1
|
da Silva DD, Araldi RP, Belizario MR, Rocha WG, Maciel RMDB, Cerutti JM. DLK1 Is Associated with Stemness Phenotype in Medullary Thyroid Carcinoma Cell Lines. Int J Mol Sci 2024; 25:11924. [PMID: 39595993 PMCID: PMC11594232 DOI: 10.3390/ijms252211924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Medullary thyroid carcinoma (MTC) is a rare and aggressive tumor, often requiring systemic treatment in advanced or metastatic stages, where drug resistance presents a significant challenge. Given the role of cancer stem cells (CSCs) in cancer recurrence and drug resistance, we aimed to identify CSC subpopulations within two MTC cell lines harboring pathogenic variants in the two most common MEN2-associated codons. We analyzed 15 stemness-associated markers, along with well-established thyroid stem cell markers (CD133, CD44, and ALDH1), a novel candidate (DLK1), and multidrug resistance proteins (MRP1 and MRP3). The ability to efflux the fluorescent dye Hoechst 3342 and form spheroids, representing CSC behavior, was also assessed. MZ-CRC-1 cells (p.M918T) displayed higher expressions of canonical markers, DLK1, and MRP proteins than TT cells (p.C634W). MZ-CRC-1 cells also formed more spheroids and showed less dye accumulation (p < 0.0001). Finally, we observed that DLK1+ cells (those expressing DLK1) in both cell lines exhibited significantly higher levels of stemness markers compared to DLK1- cells (those lacking DLK1 expression). These findings underscore DLK1's role in enhancing the stemness phenotype, providing valuable insights into MTC progression and resistance and suggesting potential therapeutic implications.
Collapse
Affiliation(s)
- Danilo Dias da Silva
- Genetic Bases of Thyroid Tumour Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, SP, Brazil; (D.D.d.S.); (R.P.A.); (M.R.B.); (W.G.R.)
| | - Rodrigo Pinheiro Araldi
- Genetic Bases of Thyroid Tumour Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, SP, Brazil; (D.D.d.S.); (R.P.A.); (M.R.B.); (W.G.R.)
| | - Mariana Rocha Belizario
- Genetic Bases of Thyroid Tumour Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, SP, Brazil; (D.D.d.S.); (R.P.A.); (M.R.B.); (W.G.R.)
| | - Welbert Gomes Rocha
- Genetic Bases of Thyroid Tumour Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, SP, Brazil; (D.D.d.S.); (R.P.A.); (M.R.B.); (W.G.R.)
| | - Rui Monteiro de Barros Maciel
- Laboratório de Endocrinologia Molecular e Translacional, Disciplina de Endocrinologia e Metabologia, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, SP, Brazil;
| | - Janete Maria Cerutti
- Genetic Bases of Thyroid Tumour Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, SP, Brazil; (D.D.d.S.); (R.P.A.); (M.R.B.); (W.G.R.)
| |
Collapse
|
2
|
Fagin JA, Krishnamoorthy GP, Landa I. Pathogenesis of cancers derived from thyroid follicular cells. Nat Rev Cancer 2023; 23:631-650. [PMID: 37438605 PMCID: PMC10763075 DOI: 10.1038/s41568-023-00598-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
The genomic simplicity of differentiated cancers derived from thyroid follicular cells offers unique insights into how oncogenic drivers impact tumour phenotype. Essentially, the main oncoproteins in thyroid cancer activate nodes in the receptor tyrosine kinase-RAS-BRAF pathway, which constitutively induces MAPK signalling to varying degrees consistent with their specific biochemical mechanisms of action. The magnitude of the flux through the MAPK signalling pathway determines key elements of thyroid cancer biology, including differentiation state, invasive properties and the cellular composition of the tumour microenvironment. Progression of disease results from genomic lesions that drive immortalization, disrupt chromatin accessibility and cause cell cycle checkpoint dysfunction, in conjunction with a tumour microenvironment characterized by progressive immunosuppression. This Review charts the genomic trajectories of these common endocrine tumours, while connecting them to the biological states that they confer.
Collapse
Affiliation(s)
- James A Fagin
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Gnana P Krishnamoorthy
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Iñigo Landa
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
3
|
Bai F, Liu X, Zhang X, Mao Z, Wen H, Ma J, Pei XH. p18INK4C and BRCA1 inhibit follicular cell proliferation and dedifferentiation in thyroid cancer. Cell Cycle 2023; 22:1637-1653. [PMID: 37345432 PMCID: PMC10361144 DOI: 10.1080/15384101.2023.2225938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 04/13/2023] [Accepted: 06/09/2023] [Indexed: 06/23/2023] Open
Abstract
Only 3% of thyroid cancers are medullary thyroid carcinomas (MTCs), the rest are follicular epithelial cell derived non-MTCs (NMTCs). A dysfunctional INK4-CDK4-RB pathway is detected in most of NMTCs. DNA repair defects and genome instability are associated with NMTC dedifferentiation and aggressiveness. Whether inactivation of the INK4-CDK4-RB pathway induces NMTCs and how differentiation of NMTC cells is controlled remain elusive. In this study, we generated p18Ink4c and Brca1 singly and doubly deficient mice as well as p16Ink4a and Brca1 singly and doubly deficient mice. By using these mice and human thyroid carcinoma cell lines, we discovered that loss of p18Ink4c, not p16Ink4a, in mice stimulated follicular cell proliferation and induced NMTCs. Depletion of Brca1 alone or both p16Ink4a and Brca1 did not induce thyroid tumor. Depletion of Brca1 in p18Ink4c null mice results in poorly differentiated and aggressive NMTCs with epithelial-mesenchymal transition (EMT) features and enhanced DNA damage. Knockdown of BRCA1 in thyroid carcinoma cells activated EMT and promoted tumorigenesis whereas overexpression of BRCA1 inhibited EMT. BRCA1 and EMT marker expression were inversely related in human thyroid cancers. Our finding, for the first time, demonstrates that inactivation of INK4-CDK4-RB pathway induces NMTCs and that Brca1 deficiency promotes dedifferentiation of NMTC cells. These results suggest that BRCA1 and p18INK4C collaboratively suppress thyroid tumorigenesis and progression and CDK4 inhibitors will be effective for treatment of INK4-inactivated or cyclin D-overexpressed thyroid carcinomas.
Collapse
Affiliation(s)
- Feng Bai
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, the First Affiliated Hospital, Shenzhen University Health Science Center, Shenzhen, China
- Department of Pathology, Shenzhen University Health Science Center, Shenzhen, China
- Dewitt Daughtry Family Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Xiong Liu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, the First Affiliated Hospital, Shenzhen University Health Science Center, Shenzhen, China
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen, China
| | - Xu Zhang
- Department of Pathology, School of Basic Medicine, Lanzhou University, Lanzhou, China
| | - Zhuo Mao
- Department of Physiology, Shenzhen University Health Science Center, Shenzhen, China
| | - He Wen
- Department of Biochemistry and Molecular Biology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Jinshan Ma
- Dewitt Daughtry Family Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
- Department of Thoracic Surgery, Xinjiang Uigur Autonomous Region People’s Hospital, Xinjiang, China
| | - Xin-Hai Pei
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, the First Affiliated Hospital, Shenzhen University Health Science Center, Shenzhen, China
- Dewitt Daughtry Family Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
4
|
Veschi V, Turdo A, Modica C, Verona F, Di Franco S, Gaggianesi M, Tirrò E, Di Bella S, Iacono ML, Pantina VD, Porcelli G, Mangiapane LR, Bianca P, Rizzo A, Sciacca E, Pillitteri I, Vella V, Belfiore A, Bongiorno MR, Pistone G, Memeo L, Colarossi L, Giuffrida D, Colarossi C, Vigneri P, Todaro M, Stassi G. Recapitulating thyroid cancer histotypes through engineering embryonic stem cells. Nat Commun 2023; 14:1351. [PMID: 36906579 PMCID: PMC10008571 DOI: 10.1038/s41467-023-36922-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 02/21/2023] [Indexed: 03/13/2023] Open
Abstract
Thyroid carcinoma (TC) is the most common malignancy of endocrine organs. The cell subpopulation in the lineage hierarchy that serves as cell of origin for the different TC histotypes is unknown. Human embryonic stem cells (hESCs) with appropriate in vitro stimulation undergo sequential differentiation into thyroid progenitor cells (TPCs-day 22), which maturate into thyrocytes (day 30). Here, we create follicular cell-derived TCs of all the different histotypes based on specific genomic alterations delivered by CRISPR-Cas9 in hESC-derived TPCs. Specifically, TPCs harboring BRAFV600E or NRASQ61R mutations generate papillary or follicular TC, respectively, whereas addition of TP53R248Q generate undifferentiated TCs. Of note, TCs arise by engineering TPCs, whereas mature thyrocytes have a very limited tumorigenic capacity. The same mutations result in teratocarcinomas when delivered in early differentiating hESCs. Tissue Inhibitor of Metalloproteinase 1 (TIMP1)/Matrix metallopeptidase 9 (MMP9)/Cluster of differentiation 44 (CD44) ternary complex, in cooperation with Kisspeptin receptor (KISS1R), is involved in TC initiation and progression. Increasing radioiodine uptake, KISS1R and TIMP1 targeting may represent a therapeutic adjuvant option for undifferentiated TCs.
Collapse
Affiliation(s)
- Veronica Veschi
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Alice Turdo
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Chiara Modica
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Francesco Verona
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Simone Di Franco
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Miriam Gaggianesi
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Elena Tirrò
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy.,Department of Clinical and Experimental Medicine, A.O.U. Policlinico-Vittorio Emanuele, Center of Experimental Oncology and Hematology, University of Catania, Catania, Italy
| | - Sebastiano Di Bella
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Melania Lo Iacono
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Vincenzo Davide Pantina
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Gaetana Porcelli
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Laura Rosa Mangiapane
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Paola Bianca
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | | | - Elisabetta Sciacca
- Queen Mary University, Experimental Medicine & Rheumatology, London, United Kingdom
| | - Irene Pillitteri
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Veronica Vella
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - Antonino Belfiore
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - Maria Rita Bongiorno
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Giuseppe Pistone
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Lorenzo Memeo
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, Catania, Italy
| | - Lorenzo Colarossi
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, Catania, Italy
| | - Dario Giuffrida
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, Catania, Italy
| | - Cristina Colarossi
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, Catania, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, A.O.U. Policlinico-Vittorio Emanuele, Center of Experimental Oncology and Hematology, University of Catania, Catania, Italy
| | - Matilde Todaro
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy.,A.O.U.P. "Paolo Giaccone", University of Palermo, Palermo, Italy
| | - Giorgio Stassi
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy.
| |
Collapse
|
5
|
Thyroid Cancer Stem-Like Cells: From Microenvironmental Niches to Therapeutic Strategies. J Clin Med 2021; 10:jcm10071455. [PMID: 33916320 PMCID: PMC8037626 DOI: 10.3390/jcm10071455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 02/08/2023] Open
Abstract
Thyroid cancer (TC) is the most common endocrine malignancy. Recent progress in thyroid cancer biology revealed a certain degree of intratumoral heterogeneity, highlighting the coexistence of cellular subpopulations with distinct proliferative capacities and differentiation abilities. Among those subpopulations, cancer stem-like cells (CSCs) are hypothesized to drive TC heterogeneity, contributing to its metastatic potential and therapy resistance. CSCs principally exist in tumor areas with specific microenvironmental conditions, the so-called stem cell niches. In particular, in thyroid cancer, CSCs' survival is enhanced in the hypoxic niche, the immune niche, and some areas with specific extracellular matrix composition. In this review, we summarize the current knowledge about thyroid CSCs, the tumoral niches that allow their survival, and the implications for TC therapy.
Collapse
|
6
|
Di Franco S, Pellegata NS, Luconi M, Stassi G. Editorial: Stem Cells in Endocrine Tumors. Front Endocrinol (Lausanne) 2021; 12:722790. [PMID: 34262532 PMCID: PMC8273270 DOI: 10.3389/fendo.2021.722790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Simone Di Franco
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Natalia Simona Pellegata
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, Helmholtz-Gemeinschaft Deutscher Forschungszentren (HZ), Munich, Germany
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Michaela Luconi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
- *Correspondence: Michaela Luconi, ; Giorgio Stassi,
| | - Giorgio Stassi
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
- *Correspondence: Michaela Luconi, ; Giorgio Stassi,
| |
Collapse
|
7
|
Malaguarnera R, Ledda C, Filippello A, Frasca F, Francavilla VC, Ramaci T, Parisi MC, Rapisarda V, Piro S. Thyroid Cancer and Circadian Clock Disruption. Cancers (Basel) 2020; 12:E3109. [PMID: 33114365 PMCID: PMC7690860 DOI: 10.3390/cancers12113109] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/18/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Thyroid cancer (TC) represents the most common malignancy of the endocrine system, with an increased incidence across continents attributable to both improvement of diagnostic procedures and environmental factors. Among the modifiable risk factors, insulin resistance might influence the development of TC. A relationship between circadian clock machinery disfunction and TC has recently been proposed. The circadian clock machinery comprises a set of rhythmically expressed genes responsible for circadian rhythms. Perturbation of this system contributes to the development of pathological states such as cancer. Several clock genes have been found deregulated upon thyroid nodule malignant transformation. The molecular mechanisms linking circadian clock disruption and TC are still unknown but could include insulin resistance. Circadian misalignment occurring during shift work, jet lag, high fat food intake, is associated with increased insulin resistance. This metabolic alteration, in turn, is associated with a well-known risk factor for TC i.e., hyperthyrotropinemia, which could also be induced by sleep disturbances. In this review, we describe the mechanisms controlling the circadian clock function and its involvement in the cell cycle, stemness and cancer. Moreover, we discuss the evidence supporting the link between circadian clockwork disruption and TC development/progression, highlighting its potential implications for TC prevention, diagnosis and therapy.
Collapse
Affiliation(s)
- Roberta Malaguarnera
- School of Human and Social Sciences, “Kore” University of Enna, 94100 Enna, Italy; (R.M.); (V.C.F.); (T.R.); (M.C.P.)
| | - Caterina Ledda
- Department of Clinical and Experimental Medicine, Occupational Medicine, University of Catania, 95100 Catania, Italy;
| | - Agnese Filippello
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (A.F.); (S.P.)
| | - Francesco Frasca
- Endocrinology Unit, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy;
| | - Vincenzo Cristian Francavilla
- School of Human and Social Sciences, “Kore” University of Enna, 94100 Enna, Italy; (R.M.); (V.C.F.); (T.R.); (M.C.P.)
| | - Tiziana Ramaci
- School of Human and Social Sciences, “Kore” University of Enna, 94100 Enna, Italy; (R.M.); (V.C.F.); (T.R.); (M.C.P.)
| | - Maria Chiara Parisi
- School of Human and Social Sciences, “Kore” University of Enna, 94100 Enna, Italy; (R.M.); (V.C.F.); (T.R.); (M.C.P.)
| | - Venerando Rapisarda
- Department of Clinical and Experimental Medicine, Occupational Medicine, University of Catania, 95100 Catania, Italy;
| | - Salvatore Piro
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (A.F.); (S.P.)
| |
Collapse
|
8
|
Veschi V, Verona F, Lo Iacono M, D'Accardo C, Porcelli G, Turdo A, Gaggianesi M, Forte S, Giuffrida D, Memeo L, Todaro M. Cancer Stem Cells in Thyroid Tumors: From the Origin to Metastasis. Front Endocrinol (Lausanne) 2020; 11:566. [PMID: 32982967 PMCID: PMC7477072 DOI: 10.3389/fendo.2020.00566] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
Thyroid tumors are extremely heterogeneous varying from almost benign tumors with good prognosis as papillary or follicular tumors, to the undifferentiated ones with severe prognosis. Recently, several models of thyroid carcinogenesis have been described, mostly hypothesizing a major role of the thyroid cancer stem cell (TCSC) population in both cancer initiation and metastasis formation. However, the cellular origin of TCSC is still incompletely understood. Here, we review the principal epigenetic mechanisms relevant to TCSC origin and maintenance in both well-differentiated and anaplastic thyroid tumors. Specifically, we describe the alterations in DNA methylation, histone modifiers, and microRNAs (miRNAs) involved in TCSC survival, focusing on the potential of targeting aberrant epigenetic modifications for developing novel therapeutic approaches. Moreover, we discuss the bidirectional relationship between TCSCs and immune cells. The cells of innate and adaptive response can promote the TCSC-driven tumorigenesis, and conversely, TCSCs may favor the expansion of immune cells with protumorigenic functions. Finally, we evaluate the role of the tumor microenvironment and the complex cross-talk of chemokines, hormones, and cytokines in regulating thyroid tumor initiation, progression, and therapy refractoriness. The re-education of the stromal cells can be an effective strategy to fight thyroid cancer. Dissecting the genetic and epigenetic landscape of TCSCs and their interactions with tumor microenvironment cells is urgently needed to select more appropriate treatment and improve the outcome of patients affected by advanced differentiated and undifferentiated thyroid cancers.
Collapse
Affiliation(s)
- Veronica Veschi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Francesco Verona
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Melania Lo Iacono
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Caterina D'Accardo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Gaetana Porcelli
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Alice Turdo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Miriam Gaggianesi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Stefano Forte
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | - Dario Giuffrida
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | - Lorenzo Memeo
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | - Matilde Todaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
- *Correspondence: Matilde Todaro
| |
Collapse
|
9
|
Abstract
Thyroid gland has been implicated in the regulation of many functions using endocrine, paracrine and autocrine signals. Functional thyroid follicular cells derived from stem cells attracted a great interest from researchers as a strategy for thyroid's regenerative therapy. Thyroid has a very low rate of turnover; however, studies showed that the regenerative ability is enhanced following diseases or thyroidectomy, which promotes the role of stem cell. The objective of this review is to summarize the morphological characterization and the expression of stem cell genes/markers in the thyroid. Also, to highlight the mechanisms of tumor formation in thyroid via its stem cells. The most important thyroid stem cell's markers are: stem cell antigen 1 (SCA-1), octamer-binding transcription 4 (OCT-4), p63, CD34+ CD45-, paired box gene 8 (PAX-8), thyroid transcription factor 1 (TTF-1), thyroid transcription factor 2 (TTF-2), hematopoietically expressed homeobox protein HHEX, the transcription factor GATA-4, hepatocyte nuclear factor 4-α (HNF-4-α) and homeobox transcription factor Nanog (hNanog). This review highlights the functional characterization describing the mechanisms of stem cell's differentiation into functional thyroid follicle and proposing mechanisms involving in cancer formation through one of these cell types: fetal cell, thyroblasts, prothyrocytes, certain genetic mutation in the mature thyroid cells or presence of a special type of cells (cancer stem cell) which are responsible for different types of cancer formation. Understanding the mechanisms of thyroid's stem cell in cancer formation and the expression of the biomarkers in normal and abnormal thyroid status are promising physiological tools in promoting thyroid regeneration and in provision management for thyroid cancer.
Collapse
Affiliation(s)
- Ebtesam A Al-Suhaimi
- Department of Biology, College of Sciences, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia.
- Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia.
| | - Khulood Al-Khater
- Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia
| |
Collapse
|
10
|
Side population cells in anaplastic thyroid cancer and normal thyroid. Exp Cell Res 2019; 374:104-113. [DOI: 10.1016/j.yexcr.2018.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 01/31/2023]
|
11
|
The Emerging Role of Insulin Receptor Isoforms in Thyroid Cancer: Clinical Implications and New Perspectives. Int J Mol Sci 2018; 19:ijms19123814. [PMID: 30513575 PMCID: PMC6321330 DOI: 10.3390/ijms19123814] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 12/28/2022] Open
Abstract
Thyroid cancer (TC) is the most common endocrine tumor. Although the majority of TCs show good prognoses, a minor proportion are aggressive and refractory to conventional therapies. So far, the molecular mechanisms underlying TC pathogenesis are incompletely understood. Evidence suggests that TC cells and their precursors are responsive to insulin and insulin-like growth factors (IGFs), and often overexpress receptors for insulin (IR) and IGF-1 (IGF-1R). IR exists in two isoforms, namely IR-A and IR-B. The first binds insulin and IGF-2, unlike IR-B, which only binds insulin. IR-A is preferentially expressed in prenatal life and contributes to development through IGF-2 action. Aggressive TC overexpresses IR-A, IGF-2, and IGF-1R. The over-activation of IR-A/IGF-2 loop in TC is associated with stem-like features and refractoriness to some targeted therapies. Importantly, both IR isoforms crosstalk with IGF-1R, giving rise to the formation of hybrids receptors (HR-A or HR-B). Other interactions have been demonstrated with other molecules such as the non-integrin collagen receptor, discoidin domain receptor 1 (DDR1), and the receptor for the hepatocyte growth factor (HGF), Met. These functional networks provide mechanisms for IR signaling diversification, which may also exert a role in TC stem cell biology, thereby contributing to TC initiation and progression. This review focuses on the molecular mechanisms by which deregulated IR isoforms and their crosstalk with other molecules and signaling pathways in TC cells and their precursors may contribute to thyroid carcinogenesis, progression, and resistance to conventional treatments. We also highlight how targeting these alterations starting from TC progenitors cells may represent new therapeutic strategies to improve the clinical management of advanced TCs.
Collapse
|
12
|
Zhang R, Hardin H, Huang W, Buehler D, Lloyd RV. Long Non-coding RNA Linc-ROR Is Upregulated in Papillary Thyroid Carcinoma. Endocr Pathol 2018; 29:1-8. [PMID: 29280051 DOI: 10.1007/s12022-017-9507-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Long non-coding RNAs (lncRNAs) may contribute to carcinogenesis and tumor progression by regulating transcription and gene expression. The role of lncRNAs in the regulation of thyroid cancer progression is being extensively examined. Here, we analyzed three lncRNAs that were overexpressed in papillary thyroid carcinomas, long intergenic non-protein coding RNA, regulator of reprogramming (Linc-ROR, ROR) PVT1 oncogene (PVT1), and HOX transcript antisense intergenic RNA (HOTAIR) to determine their roles in thyroid tumor development and progression. ROR expression has not been previously examined in thyroid carcinomas. Tissue microarrays (TMAs) of formalin-fixed paraffin-embedded tissue sections from 129 thyroid cases of benign and malignant tissues were analyzed by in situ hybridization (ISH), automated image analysis, and real-time PCR. All three lncRNAs were most highly expressed in the nuclei of PTCs. SiRNA experiments with a PTC cell line, TPC1, showed inhibition of proliferation with siRNAs for all three lncRNAs while invasion was inhibited with siRNAs for ROR and HOTAIR. SiRNA experiments with ROR also led to increased expression of miR-145, supporting the role of ROR as an endogenous miR-145 sponge. After treatment with TGF-β, there was increased expression of ROR, PVT1, and HOTAIR in the PTC1 cell line compared to control groups, indicating an induction of their expression during epithelial to mesenchymal transition (EMT). These results indicate that ROR, PVT1, and HOTAIR have important regulatory roles during the development of PTCs.
Collapse
Affiliation(s)
- Ranran Zhang
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Heather Hardin
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Darya Buehler
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Ricardo V Lloyd
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA.
| |
Collapse
|
13
|
Development of a functional thyroid model based on an organoid culture system. Biochem Biophys Res Commun 2018; 497:783-789. [PMID: 29470983 DOI: 10.1016/j.bbrc.2018.02.154] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 02/18/2018] [Indexed: 01/10/2023]
Abstract
The low turnover rate of thyroid follicular cells and the lack of a long-term thyroid cell culture system have hampered studies of thyroid carcinogenesis. We have now established a thyroid organoid culture system that supports thyroid cell proliferation in vitro. The established mouse thyroid organoids performed thyroid functions including thyroglobulin synthesis, iodide uptake, and the production and release of thyroid hormone. Furthermore, transplantation of the organoids into recipient mice resulted in the formation of normal thyroid-like tissue capable of iodide uptake and thyroglobulin production in vivo. Finally, forced expression of oncogenic NRAS (NRASQ61R) in thyroid organoids established from p53 knockout mice and transplantation of the manipulated organoids into mouse recipients generated a model of poorly differentiated thyroid cancer. Our findings suggest that this newly developed thyroid organoid culture system is a potential research tool for the study of thyroid physiology and pathology including thyroid cancer.
Collapse
|
14
|
Mirshahidi S, Simental A, Lee SC, De Andrade Filho PA, Peterson NR, Cao W, Necochea-Campion RD, Yang H, Duerksen-Hughes P, Yuan X. Subpopulations of cancer stem cells found in papillary thyroid carcinoma. Exp Cell Res 2017; 362:515-524. [PMID: 29274322 DOI: 10.1016/j.yexcr.2017.12.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 12/04/2017] [Accepted: 12/16/2017] [Indexed: 01/16/2023]
Abstract
Papillary thyroid carcinoma (PTC) is the most common form of thyroid cancer and while it has a generally good prognosis, tumor recurrence remains a major clinical challenge. Studying laboratory cell lines as well as clinical specimens indicate that PTC may follow the cancer stem cell (CSC) model. However, CSC characteristics relevant in PTC initiation and progression remain largely unknown. Here we studied a population of sphere-growing tumor cells isolated from primary cultures of clinical PTC. These sphere-growing cells consisted of aldehyde dehydrogenase positive (ALDH+) and ALDH negative (ALDH-) cell subpopulations and demonstrated a hierarchical pattern of cell division. Using combinations of selective depletion, specific inhibition and cell sorting, we found that both subpopulations of the sphere cells were able to self-renew and initiate xenograft tumors independently, and fulfilled the definition of CSC. Importantly, when the subpopulations functioned together, the cancer-initiation efficiency and the xenograft tumor progression were significantly enhanced compared to either subpopulation alone. These data revealed crucial roles of ALDH- CSC in PTC biology and suggested that CSC subpopulations function cooperatively to control PTC initiation and progression. Together, our study indicates that CSC subpopulations isolated from clinical specimens offer unprecedented opportunities for investigating PTC pathogenesis and developing effective therapies.
Collapse
Affiliation(s)
- Saied Mirshahidi
- Cancer Center Biospecimen Laboratory, Loma Linda University Medical Center, Loma Linda, CA 92354, USA; Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Alfred Simental
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Steve C Lee
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Pedro A De Andrade Filho
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Nathaniel R Peterson
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Wenlong Cao
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | | | - Hao Yang
- Shaanxi Spine Medicine Research Center, Hong Hui Hospital, Xi'an Jiaotong University, Shaanxi 710054, China
| | - Penelope Duerksen-Hughes
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Xiangpeng Yuan
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA; Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA.
| |
Collapse
|
15
|
Tesselaar MH, Smit JW, Nagarajah J, Netea-Maier RT, Plantinga TS. Pathological processes and therapeutic advances in radioiodide refractory thyroid cancer. J Mol Endocrinol 2017; 59:R141-R154. [PMID: 28931558 DOI: 10.1530/jme-17-0134] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 09/20/2017] [Indexed: 12/19/2022]
Abstract
While in most patients with non-medullary thyroid cancer (TC), disease remission is achieved by thyroidectomy and ablation of tumor remnants by radioactive iodide (RAI), a substantial subgroup of patients with metastatic disease present tumor lesions that have acquired RAI resistance as a result of dedifferentiation. Although oncogenic mutations in BRAF, TERT promoter and TP53 are associated with an increased propensity for induction of dedifferentiation, the role of genetic and epigenetic aberrations and their effects on important intracellular signaling pathways is not yet fully elucidated. Also immune, metabolic, stemness and microRNA pathways have emerged as important determinants of TC dedifferentiation and RAI resistance. These signaling pathways have major clinical implications since their targeting could inhibit TC progression and could enable redifferentiation to restore RAI sensitivity. In this review, we discuss the current insights into the pathological processes conferring dedifferentiation and RAI resistance in TC and elaborate on novel advances in diagnostics and therapy to improve the clinical outcome of RAI-refractory TC patients.
Collapse
Affiliation(s)
- Marika H Tesselaar
- Department of PathologyRadboud University Medical Center, Nijmegen, The Netherlands
| | - Johannes W Smit
- Internal MedicineDivision of Endocrinology Radboud University Medical Center, Nijmegen, The Netherlands
| | - James Nagarajah
- Radiology & Nuclear MedicineRadboud University Medical Center, Nijmegen, The Netherlands
| | - Romana T Netea-Maier
- Internal MedicineDivision of Endocrinology Radboud University Medical Center, Nijmegen, The Netherlands
| | - Theo S Plantinga
- Department of PathologyRadboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
16
|
Xu X, Lu Y, Li Y, Prinz RA. Sonic Hedgehog Signaling in Thyroid Cancer. Front Endocrinol (Lausanne) 2017; 8:284. [PMID: 29163356 PMCID: PMC5670164 DOI: 10.3389/fendo.2017.00284] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/10/2017] [Indexed: 12/21/2022] Open
Abstract
Thyroid cancer is the most common malignancy of the endocrine system. The initiation of thyroid cancer is often triggered by a genetic mutation in the phosphortidylinositol-3 kinase (PI3K) or mitogen-activated protein kinase (MAPK) pathway, such as RAS and BRAF, or by the rearrangement of growth factor receptor tyrosine kinase genes such as RET/PTC. The sonic hedgehog (Shh) pathway is evolutionarily conserved and plays an important role in the embryonic development of normal tissues and organs. Gene mutations in the Shh pathway are involved in basal cell carcinomas (BCC). Activation of the Shh pathway due to overexpression of the genes encoding the components of this pathway stimulates the growth and spread of a wide range of cancer types. The Shh pathway also plays an important role in cancer stem cell (CSC) self-renewal. GDC-0449 and LDE-225, two inhibitors of this pathway, have been approved for treating BCC and are being tested as a single agent or in combination with other drugs for treating various other cancers. Here, we review the recent findings on activation of the Shh pathway in thyroid cancer and its role in maintaining thyroid CSC self-renewal. We also summarize the recent developments on crosstalk of the Shh pathway with the MAPK and PI3K oncogenic pathways, and its implications for combination therapy.
Collapse
Affiliation(s)
- Xiulong Xu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, United States
- *Correspondence: Xiulong Xu, ,
| | - Yurong Lu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Yi Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, United States
| | - Richard A. Prinz
- Department of Surgery, NorthShore University Health System, Evanston, IL, United States
| |
Collapse
|
17
|
Zane M, Parello C, Pennelli G, Townsend DM, Merigliano S, Boscaro M, Toniato A, Baggio G, Pelizzo MR, Rubello D, Boschin IM. Estrogen and thyroid cancer is a stem affair: A preliminary study. Biomed Pharmacother 2016; 85:399-411. [PMID: 27899250 DOI: 10.1016/j.biopha.2016.11.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 11/30/2022] Open
Abstract
Gender influences Papillary Thyroid Cancer (PTC) with an incidence of 3:1 when comparing women to men with different aggressiveness. This gender discrepancy suggests some role of sex hormones in favoring the malignant progression of thyroid tissue to cancer. Estrogens are known to promote Stem Cell self-renewal and, therefore, may be involved in tumor initiation. The goals of these studies are to investigate the underlying causes of gender differences in PTC by studying the specific role of estrogens on tumor cells and their involvement within the Cancer Stem Cell (CSC) compartment. Exposure to 1nmoll-1 Estradiol for 24h promotes growth and maintenance of PTC Stem Cells, while inducing dose-dependent cellular proliferation and differentiation following Estradiol administration. Whereas mimicking a condition of hormonal imbalance led to an opposite phenotype compared to a continuous treatment. In vivo we find that Estradiol promotes motility and tumorigenicity of CSCs. Estradiol-treated mice inoculated with Thyroid Cancer Stem Cell-enriched cells developed larger tumor masses than control mice. Furthermore, Estradiol-pretreated Cancer Stem cells migrated to distant organs, while untreated cells remained circumscribed. We also find that the biological response elicited by estrogens on Papillary Thyroid Cancer in women differed from men in pathways mediated. This could explain the gender imbalance in tumor incidence and development and could be useful to develop gender specific treatment of (PTC).
Collapse
Affiliation(s)
- Mariangela Zane
- Department of Surgical, Oncological, and Gastroenterological Sciences, University of Padova, Padova, Italy
| | - Carmelo Parello
- Department of Surgical, Oncological, and Gastroenterological Sciences, University of Padova, Padova, Italy
| | - Gianmaria Pennelli
- Surgical Pathology and Cytopathology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Danyelle M Townsend
- Department of Drug Discovery and Pharmaceutical Sciences, Medical University of South Carolina, USA
| | - Stefano Merigliano
- Department of Surgical, Oncological, and Gastroenterological Sciences, University of Padova, Padova, Italy
| | - Marco Boscaro
- Endocrinology, Department of Medicine, University of Padova, Padova, Italy
| | - Antonio Toniato
- Department of Surgical, Oncological, and Gastroenterological Sciences, University of Padova, Padova, Italy
| | - Giovannella Baggio
- Internal Medicine Unit, Department of Molecular Medicine, University of Padua, Padova, Italy
| | - Maria Rosa Pelizzo
- Department of Surgical, Oncological, and Gastroenterological Sciences, University of Padova, Padova, Italy
| | | | - Isabella Merante Boschin
- Department of Surgical, Oncological, and Gastroenterological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
18
|
Ramos-Vara J, Frank C, DuSold D, Miller M. Immunohistochemical Detection of Pax8 and Napsin A in Canine Thyroid Tumours: Comparison with Thyroglobulin, Calcitonin and Thyroid Transcription Factor 1. J Comp Pathol 2016; 155:286-298. [DOI: 10.1016/j.jcpa.2016.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/06/2016] [Accepted: 07/18/2016] [Indexed: 12/21/2022]
|
19
|
Vicari L, Colarossi C, Giuffrida D, De Maria R, Memeo L. Cancer stem cells as a potential therapeutic target in thyroid carcinoma. Oncol Lett 2016; 12:2254-2260. [PMID: 27698787 DOI: 10.3892/ol.2016.4936] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/24/2016] [Indexed: 02/06/2023] Open
Abstract
A number of studies have indicated that tumor growth and proliferation is dependent on a small subset of cells, defined as cancer stem cells (CSCs). CSCs have the capability to self-renew, and are involved with cancer propagation, relapse and metastatic dissemination. CSCs have been isolated from numerous tissues, including normal and cancerous thyroid tissue. A regulatory network of signaling pathways and microRNAs (miRNAs) control the properties of CSCs. Differentiated thyroid carcinoma is the most common type of endocrine cancer, with an increasing incidence. Anaplastic thyroid carcinoma is the most rare type of endocrine cancer; however, it also exhibits the highest mortality rate among thyroid malignancies, with an extremely short survival time. Thyroid CSCs are invasive and highly resistant to conventional therapies, including radiotherapy and chemotherapy, which results in disease relapse even when the primary lesion has been eradicated. Therefore, targeting thyroid CSCs may represent an effective treatment strategy against aggressive neoplasms, including recurrent and radioresistant tumors. The present review summarizes the current literature regarding thyroid CSCs and discusses therapeutic strategies that target these cells, with a focus on the function of self-renewal pathways and miRNAs. Elucidation of the mechanisms that regulate CSC growth and survival may improve novel therapeutic approaches for treatment-resistant thyroid cancers.
Collapse
Affiliation(s)
- Luisa Vicari
- Cell Biology Unit, IOM Ricerca Srl, Viagrande I-95029 Catania, Italy
| | - Cristina Colarossi
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande I-95029 Catania, Italy
| | - Dario Giuffrida
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande I-95029 Catania, Italy
| | | | - Lorenzo Memeo
- Cell Biology Unit, IOM Ricerca Srl, Viagrande I-95029 Catania, Italy; Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande I-95029 Catania, Italy
| |
Collapse
|
20
|
Gawade S, Mayer C, Hafen K, Barthlott T, Krenger W, Szinnai G. Cell Growth Dynamics in Embryonic and Adult Mouse Thyroid Revealed by a Novel Approach to Detect Thyroid Gland Subpopulations. Thyroid 2016; 26:591-9. [PMID: 26854713 DOI: 10.1089/thy.2015.0523] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND The thyroid is composed of endocrine epithelial cells, blood vessels, and mesenchyme. However, no data exist thus far on absolute cell numbers, relative distribution, and proliferation of the different cell populations in the developing and mature thyroid. The aim of this study was therefore to establish a flow cytometry protocol that allows detection and quantification of discrete cell populations in embryonic and adult murine thyroid tissues. METHODS Cell-type anti-mouse specific antibodies were used for erythroid cells (Ter119), hematopoietic cells (CD45), epithelial cells (EpCam/CD326, E-cadherin/CD324), thyroid follicular cells and C-cells (Nkx2-1), endothelial cells (Pecam/CD31, Icam-1/CD54), and fibroblasts (PDGFRa/CD140a). Proliferating cells were detected after labeling with 5-bromo-2'-deoxyuridine (BrdU). For flow cytometry analyses, micro-dissected embryonic (E) and adult thyroids were pooled (E13.5, n = 25; E15.5, n = 15; E17.5, n = 15; adult, n = 4) in one sample. RESULTS The absolute parenchymal cell numbers per mouse thyroid (M ± SD), excluding the large number of CD45(+) and Ter119(+) cells, increased from 7425 ± 1338 at E13.5 to 271,561 ± 22,325 in adult tissues. As expected, Nkx2-1(+) cells represented the largest cell population in adult tissues (61.2 ± 1.1%). Surprisingly, at all three embryonic stages analyzed, thyroid follicular cells and C-cells accounted only for a small percentage of the total thyroid cell mass (between 4.7 ± 0.4% and 9.4 ± 1.6%). In contrast, the largest cell population at all three embryonic stages was identified as PDGFRa/CD140a(+) fibroblasts (61.4 ± 0.4% to 77.3 ± 1.1%). However, these cells represented the smallest population in adult tissues (5.2 ± 0.8%). Pecam/CD31(+) endothelial cells increased from E13.5 to E15.5 from 3.7 ± 0.8% to 8.5 ± 3.0%, then remained stable at E17.5 and adult tissues. Proliferation rates were sizable during the entire organogenesis but differed between cell populations, with distinct proliferative peaks at E13.5 in epithelial cells (32.7 ± 0.6% BrdU(+) cells), and at E15.5 in endothelial cells (22.4 ± 2.4% BrdU(+) cells). Fibroblasts showed a constant proliferation rate in embryonic tissues. In adult tissues, BrdU(+) cells were between 0.1% and 0.4% in all cell types. CONCLUSIONS Using a novel flow cytometry-based method, a previously unobserved highly dynamic growth pattern of thyroid cell populations during embryogenesis was uncovered. This approach will provide a useful new tool for cell function analyses in murine thyroid disease models.
Collapse
Affiliation(s)
- Sanjay Gawade
- 1 Pediatric Immunology, Department of Biomedicine, University of Basel , Basel, Switzerland
| | - Carlos Mayer
- 1 Pediatric Immunology, Department of Biomedicine, University of Basel , Basel, Switzerland
| | - Katrin Hafen
- 1 Pediatric Immunology, Department of Biomedicine, University of Basel , Basel, Switzerland
| | - Thomas Barthlott
- 1 Pediatric Immunology, Department of Biomedicine, University of Basel , Basel, Switzerland
| | - Werner Krenger
- 1 Pediatric Immunology, Department of Biomedicine, University of Basel , Basel, Switzerland
| | - Gabor Szinnai
- 1 Pediatric Immunology, Department of Biomedicine, University of Basel , Basel, Switzerland
- 2 Pediatric Endocrinology, University Children's Hospital Basel, University of Basel , Basel, Switzerland
| |
Collapse
|
21
|
Revisiting tumor angiogenesis: vessel co-option, vessel remodeling, and cancer cell-derived vasculature formation. CHINESE JOURNAL OF CANCER 2016; 35:10. [PMID: 26747273 PMCID: PMC4706692 DOI: 10.1186/s40880-015-0070-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/04/2015] [Indexed: 02/06/2023]
Abstract
Tumor growth and metastasis depend on the establishment of tumor vasculature to provide oxygen, nutrients, and other essential factors. The well-known vascular endothelial growth factor (VEGF) signaling is crucial for
sprouting angiogenesis as well as recruitment of circulating progenitor endothelial cells to tumor vasculature, which has become therapeutic targets in clinical practice. However, the survival benefits gained from targeting VEGF signaling have been very limited, with the inevitable development of treatment resistance. In this article, we discuss the most recent findings and understanding on how solid tumors evade VEGF-targeted therapy, with a special focus on vessel co-option, vessel remodeling, and tumor cell-derived vasculature establishment. Vessel co-option may occur in tumors independently of sprouting angiogenesis, and sprouting angiogenesis is not always required for tumor growth. The differences between vessel-like structure and tubule-like structure formed by tumor cells are also introduced. The exploration of the underlying mechanisms of these alternative angiogenic approaches would not only widen our knowledge of tumor angiogenesis but also provide novel therapeutic targets for better controlling cancer growth and metastasis.
Collapse
|