1
|
Saxu R, Luo Q, Yang Y, Gu HF. Higher Steroid Production in the Right Adrenal Gland Compared to the Left One in db/db Mice, a Model of Type 2 Diabetic Obesity. Int J Mol Sci 2024; 25:10658. [PMID: 39408986 PMCID: PMC11477137 DOI: 10.3390/ijms251910658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Vertebrates exhibit a left-right asymmetry from the central structures to the peripheral paired endocrine organs. However, the asymmetries in paired endocrine glands and the pathological consequences of such asymmetries remain largely unknown. The adrenal gland constitutes a pair of peripheral end organs in the neuroendocrine system, responsible for producing steroid hormones under stimuli. In the present study, the lateralized asymmetry of left and right adrenal glands in leptin receptor-deficit db/db mice was investigated. First, a morphological and histological examination showed that adrenal mass and adrenal cortex volume in db/db mice were significantly higher than in non-diabetic control mice. Then, adrenal transcriptomic and serum metabolomic analyses were performed. Adrenal steroid profiling showed that the levels of corticosterone and aldosterone in the right adrenal gland of db/db mice were two times higher than in the left one. The expression of multiple genes related to adrenal regeneration and innervation in db/db mice was reduced in contrast to the increased steroid hormone secretion. Furthermore, an examination of morphogens in asymmetric adrenal development revealed a significant differential expression of Shh and its receptor gene Ptch1. In conclusion, the present study has provided evidence that a superior steroidogenesis exists in the right adrenal gland of db/db mice and suggested that Shh signaling may play an important role in asymmetric adrenal responses in type 2 diabetes and its complications.
Collapse
Affiliation(s)
- Rengui Saxu
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China;
| | - Qiming Luo
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China;
| | - Yong Yang
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Harvest F. Gu
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China;
| |
Collapse
|
2
|
Dahms P, Lyons TR. Toward Characterizing Lymphatic Vasculature in the Mammary Gland During Normal Development and Tumor-Associated Remodeling. J Mammary Gland Biol Neoplasia 2024; 29:1. [PMID: 38218743 PMCID: PMC10787674 DOI: 10.1007/s10911-023-09554-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/24/2023] [Indexed: 01/15/2024] Open
Abstract
Lymphatic vasculature has been shown to promote metastatic spread of breast cancer. Lymphatic vasculature, which is made up of larger collecting vessels and smaller capillaries, has specialized cell junctions that facilitate cell intravasation. Normally, these junctions are designed to collect immune cells and other cellular components for immune surveillance by lymph nodes, but they are also utilized by cancer cells to facilitate metastasis. Although lymphatic development overall in the body has been well-characterized, there has been little focus on how the lymphatic network changes in the mammary gland during stages of remodeling such as pregnancy, lactation, and postpartum involution. In this review, we aim to define the currently known lymphangiogenic factors and lymphatic remodeling events during mammary gland morphogenesis. Furthermore, we juxtapose mammary gland pubertal development and postpartum involution to show similarities of pro-lymphangiogenic signaling as well as other molecular signals for epithelial cell survival that are critical in these morphogenic stages. The similar mechanisms include involvement of M2-polarized macrophages that contribute to matrix remodeling and vasculogenesis; signal transducer and activator of transcription (STAT) survival and proliferation signaling; and cyclooxygenase 2 (COX2)/Prostaglandin E2 (PGE2) signaling to promote ductal and lymphatic expansion. Investigation and characterization of lymphangiogenesis in the normal mammary gland can provide insight to targetable mechanisms for lymphangiogenesis and lymphatic spread of tumor cells in breast cancer.
Collapse
Affiliation(s)
- Petra Dahms
- Division of Medical Oncology Senior Scientist, Young Women's Breast Cancer Translational Program, University of Colorado Cancer Center, 12801 E 17th Ave, RC1 South, Mailstop 8117, 80045, Aurora, CO, USA
- Division of Medical Oncology, Anschutz Medical Center, University of Colorado, Aurora, CO, USA
- Anschutz Medical Campus Graduate Program in Cancer Biology, University of Colorado, Aurora, USA
| | - Traci R Lyons
- Division of Medical Oncology Senior Scientist, Young Women's Breast Cancer Translational Program, University of Colorado Cancer Center, 12801 E 17th Ave, RC1 South, Mailstop 8117, 80045, Aurora, CO, USA.
- Division of Medical Oncology, Anschutz Medical Center, University of Colorado, Aurora, CO, USA.
- Anschutz Medical Campus Graduate Program in Cancer Biology, University of Colorado, Aurora, USA.
| |
Collapse
|
3
|
Saxu R, Yang Y, Gu HF. Asymmetries of Left and Right Adrenal Glands in Neural Innervation and Glucocorticoids Production. Int J Mol Sci 2023; 24:17456. [PMID: 38139285 PMCID: PMC10743655 DOI: 10.3390/ijms242417456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
The adrenal gland is paired peripheral end organs of the neuroendocrine system and is responsible for producing crucial stress hormones from its two functional compartments, the adrenal cortex, and the adrenal medulla under stimuli. Left-right asymmetry in vertebrates exists from the central nervous system to peripheral paired endocrine glands. The sided difference in the cerebral cortex is extensively investigated, while the knowledge of asymmetry of paired endocrine glands is still poor. The present study aims to investigate the asymmetries of bilateral adrenal glands, which play important roles in stress adaptation and energy homeostasis via steroid hormones produced from the distinct functional zones. Left and right adrenal glands from male C57BL/6J mice were initially histologically analyzed, and high-throughput RNA sequencing was then used to detect the gene transcriptional difference between left and right adrenal glands. Subsequently, the enrichment of functional pathways and ceRNA regulatory work was validated. The results demonstrated that the left adrenal gland had higher tissue mass and levels of energy expenditure, whereas the right adrenal gland appeared to be more potent in glucocorticoid secretion. Further analysis of adrenal stem/progenitor cell markers predicted that Shh signaling might play an important role in the left-right asymmetry of adrenal glands. Of the hub miRNAs, miRNA-466i-5p was identified in the left-right differential innervation of the adrenal glands. Therefore, the present study provides evidence that there are asymmetries between the left and right adrenal glands in glucocorticoid production and neural innervation, in which Shh signaling and miRNA-466i-5p play an important role.
Collapse
Affiliation(s)
- Rengui Saxu
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China;
| | - Yong Yang
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Harvest F. Gu
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China;
| |
Collapse
|
4
|
Masuelli S, Real S, McMillen P, Oudin M, Levin M, Roqué M. The Yin and Yang of Breast Cancer: Ion Channels as Determinants of Left-Right Functional Differences. Int J Mol Sci 2023; 24:11121. [PMID: 37446299 PMCID: PMC10342022 DOI: 10.3390/ijms241311121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Breast cancer is a complex and heterogeneous disease that displays diverse molecular subtypes and clinical outcomes. Although it is known that the location of tumors can affect their biological behavior, the underlying mechanisms are not fully understood. In our previous study, we found a differential methylation profile and membrane potential between left (L)- and right (R)-sided breast tumors. In this current study, we aimed to identify the ion channels responsible for this phenomenon and determine any associated phenotypic features. To achieve this, experiments were conducted in mammary tumors in mice, human patient samples, and with data from public datasets. The results revealed that L-sided tumors have a more depolarized state than R-sided. We identified a 6-ion channel-gene signature (CACNA1C, CACNA2D2, CACNB2, KCNJ11, SCN3A, and SCN3B) associated with the side: L-tumors exhibit lower expression levels than R-tumors. Additionally, in silico analyses show that the signature correlates inversely with DNA methylation writers and with key biological processes involved in cancer progression, such as proliferation and stemness. The signature also correlates inversely with patient survival rates. In an in vivo mouse model, we confirmed that KI67 and CD44 markers were increased in L-sided tumors and a similar tendency for KI67 was found in patient L-tumors. Overall, this study provides new insights into the potential impact of anatomical location on breast cancer biology and highlights the need for further investigation into possible differential treatment options.
Collapse
Affiliation(s)
- Sofía Masuelli
- Institute of Histology and Embryology, National Council of Scientific and Technological Research (CONICET), Parque General San Martin, Mendoza 5500, Argentina; (S.M.)
- Faculty of Medical Science, National University of Cuyo, Parque General San Martin, Mendoza 5500, Argentina
| | - Sebastián Real
- Institute of Histology and Embryology, National Council of Scientific and Technological Research (CONICET), Parque General San Martin, Mendoza 5500, Argentina; (S.M.)
- Faculty of Medical Science, National University of Cuyo, Parque General San Martin, Mendoza 5500, Argentina
| | - Patrick McMillen
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA
| | - Madeleine Oudin
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA
| | - María Roqué
- Institute of Histology and Embryology, National Council of Scientific and Technological Research (CONICET), Parque General San Martin, Mendoza 5500, Argentina; (S.M.)
- Faculty of Exact and Natural Sciences, National University of Cuyo, Parque General San Martin, Mendoza 5500, Argentina
| |
Collapse
|
5
|
Kim BK, Choi JE, Youn HJ, Park HS, Kim D, Oh SJ, Lee HJ, Lee J, Sun WY. Clinicopathological features and prognosis associated with breast cancer laterality: a nationwide study from the Korean Breast Cancer Society. Ann Surg Treat Res 2022; 103:119-128. [PMID: 36128032 PMCID: PMC9478426 DOI: 10.4174/astr.2022.103.3.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/06/2022] [Accepted: 08/19/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose Although breast cancer is known to show a left predominance, the clinical characteristics and causes underlying this finding remain unclear. In addition, no related studies on breast cancer laterality have been conducted in patients with breast cancer in Korea. Therefore, we aimed to analyze differences in breast cancer laterality and the associated clinicopathological characteristics and prognosis among Korean patients with breast cancer. Methods We conducted a retrospective analysis using large-scale data on clinicopathological factors and prognosis differences related to breast cancer laterality from the Korean Breast Cancer Society Registration system. The left-to-right ratio (LRR) of breast cancer was calculated through binomial distribution, and factors related to breast cancer laterality were identified through logistic regression analysis. In addition, the differences in the survival rates for left and right breast cancers were analyzed using the Kaplan-Meier method and Cox proportional hazards model. Results In 171,500 patients, the LRR was 1.031 (95% confidence interval, 1.022-1.041; P < 0.001). Multivariate analysis showed that the ratio of left breast cancer was related to age, body mass index (BMI), location, and human epidermal growth factor receptor 2 (HER2) status. The survival rate of patients with left and right breast cancers showed no significant difference. Conclusion A large-scale analysis revealed a left predominance in breast cancer laterality in Korean patients. Over time, this predominance gradually decreased. Age, BMI, location, and HER2 status affected breast cancer laterality. However, while left breast cancer showed relatively aggressive characteristics, it was not associated with a difference in the survival rate.
Collapse
Affiliation(s)
- Bong Kyun Kim
- Department of Surgery, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jung Eun Choi
- Department of Surgery, Yeungnam University Medical Center, Yeungnam University College of Medicine, Daegu, Korea
| | - Hyun Jo Youn
- Department of Surgery, Jeonbuk National University Medical School, Jeonju, Korea
| | - Hyung Seok Park
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Dooreh Kim
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Se Jeong Oh
- Department of Surgery, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyouk Jin Lee
- Breast-Thyroid Center, Saegyaero Hospital, Busan, Korea
| | - Jina Lee
- Department of Surgery, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Woo Young Sun
- Department of Surgery, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | |
Collapse
|
6
|
Delineation of Pathogenomic Insights of Breast Cancer in Young Women. Cells 2022; 11:cells11121927. [PMID: 35741056 PMCID: PMC9221490 DOI: 10.3390/cells11121927] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 12/12/2022] Open
Abstract
The prognosis of breast cancer (BC) in young women (BCYW) aged ≤40 years tends to be poorer than that in older patients due to aggressive phenotypes, late diagnosis, distinct biologic, and poorly understood genomic features of BCYW. Considering the estimated predisposition of only approximately 15% of the BC population to BC-promoting genes, the underlying reasons for an increased occurrence of BCYW, at large, cannot be completely explained based on general risk factors for BC. This underscores the need for the development of next-generation of tissue- and body fluid-based prognostic and predictive biomarkers for BCYW. Here, we identified the genes associated with BCYW with a particular focus on the age, intrinsic BC subtypes, matched normal or normal breast tissues, and BC laterality. In young women with BC, we observed dysregulation of age-associated cancer-relevant gene sets in both cancer and normal breast tissues, sub-sets of which substantially affected the overall survival (OS) or relapse-free survival (RFS) of patients with BC and exhibited statically significant correlations with several gene modules associated with cellular processes such as the stroma, immune responses, mitotic progression, early response, and steroid responses. For example, high expression of COL1A2, COL5A2, COL5A1, NPY1R, and KIAA1644 mRNAs in the BC and normal breast tissues from young women correlated with a substantial reduction in the OS and RFS of BC patients with increased levels of these exemplified genes. Many of the genes upregulated in BCYW were overexpressed or underexpressed in normal breast tissues, which might provide clues regarding the potential involvement of such genes in the development of BC later in life. Many of BCYW-associated gene products were also found in the extracellular microvesicles/exosomes secreted from breast and other cancer cell-types as well as in body fluids such as urine, saliva, breast milk, and plasma, raising the possibility of using such approaches in the development of non-invasive, predictive and prognostic biomarkers. In conclusion, the findings of this study delineated the pathogenomics of BCYW, providing clues for future exploration of the potential predictive and prognostic importance of candidate BCYW molecules and research strategies as well as a rationale to undertake a prospective clinical study to examine some of testable hypotheses presented here. In addition, the results presented here provide a framework to bring out the importance of geographical disparities, to overcome the current bottlenecks in BCYW, and to make the next quantum leap for sporadic BCYW research and treatment.
Collapse
|
7
|
Sofía M, Sebastián R, Emanuel C, Branham MT, Marzese DM, Matthew S, De Blas G, Rodolfo A, Michael L, María R. When left does not seem right: epigenetic and bioelectric differences between left- and right-sided breast cancer. Mol Med 2022; 28:15. [PMID: 35123413 PMCID: PMC8817536 DOI: 10.1186/s10020-022-00440-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/18/2022] [Indexed: 01/22/2023] Open
Abstract
Background During embryogenesis lateral symmetry is broken, giving rise to Left/Right (L/R) breast tissues with distinct identity. L/R-sided breast tumors exhibit consistently-biased incidence, gene expression, and DNA methylation. We postulate that a differential L/R tumor-microenvironment crosstalk generates different tumorigenesis mechanisms. Methods We performed in-silico analyses on breast tumors of public datasets, developed xenografted tumors, and conditioned MDA-MB-231 cells with L/R mammary extracts. Results We found L/R differential DNA methylation involved in embryogenic and neuron-like functions. Focusing on ion-channels, we discovered significant L/R epigenetic and bioelectric differences. Specifically, L-sided cells presented increased methylation of hyperpolarizing ion channel genes and increased Ca2+ concentration and depolarized membrane potential, compared to R-ones. Functional consequences were associated with increased proliferation in left tumors, assessed by KI67 expression and mitotic count. Conclusions Our findings reveal considerable L/R asymmetry in cancer processes, and suggest specific L/R epigenetic and bioelectric differences as future targets for cancer therapeutic approaches in the breast and many other paired organs. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00440-5.
Collapse
|
8
|
Mazumder A, Shiao S, Haricharan S. HER2 Activation and Endocrine Treatment Resistance in HER2-negative Breast Cancer. Endocrinology 2021; 162:6329618. [PMID: 34320193 PMCID: PMC8379900 DOI: 10.1210/endocr/bqab153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Indexed: 11/19/2022]
Abstract
The lethality of estrogen receptor alpha positive (ER+) breast cancer, which is often considered to have better prognosis than other subtypes, is defined by resistance to the standard of care endocrine treatment. Relapse and metastasis are inevitable in almost every patient whose cancer is resistant to endocrine treatment. Therefore, understanding the underlying causes of treatment resistance remains an important biological and clinical focus of research in this area. Growth factor receptor pathway activation, specifically HER2 activation, has been identified as 1 mechanism of endocrine treatment resistance across a range of experimental model systems. However, clinical trials conducted to test whether targeting HER2 benefits patients with endocrine treatment-resistant ER+ breast cancer have consistently and disappointingly shown mixed results. One reason for the failure of these clinical trials could be the complexity of crosstalk between ER, HER2, and other growth factor receptors and the fluidity of HER2 activation in these cells, which makes it challenging to identify stratifiers for this targeted intervention. In the absence of stratifiers that can be assayed at diagnosis to allow prospective tailoring of HER2 inhibition to the right patients, clinical trials will continue to disappoint. To understand stratifiers, it is important that the field invests in key understudied areas of research including characterization of the tumor secretome and receptor activation in response to endocrine treatment, and mapping the ER-HER2 growth factor network in the normal and developing mammary gland. Understanding these mechanisms further is critical to improving outcomes for the hard-to-treat endocrine treatment-resistant ER+ breast cancer cohort.
Collapse
Affiliation(s)
- Aloran Mazumder
- Aging and Cancer Immuno-oncology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Stephen Shiao
- Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Svasti Haricharan
- Aging and Cancer Immuno-oncology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
- Correspondence: Svasti Haricharan, PhD, Sanford Burnham Prebys, 10901 N Torrey Pines Rd, La Jolla, CA, USA.
| |
Collapse
|
9
|
Cheng AA, Li W, Hernandez LL. Investigating the effect of positional variation on mid-lactation mammary gland transcriptomics in mice fed either a low-fat or high-fat diet. PLoS One 2021; 16:e0255770. [PMID: 34437559 PMCID: PMC8389404 DOI: 10.1371/journal.pone.0255770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 07/24/2021] [Indexed: 11/18/2022] Open
Abstract
Little attention has been given to the effect of positional variation of gene expression in the mammary gland. However, more research is shedding light regarding the physiological differences that mammary gland location can have on the murine mammary gland. Here we examined the differentially expressed genes between mammary gland positions under either a low-fat diet (LFD) or a high-fat diet (HFD) in the mid-lactation mammary gland (lactation day 11; L11). Three-week old WT C57BL/6 mice were randomly assigned to either a low-fat diet (LFD) or high fat diet (HFD) (n = 3/group) and either the right thoracic mammary gland (TMG) or inguinal mammary gland (IMG) was collected from each dam for a total of 12 unique glands. Within each diet, differentially expressed genes (DEGs) were first filtered by adjusted p-value (cutoff ≤ 0.05) and fold-change (FC, cutoff ≥2). Genes were further filtered by mean normalized read count with a cutoff≥10. We observed that mammary gland position had a significant impact on mammary gland gene expression with either LFD or HFD diet, with 1264 DEGs in LFD dams and 777 DEGs in HFD dams. We found that genes related to snRNP binding and translation initiation were most significantly altered between the TMG and IMG. Although we were not able to discern a molecular mechanism, many small nuclear RNAs and small nucleolar RNAs were differentially expressed between the TMG and IMG responsible for cellular functions such as splicing and ribosome biogenesis, which provides and interesting avenue for future research. Our study supports the hypothesis that collection of the mammary gland from a particular location influences mammary gland gene expression, thereby highlighting the importance for researchers to be vigilant in documenting and reporting which mammary gland they are using for their studies.
Collapse
Affiliation(s)
- Adrienne A. Cheng
- Department of Nutritional Sciences, UW-Madison, Madison, Wisconsin, United States of America
- Department of Animal and Dairy Sciences, UW-Madison, Madison, Wisconsin, United States of America
| | - Wenli Li
- Cell Wall Biology and Utilization Research Unit, US Dairy Forage Research Center, Agricultural Research Service, US Department of Agriculture, Madison, Wisconsin, United States of America
| | - Laura L. Hernandez
- Department of Animal and Dairy Sciences, UW-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
10
|
Slepicka PF, Somasundara AVH, Dos Santos CO. The molecular basis of mammary gland development and epithelial differentiation. Semin Cell Dev Biol 2021; 114:93-112. [PMID: 33082117 PMCID: PMC8052380 DOI: 10.1016/j.semcdb.2020.09.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
Abstract
Our understanding of the molecular events underpinning the development of mammalian organ systems has been increasing rapidly in recent years. With the advent of new and improved next-generation sequencing methods, we are now able to dig deeper than ever before into the genomic and epigenomic events that play critical roles in determining the fates of stem and progenitor cells during the development of an embryo into an adult. In this review, we detail and discuss the genes and pathways that are involved in mammary gland development, from embryogenesis, through maturation into an adult gland, to the role of pregnancy signals in directing the terminal maturation of the mammary gland into a milk producing organ that can nurture the offspring. We also provide an overview of the latest research in the single-cell genomics of mammary gland development, which may help us to understand the lineage commitment of mammary stem cells (MaSCs) into luminal or basal epithelial cells that constitute the mammary gland. Finally, we summarize the use of 3D organoid cultures as a model system to study the molecular events during mammary gland development. Our increased investigation of the molecular requirements for normal mammary gland development will advance the discovery of targets to predict breast cancer risk and the development of new breast cancer therapies.
Collapse
Affiliation(s)
- Priscila Ferreira Slepicka
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | | | - Camila O Dos Santos
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
11
|
Pokharel A, Kolla S, Matouskova K, Vandenberg LN. Asymmetric development of the male mouse mammary gland and its response to a prenatal or postnatal estrogen challenge. Reprod Toxicol 2018; 82:63-71. [PMID: 30315872 DOI: 10.1016/j.reprotox.2018.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 09/07/2018] [Accepted: 10/09/2018] [Indexed: 12/12/2022]
Abstract
The CD-1 mouse mammary gland is sexually dimorphic, with males lacking nipples. Recent studies have revealed that the underlying epithelium in the male mammary gland is sensitive to estrogenic environmental chemicals. In ongoing investigations, we observed asymmetric morphology in the left and right male mouse mammary glands. Here, we quantified these asymmetries in the embryonic, prepubertal, pubertal and adult male mammary gland. We found that the right gland was typically larger with more branching points compared to the left gland. We next evaluated the response of the left and right glands to 17α-ethinyl estradiol (EE2) after perinatal or peripubertal exposures. We found that the right gland was more responsive to EE2 than the left at both periods of exposure. These results reveal novel aspects of male mammary gland biology and suggest that future studies should control for laterality in the evaluation of hazards associated with exposures to estrogenic chemicals.
Collapse
Affiliation(s)
- Aastha Pokharel
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, United States
| | - SriDurgaDevi Kolla
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, United States
| | - Klara Matouskova
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, United States
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, United States.
| |
Collapse
|
12
|
McDowell G, Rajadurai S, Levin M. From cytoskeletal dynamics to organ asymmetry: a nonlinear, regulative pathway underlies left-right patterning. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0409. [PMID: 27821521 DOI: 10.1098/rstb.2015.0409] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2016] [Indexed: 12/25/2022] Open
Abstract
Consistent left-right (LR) asymmetry is a fundamental aspect of the bodyplan across phyla, and errors of laterality form an important class of human birth defects. Its molecular underpinning was first discovered as a sequential pathway of left- and right-sided gene expression that controlled positioning of the heart and visceral organs. Recent data have revised this picture in two important ways. First, the physical origin of chirality has been identified; cytoskeletal dynamics underlie the asymmetry of single-cell behaviour and patterning of the LR axis. Second, the pathway is not linear: early disruptions that alter the normal sidedness of upstream asymmetric genes do not necessarily induce defects in the laterality of the downstream genes or in organ situs Thus, the LR pathway is a unique example of two fascinating aspects of biology: the interplay of physics and genetics in establishing large-scale anatomy, and regulative (shape-homeostatic) pathways that correct molecular and anatomical errors over time. Here, we review aspects of asymmetry from its intracellular, cytoplasmic origins to the recently uncovered ability of the LR control circuitry to achieve correct gene expression and morphology despite reversals of key 'determinant' genes. We provide novel functional data, in Xenopus laevis, on conserved elements of the cytoskeleton that drive asymmetry, and comparatively analyse it together with previously published results in the field. Our new observations and meta-analysis demonstrate that despite aberrant expression of upstream regulatory genes, embryos can progressively normalize transcriptional cascades and anatomical outcomes. LR patterning can thus serve as a paradigm of how subcellular physics and gene expression cooperate to achieve developmental robustness of a body axis.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.
Collapse
Affiliation(s)
- Gary McDowell
- Biology Department, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA.,Allen Discovery Center, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA
| | - Suvithan Rajadurai
- Biology Department, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA.,Allen Discovery Center, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA
| | - Michael Levin
- Biology Department, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA .,Allen Discovery Center, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA
| |
Collapse
|
13
|
Robichaux JP, Fuseler JW, Patel SS, Kubalak SW, Hartstone-Rose A, Ramsdell AF. Left-right analysis of mammary gland development in retinoid X receptor-α+/- mice. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0416. [PMID: 27821527 DOI: 10.1098/rstb.2015.0416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2016] [Indexed: 12/31/2022] Open
Abstract
Left-right (L-R) differences in mammographic parenchymal patterns are an early predictor of breast cancer risk; however, the basis for this asymmetry is unknown. Here, we use retinoid X receptor alpha heterozygous null (RXRα+/-) mice to propose a developmental origin: perturbation of coordinated anterior-posterior (A-P) and L-R axial body patterning. We hypothesized that by analogy to somitogenesis-in which retinoic acid (RA) attenuation causes anterior somite pairs to develop L-R asynchronously-that RA pathway perturbation would likewise result in asymmetric mammary development. To test this, mammary glands of RXRα+/- mice were quantitatively assessed to compare left- versus right-side ductal epithelial networks. Unlike wild-type controls, half of the RXRα+/- thoracic mammary gland (TMG) pairs exhibited significant L-R asymmetry, with left-side reduction in network size. In RXRα+/- TMGs in which symmetry was maintained, networks had bilaterally increased size, with left networks showing greater variability in area and pattern. Reminiscent of posterior somites, whose bilateral symmetry is refractory to RA attenuation, inguinal mammary glands (IMGs) also had bilaterally increased network size, but no loss of symmetry. Together, these results demonstrate that mammary glands exhibit differential A-P sensitivity to RXRα heterozygosity, with ductal network symmetry markedly compromised in anterior but not posterior glands. As TMGs more closely model human breast development than IMGs, these findings raise the possibility that for some women, breast cancer risk may initiate with subtle axial patterning defects that result in L-R asymmetric growth and pattern of the mammary ductal epithelium.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.
Collapse
Affiliation(s)
- Jacqulyne P Robichaux
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - John W Fuseler
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | - Shrusti S Patel
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | - Steven W Kubalak
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Adam Hartstone-Rose
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | - Ann F Ramsdell
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA .,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29208, USA.,Program in Women's and Gender Studies, College of Arts and Sciences, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
14
|
Asymmetric Cancer Hallmarks in Breast Tumors on Different Sides of the Body. PLoS One 2016; 11:e0157416. [PMID: 27383829 PMCID: PMC4934783 DOI: 10.1371/journal.pone.0157416] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/31/2016] [Indexed: 02/06/2023] Open
Abstract
During the last decades it has been established that breast cancer arises through the accumulation of genetic and epigenetic alterations in different cancer related genes. These alterations confer the tumor oncogenic abilities, which can be resumed as cancer hallmarks (CH). The purpose of this study was to establish the methylation profile of CpG sites located in cancer genes in breast tumors so as to infer their potential impact on 6 CH: i.e. sustained proliferative signaling, evasion of growth suppressors, resistance to cell death, induction of angiogenesis, genome instability and invasion and metastasis. For 51 breast carcinomas, MS-MLPA derived-methylation profiles of 81 CpG sites were converted into 6 CH profiles. CH profiles distribution was tested by different statistical methods and correlated with clinical-pathological data. Unsupervised Hierarchical Cluster Analysis revealed that CH profiles segregate in two main groups (bootstrapping 90–100%), which correlate with breast laterality (p = 0.05). For validating these observations, gene expression data was obtained by RealTime-PCR in a different cohort of 25 tumors and converted into CH profiles. This analyses confirmed the same clustering and a tendency of association with breast laterality (p = 0.15). In silico analyses on gene expression data from TCGA Breast dataset from left and right breast tumors showed that they differed significantly when data was previously converted into CH profiles (p = 0.033). We show here for the first time, that breast carcinomas arising on different sides of the body present differential cancer traits inferred from methylation and expression profiles. Our results indicate that by converting methylation or expression profiles in terms of Cancer Hallmarks, it would allow to uncover veiled associations with clinical features. These results contribute with a new finding to the better understanding of breast tumor behavior, and can moreover serve as proof of principle for other bilateral cancers like lung, testes or kidney.
Collapse
|
15
|
Blacher S, Gérard C, Gallez A, Foidart JM, Noël A, Péqueux C. Quantitative Assessment of Mouse Mammary Gland Morphology Using Automated Digital Image Processing and TEB Detection. Endocrinology 2016; 157:1709-16. [PMID: 26910307 DOI: 10.1210/en.2015-1601] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The assessment of rodent mammary gland morphology is largely used to study the molecular mechanisms driving breast development and to analyze the impact of various endocrine disruptors with putative pathological implications. In this work, we propose a methodology relying on fully automated digital image analysis methods including image processing and quantification of the whole ductal tree and of the terminal end buds as well. It allows to accurately and objectively measure both growth parameters and fine morphological glandular structures. Mammary gland elongation was characterized by 2 parameters: the length and the epithelial area of the ductal tree. Ductal tree fine structures were characterized by: 1) branch end-point density, 2) branching density, and 3) branch length distribution. The proposed methodology was compared with quantification methods classically used in the literature. This procedure can be transposed to several software and thus largely used by scientists studying rodent mammary gland morphology.
Collapse
Affiliation(s)
- Silvia Blacher
- Laboratory of Tumor and Development Biology, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-cancer), University of Liège, B-4000 Liège, Belgium
| | - Céline Gérard
- Laboratory of Tumor and Development Biology, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-cancer), University of Liège, B-4000 Liège, Belgium
| | - Anne Gallez
- Laboratory of Tumor and Development Biology, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-cancer), University of Liège, B-4000 Liège, Belgium
| | - Jean-Michel Foidart
- Laboratory of Tumor and Development Biology, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-cancer), University of Liège, B-4000 Liège, Belgium
| | - Agnès Noël
- Laboratory of Tumor and Development Biology, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-cancer), University of Liège, B-4000 Liège, Belgium
| | - Christel Péqueux
- Laboratory of Tumor and Development Biology, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-cancer), University of Liège, B-4000 Liège, Belgium
| |
Collapse
|
16
|
Mesenchymal stem cells mediate the clinical phenotype of inflammatory breast cancer in a preclinical model. Breast Cancer Res 2015; 17:42. [PMID: 25887413 PMCID: PMC4389342 DOI: 10.1186/s13058-015-0549-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 03/06/2015] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Inflammatory breast cancer (IBC) is an aggressive type of breast cancer, characterized by very rapid progression, enlargement of the breast, skin edema causing an orange peel appearance (peau d'orange), erythema, thickening, and dermal lymphatic invasion. It is characterized by E-cadherin overexpression in the primary and metastatic disease, but to date no robust molecular features that specifically identify IBC have been reported. Further, models that recapitulate all of these clinical findings are limited and as a result no studies have demonstrated modulation of these clinical features as opposed to simply tumor cell growth. METHODS Hypothesizing the clinical presentation of IBC may be mediated in part by the microenvironment, we examined the effect of co-injection of IBC xenografts with mesenchymal stem/stromal cells (MSCs). RESULTS MSCs co-injection significantly increased the clinical features of skin invasion and metastasis in the SUM149 xenograft model. Primary tumors co-injected with MSCs expressed higher phospho-epidermal growth factor receptor (p-EGFR) and promoted metastasis development after tumor resection, effects that were abrogated by treatment with the epidermal growth factor receptor (EGFR) inhibitor, erlotinib. E-cadherin expression was maintained in primary tumor xenografts with MSCs co-injection compared to control and erlotinib treatment dramatically decreased this expression in control and MSCs co-injected tumors. Tumor samples from patients demonstrate correlation between stromal and tumor p-EGFR staining only in IBC tumors. CONCLUSIONS Our findings demonstrate that the IBC clinical phenotype is promoted by signaling from the microenvironment perhaps in addition to tumor cell drivers.
Collapse
|
17
|
Hadsell DL, Hadsell LA, Olea W, Rijnkels M, Creighton CJ, Smyth I, Short KM, Cox LL, Cox TC. In-silico QTL mapping of postpubertal mammary ductal development in the mouse uncovers potential human breast cancer risk loci. Mamm Genome 2015; 26:57-79. [PMID: 25552398 DOI: 10.1007/s00335-014-9551-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/03/2014] [Indexed: 01/02/2023]
Abstract
Genetic background plays a dominant role in mammary gland development and breast cancer (BrCa). Despite this, the role of genetics is only partially understood. This study used strain-dependent variation in an inbred mouse mapping panel, to identify quantitative trait loci (QTL) underlying structural variation in mammary ductal development, and determined if these QTL correlated with genomic intervals conferring BrCa susceptibility in humans. For about half of the traits, developmental variation among the complete set of strains in this study was greater (P < 0.05) than that of previously studied strains, or strains in current common use for mammary gland biology. Correlations were also detected with previously reported variation in mammary tumor latency and metastasis. In-silico genome-wide association identified 20 mammary development QTL (Mdq). Of these, five were syntenic with previously reported human BrCa loci. The most significant (P = 1 × 10(-11)) association of the study was on MMU6 and contained the genes Plxna4, Plxna4os1, and Chchd3. On MMU5, a QTL was detected (P = 8 × 10(-7)) that was syntenic to a human BrCa locus on h12q24.5 containing the genes Tbx3 and Tbx5. Intersection of linked SNP (r(2) > 0.8) with genomic and epigenomic features, and intersection of candidate genes with gene expression and survival data from human BrCa highlighted several for further study. These results support the conclusion that mammary tumorigenesis and normal ductal development are influenced by common genetic factors and that further studies of genetically diverse mice can improve our understanding of BrCa in humans.
Collapse
Affiliation(s)
- Darryl L Hadsell
- Department of Pediatrics, USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates St. Suite 10072, Mail Stop: BCM-320, Houston, TX, 77030-2600, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|