1
|
Cancel M, Crottes D, Bellanger D, Bruyère F, Mousset C, Pinault M, Mahéo K, Fromont G. Variable effects of periprostatic adipose tissue on prostate cancer cells: Role of adipose tissue lipid composition and cancer cells related factors. Prostate 2024; 84:358-367. [PMID: 38112233 DOI: 10.1002/pros.24655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Periprostatic adipose tissue (PPAT) is likely to modulate prostate cancer (PCa) progression. We analyzed the variations in the effect of PPAT on cancer cells, according to its fatty acid (FA) composition and tumor characteristics. METHODS The expression of markers of aggressiveness Ki67 and Zeb1, and epigenetic marks that could be modified during PCa progression, was analyzed by immunohistochemistry on a tissue-micro-array containing 59 pT3 PCa, including intra-prostatic areas and extra-prostatic foci in contact with PPAT belonging to the same tumor. In addition, we cocultivated PC3 and LNCaP cell lines with PPAT, which were then analyzed for FA composition. RESULTS Although the contact between PPAT and cancer cells led overall to an increase in Ki67 and Zeb1, and a decrease in the epigenetic marks 5MC, 5HMC, and H3K27ac, these effects were highly heterogeneous. Increased proliferation in extra-prostatic areas was associated with the international society of uropathology score. PC3 and LNCaP cocultures with PPAT led to increased Ki67, Zeb1 and H3K27me3, but only for PPAT associated with aggressive PCa. PC3 proliferation was correlated with high 20.2 n-6 and low 20.5n-3 in PPAT. CONCLUSIONS These results suggest that the effects of PPAT on cancer cells may depend on both PCa characteristics and PPAT composition, and could lead to propose nutritional supplementation.
Collapse
Affiliation(s)
- Mathilde Cancel
- Faculté de Médecine, Inserm UMR1069 "Nutrition, Croissance et Cancer" Université François Rabelais, Tours, France
- Department of Medical Oncology, CHU Tours, Tours, France
| | - David Crottes
- Faculté de Médecine, Inserm UMR1069 "Nutrition, Croissance et Cancer" Université François Rabelais, Tours, France
| | - Dorine Bellanger
- Faculté de Médecine, Inserm UMR1069 "Nutrition, Croissance et Cancer" Université François Rabelais, Tours, France
| | | | - Coralie Mousset
- Faculté de Médecine, Inserm UMR1069 "Nutrition, Croissance et Cancer" Université François Rabelais, Tours, France
- Department of Pathology, CHU Tours, Tours, France
| | - Michelle Pinault
- Faculté de Médecine, Inserm UMR1069 "Nutrition, Croissance et Cancer" Université François Rabelais, Tours, France
| | - Karine Mahéo
- Faculté de Médecine, Inserm UMR1069 "Nutrition, Croissance et Cancer" Université François Rabelais, Tours, France
| | - Gaëlle Fromont
- Faculté de Médecine, Inserm UMR1069 "Nutrition, Croissance et Cancer" Université François Rabelais, Tours, France
- Department of Pathology, CHU Tours, Tours, France
| |
Collapse
|
2
|
Pardo JC, Ruiz de Porras V, Gil J, Font A, Puig-Domingo M, Jordà M. Lipid Metabolism and Epigenetics Crosstalk in Prostate Cancer. Nutrients 2022; 14:851. [PMID: 35215499 PMCID: PMC8874497 DOI: 10.3390/nu14040851] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/27/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PCa) is the most commonly diagnosed malignant neoplasm in men in the Western world. Localized low-risk PCa has an excellent prognosis thanks to effective local treatments; however, despite the incorporation of new therapeutic strategies, metastatic PCa remains incurable mainly due to disease heterogeneity and the development of resistance to therapy. The mechanisms underlying PCa progression and therapy resistance are multiple and include metabolic reprogramming, especially in relation to lipid metabolism, as well as epigenetic remodelling, both of which enable cancer cells to adapt to dynamic changes in the tumour. Interestingly, metabolism and epigenetics are interconnected. Metabolism can regulate epigenetics through the direct influence of metabolites on epigenetic processes, while epigenetics can control metabolism by directly or indirectly regulating the expression of metabolic genes. Moreover, epidemiological studies suggest an association between a high-fat diet, which can alter the availability of metabolites, and PCa progression. Here, we review the alterations of lipid metabolism and epigenetics in PCa, before focusing on the mechanisms that connect them. We also discuss the influence of diet in this scenario. This information may help to identify prognostic and predictive biomarkers as well as targetable vulnerabilities.
Collapse
Affiliation(s)
- Juan C. Pardo
- Department of Medical Oncology, Catalan Institute of Oncology, University Hospital Germans Trias i Pujol, Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.C.P.); (A.F.)
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain;
| | - Vicenç Ruiz de Porras
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain;
- Germans Trias i Pujol Research Institute (IGTP), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.G.); (M.P.-D.)
| | - Joan Gil
- Germans Trias i Pujol Research Institute (IGTP), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.G.); (M.P.-D.)
- Department of Endocrinology and Medicine, CIBERER U747, ISCIII, Research Center for Pituitary Diseases, Hospital Sant Pau, IIB-SPau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Albert Font
- Department of Medical Oncology, Catalan Institute of Oncology, University Hospital Germans Trias i Pujol, Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.C.P.); (A.F.)
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain;
| | - Manel Puig-Domingo
- Germans Trias i Pujol Research Institute (IGTP), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.G.); (M.P.-D.)
- Department of Endocrinology and Nutrition, University Germans Trias i Pujol Hospital, Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain
- Department of Medicine, Autonomous University of Barcelona (UAB), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain
| | - Mireia Jordà
- Germans Trias i Pujol Research Institute (IGTP), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.G.); (M.P.-D.)
| |
Collapse
|
3
|
Aktepe N, Yukselten Y. Induction of apoptosis in human hormone-refractory prostate cancer cell lines by using resveratrol in combination with AT-101. Andrologia 2021; 54:e14267. [PMID: 34633104 DOI: 10.1111/and.14267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/06/2021] [Accepted: 09/26/2021] [Indexed: 11/29/2022] Open
Abstract
The aim of this study was to determine the appropriate doses of AT-101 and resveratrol combination in the in vitro hormone-refractory prostate cancer (PC) cell lines, in order to evaluate the cytotoxic and genotoxic effects of this combination on the proliferation of cancer cells, namely PC-3, DU-145 and LNCAP. Cytotoxicity in PC cell lines was analysed by using the XTT Cell Proliferation Assay. DNA damage was performed with the cell death assay. Apoptotic protein levels were performed by Roche Human Apoptosis Array. IC50 values were determined by XTT analysis. The strongest combined doses (100 µM resveratrol + 5µM AT-101) were found to have the strongest synergistic apoptotic and cytotoxic effects on DU-145 cells at 72 hr. While the combined use of resveratrol and AT-101 increased the expression of markers in apoptotic cell pathways on cells, a decrease in the expression of anti-apoptotic markers was detected (p ˂ 0.05). Combined applications of these compounds showed an important synergism in the hormone-refractory PC cell lines, and it was determined that after the post-translational modification, they were significantly effective on the apoptotic pathway. These results have revealed that the combination of resveratrol and AT-101 holds great expectation as a new chemotherapeutic application in the treatment of human prostate cancer.
Collapse
Affiliation(s)
- Necmettin Aktepe
- Faculty of Health, Department of Nursing, Mardin Artuklu University, Mardin, Turkey
| | - Yunus Yukselten
- School of Medicine, Department of Medical Biology, Ankara University, Ankara, Turkey.,Research Laboratories for Health Science, Y Gen Biotechnology Company Ltd., Ankara, Turkey
| |
Collapse
|
4
|
Mondal D, Narwani D, Notta S, Ghaffar D, Mardhekar N, Quadri SSA. Oxidative stress and redox signaling in CRPC progression: therapeutic potential of clinically-tested Nrf2-activators. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:96-124. [PMID: 35582006 PMCID: PMC9019181 DOI: 10.20517/cdr.2020.71] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022]
Abstract
Androgen deprivation therapy (ADT) is the mainstay regimen in patients with androgen-dependent prostate cancer (PCa). However, the selection of androgen-independent cancer cells leads to castrate resistant prostate cancer (CRPC). The aggressive phenotype of CRPC cells underscores the need to elucidate mechanisms and therapeutic strategies to suppress CRPC outgrowth. Despite ADT, the activation of androgen receptor (AR) transcription factor continues via crosstalk with parallel signaling pathways. Understanding of how these signaling cascades are initiated and amplified post-ADT is lacking. Hormone deprivation can increase oxidative stress and the resultant reactive oxygen species (ROS) may activate both AR and non-AR signaling. Moreover, ROS-induced inflammatory cytokines may further amplify these redox signaling pathways to augment AR function. However, clinical trials using ROS quenching small molecule antioxidants have not suppressed CRPC progression, suggesting that more potent and persistent suppression of redox signaling in CRPC cells will be needed. The transcription factor Nrf2 increases the expression of numerous antioxidant enzymes and downregulates the function of inflammatory transcription factors, e.g., nuclear factor kappa B. We documented that Nrf2 overexpression can suppress AR-mediated transcription in CRPC cell lines. Furthermore, two Nrf2 activating agents, sulforaphane (a phytochemical) and bardoxolone-methyl (a drug in clinical trial) suppress AR levels and sensitize CRPC cells to anti-androgens. These observations implicate the benefits of potent Nrf2-activators to suppress the lethal signaling cascades that lead to CRPC outgrowth. This review article will address the redox signaling networks that augment AR signaling during PCa progression to CRPC, and the possible utility of Nrf2-activating agents as an adjunct to ADT.
Collapse
Affiliation(s)
- Debasis Mondal
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Devin Narwani
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Shahnawaz Notta
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Dawood Ghaffar
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Nikhil Mardhekar
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Syed S A Quadri
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| |
Collapse
|
5
|
Gupta A, Shukla N, Nehra M, Gupta S, Malik B, Mishra AK, Vijay M, Batra J, Lohiya NK, Sharma D, Suravajhala P. A Pilot Study on the Whole Exome Sequencing of Prostate Cancer in the Indian Phenotype Reveals Distinct Polymorphisms. Front Genet 2020; 11:874. [PMID: 33193569 PMCID: PMC7477354 DOI: 10.3389/fgene.2020.00874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/16/2020] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer (PCa) is the third most common cancer among men in India, and no next-generation sequencing (NGS) studies have been attempted earlier. Recent advances in NGS have heralded the discovery of biomarkers from Caucasian/European and Chinese ancestry, but not much is known about the Indian phenotype/variant of PCa. In a pilot study using the whole exome sequencing of benign/PCa patients, we identified characteristic mutations specific to the Indian sub-population. We observed a large number of mutations in DNA repair genes, viz. helicases, TP53, and BRCA besides the variants of unknown significance with a possibly damaging rare variant (rs730881069/chr19:55154172C/TR136Q) in the TNNI3 gene that has been previously reported as a semi-conservative amino acid substitution. Our pilot study attempts to bring an understanding of PCa prognosis and recurrence for the Indian phenotype.
Collapse
Affiliation(s)
- Ayam Gupta
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India.,Vignan's Foundation for Science, Technology & Research (Deemed to be University), Guntur, India
| | - Nidhi Shukla
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India.,Department of Chemistry, School of Basic Sciences, Manipal University Jaipur, Jaipur, India
| | - Mamta Nehra
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
| | - Sonal Gupta
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
| | - Babita Malik
- Department of Chemistry, School of Basic Sciences, Manipal University Jaipur, Jaipur, India
| | | | | | - Jyotsna Batra
- Australian Prostate Cancer Research Centre, Queensland Institute of Health and Biomedical Innovation and School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia
| | | | | | - Prashanth Suravajhala
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
| |
Collapse
|
6
|
Han R, Li Y, Cao W. The overexpression of miRNA-212-5p inhibited the malignant proliferation of liver cancer cells HepG2 and the tumor formation in nude mice with transplanted tumor through down-regulating SOCS5. Transl Cancer Res 2020; 9:3986-3997. [PMID: 35117765 PMCID: PMC8797395 DOI: 10.21037/tcr-20-2007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/10/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND This study aims to investigate the effect of miR-212-5p overexpression targeting suppressor of cytokine signaling 5 (SOCS5) on the malignant proliferation of liver cancer cells HepG2 and tumor formation in nude mice with transplanted tumors. METHODS Luciferase reporter assay was used to detect the targeted relationship between miR-212-5p and SOCS5, and SOCS5 was overexpressed by the SOCS5 pcDNA vector. MiR-212-5p mimic and pc DNA-SOCS5 were transfected into liver cancer HepG2 cells alone or in combination, and the cells were randomly divided into four groups, the control group, mimic group, SOCS5 group and mimic + SOCS5 group for subsequent experiments. The orthotopic xenograft mouse models were established by using HepG2 cells in BALB/c athymic nude mice. RESULTS The results showed that there was a direct targeting relationship between miR-212-5p and SOCS5. Compared with the control group, the clone formation rate, the levels of Ki67, and proliferating cell nuclear antigen (PCNA) protein in the mimic group were significantly lower (P<0.05), but the apoptosis rate was significantly higher (P<0.05). The ratio of Bax/Bcl-2, cleaved Caspase-3/Caspase-3, and cleaved Caspase-9/Caspase-9 was significantly higher (P<0.05), while the ratios of p-phosphatidylinositol 3 kinase (PI3K)/PI3K, p- Protein kinase B (AKT)/AKT, and p-mammalian target of rapamycin (mTOR)/mTOR were significantly reduced (P<0.05). In the SOCS5 group, the result was reversed. Interesting, In the mimic+SOCS5 group the clone formation rate, the protein levels of Ki67, and PCNA were significantly decreased (P<0.05) while the apoptosis rate was significantly increased (P<0.05). The ratio of Bax/Bcl-2, cleaved Caspase-3/Caspase-3, and cleaved Caspase-9/Caspase-9 was significantly increased (P<0.05). The ratios of p-PI3K/PI3K, p-Akt/AKT, and p-mTOR/mTOR were significantly reduced (P<0.05). In vivo, The level of miR-212-5p was significantly increased, with SOCS5 decreased (P<0.05). Furthermore, the number of Ki67 positive cells was significantly reduced (P<0.05), and the apoptosis rate increased significantly (P<0.05). Additionally, the ratio of p-PI3K/PI3K, P-AKT/AKT, P-mTOR/mTOR decreased significantly (P<0.05). CONCLUSIONS miR-212-5p overexpression down-regulated SOCS5 could inhibit the malignant proliferation of HCC cells HepG2 and tumor formation in nude mice with transplanted tumors.
Collapse
Affiliation(s)
- Ruiyang Han
- Department of Interventional Radiology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
- Department of Hepatobiliary and Vascular Surgery, Hospital of the Chinese Weapons Institutes of Health, Xi’an, China
| | - Yazhou Li
- Department of Interventional Radiology, Baoji Hi-Tech People Hospital, Baoji, China
| | - Wei Cao
- Department of Interventional Radiology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| |
Collapse
|
7
|
Structural characterization of a heteropolysaccharide from fruit of Chaenomelese speciosa (Sweet) Nakai and its antitumor activity. Carbohydr Polym 2020; 236:116065. [DOI: 10.1016/j.carbpol.2020.116065] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 02/08/2023]
|
8
|
Freedland SJ, Allen J, Jarman A, Oyekunle T, Armstrong AJ, Moul JW, Sandler HM, Posadas E, Levin D, Wiggins E, Howard LE, Wu Y, Lin PH. A Randomized Controlled Trial of a 6-Month Low-Carbohydrate Intervention on Disease Progression in Men with Recurrent Prostate Cancer: Carbohydrate and Prostate Study 2 (CAPS2). Clin Cancer Res 2020; 26:3035-3043. [PMID: 32108029 DOI: 10.1158/1078-0432.ccr-19-3873] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/22/2020] [Accepted: 02/24/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Both weight loss and low-carbohydrate diets (LCD) without weight loss prolong survival in prostate cancer models. Few human trials have tested weight loss or LCD on prostate cancer. EXPERIMENTAL DESIGN We conducted a multi-site randomized 6-month trial of LCD versus control on PSA doubling time (PSADT) in patients with prostate cancer with biochemical recurrence (BCR) after local treatment. Eligibility included body mass index (BMI) ≥ 24 kg/m2 and PSADT 3 to 36 months. The LCD arm was instructed to eat [Formula: see text]20 g/carbs/day; the control arm instructed to avoid dietary changes. Primary outcome was PSADT. Secondary outcomes included weight, lipids, glucose metabolism, and diet. RESULTS Of 60 planned patients, the study stopped early after an interim analysis showed futility. Twenty-seven LCD and 18 control patients completed the study. At 6 months, although both arms consumed similar protein and fats, the LCD arm reduced carbohydrates intake (-117 vs. 8 g, P < 0.001) and lost weight (-12.1 vs. -0.50 kg, P < 0.001). The LCD arm reduced HDL, triglycerides, and HbA1c with no difference in total cholesterol or glucose. Mean PSADT was similar between LCD (21 months) and control (15 months, P = 0.316) arms. In a post hoc exploratory analysis accounting for prestudy PSADT, baseline PSA, primary treatment, and hemoconcentration, PSADT was significantly longer in LCD versus control (28 vs. 13 months, P = 0.021) arms. Adverse events were few, usually mild, and returned to baseline by 6 months. CONCLUSIONS Among BCR patients, LCD induced weight loss and metabolic benefits with acceptable safety without affecting PSADT, suggesting LCD does not adversely affect prostate cancer growth and is safe. Given exploratory findings of longer PSADT, larger studies testing LCD on disease progression are warranted.
Collapse
Affiliation(s)
- Stephen J Freedland
- Cedars-Sinai Medical Center, Los Angeles, California. .,Durham VA Medical Center, Durham, North Carolina
| | - Jenifer Allen
- Duke Clinical and Translational Science Institute, Duke University, Durham, North Carolina
| | - Aubrey Jarman
- Cedars-Sinai Medical Center, Los Angeles, California
| | - Taofik Oyekunle
- Duke University Medical Center, Duke Cancer Institute, Durham, North Carolina
| | - Andrew J Armstrong
- Duke University Medical Center, Duke Cancer Institute, Durham, North Carolina
| | - Judd W Moul
- Duke University Medical Center, Duke Cancer Institute, Durham, North Carolina
| | | | - Edwin Posadas
- Cedars-Sinai Medical Center, Los Angeles, California
| | - Dana Levin
- Cedars-Sinai Medical Center, Los Angeles, California
| | | | - Lauren E Howard
- Durham VA Medical Center, Durham, North Carolina.,Duke University School of Medicine, Durham, North Carolina
| | - Yuan Wu
- Duke University School of Medicine, Durham, North Carolina
| | - Pao-Hwa Lin
- Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
9
|
Dietary fatty acid quality affects systemic parameters and promotes prostatitis and pre-neoplastic lesions. Sci Rep 2019; 9:19233. [PMID: 31848441 PMCID: PMC6917739 DOI: 10.1038/s41598-019-55882-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 12/04/2019] [Indexed: 01/02/2023] Open
Abstract
Environmental and nutritional factors, including fatty acids (FA), are associated with prostatitis, benign prostate hyperplasia and prostate cancer. We hypothesized that different FA in normolipidic diets (7%) affect prostate physiology, increasing the susceptibility to prostate disorders. Thus, we fed male C57/BL6 mice with normolipidic diets based on linseed oil, soybean oil or lard (varying saturated and unsaturated FA contents and ω-3/ω-6 ratios) for 12 or 32 weeks after weaning and examined structural and functional parameters of the ventral prostate (VP) in the systemic metabolic context. Mongolian gerbils were included because they present a metabolic detour for low water consumption (i.e., oxidize FA to produce metabolic water). A linseed oil-based diet (LO, 67.4% PUFAs, ω-3/ω-6 = 3.70) resulted in a thermogenic profile, while a soybean oil-based diet (SO, 52.7% PUFAs, ω-3/ω-6 = 0.11) increased body growth and adiposity. Mice fed lard (PF, 13.1% PUFA, ω-3/ω-6 = 0.07) depicted a biphasic growth, resulting in decreased adiposity in adulthood. SO and PF resulted in hepatic steatosis and steatohepatitis, respectively. PF and SO increased prostate epithelial volume, and lard resulted in epithelial hyperplasia. Animals in the LO group had smaller prostates with predominant atrophic epithelia and inflammatory loci. Inflammatory cells were frequent in the VP of PF mice (predominantly stromal) and LO mice (predominantly luminal). RNAseq after 12 weeks revealed good predictors of a later-onset inflammation. The transcriptome unveiled ontologies related to ER stress after 32 weeks on PF diets. In conclusion, different FA qualities result in different metabolic phenotypes and differentially impact prostate size, epithelial volume, inflammation and gene expression.
Collapse
|
10
|
Zhu Y, Li Q, Xu X. Dietary inflammatory index and the risk of prostate cancer: a dose-response meta-analysis. Eur J Clin Nutr 2019; 74:1001-1008. [PMID: 31554922 DOI: 10.1038/s41430-019-0500-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/23/2019] [Accepted: 08/27/2019] [Indexed: 11/09/2022]
Abstract
Emerging epidemiological studies have assessed the potential relationship between the inflammatory potential of diet measured using the dietary inflammatory index (DII) and the risk of prostate cancer and found inconsistent results. The aim of this study was to systematically evaluate this issue using a meta-analysis approach. A comprehensive literature search of papers published through March 2019 was performed in the PubMed and EMBASE databases. The summary odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using a DerSimonian and Laird random effects model. A categorized analysis and linear and nonlinear dose-response analyses were performed. Ten studies met the inclusion criteria for our meta-analysis. The highest DII score category was associated with a significantly higher risk of prostate cancer than the lowest DII score category (OR = 1.73, 95% CI 1.34-2.23). In the dose-response analysis, the summary OR of prostate cancer for an increment of one unit of the DII was 1.10 (95% CI 1.04-1.17). The sensitivity analysis indicated that exclusion of any single study did not materially alter the pooled risk estimates. Finally, there was no evidence of significant publication bias with Begg's test or with Egger's test. In conclusion, this meta-analysis suggests that an increased DII is related to a higher risk of prostate cancer and that the risk increases by 10.0% per unit of the DII. However, further well-designed prospective trials with larger sample sizes should be performed to validate our preliminary findings.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Qinchen Li
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Xin Xu
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, China.
| |
Collapse
|
11
|
Labbé DP, Zadra G, Yang M, Reyes JM, Lin CY, Cacciatore S, Ebot EM, Creech AL, Giunchi F, Fiorentino M, Elfandy H, Syamala S, Karoly ED, Alshalalfa M, Erho N, Ross A, Schaeffer EM, Gibb EA, Takhar M, Den RB, Lehrer J, Karnes RJ, Freedland SJ, Davicioni E, Spratt DE, Ellis L, Jaffe JD, DʼAmico AV, Kantoff PW, Bradner JE, Mucci LA, Chavarro JE, Loda M, Brown M. High-fat diet fuels prostate cancer progression by rewiring the metabolome and amplifying the MYC program. Nat Commun 2019; 10:4358. [PMID: 31554818 PMCID: PMC6761092 DOI: 10.1038/s41467-019-12298-z] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 08/23/2019] [Indexed: 12/16/2022] Open
Abstract
Systemic metabolic alterations associated with increased consumption of saturated fat and obesity are linked with increased risk of prostate cancer progression and mortality, but the molecular underpinnings of this association are poorly understood. Here, we demonstrate in a murine prostate cancer model, that high-fat diet (HFD) enhances the MYC transcriptional program through metabolic alterations that favour histone H4K20 hypomethylation at the promoter regions of MYC regulated genes, leading to increased cellular proliferation and tumour burden. Saturated fat intake (SFI) is also associated with an enhanced MYC transcriptional signature in prostate cancer patients. The SFI-induced MYC signature independently predicts prostate cancer progression and death. Finally, switching from a high-fat to a low-fat diet, attenuates the MYC transcriptional program in mice. Our findings suggest that in primary prostate cancer, dietary SFI contributes to tumour progression by mimicking MYC over expression, setting the stage for therapeutic approaches involving changes to the diet.
Collapse
Affiliation(s)
- David P Labbé
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Urology, Department of Surgery, McGill University and Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Giorgia Zadra
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Meng Yang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jaime M Reyes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Charles Y Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Stefano Cacciatore
- Cancer Genomics Group, International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
| | - Ericka M Ebot
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Amanda L Creech
- The Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Francesca Giunchi
- Pathology Service, Addarii Institute of Oncology, S-Orsola-Malpighi Hospital, Bologna, IT, Italy
| | - Michelangelo Fiorentino
- Pathology Service, Addarii Institute of Oncology, S-Orsola-Malpighi Hospital, Bologna, IT, Italy
| | - Habiba Elfandy
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sudeepa Syamala
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | | | - Ashley Ross
- James Buchanan Brady Urological Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | | | | | | | - Robert B Den
- Department of Radiation Oncology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | | | - R Jeffrey Karnes
- Department of Urology, Mayo Clinic Rochester, Rochester, MN, USA
| | - Stephen J Freedland
- Department of Surgery, Division of Urology, Center for Integrated Research on Cancer and Lifestyle, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Surgery Section, Durham Veteran Affairs Medical Center, Durham, NC, USA
| | | | - Daniel E Spratt
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Leigh Ellis
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- The Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Jacob D Jaffe
- The Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Anthony V DʼAmico
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Philip W Kantoff
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jorge E Chavarro
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Massimo Loda
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
- The Broad Institute of MIT and Harvard University, Cambridge, MA, USA.
- Department of Pathology and Laboratory Medicine, Weil Cornell Medicine, New York Presbyterian-Weill Cornell Campus, New York, NY, USA.
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
12
|
Silva GR, Vaz CV, Catalão B, Ferreira S, Cardoso HJ, Duarte AP, Socorro S. Sweet Cherry Extract Targets the Hallmarks of Cancer in Prostate Cells: Diminished Viability, Increased Apoptosis and Suppressed Glycolytic Metabolism. Nutr Cancer 2019; 72:917-931. [PMID: 31507215 DOI: 10.1080/01635581.2019.1661502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The present work evaluated the anticancer properties of sweet cherry (Prunus avium) extract on human prostate cells. Several sweet cherry cultivars from Fundão (Portugal) were methanol-extracted and their phytochemical composition characterized. The Saco "late harvest" extract was highly-enriched in anthocyanins and selected for use in biological assays. Non-neoplastic (PNT1A) and neoplastic (LNCaP and PC3) human prostate cells were treated with 0-2,000 μg/ml of extract for 48-96 h. Cell viability was evaluated by the MTT assay. Apoptosis, oxidative stress, and glycolytic metabolism were assessed by Western blotting and enzymatic assays. Glucose consumption and lactate production were measured spectrophotometrically. Saco cherry extract diminished the viability of neoplastic and non-neoplastic cells, whereas enhancing apoptosis in LNCaP. Cherry extract-treatment also diminished oxidative damage and suppressed glycolytic metabolism in LNCaP cells. These findings widened the knowledge on the mechanisms by which cherry extract modulate cell physiology, demonstrating their broad action over the hallmarks of cancer.
Collapse
Affiliation(s)
- Gonçalo R Silva
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Cátia V Vaz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Beatriz Catalão
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Susana Ferreira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Henrique J Cardoso
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ana Paula Duarte
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Sílvia Socorro
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
13
|
Pradhan N, Parbin S, Kausar C, Kar S, Mawatwal S, Das L, Deb M, Sengupta D, Dhiman R, Patra SK. Paederia foetida induces anticancer activity by modulating chromatin modification enzymes and altering pro-inflammatory cytokine gene expression in human prostate cancer cells. Food Chem Toxicol 2019; 130:161-173. [DOI: 10.1016/j.fct.2019.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/03/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023]
|
14
|
Kim S, Yang X, Yin A, Zha J, Beharry Z, Bai A, Bielawska A, Bartlett MG, Yin H, Cai H. Dietary palmitate cooperates with Src kinase to promote prostate tumor progression. Prostate 2019; 79:896-908. [PMID: 30900312 PMCID: PMC6502658 DOI: 10.1002/pros.23796] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/14/2019] [Accepted: 02/28/2019] [Indexed: 12/14/2022]
Abstract
Numerous genetic alterations have been identified during prostate cancer progression. The influence of environmental factors, particularly the diet, on the acceleration of tumor progression is largely unknown. Expression levels and/or activity of Src kinase are highly elevated in numerous cancers including advanced stages of prostate cancer. In this study, we demonstrate that high-fat diets (HFDs) promoted pathological transformation mediated by the synergy of Src and androgen receptor in vivo. Additionally, a diet high in saturated fat significantly enhanced proliferation of Src-mediated xenograft tumors in comparison with a diet high in unsaturated fat. The saturated fatty acid palmitate, a major constituent in a HFD, significantly upregulated the biosynthesis of palmitoyl-CoA in cancer cells in vitro and in xenograft tumors in vivo. The exogenous palmitate enhanced Src-dependent mitochondrial β-oxidation. Additionally, it elevated the amount of C16-ceramide and total saturated ceramides, increased the level of Src kinase localized in the cell membrane, and Src-mediated downstream signaling, such as the activation of mitogen-activated protein kinase and focal adhesion kinase. Our results uncover how the metabolism of dietary palmitate cooperates with elevated Src kinase in the acceleration of prostate tumor progression.
Collapse
Affiliation(s)
- Sungjin Kim
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602
| | - Xiangkun Yang
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602
| | - Amelia Yin
- Center for Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Junyi Zha
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602
| | - Zanna Beharry
- Department of Chemistry and Physics, Florida Gulf Coast University, Fort Myers, Florida 33965
| | - Aiping Bai
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Alicja Bielawska
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Michael G. Bartlett
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602
| | - Hang Yin
- Center for Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Houjian Cai
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
15
|
Affiliation(s)
- Geoffrey K. Maiyoh
- Department of Medical Biochemistry, School of Medicine, Moi University, Eldoret, Kenya
- Johannesburg Institute for Advanced Study, University of Johannesburg, Johannesburg, South Africa
| | - Vivian C. Tuei
- Department of Chemistry and Biochemistry, School of Science, University of Eldoret, Eldoret, Kenya
| |
Collapse
|
16
|
Zadra G, Loda M. Metabolic Vulnerabilities of Prostate Cancer: Diagnostic and Therapeutic Opportunities. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a030569. [PMID: 29229664 DOI: 10.1101/cshperspect.a030569] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cancer cells hijack metabolic pathways to support bioenergetics and biosynthetic requirements for their uncontrolled growth. Thus, cancer can be considered as a metabolic disease. In this review, we discuss the main metabolic features of prostate cancer with a particular focus on the link between oncogene-directed cancer metabolic regulation, metabolism rewiring, and epigenetic regulation. The potential of using metabolic profiling as a means to predict disease behavior and to identify novel therapeutic targets and new diagnostic markers will be addressed as well as the current challenges in metabolomics analyses. Finally, diagnostic and prognostic metabolic imaging approaches, including positron emission tomography, mass spectrometry, nuclear magnetic resonance, and their translational applications, will be discussed. Here, we emphasize how targeting metabolic vulnerabilities in prostate cancer may pave the way for novel personalized diagnostic and therapeutic interventions.
Collapse
Affiliation(s)
- Giorgia Zadra
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215
| | - Massimo Loda
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215.,The Broad Institute, Cambridge, Massachusetts 02142
| |
Collapse
|
17
|
Shivappa N, Niclis C, Coquet JB, Román MD, Hébert JR, Diaz MDP. Increased inflammatory potential of diet is associated with increased odds of prostate cancer in Argentinian men. Cancer Causes Control 2018; 29:803-813. [PMID: 30019102 PMCID: PMC6108929 DOI: 10.1007/s10552-018-1056-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 07/12/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE Various aspects of diet, including specific food items and nutrients, have been shown to modulate inflammation and have been implicated in the etiology of prostate cancer (PrCA). No study examining the role of diet-associated inflammation in PrCA has been conducted in Latin America. METHOD We examined the association between the Dietary Inflammatory Index (DII®) and PrCA in a population-based case-control study in Córdoba, Argentina. A total of 153 incident cases of PrCA and 309 controls frequency matched on sex, age (± 5 years), and place of residence were recruited from 2008 to 2015. The DII was developed to determine the inflammatory potential of individuals' diets and was computed from a validated food frequency questionnaire using nutrient data from diet only. Multi-level logistic regression models were fit to evaluate the association between DII scores and PrCA, adjusting for age, body mass index, energy intake, and occupational exposure as first-level covariates and family history of prostate cancer as the second-level variable. Odds ratios were estimated in all subject and stratified by BMI (< 30 vs. ≥ 30 kg/m2). RESULTS Men in the most pro-inflammatory group (tertile 3) had 50% higher odds of having PrCA compared to men in the most anti-inflammatory group (tertile 1) (ORtertile3 vs. tertile1 1.50; 95% CI 1.24-1.80). The odds of prostate cancer were higher in obese men (n = 109, ORtertile3 vs. tertile1 1.81; 95% CI 1.45-2.27), while no association was found among non-obese men (n = 375, ORtertile3 vs. tertile1 0.93; 95% CI 0.25-3.51). CONCLUSIONS A pro-inflammatory diet, reflected by higher DII scores, was positively associated with PrCA occurrence. Based on these results and those from other studies, steps should be taken to promote a diet rich in anti-inflammatory foods, in order to reduce risk of PrCA and other chronic diseases. Future studies should explore this association in a prospective setting.
Collapse
Affiliation(s)
- Nitin Shivappa
- Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, 29208, USA.
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA.
- Connecting Health Innovations LLC, Columbia, SC, 29201, USA.
| | - Camila Niclis
- Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Córdoba - Consejo Nacional de Investigaciones Científicas y Técnicas, Haya de la Torre Esq. Enfermera Gordillo, 5016, Ciudad Universitaria, Córdoba, Argentina
- Escuela de Nutrición, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enrique Barros s/n, 5016, Ciudad Universitaria, Córdoba, Argentina
| | - Julia Becaria Coquet
- Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Córdoba - Consejo Nacional de Investigaciones Científicas y Técnicas, Haya de la Torre Esq. Enfermera Gordillo, 5016, Ciudad Universitaria, Córdoba, Argentina
- Escuela de Nutrición, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enrique Barros s/n, 5016, Ciudad Universitaria, Córdoba, Argentina
| | - María D Román
- Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Córdoba - Consejo Nacional de Investigaciones Científicas y Técnicas, Haya de la Torre Esq. Enfermera Gordillo, 5016, Ciudad Universitaria, Córdoba, Argentina
- Escuela de Nutrición, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enrique Barros s/n, 5016, Ciudad Universitaria, Córdoba, Argentina
| | - James R Hébert
- Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, 29208, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
- Connecting Health Innovations LLC, Columbia, SC, 29201, USA
| | - María Del Pilar Diaz
- Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Córdoba - Consejo Nacional de Investigaciones Científicas y Técnicas, Haya de la Torre Esq. Enfermera Gordillo, 5016, Ciudad Universitaria, Córdoba, Argentina
- Escuela de Nutrición, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enrique Barros s/n, 5016, Ciudad Universitaria, Córdoba, Argentina
| |
Collapse
|
18
|
Frank S, Nelson P, Vasioukhin V. Recent advances in prostate cancer research: large-scale genomic analyses reveal novel driver mutations and DNA repair defects. F1000Res 2018; 7. [PMID: 30135717 PMCID: PMC6073096 DOI: 10.12688/f1000research.14499.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2018] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer (PCa) is a disease of mutated and misregulated genes. However, primary prostate tumors have relatively few mutations, and only three genes (
ERG,
PTEN, and
SPOP) are recurrently mutated in more than 10% of primary tumors. On the other hand, metastatic castration-resistant tumors have more mutations, but, with the exception of the androgen receptor gene (
AR), no single gene is altered in more than half of tumors. Structural genomic rearrangements are common, including
ERG fusions, copy gains involving the
MYC locus, and copy losses containing
PTEN. Overall, instead of being associated with a single dominant driver event, prostate tumors display various combinations of modifications in oncogenes and tumor suppressors. This review takes a broad look at the recent advances in PCa research, including understanding the genetic alterations that drive the disease and how specific mutations can sensitize tumors to potential therapies. We begin with an overview of the genomic landscape of primary and metastatic PCa, enabled by recent large-scale sequencing efforts. Advances in three-dimensional cell culture techniques and mouse models for PCa are also discussed, and particular emphasis is placed on the benefits of patient-derived xenograft models. We also review research into understanding how ETS fusions (in particular,
TMPRSS2-ERG) and
SPOP mutations contribute to tumor initiation. Next, we examine the recent findings on the prevalence of germline DNA repair mutations in about 12% of patients with metastatic disease and their potential benefit from the use of poly(ADP-ribose) polymerase (PARP) inhibitors and immune modulation. Lastly, we discuss the recent increased prevalence of AR-negative tumors (neuroendocrine and double-negative) and the current state of immunotherapy in PCa. AR remains the primary clinical target for PCa therapies; however, it does not act alone, and better understanding of supporting mutations may help guide the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Sander Frank
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Peter Nelson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Departments of Medicine and Urology, University of Washington, Seattle, WA 98195, USA.,Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Valeri Vasioukhin
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
19
|
Canto P, Granados JB, Feria-Bernal G, Coral-Vázquez RM, García-García E, Tejeda ME, Tapia A, Rojano-Mejía D, Méndez JP. PPARGC1A and ADIPOQ polymorphisms are associated with aggressive prostate cancer in Mexican-Mestizo men with overweight or obesity. Cancer Biomark 2018; 19:297-303. [PMID: 28453464 DOI: 10.3233/cbm-160467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Obesity constitutes a risk factor for the development of aggressive forms of prostate cancer. It has been proposed, that prostate cancer has a genetic predisposition and that PPARGC1A and ADIPOQ polymorphisms play a role in the development of this condition. OBJECTIVE To analyse the association of two PPARGC1A and ADIPOQ polymorphisms as well as their haplotypes, with the development of aggressive prostate cancer in Mexican-Mestizo men with overweight or obesity. SUBJECTS AND METHODS Two hundred fifty seven men with prostate cancer of Mexican-Mestizo origin were included. Body mass index (BMI) was determined and the degree of prostate cancer aggressiveness by the D'Amico classification. DNA was obtained. Rs7665116 and rs2970870 of PPARGC1A, and rs266729 and rs1501299 of ADIPOQ were studied by real-time PCR allelic discrimination. Pairwise linkage disequilibrium, between single nucleotide polymorphisms was calculated and haplotype analysis was performed. RESULTS A higher-risk (D'Amico classification) was observed in 21.8% of patients. An association of cancer aggressiveness with rs2970870 of PPARGC1A, and rs501299 of ADIPOQ, as well as with one haplotype of ADIPOQ was documented. CONCLUSIONS This is the first study regarding the relationship of PPARGC1A and ADIPOQ polymorphisms, and the aggressiveness of prostate cancer in men with overweight or obesity.
Collapse
Affiliation(s)
- Patricia Canto
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, México, México.,Clínica de Obesidad, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", México, México
| | - Jesús Benítez Granados
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, México, México
| | - Guillermo Feria-Bernal
- Departamento de Urología, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", México, México
| | - Ramón Mauricio Coral-Vázquez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, México.,Subdirección de Enseñanza e Investigación, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, México, México
| | - Eduardo García-García
- Clínica de Obesidad, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", México, México
| | - María Elena Tejeda
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, México, México
| | - André Tapia
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, México, México
| | - David Rojano-Mejía
- Unidad de Medicina Física y Rehabilitación Centro, UMAE, Hospital de Traumatología y Ortopedia "Lomas Verdes", Instituto Mexicano del Seguro Social, México, México
| | - Juan Pablo Méndez
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, México, México.,Clínica de Obesidad, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", México, México
| |
Collapse
|
20
|
Cheng Y, Monteiro C, Matos A, You J, Fraga A, Pereira C, Catalán V, Rodríguez A, Gómez-Ambrosi J, Frühbeck G, Ribeiro R, Hu P. Epigenome-wide DNA methylation profiling of periprostatic adipose tissue in prostate cancer patients with excess adiposity-a pilot study. Clin Epigenetics 2018; 10:54. [PMID: 29692867 PMCID: PMC5904983 DOI: 10.1186/s13148-018-0490-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/05/2018] [Indexed: 12/12/2022] Open
Abstract
Background Periprostatic adipose tissue (PPAT) has been recognized to associate with prostate cancer (PCa) aggressiveness and progression. Here, we sought to investigate whether excess adiposity modulates the methylome of PPAT in PCa patients. DNA methylation profiling was performed in PPAT from obese/overweight (OB/OW, BMI > 25 kg m−2) and normal weight (NW, BMI < 25 kg m−2) PCa patients. Significant differences in methylated CpGs between OB/OW and NW groups were inferred by statistical modeling. Results Five thousand five hundred twenty-six differentially methylated CpGs were identified between OB/OW and NW PCa patients with 90.2% hypermethylated. Four hundred eighty-three of these CpGs were found to be located at both promoters and CpG islands, whereas the representing 412 genes were found to be involved in pluripotency of stem cells, fatty acid metabolism, and many other biological processes; 14 of these genes, particularly FADS1, MOGAT1, and PCYT2, with promoter hypermethylation presented with significantly decreased gene expression in matched samples. Additionally, 38 genes were correlated with antigen processing and presentation of endogenous antigen via MHC class I, which might result in fatty acid accumulation in PPAT and tumor immune evasion. Conclusions Results showed that the whole epigenome methylation profiles of PPAT were significantly different in OB/OW compared to normal weight PCa patients. The epigenetic variation associated with excess adiposity likely resulted in altered lipid metabolism and immune dysregulation, contributing towards unfavorable PCa microenvironment, thus warranting further validation studies in larger samples. Electronic supplementary material The online version of this article (10.1186/s13148-018-0490-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Cheng
- 1Department of Biochemistry and Medical Genetics & Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, Canada.,2Experimental Center, Northwest University for Nationalities, Lanzhou, People's Republic of China
| | - Cátia Monteiro
- 3Molecular Oncology Group, Portuguese Institute of Oncology, Porto, Portugal.,Research Department, Portuguese League Against Cancer-North, Porto, Portugal
| | - Andreia Matos
- 5Laboratory of Genetics and Environmental Health Institute, Faculty of Medicine, University of Lisboa, Lisbon, Portugal.,6Tumor & Microenvironment Interactions, i3S/INEB, Institute for Research and Innovation in Health, and Institute of Biomedical Engineering, University of Porto, Porto, Portugal
| | - Jiaying You
- 1Department of Biochemistry and Medical Genetics & Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, Canada
| | - Avelino Fraga
- 6Tumor & Microenvironment Interactions, i3S/INEB, Institute for Research and Innovation in Health, and Institute of Biomedical Engineering, University of Porto, Porto, Portugal.,7Department of Urology, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Carina Pereira
- 3Molecular Oncology Group, Portuguese Institute of Oncology, Porto, Portugal.,8CINTESIS, Center for Health Technology and Services Research, Faculty of Medicine, e, University of Porto, Porto, Portugal
| | - Victoria Catalán
- 9Metabolic Research Laboratory, Universidad de Navarra, Pamplona, Spain.,10CIBER Fisiopatología de la Obesidad y Nutricion, Instituto de Salud Carlos III, Madrid, Spain
| | - Amaia Rodríguez
- 9Metabolic Research Laboratory, Universidad de Navarra, Pamplona, Spain.,10CIBER Fisiopatología de la Obesidad y Nutricion, Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Gómez-Ambrosi
- 9Metabolic Research Laboratory, Universidad de Navarra, Pamplona, Spain.,10CIBER Fisiopatología de la Obesidad y Nutricion, Instituto de Salud Carlos III, Madrid, Spain
| | - Gema Frühbeck
- 9Metabolic Research Laboratory, Universidad de Navarra, Pamplona, Spain.,10CIBER Fisiopatología de la Obesidad y Nutricion, Instituto de Salud Carlos III, Madrid, Spain.,11Department of Endocrinology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Ricardo Ribeiro
- 3Molecular Oncology Group, Portuguese Institute of Oncology, Porto, Portugal.,5Laboratory of Genetics and Environmental Health Institute, Faculty of Medicine, University of Lisboa, Lisbon, Portugal.,6Tumor & Microenvironment Interactions, i3S/INEB, Institute for Research and Innovation in Health, and Institute of Biomedical Engineering, University of Porto, Porto, Portugal.,12Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,13i3S/INEB, Instituto de Investigação e Inovação em Saúde/Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Tumor & Microenvironment Interactions, Rua Alfredo Allen, 208 4200-135 Porto, Portugal
| | - Pingzhao Hu
- 1Department of Biochemistry and Medical Genetics & Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
21
|
Pascual-Geler M, Urquiza-Salvat N, Cozar JM, Robles-Fernandez I, Rivas A, Martinez-Gonzalez LJ, Ocaña-Peinado FM, Lorente JA, Alvarez-Cubero MJ. The influence of nutritional factors on prostate cancer incidence and aggressiveness. Aging Male 2018; 21:31-39. [PMID: 28929838 DOI: 10.1080/13685538.2017.1379491] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
There is an increasing evidence for a link between nutrition, lifestyle and prostate cancer (PCa) development and/or progression of disease. The objective of this study was to examine the association between dietary factors and PCa incidence and aggressiveness in a case-control study. After the analysis of the anatomic pathology, subjects were classified in patients with PCa (n = 157) and controls (n = 158). Clinical data including Gleason score, PSA values and biopsy results, were compiled. Frequencies of food consumption and sociodemographic data were also obtained. The results showed that physical activity was significantly higher in control (p < .022). It was also found that some nutritional habits offer a protective effect among studied subjects, like high nuts (p = .041) and fish (p = .041) intakes. Moreover, there was a significant reduction in risk (p = .029) in cases with a higher fruits and vegetables intakes. A decreased risk of aggressive PCa was associated with fruits, vegetables, legumes and fish intakes. However, these relationships were not statistically significant when data were adjusted for covariates. In conclusion, this study found an inverse association between PCa risk and the intake of fruits and vegetables, fish and nuts. The results suggested that a diet with higher intakes of these foods as Mediterranean diet may lower the risk of PCa in the studied population. As dietary factors are modifiable, identifying food groups or dietary patterns that modulate the risk of PCa and its aggressiveness can offer effective and practical strategies for its primary prevention.
Collapse
Affiliation(s)
| | - Noelia Urquiza-Salvat
- b Department of Nutrition and Food Science, Faculty of Pharmacy , University of Granada , Granada , Spain
| | - Jose Manuel Cozar
- a Service of Urology , University Hospital Virgen de las Nieves , Granada , Spain
| | - Inmaculada Robles-Fernandez
- c GENYO , Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research , Granada , Spain
| | - Ana Rivas
- b Department of Nutrition and Food Science, Faculty of Pharmacy , University of Granada , Granada , Spain
| | - Luis Javier Martinez-Gonzalez
- c GENYO , Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research , Granada , Spain
| | | | - Jose Antonio Lorente
- c GENYO , Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research , Granada , Spain
- e Laboratory of Genetic Identification, Legal Medicine and Toxicology Department, Faculty of Medicine , University of Granada , Granada , Spain
| | - Maria Jesus Alvarez-Cubero
- c GENYO , Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research , Granada , Spain
| |
Collapse
|
22
|
Hong H, An JC, de La Cruz JF, Hwang SG. Cnidium officinale Makino extract induces apoptosis through activation of caspase-3 and p53 in human liver cancer HepG2 cells. Exp Ther Med 2017; 14:3191-3197. [PMID: 28966688 DOI: 10.3892/etm.2017.4916] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 07/21/2017] [Indexed: 02/06/2023] Open
Abstract
A number of diverse studies have reported the anticancer properties of Cnidium officinale Makino (CO). However, the apoptotic effect of this traditional medicinal herb in human hepatocellular carcinoma cells (HepG2) remains to be elucidated. Therefore, the present study investigated the ability of CO to reduce cell viability through apoptotic pathways. Cell viability was determined using the 2,3-bis [2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide assay. CO extract-induced apoptosis in HepG2 cells was assessed by Hoechst 33258 staining. The cell cycle was monitored using fluorescence-activated cell sorting analysis with propidium iodide staining. Furthermore, the present study explored whether various signaling molecules associated with HepG2 cell death were affected by CO treatment, including caspase-3, B-cell lymphoma 2 (Bcl-2), tumor protein p53 (p53), cyclin-dependent kinase 4 (CDK4) and cyclin D. The expression levels of these genes were examined by reverse-transcription polymerase chain reaction and western blotting. The expression levels of caspase-3 and p53 were upregulated with CO extract treatment, whereas those of Bcl-2, CDK4 and cyclin D were significantly downregulated. Cleaved caspase-3 expression was upregulated following treatment with CO extract in a dose-dependent manner. Collectively, the data suggest that CO extract has the potential to induce apoptosis of HepG2 cells and may act by suppressing the cell cycle, which leads to caspase-3 cleavage and p53 signaling.
Collapse
Affiliation(s)
- Heeok Hong
- Department of Medical Science, Konkuk University School of Medicine Seoul 05029, Republic of Korea
| | - Jeong Cheol An
- Division of Animal Life and Environmental Science, Hankyong National University, Anseong-si, Gyeonggi-do 17579, Republic of Korea
| | - Joseph F de La Cruz
- Division of Animal Life and Environmental Science, Hankyong National University, Anseong-si, Gyeonggi-do 17579, Republic of Korea.,College of Veterinary Medicine, University of the Philippines Los Baños, Los Baños, Laguna 4031 Philippines
| | - Seong-Gu Hwang
- Division of Animal Life and Environmental Science, Hankyong National University, Anseong-si, Gyeonggi-do 17579, Republic of Korea
| |
Collapse
|
23
|
Shivappa N, Miao Q, Walker M, Hébert JR, Aronson KJ. Association Between a Dietary Inflammatory Index and Prostate Cancer Risk in Ontario, Canada. Nutr Cancer 2017; 69:825-832. [PMID: 28718711 PMCID: PMC6093856 DOI: 10.1080/01635581.2017.1339095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Evidence exists showing that various aspects of diet are implicated in the etiology of prostate cancer, although results across studies remain inconsistent. METHODS We examined the ability of the dietary inflammatory index (DII) to predict prostate cancer in a case-control study conducted in Kingston, Ontario, Canada, between 1997 and 1999. The study included 72 cases of incident primary prostate cancer patients and 302 controls of urology clinic patients who had prostate conditions other than prostate cancer. The DII was computed based on intake of 18 nutrients assessed using a 67-item food frequency questionnaire. Univariate and multivariate logistic regression models were used to estimate odds ratios (ORs). RESULTS Men with higher DII scores were at increased risk of prostate cancer using DII score fit both as a continuous [OR = 1.58, 95% confidence interval (CI) 1.05-2.38] and categorical variable [compared to men in the lowest DII quartile, men in the highest quartile were at elevated risk (OR = 3.50, 95% CI 1.25-9.80; ptrend = 0.02)]. There was no significant heterogeneity by weight status, but stronger association was observed in men with body mass index >25 kg/m2 versus <25 kg/m2. CONCLUSION These findings suggest that a proinflammatory diet, as indicated by increasing DII score, is a risk factor for prostate cancer.
Collapse
Affiliation(s)
- Nitin Shivappa
- Cancer Prevention and Control Program, University of South Carolina, Columbia, SC USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC USA
- Connecting Health Innovations LLC, Columbia, SC USA
| | - Qun Miao
- Division of Cancer Care and Epidemiology, Cancer Research Institute, Queen’s University, Kingston, Ontario, Canada
| | - Melanie Walker
- Division of Cancer Care and Epidemiology, Cancer Research Institute, Queen’s University, Kingston, Ontario, Canada
| | - James R. Hébert
- Cancer Prevention and Control Program, University of South Carolina, Columbia, SC USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC USA
- Connecting Health Innovations LLC, Columbia, SC USA
- Department of Family and Preventive Medicine, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Kristan J. Aronson
- Division of Cancer Care and Epidemiology, Cancer Research Institute, Queen’s University, Kingston, Ontario, Canada
- Department of Public Health Sciences, Queen’s University, Kingston, Ontario, Canada
| |
Collapse
|
24
|
Ebot EM, Gerke T, Labbé DP, Sinnott JA, Zadra G, Rider JR, Tyekucheva S, Wilson KM, Kelly RS, Shui IM, Loda M, Kantoff PW, Finn S, Vander Heiden MG, Brown M, Giovannucci EL, Mucci LA. Gene expression profiling of prostate tissue identifies chromatin regulation as a potential link between obesity and lethal prostate cancer. Cancer 2017; 123:4130-4138. [PMID: 28700821 DOI: 10.1002/cncr.30831] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/03/2017] [Accepted: 05/24/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Obese men are at higher risk of advanced prostate cancer and cancer-specific mortality; however, the biology underlying this association remains unclear. This study examined gene expression profiles of prostate tissue to identify biological processes differentially expressed by obesity status and lethal prostate cancer. METHODS Gene expression profiling was performed on tumor (n = 402) and adjacent normal (n = 200) prostate tissue from participants in 2 prospective cohorts who had been diagnosed with prostate cancer from 1982 to 2005. Body mass index (BMI) was calculated from the questionnaire immediately preceding cancer diagnosis. Men were followed for metastases or prostate cancer-specific death (lethal disease) through 2011. Gene Ontology biological processes differentially expressed by BMI were identified using gene set enrichment analysis. Pathway scores were computed by averaging the signal intensities of member genes. Odds ratios (ORs) for lethal prostate cancer were estimated with logistic regression. RESULTS Among 402 men, 48% were healthy weight, 31% were overweight, and 21% were very overweight/obese. Fifteen gene sets were enriched in tumor tissue, but not normal tissue, of very overweight/obese men versus healthy-weight men; 5 of these were related to chromatin modification and remodeling (false-discovery rate < 0.25). Patients with high tumor expression of chromatin-related genes had worse clinical characteristics (Gleason grade > 7, 41% vs 17%; P = 2 × 10-4 ) and an increased risk of lethal disease that was independent of grade and stage (OR, 5.26; 95% confidence interval, 2.37-12.25). CONCLUSIONS This study improves our understanding of the biology of aggressive prostate cancer and identifies a potential mechanistic link between obesity and prostate cancer death that warrants further study. Cancer 2017;123:4130-4138. © 2017 American Cancer Society.
Collapse
Affiliation(s)
- Ericka M Ebot
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Travis Gerke
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts.,Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - David P Labbé
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jennifer A Sinnott
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts.,Department of Statistics, Ohio State University, Columbus, Ohio
| | - Giorgia Zadra
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jennifer R Rider
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts.,Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts
| | - Svitlana Tyekucheva
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts.,Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kathryn M Wilson
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Rachel S Kelly
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Irene M Shui
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Massimo Loda
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Philip W Kantoff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Stephen Finn
- Department of Histopathology, St. James's Hospital and Trinity College Dublin Medical School, Dublin, Ireland
| | - Matthew G Vander Heiden
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Koch Institute for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Edward L Giovannucci
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.,Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
25
|
Hsueh YM, Su CT, Shiue HS, Chen WJ, Pu YS, Lin YC, Tsai CS, Huang CY. Levels of plasma selenium and urinary total arsenic interact to affect the risk for prostate cancer. Food Chem Toxicol 2017. [PMID: 28634111 DOI: 10.1016/j.fct.2017.06.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This study investigated whether plasma selenium levels modified the risk for prostate cancer (PC) related to arsenic exposure. We conducted a case-control study that included 318 PC patients and 318 age-matched, healthy control subjects. Urinary arsenic profiles were examined using HPLC-HG-AAS and plasma selenium levels were measured by ICP-MS. We found that plasma selenium levels displayed a significant dose-dependent inverse association with PC. The odds ratio (OR) and 95% confidence interval (CI) for PC was 0.07 (0.04-0.13) among participants with a plasma selenium level >28.06 μg/dL vs. ≤19.13 μg/dL. A multivariate analysis showed that participants with a urinary total arsenic concentration >29.28 μg/L had a significantly higher OR (1.75, 1.06-2.89) for PC than participants with ≤29.89 μg/L. The combined presence of a low plasma selenium level and a high urinary total arsenic concentration exponentially increased the OR for PC, and additively interacted with PSA at levels ≥20 ng/mL. This is the first epidemiological study to examine the combined effects of plasma selenium and urinary total arsenic levels on the OR for PC. Our data suggest a low plasma selenium level coupled with a high urinary total arsenic concentration creates a significant risk for aggressive PC.
Collapse
Affiliation(s)
- Yu-Mei Hsueh
- Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan; Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chien-Tien Su
- Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan; School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Horng-Sheng Shiue
- Department of Chinese Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Wei-Jen Chen
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Yeong-Shiau Pu
- Department of Urology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ying-Chin Lin
- Department of Family Medicine, Shung Ho Hospital, Taipei Medical University, Taipei, Taiwan; Department of Health Examination, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Division of Family Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Shiuan Tsai
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Chao-Yuan Huang
- Department of Urology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Urology, National Taiwan University Hospital, Hsin Chu Branch, Hsin Chu City, Taiwan.
| |
Collapse
|
26
|
Zhou X, Wang F, Zhou R, Song X, Xie M. Apigenin: A current review on its beneficial biological activities. J Food Biochem 2017. [DOI: 10.1111/jfbc.12376] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xiang Zhou
- Department of Pharmacology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases; College of Pharmaceutical Sciences, Soochow University; Suzhou Jiangsu Province 215123 China
| | - Feng Wang
- Department of Pharmacology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases; College of Pharmaceutical Sciences, Soochow University; Suzhou Jiangsu Province 215123 China
| | - Ruijun Zhou
- Department of Pharmacology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases; College of Pharmaceutical Sciences, Soochow University; Suzhou Jiangsu Province 215123 China
| | - Xiuming Song
- Lianyungang Runzhong Pharmaceutical Co, Ltd.; Lianyungang Jiangsu Province 222069 China
| | - Meilin Xie
- Department of Pharmacology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases; College of Pharmaceutical Sciences, Soochow University; Suzhou Jiangsu Province 215123 China
| |
Collapse
|
27
|
Granados JB, Méndez JP, Feria-Bernal G, García-García E, Tejeda ME, Rojano-Mejía D, Tapia A, Canto P. Association of a TFAM haplotype with aggressive prostate cancer in overweight or obese Mexican Mestizo men. Urol Oncol 2017; 35:111.e9-111.e14. [DOI: 10.1016/j.urolonc.2016.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 01/05/2023]
|
28
|
The Genomic Impact of DNA CpG Methylation on Gene Expression; Relationships in Prostate Cancer. Biomolecules 2017; 7:biom7010015. [PMID: 28216563 PMCID: PMC5372727 DOI: 10.3390/biom7010015] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/23/2017] [Accepted: 02/06/2017] [Indexed: 12/15/2022] Open
Abstract
The process of DNA CpG methylation has been extensively investigated for over 50 years and revealed associations between changing methylation status of CpG islands and gene expression. As a result, DNA CpG methylation is implicated in the control of gene expression in developmental and homeostasis processes, as well as being a cancer-driver mechanism. The development of genome-wide technologies and sophisticated statistical analytical approaches has ushered in an era of widespread analyses, for example in the cancer arena, of the relationships between altered DNA CpG methylation, gene expression, and tumor status. The remarkable increase in the volume of such genomic data, for example, through investigators from the Cancer Genome Atlas (TCGA), has allowed dissection of the relationships between DNA CpG methylation density and distribution, gene expression, and tumor outcome. In this manner, it is now possible to test that the genome-wide correlations are measurable between changes in DNA CpG methylation and gene expression. Perhaps surprisingly is that these associations can only be detected for hundreds, but not thousands, of genes, and the direction of the correlations are both positive and negative. This, perhaps, suggests that CpG methylation events in cancer systems can act as disease drivers but the effects are possibly more restricted than suspected. Additionally, the positive and negative correlations suggest direct and indirect events and an incomplete understanding. Within the prostate cancer TCGA cohort, we examined the relationships between expression of genes that control DNA methylation, known targets of DNA methylation and tumor status. This revealed that genes that control the synthesis of S-adenosyl-l-methionine (SAM) associate with altered expression of DNA methylation targets in a subset of aggressive tumors.
Collapse
|
29
|
Pang J, Yang YW, Huang Y, Yang J, Zhang H, Chen R, Dong L, Huang Y, Wang D, Liu J, Li B. P110β Inhibition Reduces Histone H3K4 Di-Methylation in Prostate Cancer. Prostate 2017; 77:299-308. [PMID: 27800642 DOI: 10.1002/pros.23271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/05/2016] [Indexed: 12/27/2022]
Abstract
INTRODUCTION AND AIMS Epigenetic alteration plays a major role in the development and progression of human cancers, including prostate cancer. Histones are the key factors in modulating gene accessibility to transcription factors and post-translational modification of the histone N-terminal tail including methylation is associated with either transcriptional activation (H3K4me2) or repression (H3K9me3). Furthermore, phosphoinositide 3-kinase (PI3 K) signaling and the androgen receptor (AR) are the key determinants in prostate cancer development and progression. We recently showed that prostate-targeted nano-micelles loaded with PI3 K/p110beta specific inhibitor TGX221 blocked prostate cancer growth in vitro and in vivo. Our objective of this study was to determine the role of PI3 K signaling in histone methylation in prostate cancer, with emphasis on histone H3K4 methylation. METHODS PI3 K non-specific inhibitor LY294002 and p110beta-specific inhibitor TGX221 were used to block PI3 K/p110beta signaling. The global levels of H3K4 and H3K9 methylation in prostate cancer cells and tissue specimens were evaluated by Western blot assay and immunohistochemical staining. A synthetic androgen R1881 was used to stimulate AR activity in prostate cancer cells. A castration-resistant prostate cancer (CRPC) specific human tissue microarray (TMA) was used to assess the global levels of H3K4me2 methylation by immunostaining approach. RESULTS Our data revealed that H3K4me2 levels were significantly elevated after androgen stimulation. With RNA silencing and pharmacology approaches, we further defined that inhibition of PI3 K/p110beta activity through gene-specific knocking down and small chemical inhibitor TGX221 abolished androgen-stimulated H3K4me2 methylation. Consistently, prostate cancer-targeted delivery of TGX221 in vivo dramatically reduced the global levels of H3K4me2 as assessed by immunohistochemical staining on tissue section of mouse xenografts from CRPC cell lines 22RV1 and C4-2. Finally, immunostaining data revealed a strong H3K4me2 immunosignal in CRPC tissues compared to primary tumors and benign prostate tissues. CONCLUSIONS Taken together, our results suggest that PI3 K/p110beta-dependent signaling is involved in androgen-stimulated H3K4me2 methylation in prostate cancer, which might be used as a novel biomarker for disease prognosis and targeted therapy. Prostate 77:299-308, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jun Pang
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yue-Wu Yang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yiling Huang
- Department of Urology, The University of Kansas Medical Center, Kansas City, Kansas
- Department of Pathology, China Three Gorges University School of Medicine, Yichang, China
| | - Jun Yang
- Department of Urology, The University of Kansas Medical Center, Kansas City, Kansas
- Department of Urology, Tongji Hospital, Huanzhong University of Science and Technology, Wuhan, China
| | - Hao Zhang
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ruibao Chen
- Department of Urology, The University of Kansas Medical Center, Kansas City, Kansas
- Department of Urology, Tongji Hospital, Huanzhong University of Science and Technology, Wuhan, China
| | - Liang Dong
- Department of Urology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Yan Huang
- Department of Urology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Dongying Wang
- Department of Urology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Huanzhong University of Science and Technology, Wuhan, China
| | - Benyi Li
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Urology, The University of Kansas Medical Center, Kansas City, Kansas
- Department of Pathology, China Three Gorges University School of Medicine, Yichang, China
| |
Collapse
|
30
|
Epigenetic events in male common urogenital organs cancer. JOURNAL OF CANCER RESEARCH AND PRACTICE 2016. [DOI: 10.1016/j.jcrpr.2016.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
31
|
Canto P, Benítez Granados J, Martínez Ramírez MA, Reyes E, Feria-Bernal G, García-García E, Tejeda ME, Zavala E, Tapia A, Rojano-Mejía D, Méndez JP. Genetic variants in ATP6 and ND3 mitochondrial genes are not associated with aggressive prostate cancer in Mexican-Mestizo men with overweight or obesity. Aging Male 2016; 19:187-191. [PMID: 27187822 DOI: 10.1080/13685538.2016.1185409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Mitochondrial defects have been related to obesity and prostate cancer. We investigated if Mexican-Mestizo men presenting this type of cancer, exhibited somatic mutations of ATP6 and/or ND3.Body mass index (BMI) was determined; the degree of prostate cancer aggressiveness was demarcated by the Gleason score. DNA from tumor tissue and from blood leukocytes was amplified by the polymerase chain reaction and ATP6 and ND3 were sequenced. We included 77 men: 20 had normal BMI, 38 were overweight and 19 had obesity; ages ranged from 52 to 83. After sequencing ATP6 and ND3, from DNA obtained from leukocytes and tumor tissue, we did not find any somatic mutations. All changes observed, in both genes, were polymorphisms. In ATP6 we identified, in six patients, two non-synonymous nucleotide changes and in ND3 we observed that twelve patients presented non-synonymous polymorphisms. To our knowledge, this constitutes the first report where the complete sequences of the ATP6 and ND3 have been analyzed in Mexican-Mestizo men with prostate cancer and diverse BMI. Our results differ with those reported in Caucasian populations, possibly due to ethnic differences.
Collapse
Affiliation(s)
- Patricia Canto
- a Facultad de Medicina , Unidad de Investigación en Obesidad, Universidad Nacional Autónoma de México , México, D.F , México
- b Clínica de Obesidad, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán" , México, D.F , México
| | - Jesús Benítez Granados
- a Facultad de Medicina , Unidad de Investigación en Obesidad, Universidad Nacional Autónoma de México , México, D.F , México
- b Clínica de Obesidad, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán" , México, D.F , México
| | - Mónica Adriana Martínez Ramírez
- a Facultad de Medicina , Unidad de Investigación en Obesidad, Universidad Nacional Autónoma de México , México, D.F , México
- b Clínica de Obesidad, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán" , México, D.F , México
| | - Edgardo Reyes
- c Departamento de Patología , Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán" , México, D.F , México
| | - Guillermo Feria-Bernal
- d Departamento de Urología , Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán" , México, D.F , México , and
| | - Eduardo García-García
- b Clínica de Obesidad, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán" , México, D.F , México
| | - María Elena Tejeda
- a Facultad de Medicina , Unidad de Investigación en Obesidad, Universidad Nacional Autónoma de México , México, D.F , México
- b Clínica de Obesidad, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán" , México, D.F , México
| | - Esperanza Zavala
- a Facultad de Medicina , Unidad de Investigación en Obesidad, Universidad Nacional Autónoma de México , México, D.F , México
- b Clínica de Obesidad, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán" , México, D.F , México
| | - André Tapia
- a Facultad de Medicina , Unidad de Investigación en Obesidad, Universidad Nacional Autónoma de México , México, D.F , México
- b Clínica de Obesidad, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán" , México, D.F , México
| | - David Rojano-Mejía
- e Unidad de Medicina Física y Rehabilitación Centro, UMAE, Hospital de Traumatología y Ortopedia "Lomas Verdes", Instituto Mexicano del Seguro Social , México, D.F , México
| | - Juan Pablo Méndez
- a Facultad de Medicina , Unidad de Investigación en Obesidad, Universidad Nacional Autónoma de México , México, D.F , México
- b Clínica de Obesidad, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán" , México, D.F , México
| |
Collapse
|
32
|
Geng S, Zheng Y, Meng M, Guo Z, Cao N, Ma X, Du Z, Li J, Duan Y, Du G. Gingerol Reverses the Cancer-Promoting Effect of Capsaicin by Increased TRPV1 Level in a Urethane-Induced Lung Carcinogenic Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6203-6211. [PMID: 27436516 DOI: 10.1021/acs.jafc.6b02480] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Both gingerol and capsaicin are agonists of TRPV1, which can negatively control tumor progression. This study observed the long-term effects of oral administration of 6-gingerol alone or in combination with capsaicin for 20 weeks in a urethane-induced lung carcinogenic model. We showed that lung carcinoma incidence and multiplicity were 70% and 21.2 ± 3.6, respectively, in the control versus 100% and 35.6 ± 5.2 in the capsaicin group (P < 0.01) and 50% and 10.8 ± 3.1 in the 6-gingerol group (P < 0.01). The combination of 6-gingerol and capsaicin reversed the cancer-promoting effect of capsaicin (carcinoma incidence of 100% versus 20% and multiplicity of 35.6 ± 5.2 versus 4.7 ± 2.3; P < 0.001). The cancer-promoting effect of capsaicin was due to increased epidermal growth-factor receptor (EGFR) level by decreased transient receptor potential vanilloid type-1 (TRPV1) level (P < 0.01) . The capsaicin-decreased EGFR level subsequently reduced levels of nuclear factor-κB (NF-κB) and cyclin D1 that favored enhanced lung epithelial proliferation and epithelial-mesenchymal transition (EMT) during lung carcinogenesis (P < 0.01). In contrast, 6-gingerol promoted TRPV1 level and drastically decreased the levels of EGFR, NF-κB, and cyclin D1 that favored reduced lung epithelial proliferation and EMT (P < 0.01). This study provides valuable information for the long-term consumption of chili-pepper-rich diets to decrease the risk of cancer development.
Collapse
Affiliation(s)
- Shengnan Geng
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming District, Kaifeng, Henan 475004, China
| | - Yaqiu Zheng
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming District, Kaifeng, Henan 475004, China
| | - Mingjing Meng
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming District, Kaifeng, Henan 475004, China
| | - Zhenzhen Guo
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming District, Kaifeng, Henan 475004, China
| | - Ning Cao
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming District, Kaifeng, Henan 475004, China
| | - Xiaofang Ma
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming District, Kaifeng, Henan 475004, China
| | - Zhenhua Du
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming District, Kaifeng, Henan 475004, China
| | - Jiahuan Li
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming District, Kaifeng, Henan 475004, China
| | - Yongjian Duan
- Department of Oncology, The First Hospital Affiliated to Henan University , Kaifeng, Henan 475001, China
| | - Gangjun Du
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming District, Kaifeng, Henan 475004, China
| |
Collapse
|
33
|
Corbin JM, Ruiz-Echevarría MJ. One-Carbon Metabolism in Prostate Cancer: The Role of Androgen Signaling. Int J Mol Sci 2016; 17:E1208. [PMID: 27472325 PMCID: PMC5000606 DOI: 10.3390/ijms17081208] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/16/2016] [Accepted: 07/18/2016] [Indexed: 01/06/2023] Open
Abstract
Cancer cell metabolism differs significantly from the metabolism of non-transformed cells. This altered metabolic reprogramming mediates changes in the uptake and use of nutrients that permit high rates of proliferation, growth, and survival. The androgen receptor (AR) plays an essential role in the establishment and progression of prostate cancer (PCa), and in the metabolic adaptation that takes place during this progression. In its role as a transcription factor, the AR directly affects the expression of several effectors and regulators of essential catabolic and biosynthetic pathways. Indirectly, as a modulator of the one-carbon metabolism, the AR can affect epigenetic processes, DNA metabolism, and redox balance, all of which are important factors in tumorigenesis. In this review, we focus on the role of AR-signaling on one-carbon metabolism in tumorigenesis. Clinical implications of one-carbon metabolism and AR-targeted therapies for PCa are discussed in this context.
Collapse
Affiliation(s)
- Joshua M Corbin
- Department of Pathology, Oklahoma University Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Maria J Ruiz-Echevarría
- Department of Pathology, Oklahoma University Health Sciences Center and Stephenson Cancer Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
34
|
Ahmed M, Eeles R. Germline genetic profiling in prostate cancer: latest developments and potential clinical applications. Future Sci OA 2016; 2:FSO87. [PMID: 28031937 PMCID: PMC5137984 DOI: 10.4155/fso.15.87] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 11/10/2015] [Indexed: 12/16/2022] Open
Abstract
Familial and twin studies have demonstrated a significant inherited component to prostate cancer predisposition. Genome wide association studies have shown that there are 100 single nucleotide polymorphisms which have been associated with the development of prostate cancer. This review aims to discuss the scientific methods used to identify these susceptibility loci. It will also examine the current clinical utility of these loci, which include the development of risk models as well as predicting treatment efficacy and toxicity. In order to refine the clinical utility of the susceptibility loci, international consortia have been developed to combine statistical power as well as skills and knowledge to further develop models that could be used to predict risk and treatment outcomes.
Collapse
Affiliation(s)
- Mahbubl Ahmed
- The Institute of Cancer Research, London SM2 5NG, UK
| | | |
Collapse
|
35
|
Lippi G, Mattiuzzi C. Fried food and prostate cancer risk: systematic review and meta-analysis. Int J Food Sci Nutr 2015; 66:587-9. [PMID: 26114920 DOI: 10.3109/09637486.2015.1056111] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We performed systematic review and meta-analysis of published studies that investigated the potential association between fried food consumption and prostate cancer risk. Four case-control studies were finally selected for this systematic literature review, totaling 2579 cancer patients and 2277 matched controls. In two of these studies, the larger intake of fried food was associated with a 1.3- to 2.3-fold increased risk of prostate cancer, no significant association was found in another, whereas an inverse relationship was observed in the remaining. The meta-analysis of published data showed that larger intake of fried food was associated with a 35% (95% CI 17-57%) increased risk of prostate cancer. The results of this systematic literature review support the notion that larger intake of fried foods may have a role in increasing the risk of prostate cancer.
Collapse
Affiliation(s)
- Giuseppe Lippi
- Laboratory of Clinical Chemistry and Hematology, Academic Hospital of Parma , Parma , Italy and
| | | |
Collapse
|