, in order to expand our understanding of the role of VHL in chondrogenesis, we conditionally deleted VHL in mesenchymal progenitors of the limb bud, i.e. in cells not yet committed to the chondrocyte lineage. Deficiency of VHL in limb bud mesenchyme does not alter the timely differentiation of mesenchymal cells into chondrocytes. However, it causes structural collapse of the cartilaginous growth plate as a result of impaired proliferation, delayed terminal differentiation, and ectopic death of chondrocytes. This phenotype is associated to delayed replacement of cartilage by bone. Notably, loss of HIF-2α fully rescues the late formation of the bone marrow cavity in VHL mutant mice, though it does not affect any other detectable abnormality of the VHL mutant growth plates. Our findings demonstrate that VHL regulates bone morphogenesis as its loss considerably alters size, shape and overall development of the skeletal elements.
Collapse
Affiliation(s)
- Laura Mangiavini
- Department of Orthopaedic Surgery, Medical School, University of Michigan, Ann Arbor, MI 48109, USA; Division of Endocrinology, Department of Medicine, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Orthopaedic and Traumatology, Milano-Bicocca University, 20900 Monza (MB), Italy
| | - Christophe Merceron
- Department of Orthopaedic Surgery, Medical School, University of Michigan, Ann Arbor, MI 48109, USA; Division of Endocrinology, Department of Medicine, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Inserm, UMRS 791-LIOAD, Centre for Osteoarticular and Dental Tissue Engineering, Group STEP 'Skeletal Tissue Engineering and Physiopathology', 44042 Nantes, France; LUNAM, Nantes University, Faculty of Dental Surgery, Nantes, France
| | - Elisa Araldi
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Richa Khatri
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Rita Gerard-O'Riley
- Division of Endocrinology, Department of Medicine, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Tremika LeShan Wilson
- Department of Orthopaedic Surgery, Medical School, University of Michigan, Ann Arbor, MI 48109, USA; Division of Endocrinology, Department of Medicine, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Erinn B Rankin
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University, Stanford, CA 94303-5152, USA
| | - Amato J Giaccia
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University, Stanford, CA 94303-5152, USA
| | - Ernestina Schipani
- Department of Orthopaedic Surgery, Medical School, University of Michigan, Ann Arbor, MI 48109, USA; Division of Endocrinology, Department of Medicine, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Division of Endocrinology, Department of Medicine, Medical School, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|