1
|
Asencio C, Véliz L, Flores-Faúndez E, Azócar L, Echeverría CE, Torres-Estay V, Orellana V, Ramírez-Santelices C, Sotomayor P, Cancino J, Kerr B, Fernandez-Olivares A, Retamal MA, Sáez JC, Godoy AS. Lack of canonical activities of connexins in highly aggressive human prostate cancer cells. Biol Res 2024; 57:97. [PMID: 39695787 DOI: 10.1186/s40659-024-00565-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/04/2024] [Indexed: 12/20/2024] Open
Abstract
Connexins (Cxs) have the ability to form channels that allow the exchange of ions/metabolites between adjacent cells (gap junction channels, GJC) or between the intra- and extra-cellular compartments (hemichannels, HC). Cxs were initially classified as tumor suppressors. However, more recently, it has been shown that Cxs exert anti- and pro-tumorigenic effects depending on the cell and tissue context. In prostate cancer (PCa), the expression and functionality of Cxs remain highly controversial. Here, we analyzed the expression pattern of Cx26, Cx32, Cx37, Cx40, Cx43 and Cx45 in PCa cell lines with increasing levels of tumor aggressiveness (LNCaP < LNCaP-C4-2 < Du-145 < PC-3). In addition, GJ and HC activities were evaluated in the PCa cell lines using dye coupling and dye uptake assays, respectively. Lastly, the cellular localization of Cx26, Cx32, and Cx43 was analyzed in LNCaP and PC-3 cell lines using immunofluorescence analyses. Our results showed a positive association between the mRNA levels of Cx26, Cx37 and Cx45 and the degree of aggressiveness of PCa cells, a negative association in the case of Cx32 and Cx43, and no clear pattern for Cx40. At the protein level, a negative relationship between the expression of Cx26, Cx32 and Cx43 and the degree of aggressiveness of PCa cell lines was observed. No significant differences were observed for the expression of Cx37, Cx40, and Cx45 in PCa cell lines. At the functional level, only LNCaP cells showed moderate GJ activity and LNCaP and LNCaP-C4-2 cells showed HC activity. Immunofluorescence analyses confirmed that the majority of Cx26, Cx32, and Cx43 expression was localized in the cytoplasm of both LNCaP and PC3 cell lines. This data indicated that GJ and HC activities were moderately detected only in the less aggressive PCa cells, which suggest that Cxs expression in highly aggressive PCa cells could be associated to channel-independent roles.
Collapse
Affiliation(s)
- Catalina Asencio
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Loreto Véliz
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Emilia Flores-Faúndez
- Centro de Biología Celular y Biomedicina CEBICEM, Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Providencia., Santiago, 7510156, Chile
| | - Lorena Azócar
- Centro de Biología Celular y Biomedicina CEBICEM, Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Providencia., Santiago, 7510156, Chile
| | | | - Verónica Torres-Estay
- Escuela de Química y Farmacia, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Viviana Orellana
- Programa de Comunicación Celular en Cáncer, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, 7610634, Chile
| | - Catalina Ramírez-Santelices
- Centro de Biología Celular y Biomedicina CEBICEM, Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Providencia., Santiago, 7510156, Chile
| | - Paula Sotomayor
- Department of Urology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge Cancino
- Centro de Biología Celular y Biomedicina CEBICEM, Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Providencia., Santiago, 7510156, Chile
| | - Bredford Kerr
- Centro de Biología Celular y Biomedicina CEBICEM, Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Providencia., Santiago, 7510156, Chile
| | - Ainoa Fernandez-Olivares
- Programa de Comunicación Celular en Cáncer, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, 7610634, Chile
| | - Mauricio A Retamal
- Programa de Comunicación Celular en Cáncer, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, 7610634, Chile
| | - Juan C Sáez
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Alejandro S Godoy
- Centro de Biología Celular y Biomedicina CEBICEM, Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Providencia., Santiago, 7510156, Chile.
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
2
|
Wasi M, Chu T, Guerra RM, Kooker R, Maldonado K, Li X, Lin CY, Song X, Xiong J, You L, Wang L. Mitigating aging and doxorubicin induced bone loss in mature mice via mechanobiology based treatments. Bone 2024; 188:117235. [PMID: 39147353 PMCID: PMC11475016 DOI: 10.1016/j.bone.2024.117235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Aging leads to a reduced anabolic response to mechanical stimuli and a loss of bone mass and structural integrity. Chemotherapy agents such as doxorubicin exacerbate the degeneration of aging skeleton and further subject older cancer patients to a higher fracture risk. To alleviate this clinical problem, we proposed and tested a novel mechanobiology-based therapy. Building upon prior findings that i) Yoda1, the Piezo1 agonist, promoted bone growth in young adult mice and suppressed bone resorption markers in aged mice, and ii) moderate tibial loading protected bone from breast cancer-induced osteolysis, we hypothesized that combined Yoda1 and moderate loading would improve the structural integrity of adult and aged skeletons in vivo and protect bones from deterioration after chemotherapy. We first examined the effects of 4-week Yoda1 (dose 5 mg/kg, 5 times/week) and moderate tibial loading (4.5 N peak load, 4 Hz, 300 cycles for 5 days/week), individually and combined, on mature mice (∼50 weeks of age). Combined Yoda1 and loading was found to mitigate age-associated cortical and trabecular bone loss better than individual interventions. As expected, the non-treated controls experienced an average drop of cortical polar moment of inertia (Ct.pMOI) by -4.3 % over four weeks and the bone deterioration occurred in the majority (64 %) of the samples. Relative to no treatment, loading alone, Yoda1 alone, and combined Yoda1 and loading increased Ct.pMOI by +7.3 %, +9.5 %, +12.0 % and increased the % of samples with positive Ct.pMOI changes by +32 %, +26 %, and +43 %, respectively, suggesting an additive protection of aging-related bone loss for the combined therapy. We further tested if the treatment efficacy was preserved in mature mice following two weeks (six injections) of doxorubicin at the dose of 2.5 or 5 mg/kg. As expected, doxorubicin increased osteocyte apoptosis, altered bone remodeling, and impaired bone structure. However, the effects induced by DOX were too severe to be rescued by Yoda1 and loading, alone or combined, although loading and Yoda1 individually, or combined, increased the number of mice showing positive responsiveness by 0 %, +15 %, and +29 % relative to no intervention after doxorubicin exposure. Overall, this study supported the potentials and challenges of the Yoda1-based strategy in mitigating the detrimental skeletal effects caused by aging and doxorubicin.
Collapse
Affiliation(s)
- Murtaza Wasi
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Tiankuo Chu
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Rosa M Guerra
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Rory Kooker
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Kenneth Maldonado
- Department of Biomedical Engineering, Kansas State University, Manhattan, KS, USA
| | - Xuehua Li
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Chun-Yu Lin
- Department of Mechanical and Industrial Engineering, Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Xin Song
- Department of Mechanical and Industrial Engineering, Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Jinhu Xiong
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Lidan You
- Department of Mechanical and Industrial Engineering, Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Liyun Wang
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA; Department of Biomedical Engineering, University of Delaware, Newark, DE, USA.
| |
Collapse
|
3
|
Zhang Y, Acosta FM, Jiang JX. Connexin 43 hemichannels and related diseases. Antib Ther 2024; 7:361-369. [PMID: 39678258 PMCID: PMC11646280 DOI: 10.1093/abt/tbae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/30/2024] [Accepted: 08/21/2024] [Indexed: 12/17/2024] Open
Abstract
Connexin 43 (Cx43) protein forms hemichannels (connexons) and gap junctions, with hemichannels consisting of six Cx43 molecules and gap junctions formed by two hemichannels. While gap junctions are prevalent in organs like the heart and liver, hemichannels are found in specific cell types, such as astrocytes and osteocytes. They allow the passage of small molecules (<1.5 kDa) between the cytoplasm and extracellular matrix. Cx43 hemichannels have emerged as potential therapeutic targets in various diseases, including central nervous system disorders, bone-related diseases, diabetic complications, wound healing, and cancers. Aberrant hemichannel opening can worsen conditions by releasing inflammatory elements, such as causing gliosis in neuronal cells. Conversely, functional hemichannels may inhibit cancer cell growth and metastasis. Recent studies are revealing new mechanisms of Cx43 hemichannels, broadening their therapeutic applications and highlighting the importance of regulating their activity for improved disease outcomes.
Collapse
Affiliation(s)
- Yanfeng Zhang
- AlaMab Therapeutics Inc, 302 Carnegie Center Dr Suite 100, Princeton, NJ 08540, United States
| | - Francisca M Acosta
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, United States
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, United States
| |
Collapse
|
4
|
Rodríguez-Candela Mateos M, Carpintero-Fernández P, Freijanes PS, Mosquera J, Nebril BA, Mayán MD. Insights into the role of connexins and specialized intercellular communication pathways in breast cancer: Mechanisms and applications. Biochim Biophys Acta Rev Cancer 2024; 1879:189173. [PMID: 39154967 DOI: 10.1016/j.bbcan.2024.189173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/31/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Gap junctions, membrane-based channels comprised of connexin proteins (Cxs), facilitate direct communication among neighbouring cells and between cells and the extracellular space through their hemichannels. The normal human breast expresses various Cxs family proteins, such as Cx43, Cx30, Cx32, Cx46, and Cx26, crucial for proper tissue development and function. These proteins play a significant role in breast cancer development, progression, and therapy response. In primary tumours, there is often a reduction and cytoplasmic mislocalization of Cx43 and Cx26, while metastatic lesions show an upregulation of these and other Cxs. Although existing research predominantly supports the tumour-suppressing role of Cxs in primary carcinomas through channel-dependent and independent functions, controversies persist regarding their involvement in the metastatic process. This review aims to provide an updated perspective on Cxs in human breast cancer, with a specific focus on intrinsic subtypes due to the heterogeneous nature of this disease. Additionally, the manuscript will explore the role of Cxs in immune interactions and novel forms of intercellular communication, such as tunneling nanotubes and extracellular vesicles, within the breast tumour context and tumour microenvironment. Recent findings suggest that Cxs hold potential as therapeutic targets for mitigating metastasis and drug resistance. Furthermore, they may serve as novel biomarkers for cancer prognosis, offering promising avenues for future research and clinical applications.
Collapse
Affiliation(s)
- Marina Rodríguez-Candela Mateos
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84, 15006 A Coruña, Spain
| | - Paula Carpintero-Fernández
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84, 15006 A Coruña, Spain; CellCOM Research Group, Center for Research in Nanomaterials and Biomedicine (CINBIO), Universidade de Vigo, Edificio Olimpia Valencia, Campus Universitario Lagoas Marcosende, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS, Spain
| | - Paz Santiago Freijanes
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84, 15006 A Coruña, Spain; Anatomic Pathology Department, Breast Unit, A Coruña University Hospital, SERGAS, A Coruña, Spain
| | - Joaquin Mosquera
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84, 15006 A Coruña, Spain; Surgery Department, Breast Unit, A Coruña University Hospital, SERGAS, A Coruña, Spain
| | - Benigno Acea Nebril
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84, 15006 A Coruña, Spain; Surgery Department, Breast Unit, A Coruña University Hospital, SERGAS, A Coruña, Spain
| | - María D Mayán
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84, 15006 A Coruña, Spain; CellCOM Research Group, Center for Research in Nanomaterials and Biomedicine (CINBIO), Universidade de Vigo, Edificio Olimpia Valencia, Campus Universitario Lagoas Marcosende, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS, Spain.
| |
Collapse
|
5
|
Ouyang P, Cheng B, He X, Lou J, Li X, Guo H, Xu F. Navigating the biophysical landscape: how physical cues steer the journey of bone metastatic tumor cells. Trends Cancer 2024; 10:792-808. [PMID: 39127608 DOI: 10.1016/j.trecan.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 08/12/2024]
Abstract
Many tumors prefer to metastasize to bone, but the underlying mechanisms remain elusive. The human skeletal system has unique physical properties, that are distinct from other organs, which play a key role in directing the behavior of tumor cells within bone. Understanding the physical journey of tumor cells within bone is crucial. In this review we discuss bone metastasis in the context of how physical cues in the bone vasculature and bone marrow niche regulate the fate of tumor cells. Our objective is to inspire innovative diagnostic and therapeutic approaches for bone metastasis from a mechanobiological perspective.
Collapse
Affiliation(s)
- Pengrong Ouyang
- Department of Orthopedic Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, P.R. China; Bioinspired Engineering and Biomechanics Center (BEBC), Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Bo Cheng
- Bioinspired Engineering and Biomechanics Center (BEBC), Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China; TFX Group-Xi'an Jiaotong University Institute of Life Health, Xi'an 710049, P.R. China
| | - Xijing He
- Department of Orthopedic Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, P.R. China; Xi'an International Medical Center Hospital, Xi'an 710061, P.R. China.
| | - Jiatao Lou
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China.
| | - Xiaokang Li
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, P.R. China.
| | - Hui Guo
- Department of Medical Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, P.R. China.
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China.
| |
Collapse
|
6
|
Riquelme MA, Wang X, Acosta FM, Zhang J, Chavez J, Gu S, Zhao P, Xiong W, Zhang N, Li G, Srinivasan S, Ma C, Rao MK, Sun LZ, Zhang N, An Z, Jiang JX. Antibody-activation of connexin hemichannels in bone osteocytes with ATP release suppresses breast cancer and osteosarcoma malignancy. Cell Rep 2024; 43:114377. [PMID: 38889005 PMCID: PMC11380445 DOI: 10.1016/j.celrep.2024.114377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 05/02/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
Bone tissue represents the most frequent site of cancer metastasis. We developed a hemichannel-activating antibody, Cx43-M2. Cx43-M2, directly targeting osteocytes in situ, activates osteocytic hemichannels and elevates extracellular ATP, thereby inhibiting the growth and migration of cultured breast and osteosarcoma cancer cells. Cx43-M2 significantly decreases breast cancer metastasis, osteosarcoma growth, and osteolytic activity, while improving survival rates in mice. The antibody's inhibition of breast cancer and osteosarcoma is dose dependent in both mouse and human cancer metastatic models. Furthermore, Cx43-M2 enhances anti-tumor immunity by increasing the population and activation of tumor-infiltrating immune-promoting effector T lymphocytes, while reducing immune-suppressive regulatory T cells. Our results suggest that the Cx43-M2 antibody, by activating Cx43 hemichannels and facilitating ATP release and purinergic signaling, transforms the cancer microenvironment from a supportive to a suppressive state. Collectively, our study underscores the potential of Cx43-M2 as a therapeutic for treating breast cancer bone metastasis and osteosarcoma.
Collapse
Affiliation(s)
- Manuel A Riquelme
- Departments of Biochemistry and Structural Biology, Microbiology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Xuewei Wang
- Departments of Biochemistry and Structural Biology, Microbiology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Francisca M Acosta
- Departments of Biochemistry and Structural Biology, Microbiology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Jingruo Zhang
- Departments of Biochemistry and Structural Biology, Microbiology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Jeffery Chavez
- Departments of Biochemistry and Structural Biology, Microbiology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Sumin Gu
- Departments of Biochemistry and Structural Biology, Microbiology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Peng Zhao
- The Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Wei Xiong
- The Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Ningyan Zhang
- The Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Guo Li
- Immunology & Molecular Genetics, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Saranya Srinivasan
- Immunology & Molecular Genetics, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Chaoyu Ma
- Immunology & Molecular Genetics, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Manjeet K Rao
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA; Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Lu-Zhe Sun
- Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Nu Zhang
- Immunology & Molecular Genetics, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA; South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| | - Zhiqiang An
- The Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA.
| | - Jean X Jiang
- Departments of Biochemistry and Structural Biology, Microbiology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA.
| |
Collapse
|
7
|
Xu H, Wang X, Zhu F, Guo S, Chao Z, Cao C, Lu Z, Zhu H, Wang M, Zhu F, Yang J, Zeng R, Yao Y. Comprehensive Pan-Cancer Analysis of Connexin 43 as a Potential Biomarker and Therapeutic Target in Human Kidney Renal Clear Cell Carcinoma (KIRC). MEDICINA (KAUNAS, LITHUANIA) 2024; 60:780. [PMID: 38792963 PMCID: PMC11123162 DOI: 10.3390/medicina60050780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024]
Abstract
Background and Objectives: Connexin 43 (Cx43) is involved in the transfer of small signaling molecules between neighboring cells, thereby exerting a major influence on the initiation and progression of tumorigenesis. However, there is a lack of systematic research on Cx43 expression and its predictive role in clinical diagnosis and prognosis in pan-cancer. Materials and Methods: Several biological databases were used to evaluate the expression levels of GJA1 (encoding Cx43) and its diagnostic and prognostic significance in pan-cancer. We targeted kidney renal clear cell carcinoma (KIRC) and investigated the relationship between GJA1 expression and different clinical features of KIRC patients. Then, we performed cell-based experiments to partially confirm our results and predicted several proteins that were functionally related to Cx43. Results: The expression of GJA1 has a high level of accuracy in predicting KIRC. High GJA1 expression was remarkably correlated with a favorable prognosis, and this expression was reduced in groups with poor clinical features in KIRC. Cell experiments confirmed the inhibitory effects of increased GJA1 expression on the migratory capacity of human renal cancer (RCC) cell lines, and protein-protein interaction (PPI) analysis predicted that CDH1 and CTNNB1 were closely related to Cx43. Conclusions: GJA1 could be a promising independent favorable prognostic factor for KIRC, and upregulation of GJA1 expression could inhibit the migratory capacity of renal cancer cells.
Collapse
Affiliation(s)
- Huzi Xu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; (H.X.); (X.W.); (S.G.); (C.C.); (H.Z.); (M.W.); (F.Z.); (J.Y.)
| | - Xiuru Wang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; (H.X.); (X.W.); (S.G.); (C.C.); (H.Z.); (M.W.); (F.Z.); (J.Y.)
| | - Fan Zhu
- Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Shuiming Guo
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; (H.X.); (X.W.); (S.G.); (C.C.); (H.Z.); (M.W.); (F.Z.); (J.Y.)
| | - Zheng Chao
- Division of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China;
| | - Chujin Cao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; (H.X.); (X.W.); (S.G.); (C.C.); (H.Z.); (M.W.); (F.Z.); (J.Y.)
| | - Zhihui Lu
- Division of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China;
| | - Han Zhu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; (H.X.); (X.W.); (S.G.); (C.C.); (H.Z.); (M.W.); (F.Z.); (J.Y.)
| | - Meng Wang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; (H.X.); (X.W.); (S.G.); (C.C.); (H.Z.); (M.W.); (F.Z.); (J.Y.)
| | - Fengming Zhu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; (H.X.); (X.W.); (S.G.); (C.C.); (H.Z.); (M.W.); (F.Z.); (J.Y.)
| | - Juan Yang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; (H.X.); (X.W.); (S.G.); (C.C.); (H.Z.); (M.W.); (F.Z.); (J.Y.)
| | - Rui Zeng
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; (H.X.); (X.W.); (S.G.); (C.C.); (H.Z.); (M.W.); (F.Z.); (J.Y.)
| | - Ying Yao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; (H.X.); (X.W.); (S.G.); (C.C.); (H.Z.); (M.W.); (F.Z.); (J.Y.)
- Division of Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| |
Collapse
|
8
|
Zhou H, Zhang W, Li H, Xu F, Yinwang E, Xue Y, Chen T, Wang S, Wang Z, Sun H, Wang F, Mou H, Yao M, Chai X, Zhang J, Diarra MD, Li B, Zhang C, Gao J, Ye Z. Osteocyte mitochondria inhibit tumor development via STING-dependent antitumor immunity. SCIENCE ADVANCES 2024; 10:eadi4298. [PMID: 38232158 DOI: 10.1126/sciadv.adi4298] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024]
Abstract
Bone is one of the most common sites of tumor metastases. During the last step of bone metastasis, cancer cells colonize and disrupt the bone matrix, which is maintained mainly by osteocytes, the most abundant cells in the bone microenvironment. However, the role of osteocytes in bone metastasis is still unclear. Here, we demonstrated that osteocytes transfer mitochondria to metastatic cancer cells and trigger the cGAS/STING-mediated antitumor response. Blocking the transfer of mitochondria by specifically knocking out mitochondrial Rho GTPase 1 (Rhot1) or mitochondrial mitofusin 2 (Mfn2) in osteocytes impaired tumor immunogenicity and consequently resulted in the progression of metastatic cancer toward the bone matrix. These findings reveal the protective role of osteocytes against cancer metastasis by transferring mitochondria to cancer cells and potentially offer a valuable therapeutic strategy for preventing bone metastasis.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wenkan Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hengyuan Li
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Fan Xu
- Department of Dermatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Eloy Yinwang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yucheng Xue
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Tao Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Shengdong Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zenan Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hangxiang Sun
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Fangqian Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Haochen Mou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Minjun Yao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xupeng Chai
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jiahao Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Mohamed Diaty Diarra
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Binghao Li
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Changqing Zhang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Junjie Gao
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Shanghai Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China
| | - Zhaoming Ye
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
9
|
Zhao F, Zhang Y, Pei S, Wang S, Hu L, Wang L, Qian A, Yang TL, Guo Y. Mechanobiological crosstalk among bone cells and between bone and other organs. BONE CELL BIOMECHANICS, MECHANOBIOLOGY AND BONE DISEASES 2024:215-247. [DOI: 10.1016/b978-0-323-96123-3.00015-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
10
|
Ma L, Wang W, Xu G, Li H, Liu F, Shao H, Zhang X, Ma Y, Li G, Li H, Gao S, Ling P. Connexin 43 in the function and homeostasis of osteocytes: a narrative review. ANNALS OF JOINT 2023; 9:10. [PMID: 38529291 PMCID: PMC10929443 DOI: 10.21037/aoj-23-65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/29/2023] [Indexed: 03/27/2024]
Abstract
Background and Objective Connexin 43 (Cx43) is the main gap junction (GJ) protein and hemichannel protein in bone tissue. It is involved in the formation of hemichannels and GJs and establishes channels that can communicate directly to exchange substances and signals, affecting the structure and function of osteocytes. CX43 is very important for the normal development of bone tissue and the establishment and balance of bone reconstruction. However, the molecular mechanisms by which CX43 regulates osteoblast function and homeostasis have been less well studied, and this article provides a review of research in this area. Methods We searched the PubMed, EMBASE, Cochrane Library, and Web of Science databases for studies published up to June 2023 using the keywords Connexin 43/Cx43 and Osteocytes. Screening of literatures according to inclusion and exclusion guidelines and summarized the results. Key Content and Findings Osteocytes, osteoblasts, and osteoclasts all express Cx43 and form an overall network through the interaction between GJs. Cx43 is not only involved in the mechanical response of bone tissue but also in the regulation of signal transduction, which could provide new molecular markers and novel targets for the treatment of certain bone diseases. Conclusions Cx43 is expressed in osteoblasts, osteoclasts, and osteoclasts and plays an important role in regulating the function, signal transduction, and mechanotransduction of osteocytes. This review offers a new contribution to the literature by summarizing the relationship between Cx43, a key protein of bone tissue, and osteoblasts.
Collapse
Affiliation(s)
- Liang Ma
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Post-doctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan, China
- Post-doctoral Station of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenzhao Wang
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guixuan Xu
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Hao Li
- Department of Joint Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Fei Liu
- Post-doctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan, China
| | - Huarong Shao
- Post-doctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan, China
| | - Xiuhua Zhang
- Post-doctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan, China
| | - Yuxia Ma
- Post-doctoral Station of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Gang Li
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hui Li
- Department of Operating Room, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shuzhong Gao
- Post-doctoral Station of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peixue Ling
- Post-doctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan, China
| |
Collapse
|
11
|
Sarazin BA, Liu B, Goldman E, Whitefield AN, Lynch ME. Bone-homing metastatic breast cancer cells impair osteocytes' mechanoresponse in a 3D loading model. Heliyon 2023; 9:e20248. [PMID: 37767467 PMCID: PMC10520780 DOI: 10.1016/j.heliyon.2023.e20248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/23/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Breast cancer predominantly metastasizes to the skeleton. Mechanical loading is reliably anabolic in bone, and also inhibits bone metastatic tumor formation and bone loss in vivo. To study the underlying mechanisms, we developed a 3D culture model for osteocytes, the primary bone mechanosensor. We verified that MLO-Y4s responded to perfusion by reducing their rankl and rankl:opg gene expression. We next cultured MLO-Y4s with tumor-conditioned media (TCM) collected from human breast cancer cells (MDA-MB-231s) and a corresponding bone-homing subclone to test the impacts on osteocytes' mechanosensation. We found that TCM from the bone-homing subclone was more detrimental to MLO-Y4 growth and viability, and it abrogated loading-induced changes to rankl:opg. Our studies demonstrate that MLO-Y4s, including their mechanoresponse to perfusion, were more negatively impacted by soluble factors from bone-homing breast cancer cells compared to those from parental cells.
Collapse
Affiliation(s)
- Blayne A. Sarazin
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, 80309, USA
| | - Boyuan Liu
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, 80309, USA
| | - Elaine Goldman
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, 80309, USA
| | - Ashlyn N. Whitefield
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, 80309, USA
| | - Maureen E. Lynch
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, 80309, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO, 80309, USA
| |
Collapse
|
12
|
Tirado HA, Balasundaram N, Laaouimir L, Erdem A, van Gastel N. Metabolic crosstalk between stromal and malignant cells in the bone marrow niche. Bone Rep 2023; 18:101669. [PMID: 36909665 PMCID: PMC9996235 DOI: 10.1016/j.bonr.2023.101669] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/03/2023] Open
Abstract
Bone marrow is the primary site of blood cell production in adults and serves as the source of osteoblasts and osteoclasts that maintain bone homeostasis. The medullary microenvironment is also involved in malignancy, providing a fertile soil for the growth of blood cancers or solid tumors metastasizing to bone. The cellular composition of the bone marrow is highly complex, consisting of hematopoietic stem and progenitor cells, maturing blood cells, skeletal stem cells, osteoblasts, mesenchymal stromal cells, adipocytes, endothelial cells, lymphatic endothelial cells, perivascular cells, and nerve cells. Intercellular communication at different levels is essential to ensure proper skeletal and hematopoietic tissue function, but it is altered when malignant cells colonize the bone marrow niche. While communication often involves soluble factors such as cytokines, chemokines, and growth factors, as well as their respective cell-surface receptors, cells can also communicate by exchanging metabolic information. In this review, we discuss the importance of metabolic crosstalk between different cells in the bone marrow microenvironment, particularly concerning the malignant setting.
Collapse
Affiliation(s)
- Hernán A Tirado
- Cellular Metabolism and Microenvironment Laboratory, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Nithya Balasundaram
- Cellular Metabolism and Microenvironment Laboratory, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Lotfi Laaouimir
- Cellular Metabolism and Microenvironment Laboratory, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Ayşegül Erdem
- Cellular Metabolism and Microenvironment Laboratory, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Nick van Gastel
- Cellular Metabolism and Microenvironment Laboratory, de Duve Institute, UCLouvain, Brussels, Belgium.,WELBIO Department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
13
|
Anloague A, Delgado-Calle J. Osteocytes: New Kids on the Block for Cancer in Bone Therapy. Cancers (Basel) 2023; 15:2645. [PMID: 37174109 PMCID: PMC10177382 DOI: 10.3390/cancers15092645] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
The tumor microenvironment plays a central role in the onset and progression of cancer in the bone. Cancer cells, either from tumors originating in the bone or from metastatic cancer cells from other body systems, are located in specialized niches where they interact with different cells of the bone marrow. These interactions transform the bone into an ideal niche for cancer cell migration, proliferation, and survival and cause an imbalance in bone homeostasis that severely affects the integrity of the skeleton. During the last decade, preclinical studies have identified new cellular mechanisms responsible for the dependency between cancer cells and bone cells. In this review, we focus on osteocytes, long-lived cells residing in the mineral matrix that have recently been identified as key players in the spread of cancer in bone. We highlight the most recent discoveries on how osteocytes support tumor growth and promote bone disease. Additionally, we discuss how the reciprocal crosstalk between osteocytes and cancer cells provides the opportunity to develop new therapeutic strategies to treat cancer in the bone.
Collapse
Affiliation(s)
- Aric Anloague
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Jesus Delgado-Calle
- Department of Physiology and Cell Biology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
14
|
Puts R, Khaffaf A, Shaka M, Zhang H, Raum K. Focused Low-Intensity Pulsed Ultrasound (FLIPUS) Mitigates Apoptosis of MLO-Y4 Osteocyte-like Cells. Bioengineering (Basel) 2023; 10:bioengineering10030387. [PMID: 36978778 PMCID: PMC10045139 DOI: 10.3390/bioengineering10030387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Long cytoplasmic processes of osteocytes orchestrate bone activity by integration of biochemical and mechanical signals and regulate load-induced bone adaptation. Low-Intensity Pulsed Ultrasound (LIPUS) is a clinically used technique for fracture healing that delivers mechanical impulses to the damaged bone tissue in a non-invasive and non-ionizing manner. The mechanism of action of LIPUS is still controversially discussed in the scientific community. In this study, the effect of focused LIPUS (FLIPUS) on the survival of starved MLO-Y4 osteocytes was investigated in vitro. Osteocytes stimulated for 10 min with FLIPUS exhibited extended dendrites, which formed frequent connections to neighboring cells and spanned longer distances. The sonicated cells displayed thick actin bundles and experienced increase in expression of connexin 43 (Cx43) proteins, especially on their dendrites, and E11 glycoprotein, which is responsible for the elongation of cellular cytoplasmic processes. After stimulation, expression of cell growth and survival genes as well as genes related to cell-cell communication was augmented. In addition, cell viability was improved after the sonication, and a decrease in ATP release in the medium was observed. In summary, FLIPUS mitigated apoptosis of starved osteocytes, which is likely related to the formation of the extensive dendritic network that ensured cell survival.
Collapse
Affiliation(s)
- Regina Puts
- Center for Biomedicine, Charité-Universitätsmedizin, 12203 Berlin, Germany
- Berlin Institute of Health (BIH) Center for Regenerative Therapies, Charité-Universitätsmedizin, 13353 Berlin, Germany
| | - Aseel Khaffaf
- Center for Biomedicine, Charité-Universitätsmedizin, 12203 Berlin, Germany
| | - Maria Shaka
- Center for Biomedicine, Charité-Universitätsmedizin, 12203 Berlin, Germany
| | - Hui Zhang
- Center for Biomedicine, Charité-Universitätsmedizin, 12203 Berlin, Germany
| | - Kay Raum
- Center for Biomedicine, Charité-Universitätsmedizin, 12203 Berlin, Germany
| |
Collapse
|
15
|
The Multifaceted Role of Connexins in Tumor Microenvironment Initiation and Maintenance. BIOLOGY 2023; 12:biology12020204. [PMID: 36829482 PMCID: PMC9953436 DOI: 10.3390/biology12020204] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
Today's research on the processes of carcinogenesis and the vital activity of tumor tissues implies more attention be paid to constituents of the tumor microenvironment and their interactions. These interactions between cells in the tumor microenvironment can be mediated via different types of protein junctions. Connexins are one of the major contributors to intercellular communication. They form the gap junctions responsible for the transfer of ions, metabolites, peptides, miRNA, etc., between neighboring tumor cells as well as between tumor and stromal cells. Connexin hemichannels mediate purinergic signaling and bidirectional molecular transport with the extracellular environment. Additionally, connexins have been reported to localize in tumor-derived exosomes and facilitate the release of their cargo. A large body of evidence implies that the role of connexins in cancer is multifaceted. The pro- or anti-tumorigenic properties of connexins are determined by their abundance, localization, and functionality as well as their channel assembly and non-channel functions. In this review, we have summarized the data on the contribution of connexins to the formation of the tumor microenvironment and to cancer initiation and progression.
Collapse
|
16
|
Wang JS, Wein MN. Pathways Controlling Formation and Maintenance of the Osteocyte Dendrite Network. Curr Osteoporos Rep 2022; 20:493-504. [PMID: 36087214 PMCID: PMC9718876 DOI: 10.1007/s11914-022-00753-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss the molecular mechanisms involved in osteocyte dendrite formation, summarize the similarities between osteocytic and neuronal projections, and highlight the importance of osteocyte dendrite maintenance in human skeletal disease. RECENT FINDINGS It is suggested that there is a causal relationship between the loss of osteocyte dendrites and the increased osteocyte apoptosis during conditions including aging, microdamage, and skeletal disease. A few mechanisms are proposed to control dendrite formation and outgrowth, such as via the regulation of actin polymerization dynamics. This review addresses the impact of osteocyte dendrites in bone health and disease. Recent advances in multi-omics, in vivo and in vitro models, and microscopy-based imaging have provided novel approaches to reveal the underlying mechanisms that regulate dendrite development. Future therapeutic approaches are needed to target the process of osteocyte dendrite formation.
Collapse
Affiliation(s)
- Jialiang S Wang
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marc N Wein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
17
|
Lin CY, Song X, Seaman K, You L. Microfluidic Co-culture Platforms for Studying Osteocyte Regulation of Other Cell Types under Dynamic Mechanical Stimulation. Curr Osteoporos Rep 2022; 20:478-492. [PMID: 36149593 DOI: 10.1007/s11914-022-00748-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/26/2022] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW Osteocytes are the most abundant cell type in bone. These unique cells act primarily as mechanosensors and play crucial roles in the functional adaptation of bone tissue. This review aims to summarize the recent microfluidic studies on mechanically stimulated osteocytes in regulating other cell types. RECENT FINDINGS Microfluidics is a powerful technology that has been widely employed in recent years. With the advantages of microfluidic platforms, researchers can mimic multicellular environments and integrate dynamic systems to study osteocyte regulation under mechanical stimulation. Microfluidic platforms have been developed to investigate mechanically stimulated osteocytes in the direct regulation of multiple cell types, including osteoclasts, osteoblasts, and cancer cells, and in the indirect regulation of cancer cells via endothelial cells. Overall, these microfluidic studies foster the development of treatment approaches targeting osteocytes under mechanical stimulation.
Collapse
Affiliation(s)
- Chun-Yu Lin
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Xin Song
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Kimberly Seaman
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Lidan You
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
18
|
Oliveira MC, Verswyvel H, Smits E, Cordeiro RM, Bogaerts A, Lin A. The pro- and anti-tumoral properties of gap junctions in cancer and their role in therapeutic strategies. Redox Biol 2022; 57:102503. [PMID: 36228438 PMCID: PMC9557036 DOI: 10.1016/j.redox.2022.102503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/06/2022] [Accepted: 10/06/2022] [Indexed: 11/24/2022] Open
Abstract
Gap junctions (GJs), essential structures for cell-cell communication, are made of two hemichannels (commonly called connexons), one on each adjacent cell. Found in almost all cells, GJs play a pivotal role in many physiological and cellular processes, and have even been linked to the progression of diseases, such as cancer. Modulation of GJs is under investigation as a therapeutic strategy to kill tumor cells. Furthermore, GJs have also been studied for their key role in activating anti-cancer immunity and propagating radiation- and oxidative stress-induced cell death to neighboring cells, a process known as the bystander effect. While, gap junction (GJ)-based therapeutic strategies are being developed, one major challenge has been the paradoxical role of GJs in both tumor progression and suppression, based on GJ composition, cancer factors, and tumoral context. Therefore, understanding the mechanisms of action, regulation, and the dual characteristics of GJs in cancer is critical for developing effective therapeutics. In this review, we provide an overview of the current understanding of GJs structure, function, and paradoxical pro- and anti-tumoral role in cancer. We also discuss the treatment strategies to target these GJs properties for anti-cancer responses, via modulation of GJ function.
Collapse
Affiliation(s)
- Maria C Oliveira
- Plasma Lab for Applications in Sustainability and Medicine-Antwerp (PLASMANT), Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium; Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, CEP 09210-580, Santo André, SP, Brazil.
| | - Hanne Verswyvel
- Plasma Lab for Applications in Sustainability and Medicine-Antwerp (PLASMANT), Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium; Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
| | - Evelien Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
| | - Rodrigo M Cordeiro
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, CEP 09210-580, Santo André, SP, Brazil
| | - Annemie Bogaerts
- Plasma Lab for Applications in Sustainability and Medicine-Antwerp (PLASMANT), Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Abraham Lin
- Plasma Lab for Applications in Sustainability and Medicine-Antwerp (PLASMANT), Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium; Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
| |
Collapse
|
19
|
El-Harakeh M, Saliba J, Sharaf Aldeen K, Haidar M, El Hajjar L, Awad MK, Hashash JG, Shirinian M, El-Sabban M. Expression of the methylcytosine dioxygenase ten-eleven translocation-2 and connexin 43 in inflammatory bowel disease and colorectal cancer. World J Gastroenterol 2022; 28:5845-5864. [PMID: 36353202 PMCID: PMC9639657 DOI: 10.3748/wjg.v28.i40.5845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/06/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) constitutes a substantial risk factor for colorectal cancer. Connexin 43 (Cx43) is a protein that forms gap junction (GJ) complexes involved in intercellular communication, and its expression is altered under pathological conditions, such as IBD and cancer. Recent studies have implicated epigenetic processes modulating DNA methylation in the pathogenesis of diverse inflammatory and malignant diseases. The ten-eleven translocation-2 (TET-2) enzyme catalyzes the demethylation, hence, regulating the activity of various cancer-promoting and tumor-suppressor genes.
AIM To investigate Cx43 and TET-2 expression levels and presence of 5-hydroxymethylcytosine (5-hmC) marks under inflammatory conditions both in vitro and in vivo.
METHODS TET-2 expression was evaluated in parental HT-29 cells and in HT-29 cells expressing low or high levels of Cx43, a putative tumor-suppressor gene whose expression varies in IBD and colorectal cancer, and which has been implicated in the inflammatory process and in tumor onset. The dextran sulfate sodium-induced colitis model was reproduced in BALB/c mice to evaluate the expression of TET-2 and Cx43 under inflammatory conditions in vivo. In addition, archived colon tissue sections from normal, IBD (ulcerative colitis), and sporadic colon adenocarcinoma patients were obtained and evaluated for the expression of TET-2 and Cx43. Expression levels were reported at the transcriptional level by quantitative real-time polymerase chain reaction, and at the translational level by Western blotting and immunofluorescence.
RESULTS Under inflammatory conditions, Cx43 and TET-2 expression levels increased compared to non-inflammatory conditions. TET-2 upregulation was more pronounced in Cx43-deficient cells. Moreover, colon tissue sections from normal, ulcerative colitis, and sporadic colon adenocarcinoma patients corroborated that Cx43 expression increased in IBD and decreased in adenocarcinoma, compared to tissues from non-IBD subjects. However, TET-2 expression and 5-hmC mark levels decreased in samples from patients with ulcerative colitis or cancer. Cx43 and TET-2 expression levels were also investigated in an experimental colitis mouse model. Interestingly, mice exposed to carbenoxolone (CBX), a GJ inhibitor, had upregulated TET-2 levels. Collectively, these results show that TET-2 levels and activity increased under inflammatory conditions, in cells downregulating gap junctional protein Cx43, and in colon tissues from mice exposed to CBX.
CONCLUSION These results suggest that TET-2 expression levels, as well as Cx43 expression levels, are modulated in models of intestinal inflammation. We hypothesize that TET-2 may demethylate genes involved in inflammation and tumorigenesis, such as Cx43, potentially contributing to intestinal inflammation and associated carcinogenesis.
Collapse
Affiliation(s)
- Mohammad El-Harakeh
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
- UR GPF Laboratory of Biodiversity and Functional Genomics, Faculty of Science, Université Saint-Joseph de Beyrouth, Beirut 1107, Lebanon
| | - Jessica Saliba
- Department of Biology, Faculty of Sciences, Lebanese University, Beirut 1533, Lebanon
- Department of Public Health, Faculty of Health Sciences, University of Balamand, Dekwaneh, Sin el Fil 1552, Lebanon
| | - Kawthar Sharaf Aldeen
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | - May Haidar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | - Layal El Hajjar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | - Mireille Kallassy Awad
- UR GPF Laboratory of Biodiversity and Functional Genomics, Faculty of Science, Université Saint-Joseph de Beyrouth, Beirut 1107, Lebanon
| | - Jana G Hashash
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | - Margret Shirinian
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | - Marwan El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| |
Collapse
|
20
|
Shropshire DB, Acosta FM, Fang K, Benavides J, Sun LZ, Jin VX, Jiang JX. Association of adenosine signaling gene signature with estrogen receptor-positive breast and prostate cancer bone metastasis. Front Med (Lausanne) 2022; 9:965429. [PMID: 36186774 PMCID: PMC9520286 DOI: 10.3389/fmed.2022.965429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022] Open
Abstract
Bone metastasis is a common and devastating consequence of several major cancer types, including breast and prostate. Osteocytes are the predominant bone cell, and through connexin (Cx) 43 hemichannels release ATP to the bone microenvironment that can be hydrolyzed to adenosine. Here, we investigated how genes related to ATP paracrine signaling are involved in two common bone-metastasizing malignancies, estrogen receptor positive (ER+) breast and prostate cancers. Compared to other sites, bone metastases of both cancer types expressed higher levels of ENTPD1 and NT5E, which encode CD39 and CD73, respectively, and hydrolyze ATP to adenosine. ADORA3, encoding the adenosine A3 receptor, had a similar expression pattern. In primary ER+ breast cancer, high levels of the triplet ENTPD1/NT5E/ADORA3 expression signature was correlated with lower overall, distant metastasis-free, and progression-free survival. In ER+ bone metastasis biopsies, this expression signature is associated with lower survival. This expression signature was also higher in bone-metastasizing primary prostate cancers than in those that caused other tumor events or did not lead to progressive disease. In 3D culture, a non-hydrolyzable ATP analog inhibited the growth of breast and prostate cancer cell lines more than ATP did. A3 inhibition also reduced spheroid growth. Large-scale screens by the Drug Repurposing Hub found ER+ breast cancer cell lines were uniquely sensitive to adenosine receptor antagonists. Together, these data suggest a vital role for extracellular ATP degradation and adenosine receptor signaling in cancer bone metastasis, and this study provides potential diagnostic means for bone metastasis and specific targets for treatment and prevention.
Collapse
Affiliation(s)
- Daniel Brian Shropshire
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| | - Francisca M. Acosta
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| | - Kun Fang
- Division of Biostatistics and MCW Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jaime Benavides
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Lu-Zhe Sun
- Department of Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, TX, United States
| | - Victor X. Jin
- Division of Biostatistics and MCW Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
- *Correspondence: Jean X. Jiang,
| |
Collapse
|
21
|
Unal YC, Yavuz B, Ozcivici E, Mese G. The role of connexins in breast cancer: from misregulated cell communication to aberrant intracellular signaling. Tissue Barriers 2022; 10:1962698. [PMID: 34355641 PMCID: PMC8794248 DOI: 10.1080/21688370.2021.1962698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
In spite of clinical advancements and improved diagnostic techniques, breast cancers are the leading cause of cancer-associated deaths in women worldwide. Although 70% of early breast cancers can be cured, there are no efficient therapies against metastatic breast cancers. Several factors including connexins and gap junctions play roles in breast tumorigenesis. Connexins are critical for cellular processes as a linkage between connexin mutations and hereditary disorders demonstrated their importance for tissue homeostasis. Further, alterations in their expression, localization and channel activities were observed in many cancers including breast cancer. Both channel-dependent and independent functions of connexins were reported in initiation and progression of cancers. Unlike initial reports suggesting tumor suppressor functions, connexins and gap junctions have stage, context and isoform dependent effects in breast cancers similar to other cancers. In this review, we tried to describe the current understanding of connexins in tumorigenesis specifically in breast cancers.
Collapse
Affiliation(s)
- Yagmur Ceren Unal
- Faculty of Science, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Busra Yavuz
- Faculty of Science, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Engin Ozcivici
- Department of Bioengineering, Faculty of Engineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Gulistan Mese
- Faculty of Science, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, Turkey
| |
Collapse
|
22
|
Osteocytic Connexin Hemichannels Modulate Oxidative Bone Microenvironment and Breast Cancer Growth. Cancers (Basel) 2021; 13:cancers13246343. [PMID: 34944962 PMCID: PMC8699531 DOI: 10.3390/cancers13246343] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
Osteocytes, the most abundant bone cell types embedded in the mineral matrix, express connexin 43 (Cx43) hemichannels that play important roles in bone remodeling and osteocyte survival. Estrogen deficiency decreases osteocytic Cx43 hemichannel activity and causes a loss in osteocytes' resistance to oxidative stress (OS). In this study, we showed that OS reduced the growth of both human (MDA-MB-231) and murine (Py8119) breast cancer cells. However, co-culturing these cells with osteocytes reduced the inhibitory effect of OS on breast cancer cells, and this effect was ablated by the inhibition of Cx43 hemichannels. Py8119 cells were intratibially implanted in the bone marrow of ovariectomized (OVX) mice to determine the role of osteocytic Cx43 hemichannels in breast cancer bone metastasis in response to OS. Two transgenic mice overexpressing dominant-negative Cx43 mutants, R76W and Δ130-136, were adopted for this study; the former inhibits gap junctions while the latter inhibits gap junctions and hemichannels. Under normal conditions, Δ130-136 mice had significantly more tumor growth in bone than that in WT and R76W mice. OVX increased tumor growth in R76W but had no significant effect on WT mice. In contrast, OVX reduced tumor growth in Δ130-136 mice. To confirm the role of OS, WT and Δ130-136 mice were administered the antioxidant N-acetyl cysteine (NAC). NAC increased tumor burden and growth in Δ130-136 mice but not in WT mice. Together, the data suggest that osteocytes and Cx43 hemichannels play pivotal roles in modulating the oxidative microenvironment and breast cancer growth in the bone.
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW While the function of osteocytes under physiologic conditions is well defined, their role and involvement in cancer disease remains relatively unexplored, especially in a context of non-bone metastatic cancer. This review will focus on describing the more advanced knowledge regarding the interactions between osteocytes and cancer. RECENT FINDINGS We will discuss the involvement of osteocytes in the onset and progression of osteosarcoma, with the common bone cancers, as well as the interaction that is established between osteocytes and multiple myeloma. Mechanisms responsible for cancer dissemination to bone, as frequently occur with advanced breast and prostate cancers, will be reviewed. While a role for osteocytes in the stimulation and proliferation of cancer cells has been reported, protective effects of osteocytes against bone colonization have been described as well, thus increasing ambiguity regarding the role of osteocytes in cancer progression and dissemination. Lastly, supporting the idea that skeletal defects can occur also in the absence of direct cancer dissemination or osteolytic lesions directly adjacent to the bone, our recent findings will be presented showing that in the absence of bone metastases, the bone microenvironment and, particularly, osteocytes, can manifest a clear and dramatic response to the distant, non-metastatic tumor. Our observations support new studies to clarify whether treatments designed to preserve the osteocytes can be combined with traditional anticancer therapies, even when bone is not directly affected by tumor growth.
Collapse
Affiliation(s)
- Fabrizio Pin
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Matt Prideaux
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lynda F Bonewald
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrea Bonetto
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Otolaryngology-Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Surgery, Indiana University School of Medicine, 980 W Walnut Street, R3-C522, Indianapolis, IN, 46202, USA.
- Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
24
|
Wang S, Pei S, Wasi M, Parajuli A, Yee A, You L, Wang L. Moderate tibial loading and treadmill running, but not overloading, protect adult murine bone from destruction by metastasized breast cancer. Bone 2021; 153:116100. [PMID: 34246808 PMCID: PMC8478818 DOI: 10.1016/j.bone.2021.116100] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022]
Abstract
Osteolytic bone lesions, which develop in many metastatic breast cancer patients, impair bone integrity and lead to adverse skeletal related events that are difficult to treat and sometimes fatal. Moderate mechanical loading has been shown to suppress osteolysis in young mice with breast cancer. In this study, we aimed to investigate the dose-dependent effects of mechanical loading on protecting the integrity of adult skeletons with breast cancer. Localized tibial loading and aerobic treadmill running with three levels of varying intensity were tested in a syngeneic mammary tumor bone metastasis model. Adult C57BL/6J female mice (14-week-old, N = 88 mice) received intra-tibial injections of Py8119 triple-negative murine breast cancer cells or PBS and underwent 4 to 5 weeks of exercise or acted as sedentary/non-loaded controls. The bone structure was monitored longitudinally with weekly in vivo micro-computed tomography imaging, while the cellular responses in bone and marrow were examined using immunohistochemistry. Moderate treadmill running (16 m/min, 50 min/day, 5 days/week, and 5 weeks) and tibial loading (4.5 N, 630 με, 4 Hz, 300 cycles/day, 5 days/week, and 4 weeks) suppressed tumor-induced bone destruction, as evaluated by full-thickness perforation of tibial cortex and the volume of osteolytic lesions in the cortex. In contrast, tibial loading at higher magnitude (8 N, 1100 με) induced woven bone and accelerated bone destruction, compared with the non-loaded controls. The three exercise regimens differentially affected osteocyte apoptosis, osteocyte hypoxia, osteoclast activity, bone marrow vasculature, and tumor proliferation. In conclusion, the relationship between exercise intensity and the risk of breast cancer-induced osteolysis was found to follow a J-shaped curve in a preclinical model, suggesting the need to optimize exercise parameters in order to harness the skeletal benefits of exercise in metastatic breast cancers.
Collapse
Affiliation(s)
- Shubo Wang
- Center for Biomechanical Engineering Research, Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Shaopeng Pei
- Center for Biomechanical Engineering Research, Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Murtaza Wasi
- Center for Biomechanical Engineering Research, Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Ashutosh Parajuli
- Center for Biomechanical Engineering Research, Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Albert Yee
- Division of Orthopaedics, Department of Surgery, Sunnybrook Health Sciences Centre and the University of Toronto, Toronto, Ontario, Canada
| | - Lidan You
- Department of Mechanical and Industrial Engineering, Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Liyun Wang
- Center for Biomechanical Engineering Research, Department of Mechanical Engineering, University of Delaware, Newark, DE, USA.
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW In this review, we provide an overview of what is currently known about the impacts of mechanical stimuli on metastatic tumor-induced bone disease (TIBD). Further, we focus on the role of the osteocyte, the skeleton's primary mechanosensory cell, which is central to the skeleton's mechanoresponse, sensing and integrating local mechanical stimuli, and then controlling the downstream remodeling balance as appropriate. RECENT FINDINGS Exercise and controlled mechanical loading have anabolic effects on bone tissue in models of bone metastasis. They also have anti-tumorigenic properties, in part due to offsetting the vicious cycle of osteolytic bone loss as well as regulating inflammatory signals. The impacts of metastatic cancer on the mechanosensory function of osteocytes remains unclear. Increased mechanical stimuli are a potential method for mitigating TIBD.
Collapse
Affiliation(s)
- Blayne A Sarazin
- Department of Mechanical Engineering, University of Colorado, 427 UCB, Boulder, CO, 80309, USA
| | - Claire L Ihle
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Philip Owens
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Veterans Affairs, Research Service, Eastern Colorado Health Care System, Aurora, CO, 80045, USA
| | - Maureen E Lynch
- Department of Mechanical Engineering, University of Colorado, 427 UCB, Boulder, CO, 80309, USA.
- Biofrontiers Institute, University of Colorado, Boulder, CO, 80309, USA.
| |
Collapse
|
26
|
Hemmatian H, Conrad S, Furesi G, Mletzko K, Krug J, Faila AV, Kuhlmann JD, Rauner M, Busse B, Jähn-Rickert K. Reorganization of the osteocyte lacuno-canalicular network characteristics in tumor sites of an immunocompetent murine model of osteotropic cancers. Bone 2021; 152:116074. [PMID: 34174502 DOI: 10.1016/j.bone.2021.116074] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/04/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022]
Abstract
Mechanosensitive osteocytes are central regulators of bone resorption and formation. However, during the formation of bone metastases, which arise as consequences of breast and prostate cancer and skew homeostatic bone remodeling to favor osteolytic, osteosclerotic or mixed lesions, only a paucity of data exists on tumor-associated osteocyte interaction. Herein, we used a suite of high-resolution imaging and histological techniques to evaluate the effect of osteotropic cancer on cortical bone microarchitecture. Confocal imaging highlighted a direct contact between tumor cells residing in the bone marrow and osteocytes. High-resolution microcomputed tomography revealed a 10-12% larger osteocyte lacuna volume in the presence of tumor cells at day 21 after intratibial injection of EO771-Luc breast and RM1-Luc prostate cancer cells. The 3D representative of the spatial distribution of cortical bone microporosity showed i) a regional accumulation of vascular canals and large lacunae with low connectivity in osteosclerotic regions of interest and ii) an absence of vascular canals and large lacunae in osteolytic regions. These findings pinpoint the relationship between the presence of tumor cells in the bone marrow microenvironment and osteocyte lacunar characteristics and cortical bone blood vessel structure.
Collapse
Affiliation(s)
- Haniyeh Hemmatian
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 55a, 22529 Hamburg, Germany
| | - Stefanie Conrad
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Giulia Furesi
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Kathrin Mletzko
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 55a, 22529 Hamburg, Germany
| | - Johannes Krug
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 55a, 22529 Hamburg, Germany
| | - Antonio Virgilio Faila
- Microscopy Imaging Facility, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Dominik Kuhlmann
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany.
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 55a, 22529 Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), Hamburg, Germany; Forum Medical Technology Health Hamburg (FMTHH), Hamburg, Germany.
| | - Katharina Jähn-Rickert
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 55a, 22529 Hamburg, Germany; Mildred Scheel Cancer Career Center Hamburg, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg.
| |
Collapse
|
27
|
Jindal S, Chockalingam S, Ghosh SS, Packirisamy G. Connexin and gap junctions: perspectives from biology to nanotechnology based therapeutics. Transl Res 2021; 235:144-167. [PMID: 33582245 DOI: 10.1016/j.trsl.2021.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/10/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022]
Abstract
The concept of gap junctions and their role in intercellular communication has been known for around 50 years. Considerable progress has been made in understanding the fundamental biology of connexins in mediating gap junction intercellular communication (GJIC) and their role in various cellular processes including pathological conditions. However, this understanding has not led to development of advanced therapeutics utilizing GJIC. Inadequacies in strategies that target specific connexin protein in the affected tissue, with minimal or no collateral damage, are the primary reason for the lack of development of efficient therapeutic models. Herein, nanotechnology has a role to play, giving plenty of scope to circumvent these problems and develop more efficient connexin based therapeutics. AsODN, antisense oligodeoxynucleotides; BMPs, bone morphogenetic proteins; BMSCs, bone marrow stem cells; BG, bioglass; Cx, Connexin; CxRE, connexin-responsive elements; CoCr NPs, cobalt-chromium nanoparticles; cGAMP, cyclic guanosine monophosphate-adenosine monophosphate; cAMP, cyclic adenosine monophosphate; ERK1/2, extracellular signal-regulated kinase 1/2; EMT, epithelial-mesenchymal transition; EPA, eicosapentaenoic acids; FGFR1, fibroblast growth factor receptor 1; FRAP, fluorescence recovery after photobleaching; 5-FU, 5-fluorouracil; GJ, gap junction; GJIC, gap junctional intercellular communication; HGPRTase, hypoxanthine phosphoribosyltransferase; HSV-TK, herpes virus thymidine kinase; HSA, human serum albumin; HA, hyaluronic acid; HDAC, histone deacetylase; IRI, ischemia reperfusion injury; IL-6, interleukin-6; IL-8, interleukin-8; IONPs, iron-oxide nanoparticles; JNK, c-Jun N-terminal kinase; LAMP, local activation of molecular fluorescent probe; MSCs, mesenchymal stem cells; MMP, matrix metalloproteinase; MI, myocardial infarction; MAPK, mitogen-activated protein kinase; NF-κB, nuclear factor kappa B; NO, nitric oxide; PKC, protein kinase C; QDs, quantum dots; ROI, region of interest; RGO, reduced graphene oxide; siRNA, small interfering RNA; TGF-β1, transforming growth factor-β1; TNF-α, tumor necrosis factor-α; UCN, upconversion nanoparticles; VEGF, vascular endothelial growth factor. In this review, we discuss briefly the role of connexins and gap junctions in various physiological and pathological processes, with special emphasis on cancer. We further discuss the application of nanotechnology and tissue engineering in developing treatments for various connexin based disorders.
Collapse
Affiliation(s)
- Shlok Jindal
- Nanobiotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - S Chockalingam
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, India
| | - Siddhartha Sankar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Gopinath Packirisamy
- Nanobiotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India.
| |
Collapse
|
28
|
Liu X, Riquelme MA, Tian Y, Zhao D, Acosta FM, Gu S, Jiang JX. ATP Inhibits Breast Cancer Migration and Bone Metastasis through Down-Regulation of CXCR4 and Purinergic Receptor P2Y11. Cancers (Basel) 2021; 13:cancers13174293. [PMID: 34503103 PMCID: PMC8428338 DOI: 10.3390/cancers13174293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/05/2021] [Accepted: 08/23/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary The skeleton is the most frequent metastatic site for advanced breast cancer, and complications resulting from breast cancer metastasis are a leading cause of death in patients. Therefore, the discovery of new targets for the treatment of breast cancer bone metastasis is of great significance. ATP released by bone osteocytes is shown to activate purinergic signaling and inhibit the metastasis of breast cancer cells in the bone. The aim of our study was to unveil the underlying molecular mechanism of ATP and purinergic signaling in inhibiting the bone metastasis of breast cancer cells. We demonstrated that CXCR4 and P2Y11 are key factors in regulating this process, and understanding of this important mechanism will aid in identifying new targets and developing first-in-class therapeutics. Abstract ATP released by bone osteocytes is shown to activate purinergic signaling and inhibit the metastasis of breast cancer cells into the bone. However, the underlying molecular mechanism is not well understood. Here, we demonstrate the important roles of the CXCR4 and P2Y11 purinergic receptors in mediating the inhibitory effect of ATP on breast cancer cell migration and bone metastasis. Wound-healing and transwell migration assays showed that non-hydrolysable ATP analogue, ATPγS, inhibited migration of bone-tropic human breast cancer cells in a dose-dependent manner. BzATP, an agonist for P2X7 and an inducer for P2Y11 internalization, had a similar dose-dependent inhibition on cell migration. Both ATPγS and BzATP suppressed the expression of CXCR4, a chemokine receptor known to promote breast cancer bone metastasis, and knocking down CXCR4 expression by siRNA attenuated the inhibitory effect of ATPγS on cancer cell migration. While a P2X7 antagonist A804598 had no effect on the impact of ATPγS on cell migration, antagonizing P2Y11 by NF157 ablated the effect of ATPγS. Moreover, the reduction in P2Y11 expression by siRNA decreased cancer cell migration and abolished the impact of ATPγS on cell migration and CXCR4 expression. Similar to the effect of ATPγS on cell migration, antagonizing P2Y11 inhibited bone-tropic breast cancer cell migration in a dose-dependent manner. An in vivo study using an intratibial bone metastatic model showed that ATPγS inhibited breast cancer growth in the bone. Taken together, these results suggest that ATP inhibits bone-tropic breast cancer cells by down-regulating the P2Y11 purinergic receptor and the down-regulation of CXCR4 expression.
Collapse
Affiliation(s)
- Xiaowen Liu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA; (X.L.); (M.A.R.); (Y.T.); (D.Z.); (F.M.A.); (S.G.)
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Manuel A. Riquelme
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA; (X.L.); (M.A.R.); (Y.T.); (D.Z.); (F.M.A.); (S.G.)
| | - Yi Tian
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA; (X.L.); (M.A.R.); (Y.T.); (D.Z.); (F.M.A.); (S.G.)
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Dezhi Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA; (X.L.); (M.A.R.); (Y.T.); (D.Z.); (F.M.A.); (S.G.)
| | - Francisca M. Acosta
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA; (X.L.); (M.A.R.); (Y.T.); (D.Z.); (F.M.A.); (S.G.)
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA; (X.L.); (M.A.R.); (Y.T.); (D.Z.); (F.M.A.); (S.G.)
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA; (X.L.); (M.A.R.); (Y.T.); (D.Z.); (F.M.A.); (S.G.)
- Correspondence: ; Tel.: +1-210-562-4094
| |
Collapse
|
29
|
Retamal MA, Fernandez-Olivares A, Stehberg J. Over-activated hemichannels: A possible therapeutic target for human diseases. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166232. [PMID: 34363932 DOI: 10.1016/j.bbadis.2021.166232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022]
Abstract
In our body, all the cells are constantly sharing chemical and electrical information with other cells. This intercellular communication allows them to respond in a concerted way to changes in the extracellular milieu. Connexins are transmembrane proteins that have the particularity of forming two types of channels; hemichannels and gap junction channels. Under normal conditions, hemichannels allow the controlled release of signaling molecules to the extracellular milieu. However, under certain pathological conditions, over-activated hemichannels can induce and/or exacerbate symptoms. In the last decade, great efforts have been put into developing new tools that can modulate these over-activated hemichannels. Small molecules, antibodies and mimetic peptides have shown a potential for the treatment of human diseases. In this review, we summarize recent findings in the field of hemichannel modulation via specific tools, and how these tools could improve patient outcome in certain pathological conditions.
Collapse
Affiliation(s)
- Mauricio A Retamal
- Universidad del Desarrollo, Programa de Comunicación Celular en Cáncer, Santiago, Chile; Universidad del Desarrollo, Centro de Fisiología Celular e Integrativa, Santiago, Chile.
| | | | - Jimmy Stehberg
- Laboratorio de Neurobiología, Instituto de Ciencias Biomédicas, Facultad de medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
30
|
Adhikari M, Delgado-Calle J. Role of Osteocytes in Cancer Progression in the Bone and the Associated Skeletal Disease. Curr Osteoporos Rep 2021; 19:247-255. [PMID: 33818732 PMCID: PMC8486016 DOI: 10.1007/s11914-021-00679-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE OF REVIEW The goal of this manuscript is to review the current knowledge on the role of osteocytes in cancer in the bone, discuss the potential of osteocytes as a therapeutic target, and propose future research needed to understand the crosstalk between cancer cells and osteocytes in the tumor niche. RECENT FINDINGS Numerous studies have established that cancer cells manipulate osteocytes to facilitate invasion and tumor progression in bone. Moreover, cancer cells dysregulate osteocyte function to disrupt physiological bone remodeling, leading to the development of bone disease. Targeting osteocytes and their derived factors has proven to effectively interfere with the progression of cancer in the bone and the associated bone disease. Osteocytes communicate with cancer cells and are also part of the vicious cycle of cancer in the bone. Additional studies investigating the role of osteocytes on metastases to the bone and the development of drug resistance are needed.
Collapse
Affiliation(s)
- Manish Adhikari
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Jesús Delgado-Calle
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| |
Collapse
|
31
|
Canter BS, Leung CN, Fritton JC, Bäck T, Rajon D, Azzam EI, Howell RW. Radium-223-induced Bystander Effects Cause DNA Damage and Apoptosis in Disseminated Tumor Cells in Bone Marrow. Mol Cancer Res 2021; 19:1739-1750. [PMID: 34039648 DOI: 10.1158/1541-7786.mcr-21-0005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/02/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022]
Abstract
Radiation-induced bystander effects have been implicated in contributing to the growth delay of disseminated tumor cells (DTC) caused by 223RaCl2, an alpha particle-emitting radiopharmaceutical. To understand how 223RaCl2 affects the growth, we have quantified biological changes caused by direct effects of radiation and bystander effects caused by the emitted radiations on DTC and osteocytes. Characterizing these effects contribute to understanding the efficacy of alpha particle-emitting radiopharmaceuticals and guide expansion of their use clinically. MDA-MB-231 or MCF-7 human breast cancer cells were inoculated intratibially into nude mice that were previously injected intravenously with 50 or 600 kBq/kg 223RaCl2. At 1-day and 3-days postinoculation, tibiae were harvested and examined for DNA damage (γ-H2AX foci) and apoptosis in osteocytes and cancer cells located within and beyond the range (70 μm) of alpha particles emitted from the bone surface. Irradiated and bystander MDA-MB-231 and MCF-7 cells harbored DNA damage. Bystander MDA-MB-231 cells expressed DNA damage at both treatment levels while bystander MCF-7 cells required the higher administered activity. Osteocytes also had DNA damage regardless of inoculated cancer cell line. The extent of DNA damage was quantified by increases in low (1-2 foci), medium (3-5 foci), and high (5+ foci) damage. MDA-MB-231 but not MCF-7 bystander cells showed increases in apoptosis in 223RaCl2-treated animals, as did irradiated osteocytes. In summary, radiation-induced bystander effects contribute to DTC cytotoxicity caused by 223RaCl2. IMPLICATIONS: This observation supports clinical investigation of the efficacy of 223RaCl2 to prevent breast cancer DTC from progressing to oligometastases.
Collapse
Affiliation(s)
- Brian S Canter
- Department of Radiology, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Calvin N Leung
- Department of Radiology, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - J Christopher Fritton
- Departments of Mechanical and Biomedical Engineering, City College of New York, New York, New York
| | - Tom Bäck
- Department of Radiation Physics, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Didier Rajon
- Department of Neurosurgery, University of Florida, Gainesville, Florida
| | - Edouard I Azzam
- Department of Radiology, New Jersey Medical School, Rutgers University, Newark, New Jersey.,Radiobiology and Health Branch, Canadian Nuclear Laboratories, Ontario, Canada
| | - Roger W Howell
- Department of Radiology, New Jersey Medical School, Rutgers University, Newark, New Jersey.
| |
Collapse
|
32
|
Riquelme MA, Gu S, Hua R, Jiang JX. Mechanotransduction via the coordinated actions of integrins, PI3K signaling and Connexin hemichannels. Bone Res 2021; 9:8. [PMID: 33531460 PMCID: PMC7854719 DOI: 10.1038/s41413-020-00126-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 09/25/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
Mechanical loading opens connexin 43 (Cx43) hemichannels (HCs), leading to the release of bone anabolic molecules, such as prostaglandins, from mechanosensitive osteocytes, which is essential for bone formation and remodeling. However, the mechanotransduction mechanism that activates HCs remains elusive. Here, we report a unique pathway by which mechanical signals are effectively transferred between integrin molecules located in different regions of the cell, resulting in HC activation. Both integrin α5 and αV were activated upon mechanical stimulation via either fluid dropping or flow shear stress (FSS). Inhibition of integrin αV activation or ablation of integrin α5 prevented HC opening on the cell body when dendrites were mechanically stimulated, suggesting mechanical transmission from the dendritic integrin αV to α5 in the cell body during HC activation. In addition, HC function was compromised in vivo, as determined by utilizing an antibody blocking αV activation and α5-deficient osteocyte-specific knockout mice. Furthermore, inhibition of integrin αV activation, but not that of α5, attenuated activation of the phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT) signaling pathway upon mechanical loading, and the inhibition of PI3K/AKT activation blocked integrin α5 activation and HC opening. Moreover, HC opening was blocked only by an anti-integrin αV antibody at low but not high FSS levels, suggesting that dendritic αV is a more sensitive mechanosensor than α5 for activating HCs. Together, these results reveal a new molecular mechanism of mechanotransduction involving the coordinated actions of integrins and PI3K/AKT in osteocytic dendritic processes and cell bodies that leads to HC opening and the release of key bone anabolic factors.
Collapse
Affiliation(s)
- Manuel A Riquelme
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, 78229-3900, USA
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, 78229-3900, USA
| | - Rui Hua
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, 78229-3900, USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, 78229-3900, USA.
| |
Collapse
|
33
|
Osteocytic Connexin43 Channels Regulate Bone-Muscle Crosstalk. Cells 2021; 10:cells10020237. [PMID: 33530465 PMCID: PMC7911162 DOI: 10.3390/cells10020237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 02/01/2023] Open
Abstract
Bone–muscle crosstalk plays an important role in skeletal biomechanical function, the progression of numerous pathological conditions, and the modulation of local and distant cellular environments. Previous work has revealed that the deletion of connexin (Cx) 43 in osteoblasts, and consequently, osteocytes, indirectly compromises skeletal muscle formation and function. However, the respective roles of Cx43-formed gap junction channels (GJs) and hemichannels (HCs) in the bone–muscle crosstalk are poorly understood. To this end, we used two Cx43 osteocyte-specific transgenic mouse models expressing dominant negative mutants, Δ130–136 (GJs and HCs functions are inhibited), and R76W (only GJs function is blocked), to determine the effect of these two types of Cx43 channels on neighboring skeletal muscle. Blockage of osteocyte Cx43 GJs and HCs in Δ130–136 mice decreased fast-twitch muscle mass with reduced muscle protein synthesis and increased muscle protein degradation. Both R76W and Δ130–136 mice exhibited decreased muscle contractile force accompanied by a fast-to-slow fiber transition in typically fast-twitch muscles. In vitro results further showed that myotube formation of C2C12 myoblasts was inhibited after treatment with the primary osteocyte conditioned media (PO CM) from R76W and Δ130–136 mice. Additionally, prostaglandin E2 (PGE2) level was significantly reduced in both the circulation and PO CM of the transgenic mice. Interestingly, the injection of PGE2 to the transgenic mice rescued fast-twitch muscle mass and function; however, this had little effect on protein synthesis and degradation. These findings indicate a channel-specific response: inhibition of osteocytic Cx43 HCs decreases fast-twitch skeletal muscle mass alongside reduced protein synthesis and increased protein degradation. In contrast, blockage of Cx43 GJs results in decreased fast-twitch skeletal muscle contractile force and myogenesis, with PGE2 partially accounting for the measured differences.
Collapse
|
34
|
Harnessing the therapeutic potential of antibodies targeting connexin hemichannels. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166047. [PMID: 33418036 DOI: 10.1016/j.bbadis.2020.166047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/17/2020] [Accepted: 12/03/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Connexin hemichannels have been implicated in pathology-promoting conditions, including inflammation, numerous widespread human diseases, including cancer and diabetes, and several rare diseases linked to pathological point mutations. METHODS We analysed the literature focusing on antibodies capable of modulating hemichannel function, highlighting generation methods, applications to basic biomedical research and translational potential. RESULTS Anti-hemichannel antibodies generated over the past 3 decades targeted mostly connexin 43, with a focus on cancer treatment. A slow transition from relatively unselective polyclonal antibodies to more selective monoclonal antibodies resulted in few products with interesting characteristics that are under evaluation for clinical trials. Selection of antibodies from combinatorial phage-display libraries, has permitted to engineer a monoclonal antibody that binds to and blocks pathological hemichannels formed by connexin 26, 30 and 32. CONCLUSIONS All known antibodies that modulate connexin hemichannels target the two small extracellular loops of the connexin proteins. The extracellular region of different connexins is highly conserved, and few residues of each connexins are exposed. The search for new antibodies may develop an unprecedented potential for therapeutic applications, as it may benefit tremendously from novel whole-cell screening platforms that permit in situ selection of antibodies against membrane proteins in native state. The demonstrated efficacy of mAbs in reaching and modulating hemichannels in vivo, together with their relative specificity for connexins overlapping epitopes, should hopefully stimulate an interest for widening the scope of anti-hemichannel antibodies. There is no shortage of currently incurable diseases for which therapeutic intervention may benefit from anti-hemichannel antibodies capable of modulating hemichannel function selectively and specifically.
Collapse
|
35
|
Clézardin P, Coleman R, Puppo M, Ottewell P, Bonnelye E, Paycha F, Confavreux CB, Holen I. Bone metastasis: mechanisms, therapies, and biomarkers. Physiol Rev 2020; 101:797-855. [PMID: 33356915 DOI: 10.1152/physrev.00012.2019] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Skeletal metastases are frequent complications of many cancers, causing bone complications (fractures, bone pain, disability) that negatively affect the patient's quality of life. Here, we first discuss the burden of skeletal complications in cancer bone metastasis. We then describe the pathophysiology of bone metastasis. Bone metastasis is a multistage process: long before the development of clinically detectable metastases, circulating tumor cells settle and enter a dormant state in normal vascular and endosteal niches present in the bone marrow, which provide immediate attachment and shelter, and only become active years later as they proliferate and alter the functions of bone-resorbing (osteoclasts) and bone-forming (osteoblasts) cells, promoting skeletal destruction. The molecular mechanisms involved in mediating each of these steps are described, and we also explain how tumor cells interact with a myriad of interconnected cell populations in the bone marrow, including a rich vascular network, immune cells, adipocytes, and nerves. We discuss metabolic programs that tumor cells could engage with to specifically grow in bone. We also describe the progress and future directions of existing bone-targeted agents and report emerging therapies that have arisen from recent advances in our understanding of the pathophysiology of bone metastases. Finally, we discuss the value of bone turnover biomarkers in detection and monitoring of progression and therapeutic effects in patients with bone metastasis.
Collapse
Affiliation(s)
- Philippe Clézardin
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, University of Lyon 1, Lyon, France.,Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Rob Coleman
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Margherita Puppo
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Penelope Ottewell
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Edith Bonnelye
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, University of Lyon 1, Lyon, France
| | - Frédéric Paycha
- Service de Médecine Nucléaire, Hôpital Lariboisière, Paris, France
| | - Cyrille B Confavreux
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, University of Lyon 1, Lyon, France.,Service de Rhumatologie Sud, CEMOS-Centre Expert des Métastases Osseuses, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Ingunn Holen
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
36
|
Luo KJ, Chen CX, Yang JP, Huang YC, Cardenas ER, Jiang JX. Connexins in Lung Cancer and Brain Metastasis. Front Oncol 2020; 10:599383. [PMID: 33425756 PMCID: PMC7786366 DOI: 10.3389/fonc.2020.599383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/11/2020] [Indexed: 01/20/2023] Open
Abstract
Connexins (Cxs) are involved in the brain metastasis of lung cancer cells. Thus, it is necessary to determine whether gap junction-forming Cxs are involved in the communication between lung cancer cells and the host cells, such as endothelial cells, forming the brain-blood-barrier, and cells in the central nervous system. Data from multiple studies support that Cxs function as tumor suppressors during lung cancer occurrence. However, recent evidence suggests that during metastasis to the brain, cancer cells establish communication with the host. This review discusses junctional or non-junctional hemichannel studies in lung cancer development and brain metastasis, highlighting important unanswered questions and controversies.
Collapse
Affiliation(s)
- Kai-Jun Luo
- School of Life Sciences, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Chang-Xu Chen
- School of Life Sciences, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Jia-Peng Yang
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
- Joint International Research Laboratory of Regional Tumor in High Altitude Area, Kunming, China
| | - Yun-Chao Huang
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
- Joint International Research Laboratory of Regional Tumor in High Altitude Area, Kunming, China
| | - Eduardo R. Cardenas
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| |
Collapse
|
37
|
Mulkearns-Hubert EE, Reizes O, Lathia JD. Connexins in Cancer: Jekyll or Hyde? Biomolecules 2020; 10:E1654. [PMID: 33321749 PMCID: PMC7764653 DOI: 10.3390/biom10121654] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022] Open
Abstract
The expression, localization, and function of connexins, the protein subunits that comprise gap junctions, are often altered in cancer. In addition to cell-cell coupling through gap junction channels, connexins also form hemichannels that allow communication between the cell and the extracellular space and perform non-junctional intracellular activities. Historically, connexins have been considered tumor suppressors; however, they can also serve tumor-promoting functions in some contexts. Here, we review the literature surrounding connexins in cancer cells in terms of specific connexin functions and propose that connexins function upstream of most, if not all, of the hallmarks of cancer. The development of advanced connexin targeting approaches remains an opportunity for the field to further interrogate the role of connexins in cancer phenotypes, particularly through the use of in vivo models. More specific modulators of connexin function will both help elucidate the functions of connexins in cancer and advance connexin-specific therapies in the clinic.
Collapse
Affiliation(s)
- Erin E. Mulkearns-Hubert
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (O.R.); (J.D.L.)
| | - Ofer Reizes
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (O.R.); (J.D.L.)
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College, Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Justin D. Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (O.R.); (J.D.L.)
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College, Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
38
|
Eichholz KF, Woods I, Riffault M, Johnson GP, Corrigan M, Lowry MC, Shen N, Labour M, Wynne K, O'Driscoll L, Hoey DA. Human bone marrow stem/stromal cell osteogenesis is regulated via mechanically activated osteocyte-derived extracellular vesicles. Stem Cells Transl Med 2020; 9:1431-1447. [PMID: 32672416 PMCID: PMC7581449 DOI: 10.1002/sctm.19-0405] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/24/2020] [Accepted: 05/24/2020] [Indexed: 12/18/2022] Open
Abstract
Bone formation or regeneration requires the recruitment, proliferation, and osteogenic differentiation of stem/stromal progenitor cells. A potent stimulus driving this process is mechanical loading. Osteocytes are mechanosensitive cells that play fundamental roles in coordinating loading-induced bone formation via the secretion of paracrine factors. However, the exact mechanisms by which osteocytes relay mechanical signals to these progenitor cells are poorly understood. Therefore, this study aimed to demonstrate the potency of the mechanically stimulated osteocyte secretome in driving human bone marrow stem/stromal cell (hMSC) recruitment and differentiation, and characterize the secretome to identify potential factors regulating stem cell behavior and bone mechanobiology. We demonstrate that osteocytes subjected to fluid shear secrete a distinct collection of factors that significantly enhance hMSC recruitment and osteogenesis and demonstrate the key role of extracellular vesicles (EVs) in driving these effects. This demonstrates the pro-osteogenic potential of osteocyte-derived mechanically activated extracellular vesicles, which have great potential as a cell-free therapy to enhance bone regeneration and repair in diseases such as osteoporosis.
Collapse
Affiliation(s)
- Kian F. Eichholz
- Department of Mechanical, Aeronautical and Biomedical EngineeringMaterials and Surface Science Institute, University of LimerickLimerickIreland
- Trinity Centre for Biomedical EngineeringTrinity Biomedical Sciences Institute, Trinity College DublinDublin 2Ireland
- Department of Mechanical and Manufacturing EngineeringSchool of Engineering, Trinity College DublinDublin 2Ireland
| | - Ian Woods
- Trinity Centre for Biomedical EngineeringTrinity Biomedical Sciences Institute, Trinity College DublinDublin 2Ireland
- Department of Mechanical and Manufacturing EngineeringSchool of Engineering, Trinity College DublinDublin 2Ireland
| | - Mathieu Riffault
- Trinity Centre for Biomedical EngineeringTrinity Biomedical Sciences Institute, Trinity College DublinDublin 2Ireland
- Department of Mechanical and Manufacturing EngineeringSchool of Engineering, Trinity College DublinDublin 2Ireland
| | - Gillian P. Johnson
- Department of Mechanical, Aeronautical and Biomedical EngineeringMaterials and Surface Science Institute, University of LimerickLimerickIreland
- Trinity Centre for Biomedical EngineeringTrinity Biomedical Sciences Institute, Trinity College DublinDublin 2Ireland
- Department of Mechanical and Manufacturing EngineeringSchool of Engineering, Trinity College DublinDublin 2Ireland
| | - Michele Corrigan
- Department of Mechanical, Aeronautical and Biomedical EngineeringMaterials and Surface Science Institute, University of LimerickLimerickIreland
- Trinity Centre for Biomedical EngineeringTrinity Biomedical Sciences Institute, Trinity College DublinDublin 2Ireland
- Department of Mechanical and Manufacturing EngineeringSchool of Engineering, Trinity College DublinDublin 2Ireland
| | - Michelle C. Lowry
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences InstituteTrinity College DublinDublinIreland
| | - Nian Shen
- Trinity Centre for Biomedical EngineeringTrinity Biomedical Sciences Institute, Trinity College DublinDublin 2Ireland
- Department of Mechanical and Manufacturing EngineeringSchool of Engineering, Trinity College DublinDublin 2Ireland
| | - Marie‐Noelle Labour
- Department of Mechanical, Aeronautical and Biomedical EngineeringMaterials and Surface Science Institute, University of LimerickLimerickIreland
- Trinity Centre for Biomedical EngineeringTrinity Biomedical Sciences Institute, Trinity College DublinDublin 2Ireland
- Department of Mechanical and Manufacturing EngineeringSchool of Engineering, Trinity College DublinDublin 2Ireland
| | - Kieran Wynne
- UCD Conway Institute of Biomolecular and Biomedical ResearchUniversity College DublinDublin 4Ireland
- Mass Spectrometry ResourceUniversity College DublinDublin 4Ireland
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences InstituteTrinity College DublinDublinIreland
| | - David A. Hoey
- Department of Mechanical, Aeronautical and Biomedical EngineeringMaterials and Surface Science Institute, University of LimerickLimerickIreland
- Trinity Centre for Biomedical EngineeringTrinity Biomedical Sciences Institute, Trinity College DublinDublin 2Ireland
- Department of Mechanical and Manufacturing EngineeringSchool of Engineering, Trinity College DublinDublin 2Ireland
- Advanced Materials and Bioengineering Research CentreTrinity College Dublin & RCSIDublinIreland
| |
Collapse
|
39
|
Wang M, Xia F, Wei Y, Wei X. Molecular mechanisms and clinical management of cancer bone metastasis. Bone Res 2020; 8:30. [PMID: 32793401 PMCID: PMC7391760 DOI: 10.1038/s41413-020-00105-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/03/2019] [Accepted: 10/23/2019] [Indexed: 02/05/2023] Open
Abstract
As one of the most common metastatic sites of malignancies, bone has a unique microenvironment that allows metastatic tumor cells to grow and flourish. The fenestrated capillaries in the bone, bone matrix, and bone cells, including osteoblasts and osteoclasts, together maintain the homeostasis of the bone microenvironment. In contrast, tumor-derived factors act on bone components, leading to subsequent bone resorption or excessive bone formation. The various pathways involved also provide multiple targets for therapeutic strategies against bone metastases. In this review, we summarize the current understanding of the mechanism of bone metastases. Based on the general process of bone metastases, we specifically highlight the complex crosstalk between tumor cells and the bone microenvironment and the current management of cancer bone metastases.
Collapse
Affiliation(s)
- Manni Wang
- Laboratory of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan P.R. China
| | - Fan Xia
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan P.R. China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan P.R. China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan P.R. China
| |
Collapse
|
40
|
Bone, a Secondary Growth Site of Breast and Prostate Carcinomas: Role of Osteocytes. Cancers (Basel) 2020; 12:cancers12071812. [PMID: 32640686 PMCID: PMC7408809 DOI: 10.3390/cancers12071812] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023] Open
Abstract
Bone is the primarily preferred site for breast and prostate cancer to metastasize. Bone metastases are responsible for most deaths related to breast and prostate cancer. The bone's particular microenvironment makes it conducive for the growth of cancer cells. Studies on bone metastasis have focused on the interaction between cancer cells and the bone microenvironment. Osteocytes, the most common cell type of bone tissue, have received little attention in bone metastasis, although they are master signal sensors, integrators, and skeleton transducers. They play an important role in regulating bone mass by acting on both osteoblasts and osteoclasts, through the release of proteins such as sclerostin, Dickkopf-1 (DKK-1), and fibroblast growth factor 23 (FGF23). Osteocytes have been extensively re-evaluated, in light of their multiple functions: with different experimental approaches, it has been shown that, indeed, osteocytes are actively involved in the colonization of bone tissue by cancer cells. The present review focuses on recent research on the role that osteocytes play in bone metastasis of breast and prostate cancers. Moreover, the studies here summarized open up perspectives for new therapeutic approaches focused on modulating the activity of osteocytes to improve the condition of the bone metastatic patients. A better understanding of the complex interactions between cancer cells and bone-resident cells is indispensable for identifying potential therapeutic targets to stop tumor progression and prevent bone metastases.
Collapse
|
41
|
Sinha G, Ferrer AI, Moore CA, Naaldijk Y, Rameshwar P. Gap Junctions and Breast Cancer Dormancy. Trends Cancer 2020; 6:348-357. [PMID: 32209448 DOI: 10.1016/j.trecan.2020.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/21/2022]
Abstract
Breast cancer (BC) relapse, despite clinical advancement, remains one of the biggest issues in the field. Intercellular communication, specifically via connexin (Cx)-mediated gap junctions (GJs), play a key role in the long-term survival of these, treatment-resistant breast cancer stem cells (CSCs), allowing for relapse. Both basic and clinical evidence reveal dual roles for GJs, in tumor suppression, generally referred to as dormancy, and progression and metastasis. GJ intercellular communication (GJIC) can be mediated by multiple types of Cxs, depending on the organ to which the BC cells metastasize. This review expands on the differential expression of Cx-mediated GJIC between CSCs and niche cells within a given microenvironment.
Collapse
Affiliation(s)
- Garima Sinha
- Rutgers School of Graduate Studies at New Jersey Medical School, Newark, NJ, USA; Department of Medicine - Hematology/Oncology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Alejandra I Ferrer
- Rutgers School of Graduate Studies at New Jersey Medical School, Newark, NJ, USA; Department of Medicine - Hematology/Oncology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Caitlyn A Moore
- Rutgers School of Graduate Studies at New Jersey Medical School, Newark, NJ, USA; Department of Medicine - Hematology/Oncology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Yahaira Naaldijk
- Rutgers School of Graduate Studies at New Jersey Medical School, Newark, NJ, USA
| | - Pranela Rameshwar
- Department of Medicine - Hematology/Oncology, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
42
|
Zarrer J, Haider MT, Smit DJ, Taipaleenmäki H. Pathological Crosstalk between Metastatic Breast Cancer Cells and the Bone Microenvironment. Biomolecules 2020; 10:biom10020337. [PMID: 32092997 PMCID: PMC7072692 DOI: 10.3390/biom10020337] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
Bone is the most common metastatic site in breast cancer. Upon arrival to the bone, disseminated tumor cells can undergo a period of dormancy but often eventually grow and hijack the bone microenvironment. The bone marrow microenvironment consists of multiple cell types including the bone cells, adipocytes, endothelial cells, and nerve cells that all have crucial functions in the maintenance of bone homeostasis. Tumor cells severely disturb the tightly controlled cellular and molecular interactions in the bone marrow fueling their own survival and growth. While the role of bone resorbing osteoclasts in breast cancer bone metastases is well established, the function of other bone cells, as well as adipocytes, endothelial cells, and nerve cells is less understood. In this review, we discuss the composition of the physiological bone microenvironment and how the presence of tumor cells influences the microenvironment, creating a pathological crosstalk between the cells. A better understanding of the cellular and molecular events that occur in the metastatic bone microenvironment could facilitate the identification of novel cellular targets to treat this devastating disease.
Collapse
Affiliation(s)
- Jennifer Zarrer
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Marie-Therese Haider
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Daniel J. Smit
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Hanna Taipaleenmäki
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Correspondence:
| |
Collapse
|
43
|
Shiozawa Y. The Roles of Bone Marrow-Resident Cells as a Microenvironment for Bone Metastasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1226:57-72. [PMID: 32030676 DOI: 10.1007/978-3-030-36214-0_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It has been appreciated that the cross talk between bone metastatic cancer cells and bone marrow microenvironment influence one another to worsen bone metastatic disease progression. Bone marrow contains various cell types, including (1) cells of mesenchymal origin (e.g., osteoblasts, osteocytes, and adipocytes), (2) cells of hematopoietic origin (e.g., osteoclast and immune cells), and (3) others (e.g., endothelial cells and nerves). The recent studies have enabled us to discover many important cancer-derived factors responsible for the development of bone metastasis. However, many critical questions regarding the roles of bone microenvironment in bone metastatic progression remain elusive. To answer these questions, a deeper understanding of the cross talk between bone metastatic cancer and bone marrow microenvironment is clearly warranted.
Collapse
Affiliation(s)
- Yusuke Shiozawa
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC, USA.
| |
Collapse
|
44
|
Abstract
Bone is the most frequent site of breast cancer and prostate cancer metastasis, and one of the most common sites of metastasis for many solid tumors. Once cancer cells colonize in the bone, it imposes a major clinical challenge for the treatment of the disease, and fatality rates increase drastically. Bone, the largest organ in the body, provides a fertile microenvironment enriched with nutrients, growth factors and hormones, a generous reward for cancer cells. Dependent on cancer type, cancer cells can cause osteoblastic (bone forming) or osteolytic lesions to promote the net resorption and/or release of growth factors from the bone extracellular matrix. These processes activate a "vicious cycle", leading to disruption of bone integrity and promoting cancer cell growth and migration. Cancer cells influence the bone microenvironment favoring their colonization and growth. In order to metastasize to the bone, cancer cells must first migrate from the site of origin, and once established within the bone, they must overcome the dormant inducing effects of resident cells. If successful, cancer cells can then colonize and continually disrupt bone homeostasis that is primarily maintained by osteocytes, the most abundant bone cell type. For example, it has been shown that exercise induces osteocytes to release anabolic factors that inhibit osteoclast resorptive activity, promote dormancy and the release of anti-cancer factors that inhibit breast cancer cell metastasis. In this review, we will summarize recent research findings and provide mechanistic insights related to the role of osteocytes in osteolytic metastasis.
Collapse
|
45
|
Zhang C, Liu CF, Chen AB, Yao Z, Li WG, Xu SJ, Ma XY. Prognostic and Clinic Pathological Value of Cx43 Expression in Glioma: A Meta-Analysis. Front Oncol 2019; 9:1209. [PMID: 31781504 PMCID: PMC6861382 DOI: 10.3389/fonc.2019.01209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/23/2019] [Indexed: 12/26/2022] Open
Abstract
Gap junctional intercellular communication (GJIC) composed of connexin proteins is considered vital to cancer onset and progression since 50 years ago based on Lowenstein and Kano's works, however altered expression of connexins is still a lesser known “hallmark” of cancer. Although many studies support the hypothesis that connexins are tumor suppressors, recent evidence indicates that, in some tumor types including glioma, they may play contradictory role in some specific stages of tumor progression. We thus conduct a meta-analysis to evaluate the prognostic role of Cx43 in glioma for the unanswered questions that whether Cx43 is a beneficial or insalubrity factor for glioma. Eight studies with 1,706 patients were included for meta-analysis. The results showed that Cx43 expression was a clearly negative factor with tumor grades (I2 = 34%, P < 0.001) and beneficial for OS (n = 3, HR 2.62, 95%CI 1.47–4.68; P = 0.001). Subgroup analysis also found that Cx43 had different expression in Asian young patients vs. other groups. In conclusion, this article summarize the prognostic value of Cx43 and offer a clinical evidence for the notion that Cx43 is generally a tumor suppressor and beneficial for the patients' survival time.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, China.,Brain Science Research Institute, Shandong University, Jinan, China
| | - Cheng-Fen Liu
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, China
| | - An-Bin Chen
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, China.,Brain Science Research Institute, Shandong University, Jinan, China
| | - Zhong Yao
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, China.,Brain Science Research Institute, Shandong University, Jinan, China
| | - Wei-Guo Li
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, China.,Brain Science Research Institute, Shandong University, Jinan, China
| | - Shu-Jun Xu
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, China.,Brain Science Research Institute, Shandong University, Jinan, China
| | - Xiang-Yu Ma
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, China.,Brain Science Research Institute, Shandong University, Jinan, China
| |
Collapse
|
46
|
Gap Junction Intercellular Communication in the Carcinogenesis Hallmarks: Is This a Phenomenon or Epiphenomenon? Cells 2019; 8:cells8080896. [PMID: 31416286 PMCID: PMC6721698 DOI: 10.3390/cells8080896] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/03/2019] [Accepted: 08/12/2019] [Indexed: 12/24/2022] Open
Abstract
If occupational tumors are excluded, cancer causes are largely unknown. Therefore, it appeared useful to work out a theory explaining the complexity of this disease. More than fifty years ago the first demonstration that cells communicate with each other by exchanging ions or small molecules through the participation of connexins (Cxs) forming Gap Junctions (GJs) occurred. Then the involvement of GJ Intercellular Communication (GJIC) in numerous physiological cellular functions, especially in proliferation control, was proven and accounts for the growing attention elicited in the field of carcinogenesis. The aim of the present paper is to verify and discuss the role of Cxs, GJs, and GJIC in cancer hallmarks, pointing on the different involved mechanisms in the context of the multi-step theory of carcinogenesis. Functional GJIC acts both as a tumor suppressor and as a tumor enhancer in the metastatic stage. On the contrary, lost or non-functional GJs allow the uncontrolled proliferation of stem/progenitor initiated cells. Thus, GJIC plays a key role in many biological phenomena or epiphenomena related to cancer. Depending on this complexity, GJIC can be considered a tumor suppressor in controlling cell proliferation or a cancer ally, with possible preventive or therapeutic implications in both cases.
Collapse
|
47
|
Aasen T, Leithe E, Graham SV, Kameritsch P, Mayán MD, Mesnil M, Pogoda K, Tabernero A. Connexins in cancer: bridging the gap to the clinic. Oncogene 2019; 38:4429-4451. [PMID: 30814684 PMCID: PMC6555763 DOI: 10.1038/s41388-019-0741-6] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/26/2019] [Accepted: 01/26/2019] [Indexed: 02/08/2023]
Abstract
Gap junctions comprise arrays of intercellular channels formed by connexin proteins and provide for the direct communication between adjacent cells. This type of intercellular communication permits the coordination of cellular activities and plays key roles in the control of cell growth and differentiation and in the maintenance of tissue homoeostasis. After more than 50 years, deciphering the links among connexins, gap junctions and cancer, researchers are now beginning to translate this knowledge to the clinic. The emergence of new strategies for connexin targeting, combined with an improved understanding of the molecular bases underlying the dysregulation of connexins during cancer development, offers novel opportunities for clinical applications. However, different connexin isoforms have diverse channel-dependent and -independent functions that are tissue and stage specific. This can elicit both pro- and anti-tumorigenic effects that engender significant challenges in the path towards personalised medicine. Here, we review the current understanding of the role of connexins and gap junctions in cancer, with particular focus on the recent progress made in determining their prognostic and therapeutic potential.
Collapse
Affiliation(s)
- Trond Aasen
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Autonomous University of Barcelona, CIBERONC, Barcelona, Spain.
| | - Edward Leithe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital and K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Sheila V Graham
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Petra Kameritsch
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München and Munich University Hospital, München, Germany
| | - María D Mayán
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), University of A Coruña, A Coruña, Spain
| | - Marc Mesnil
- STIM Laboratory, Faculté des Sciences Fondamentales et Appliquées, Université de Poitiers, Poitiers, France
| | - Kristin Pogoda
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München and Munich University Hospital, München, Germany
| | - Arantxa Tabernero
- Departamento de Bioquímica y Biología Molecular, Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Salamanca, Spain.
| |
Collapse
|
48
|
Ahmadian E, Eftekhari A, Samiei M, Maleki Dizaj S, Vinken M. The role and therapeutic potential of connexins, pannexins and their channels in Parkinson's disease. Cell Signal 2019; 58:111-118. [DOI: 10.1016/j.cellsig.2019.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/10/2019] [Accepted: 03/10/2019] [Indexed: 02/07/2023]
|
49
|
Atkinson EG, Delgado‐Calle J. The Emerging Role of Osteocytes in Cancer in Bone. JBMR Plus 2019; 3:e10186. [PMID: 30918922 PMCID: PMC6419608 DOI: 10.1002/jbm4.10186] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/29/2019] [Accepted: 02/06/2019] [Indexed: 12/13/2022] Open
Abstract
Advances in the last decade have established the osteocyte, the most abundant cell in bone, as a dynamic and multifunctional cell capable of controlling bone homeostasis by regulating the function of both osteoblasts and osteoclasts. In addition, accumulating evidence demonstrates that osteocyte function is altered in several skeletal disorders, and targeting osteocytes and their derived factors improves skeletal health. Despite the remarkable progress in our understanding of osteocyte biology, there has been a paucity of information regarding the role of osteocytes in the progression of cancer in bone. Exciting, recent discoveries suggest that tumor cells communicate with osteocytes to generate a microenvironment that supports the growth and survival of cancer cells and stimulates bone destruction. This review features these novel findings and discussions regarding the impact of chemotherapy on osteocyte function and the potential of targeting osteocytes for the treatment of cancer in bone. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Emily G Atkinson
- Department of Anatomy and Cell BiologyIndiana University School of MedicineIndianapolisINUSA
| | - Jesús Delgado‐Calle
- Department of Anatomy and Cell BiologyIndiana University School of MedicineIndianapolisINUSA
- Department of MedicineDivision of Hematology/OncologyIndiana University School of MedicineIndianapolisINUSA
- Indiana Center for Musculoskeletal HealthIndiana University School of MedicineIndianapolisINUSA
| |
Collapse
|
50
|
Prostate cancer promotes a vicious cycle of bone metastasis progression through inducing osteocytes to secrete GDF15 that stimulates prostate cancer growth and invasion. Oncogene 2019; 38:4540-4559. [PMID: 30755731 DOI: 10.1038/s41388-019-0736-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 01/15/2019] [Accepted: 01/27/2019] [Indexed: 12/11/2022]
Abstract
Bone is the most frequent site of prostate cancer (PCa) metastasis; however, little is known about the role of the most common cell in bone, the osteocyte (OCy), in cancer biology. In this study we explored the crosstalk between PCa cells and OCys to determine if it contributes to PCa progression. PCa cells induced OCys to promote PCa proliferation, migration and invasion. A chemokine screen revealed that PCa cell induced OCys to produce growth-derived factor 15 (GDF15). Knockdown of GDF15 in OCys demonstrated that PCa cells conferred the ability on OCys to promote PCa proliferation, migration and invasion through GDF15. Consistent with this finding was the observation that the GDF15 receptor, GFRAL, was expressed on multiple PCa cell lines. Transcription factor array screening of PCa cells exposed to OCys with or without knockdown of GDF15 revealed that GDF15 in OCys promoted early growth response 1 (EGR1) expression in the PCa cells. Knockdown of EGR1 expression in PCa cells revealed it was required for the OCy-derived GDF15-mediated induction of in vitro PCa cell proliferation, migration and invasion. Subcutaneous co-injection of PCa cells and OCys into mice revealed that OCys promoted tumor growth in vivo, which was diminished by knockdown of GDF15 in the OCys. Knockdown of GDF15 in the tibiae diminished growth of PCa cancer cells injected into the tibiae, which was accompanied by decreased tumor cell proliferation and EGR1 expression. These results shed light on a novel mechanism through which PCa cells educate OCys to promote progression of PCa bone metastasis. They also suggest that targeting of GDF15-based and EGR1-based signaling pathways should be further explored for their potential to diminish progression of PCa bone metastasis.
Collapse
|