1
|
Li N, Du J, Yang Y, Zhao T, Wu D, Peng F, Wang D, Kong L, Zhou W, Hao A. Microglial PCGF1 alleviates neuroinflammation associated depressive behavior in adolescent mice. Mol Psychiatry 2024:10.1038/s41380-024-02714-2. [PMID: 39215186 DOI: 10.1038/s41380-024-02714-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Epigenetics plays a crucial role in regulating gene expression during adolescent brain maturation. In adolescents with depression, microglia-mediated chronic neuroinflammation may contribute to the activation of cellular signaling cascades and cause central synapse loss. However, the exact mechanisms underlying the epigenetic regulation of neuroinflammation leading to adolescent depression remain unclear. In this study, we found that the expression of polycomb group 1 (PCGF1), an important epigenetic regulator, was decreased both in the plasma of adolescent major depressive disorder (MDD) patients and in the microglia of adolescent mice in a mouse model of depression. We demonstrated that PCGF1 alleviates neuroinflammation mediated by microglia in vivo and in vitro, reducing neuronal damage and improving depression-like behavior in adolescent mice. Mechanistically, PCGF1 inhibits the transcription of MMP10 by upregulating RING1B/H2AK119ub and EZH2/H3K27me3 in the MMP10 promoter region, specifically inhibiting microglia-mediated neuroinflammation. These results provide valuable insights into the pathogenesis of adolescent depression, highlighting potential links between histone modifications, neuroinflammation and nerve damage. Potential mechanisms of microglial PCGF1 regulates depression-like behavior in adolescent mice. Microglial PCGF1 inhibits NF-κB/MAPK pathway activation through regulation of RING1B/H2AK119ub and EZH2/H3K27me3 in the MMP10 promoter region, which attenuates neuroinflammation and ameliorates depression-like behaviors in adolescent mice.
Collapse
Affiliation(s)
- Naigang Li
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingyi Du
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ying Yang
- Childhood Psychiatry Unit, Shandong Mental Health Center, Jinan, China
| | - Tiantian Zhao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dong Wu
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fan Peng
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dongshuang Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Linghua Kong
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Wenjuan Zhou
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Aijun Hao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
2
|
Yin H, Wu D, Qu Q, Li Z, Zhao L. Ubiquitin-specific peptidase 15 regulates the TFAP4/PCGF1 axis facilitating liver metastasis of colorectal cancer and cell stemness. Biochem Pharmacol 2024; 226:116319. [PMID: 38801926 DOI: 10.1016/j.bcp.2024.116319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
The tumor recurrence and metastasis of colorectal cancer (CRC) are responsible for most of CRC-linked mortalities. It is an urgent need to deeply investigate the pathogenesis of CRC metastasis and look for novel targets for its treatment. The current study aimed to investigate the effects of ubiquitin-specific peptidase 15 (USP-15) on the CRC progression. In vivo, a mouse model of liver metastasis of CRC tumor was established to investigate the role of USP-15. In vitro, the migrated and invasive abilities of CRC cells were assessed by transwell assay. Cell stemness was evaluated by using sphere formation assay. The underlying mechanism was further explored by employing the co-immunoprecipitation, dual luciferase reporter assay, oligonucleotide pull-down assay, and chromatin immunoprecipitation assay. The results showed that USP-15 was upregulated in CRC patients with liver metastasis and high metastatic potential cell lines of CRC. Loss of USP-15 repressed the epithelial-to-mesenchymal transition (EMT), migration, invasion, and stemness properties of CRC cells in vitro. Downregulation of USP-15 reduced the liver metastasis of mice in vivo. USP-15 upregulation obtained the contrary effects. Subsequently, USP-15 deubiquitinated transcription factor AP-4 (TFAP4) and enhanced its protein stability. TFAP4 could transcriptionally activated polycomb group ring finger 1 (PCGF1). The pro-cancer effects of USP-15 were rescue by the knockdown of TFAP4 or PCGF1. In conclusions: USP-15 facilitated the liver metastasis by the enhancement of cell stemness and EMT in CRC, which was at least partly mediated by the deubiquitination of TFAP4 upon the upregulation of PCGF1.
Collapse
Affiliation(s)
- Hongzhuan Yin
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning, China
| | - Di Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning, China
| | - Qiao Qu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning, China
| | - Zhilong Li
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning, China
| | - Lianrong Zhao
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning, China.
| |
Collapse
|
3
|
Wang Y, Suo J, Wang Z, Ran K, Tian Y, Han W, Liu Y, Peng X. The PTPRZ1-MET/STAT3/ISG20 axis in glioma stem-like cells modulates tumor-associated macrophage polarization. Cell Signal 2024; 120:111191. [PMID: 38685521 DOI: 10.1016/j.cellsig.2024.111191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Recent studies have revealed that PTPRZ1-MET (ZM) fusion plays a pivotal role in the progression of glioma to glioblastoma multiforme (GBM), thus serving as a biomarker to distinguish between primary GBM and secondary GBM (sGBM). However, the mechanisms through which ZM fusion influences this progression remain to be elucidated. GBMs with ZM showed poorer prognoses and greater infiltration of tumor-associated macrophages (TAMs) than those without ZM. Glioma stem-like cells (GSCs) and TAMs play complex roles in glioma recurrence, glioma progression and therapy resistance. In this study, we analyzed RNA-seq data from sGBM patients' glioma tissues with or without ZM fusion, and found that stemness and macrophage markers were more highly expressed in sGBM patients harboring ZM than in those without ZM fusion. ZM enhanced the self-renewal and proliferation of GSCs, thereby accelerating glioma progression. In addition, ZM-positive GSCs facilitated the infiltration of TAMs and drove their polarization toward an immunosuppressive phenotype, which was primarily accomplished through the extracellular secretion of ISG20. Our research identified the MET-STAT3-ISG20 axis within GSCs, thus demonstrating the critical role of ZM in GBM initiation and progression. Our study demonstrated that, in contrast to ZM-positive differentiated glioma cells, ZM-positive GSCs upregulated ISG20 expression through the MET-STAT3-ISG20 axis. The extracellular secretion of ISG20 recruited and induced M2-like polarization in macrophages, thereby promoting tumor progression. Our results reveal a novel mechanism involved in ZM-positive GBM pathogenesis and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Yuxin Wang
- Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Jinghao Suo
- Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Zhixing Wang
- Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Kunnian Ran
- Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Yuan Tian
- Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Wei Han
- Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China.
| | - Yanwei Liu
- Department of Radiation Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| | - Xiaozhong Peng
- Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
4
|
Wang J, Xi YF, Zhao Q, Guo JH, Zhang Z, Zhang MB, Chang J, Wu YQ, Su W. CDKN2A promoter methylation enhances self-renewal of glioblastoma stem cells and confers resistance to carmustine. Mol Biol Rep 2024; 51:385. [PMID: 38438773 PMCID: PMC10912136 DOI: 10.1007/s11033-024-09247-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/11/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Glioblastoma, a highly aggressive form of brain cancer, poses significant challenges due to its resistance to therapy and high recurrence rates. This study aimed to investigate the expression and functional implications of CDKN2A, a key tumor suppressor gene, in glioblastoma cells, building upon the existing background of knowledge in this field. METHOD Quantitative reverse transcription PCR (qRT-PCR) analysis was performed to evaluate CDKN2A expression in U87 glioblastoma cells compared to normal human astrocytes (NHA). CDKN2A expression levels were manipulated using small interfering RNA (siRNA) and CDKN2A overexpression vector. Cell viability assays and carmustine sensitivity tests were conducted to assess the impact of CDKN2A modulation on glioblastoma cell viability and drug response. Sphere formation assays and western blot analysis were performed to investigate the role of CDKN2A in glioblastoma stem cell (GSC) self-renewal and pluripotency marker expression. Additionally, methylation-specific PCR (MSP) assays and demethylation treatment were employed to elucidate the mechanism of CDKN2A downregulation in U87 cells. RESULT CDKN2A expression was significantly reduced in glioblastoma cells compared to NHA. CDKN2A overexpression resulted in decreased cell viability and enhanced sensitivity to carmustine treatment. CDKN2A inhibition promoted self-renewal capacity and increased pluripotency marker expression in U87 cells. CDKN2A upregulation led to elevated protein levels of p16INK4a, p14ARF, P53, and P21, which are involved in cell cycle regulation. CDKN2A downregulation in U87 cells was associated with high promoter methylation, which was reversed by treatment with a demethylating agent. CONCLUSION Our findings demonstrate that CDKN2A downregulation in glioblastoma cells is associated with decreased cell viability, enhanced drug resistance, increased self-renewal capacity, and altered expression of pluripotency markers. The observed CDKN2A expression changes are mediated by promoter methylation. These results highlight the potential role of CDKN2A as a therapeutic target and prognostic marker in glioblastoma.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pathology, Cancer Hospital Affiliated to Shanxi Medical University/Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, Taiyuan, 030013, Shanxi, China
| | - Yan-Feng Xi
- Department of Pathology, Cancer Hospital Affiliated to Shanxi Medical University/Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, Taiyuan, 030013, Shanxi, China
| | - Qi Zhao
- Department of Pathology, Cancer Hospital Affiliated to Shanxi Medical University/Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, Taiyuan, 030013, Shanxi, China
| | - Jiang-Hong Guo
- Department of Pathology, Cancer Hospital Affiliated to Shanxi Medical University/Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, Taiyuan, 030013, Shanxi, China
| | - Zhen Zhang
- Department of Pathology, Cancer Hospital Affiliated to Shanxi Medical University/Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, Taiyuan, 030013, Shanxi, China
| | - Mao-Bai Zhang
- Department of Neurosurgery, Cancer Hospital Affiliated to Shanxi Medical University/Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, Taiyuan, 030013, Shanxi, China
| | - Jiang Chang
- Department of Pathology, Cancer Hospital Affiliated to Shanxi Medical University/Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, Taiyuan, 030013, Shanxi, China
| | - Yue-Qin Wu
- Department of Pathology, Cancer Hospital Affiliated to Shanxi Medical University/Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, Taiyuan, 030013, Shanxi, China
| | - Wen Su
- Department of Medical Laboratory, Cancer Hospital Affiliated to Shanxi Medical University/Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, Taiyuan, 030013, Shanxi, China.
| |
Collapse
|
5
|
Meng X, Ma G, Zhang X, Yin H, Miao Y, He F. Extracellular vesicles from Fusobacterium nucleatum: roles in the malignant phenotypes of gastric cancer. Cell Cycle 2024; 23:294-307. [PMID: 38446489 PMCID: PMC11057558 DOI: 10.1080/15384101.2024.2324587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/15/2024] [Indexed: 03/07/2024] Open
Abstract
The increase of the Fusobacterium nucleatum level has been previously identified in various cancers including gastric cancer (GC), but how the F. nucleatum exerts its carcinogenic role in GC remains unclear. Several studies revealed that F. nucleatum contributes to cancer progression via its secretion of extracellular vehicles (EVs). Hence, it's designed to reveal the influence of F. nucleatum-derived EVs (Fn-EVs) in GC progression. The tumor and adjacent tissues were collected from 30 GC patients, and the abundance of F. nucleatum was found to be highly expressed in tumor samples. The ultracentrifugation was employed to isolate EVs from F. nucleatum and Escherischia coli (E. coli), which were labeled Fn-EVs and E. coli-EVs, respectively. After treating GC cells with Fn-EVs and E. coli-EVs, cell counting kit 8, colony formation, wound healing as well as transwell assay were performed, which revealed that Fn-EVs effectively enhanced oxaliplatin resistance, and facilitated cell proliferation, migration, invasion, and stemness in GC cells while E. coli-EVs exert no significant effect on GC cells. Besides, the stemness and DNA repair of GC cells were also enhanced by Fn-EVs, as revealed by the sphere-forming assay and the detection of stemness- and DNA repair-associated proteins by western blotting. In vivo analyses demonstrated that Fn-EVs administration not only promoted GC tumor growth and liver metastasis but also conferred GC tumor resistance to oxaliplatin resistance. This study first revealed the contributive role of F. nucleatum in GC development via Fn-EVs, which provided a better perspective for manipulating F. nucleatum in treating GC patients with malignant phenotypes.
Collapse
Affiliation(s)
- Xiangkun Meng
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Gang Ma
- Department of Anesthesiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xu Zhang
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Hua Yin
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yu Miao
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Fang He
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
6
|
Suo J, Wang Y, Wang L, Qiu B, Wang Z, Yan A, Qiang B, Han W, Peng X. RAB31 in glioma-derived endothelial cells promotes glioma cell invasion via extracellular vesicle-mediated enrichment of MYO1C. FEBS Open Bio 2024; 14:138-147. [PMID: 37953466 PMCID: PMC10761932 DOI: 10.1002/2211-5463.13736] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/19/2023] [Accepted: 11/10/2023] [Indexed: 11/14/2023] Open
Abstract
Extracellular vesicles (EV), important messengers in intercellular communication, can load and transport various bioactive components and participate in different biological processes. We previously isolated glioma human endothelial cells (GhECs) and found that GhECs, rather than normal human brain endothelial cells (NhECs), exhibit specific enrichment of MYO1C into EVs and promote the migration of glioma cells. In this study, we explored the mechanism by which MYO1C is secreted into EVs. We report that such secretion is dependent on RAB31, RAB27B, and FAS. When expression of RAB31 increases, MYO1C is enriched in secretory EVs. Finally, we identified an EV export mechanism for MYO1C that promotes glioma cell invasion and is dependent on RAB31 in GhECs. In summary, our data indicate that the knockdown of RAB31 can reduce enrichment of MYO1C in extracellular vesicles, thereby attenuating the promotion of glioma cell invasion by GhEC-EVs.
Collapse
Affiliation(s)
- Jinghao Suo
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic MedicinePeking Union Medical CollegeBeijingChina
- State Key Laboratory of Common Mechanism Research for Major DiseasesBeijingChina
| | - Yuxin Wang
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic MedicinePeking Union Medical CollegeBeijingChina
- State Key Laboratory of Common Mechanism Research for Major DiseasesBeijingChina
| | - Lin Wang
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic MedicinePeking Union Medical CollegeBeijingChina
- State Key Laboratory of Common Mechanism Research for Major DiseasesBeijingChina
| | - Bojun Qiu
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic MedicinePeking Union Medical CollegeBeijingChina
- State Key Laboratory of Common Mechanism Research for Major DiseasesBeijingChina
| | - Zhixing Wang
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic MedicinePeking Union Medical CollegeBeijingChina
- State Key Laboratory of Common Mechanism Research for Major DiseasesBeijingChina
| | - An Yan
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic MedicinePeking Union Medical CollegeBeijingChina
- State Key Laboratory of Common Mechanism Research for Major DiseasesBeijingChina
| | - Boqin Qiang
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic MedicinePeking Union Medical CollegeBeijingChina
- State Key Laboratory of Common Mechanism Research for Major DiseasesBeijingChina
| | - Wei Han
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic MedicinePeking Union Medical CollegeBeijingChina
- State Key Laboratory of Common Mechanism Research for Major DiseasesBeijingChina
| | - Xiaozhong Peng
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic MedicinePeking Union Medical CollegeBeijingChina
- State Key Laboratory of Respiratory Health and MultimorbidityBeijingChina
- National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases,Institute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| |
Collapse
|
7
|
Lin S, Li K, Qi L. Cancer stem cells in brain tumors: From origin to clinical implications. MedComm (Beijing) 2023; 4:e341. [PMID: 37576862 PMCID: PMC10412776 DOI: 10.1002/mco2.341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/24/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023] Open
Abstract
Malignant brain tumors are highly heterogeneous tumors with a poor prognosis and a high morbidity and mortality rate in both children and adults. The cancer stem cell (CSC, also named tumor-initiating cell) model states that tumor growth is driven by a subset of CSCs. This model explains some of the clinical observations of brain tumors, including the almost unavoidable tumor recurrence after initial successful chemotherapy and/or radiotherapy and treatment resistance. Over the past two decades, strategies for the identification and characterization of brain CSCs have improved significantly, supporting the design of new diagnostic and therapeutic strategies for brain tumors. Relevant studies have unveiled novel characteristics of CSCs in the brain, including their heterogeneity and distinctive immunobiology, which have provided opportunities for new research directions and potential therapeutic approaches. In this review, we summarize the current knowledge of CSCs markers and stemness regulators in brain tumors. We also comprehensively describe the influence of the CSCs niche and tumor microenvironment on brain tumor stemness, including interactions between CSCs and the immune system, and discuss the potential application of CSCs in brain-based therapies for the treatment of brain tumors.
Collapse
Affiliation(s)
- Shuyun Lin
- Institute of Digestive DiseaseThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuan People's HospitalQingyuanGuangdongChina
| | - Kaishu Li
- Institute of Digestive DiseaseThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuan People's HospitalQingyuanGuangdongChina
| | - Ling Qi
- Institute of Digestive DiseaseThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuan People's HospitalQingyuanGuangdongChina
| |
Collapse
|
8
|
Le L, Qipeng W, Chunmeng M, Hasnat M, Luyong Z, Zhenzhou J, Qinwei Y. 5-Azacytidine promotes HCC cell metastasis by up-regulating RDH16 expression. Eur J Pharmacol 2023; 950:175736. [PMID: 37116561 DOI: 10.1016/j.ejphar.2023.175736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/30/2023]
Abstract
The level of DNA methylation could affect the expression of tumor promoting and tumor suppressor genes. DNA methyltransferase inhibitors could reduce high methylation levels in cancer and inhibit the progression of a variety of cancers, including HCC. However, the pro-metastatic effect of DNA methyltransferase inhibitors in some cancers suggest the potential risk of their use. Whether DNA methyltransferase inhibitors also promote metastasis in HCC remains unclear. Our study will explore the effect of DNA methyltransferase inhibitor 5-Azacytidine on HCC metastasis. Our study found that 5-Azacytidine inhibited the proliferation of HCC cells while promoting in vitro and in vivo metastasis of HCC. Mechanistically, our study showed that 5-Azacytidine increased the expression of RDH16 by decreasing the methylation of RDH16 gene promoter. RDH16 is a highly methylated gene and its expression is very low in hepatocellular carcinoma. 5-Azacytidine promoted the migration of hepatocellular carcinoma cells by increasing the expression of RDH16. Our results suggest that 5-Azacytidine up-regulates the expression of RDH16 by decreasing the methylation level of RDH16, and then promoting HCC metastasis. These findings suggest that 5-Azacytidine and even other DNA methyltransferase inhibitors may have the risk of promoting metastasis in HCC treatment. RDH16 could be used as a pro-metastasis biomarker in the treatment of HCC with DNA methyltransferase inhibitors.
Collapse
Affiliation(s)
- Li Le
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Wu Qipeng
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Miao Chunmeng
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Muhammad Hasnat
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Outfall Road, Lahore, 54000, Pakistan
| | - Zhang Luyong
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiang Zhenzhou
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| | - Yu Qinwei
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
9
|
Liang Y, Wu D, Qu Q, Li Z, Yin H. MORC4 plays a tumor-promoting role in colorectal cancer via regulating PCGF1/CDKN1A axis in vitro and in vivo. Cancer Gene Ther 2023:10.1038/s41417-023-00605-2. [PMID: 36932196 DOI: 10.1038/s41417-023-00605-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/30/2023] [Accepted: 03/02/2023] [Indexed: 03/19/2023]
Abstract
MORC family CW-type zinc finger 4 (MORC4) possessing nuclear matrix binding domains has been observed to be involved in multiple cancer development. By digging three gene expression omnibus (GEO) gene microarrays (GSE110223, GSE110224 and GSE24514), we found that MORC4 was overexpressed in colorectal cancer (CRC) samples (log2 Fold change >1, p < 0.05). We aimed to investigate the role of MORC4 in CRC malignant behaviors, with an emphasis on polycomb group ring finger 1 (PCGF1)/cyclin-dependent kinase inhibitor 1A (CDKN1A) axis. Firstly, we confirmed MORC4 as an upregulated gene in 60 pairs of frozen CRC and adjacent normal samples. MORC4 overexpression increased proliferation and metastasis, and decreased apoptosis in SW480 and HT29 cells, which was diminished by the knockdown of PCGF1, a transcriptional repressor of CDKN1A (a potent cyclin-dependent kinase inhibitor). MORC4 was further identified as a novel molecule that interacted with PCGF1 via coimmunoprecipitation. MORC4 itself did not substantially suppress CDKN1A transcriptional activity, but it augmented PCGF1's effect on CDKN1A. Additionally, MORC4 acted as the substrate of HECT, C2, and WW domain-containing E3 ubiquitin protein ligase 2 (HECW2) and was degraded through ubiquitin-proteasome system. Collectively, our work suggested that MORC4 accelerated CRC progression via governing PCGF1/CDKN1A signaling.
Collapse
Affiliation(s)
- Yichao Liang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Di Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Qiao Qu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Zhilong Li
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Hongzhuan Yin
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
10
|
Xie L, Ding N, Sheng S, Zhang H, Yin H, Gao L, Zhang H, Ma S, Yang A, Li G, Jiao Y, Shi Q, Jiang Y, Zhang H. Cooperation between NSPc1 and DNA methylation represses HOXA11 expression and promotes apoptosis of trophoblast cells during preeclampsia. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1-13. [PMID: 36815373 PMCID: PMC10157525 DOI: 10.3724/abbs.2023012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/03/2022] [Indexed: 02/05/2023] Open
Abstract
Accumulating evidence has shown that the apoptosis of trophoblast cells plays an important role in the pathogenesis of preeclampsia, and an intricate interplay between DNA methylation and polycomb group (PcG) protein-mediated gene silencing has been highlighted recently. Here, we provide evidence that the expression of nervous system polycomb 1 (NSPc1), a BMI1 homologous polycomb protein, is significantly elevated in trophoblast cells during preeclampsia, which accelerates trophoblast cell apoptosis. Since NSPc1 acts predominantly as a transcriptional inactivator that specifically represses HOXA11 expression in trophoblast cells during preeclampsia, we further show that NSPc1 is required for DNMT3a recruitment and maintenance of the DNA methylation in the HOXA11 promoter in trophoblast cells during preeclampsia. In addition, we find that the interplay of DNMT3a and NSPc1 represses the expression of HOXA11 and promotes trophoblast cell apoptosis. Taken together, these results indicate that the cooperation between NSPc1 and DNMT3a reduces HOXA11 expression in preeclampsia pathophysiology, which provides novel therapeutic approaches for targeted inhibition of trophoblast cell apoptosis during preeclampsia pathogenesis.
Collapse
Affiliation(s)
- Lin Xie
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| | - Ning Ding
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| | - Siqi Sheng
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| | - Honghong Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| | - He Yin
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- Department of Clinical MedicineNingxia Medical UniversityYinchuan750004China
| | - Lina Gao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- Department of Clinical MedicineNingxia Medical UniversityYinchuan750004China
| | - Hui Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| | - Shengchao Ma
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| | - Anning Yang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| | - Guizhong Li
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| | - Yun Jiao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- Department of Infectious DiseasesGeneral Hospital of Ningxia Medical UniversityYinchuan750004China
| | - Qing Shi
- Department of GynecologyGeneral Hospital of Ningxia Medical UniversityYinchuan750004China
| | - Yideng Jiang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| | - Huiping Zhang
- Department of Medical GeneticsMaternal and Child Health of Hunan ProvinceChangsha410008China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- General Hospital of Ningxia Medical UniversityYinchuan750004China
| |
Collapse
|
11
|
Zhang L, Xia Q, Li W, Liu Q, Zhang L, Tian X, Ye L, Wang G, Peng Q. Immunoproteasome subunit β5i promotes perifascicular muscle atrophy in dermatomyositis by upregulating RIG-I. RMD Open 2023; 9:rmdopen-2022-002818. [PMID: 36854567 PMCID: PMC9980316 DOI: 10.1136/rmdopen-2022-002818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/04/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Perifascicular atrophy is a unique pathological hallmark in dermatomyositis (DM)-affected muscles; however, the mechanism underlying this process remains unclear. In this study, we aimed to investigate the potential role of the immunoproteasome subunit β5i and retinoic acid-inducible gene-I (RIG-I) in DM-associated muscle atrophy. METHODS The expression of β5i and RIG-I in the muscles of 16 patients with DM was examined by PCR, western blotting and immunohistochemistry. The associations between β5i and RIG-I expression levels and muscle disease severity were evaluated. Lentivirus transduction was used to overexpress β5i in human skeletal muscle myoblasts (HSMMs) and consequent cell functional changes were studied in vitro. RESULTS β5i and RIG-I expression in the muscle of patients with DM was significantly increased and closely associated with muscle disease severity. Immunohistochemistry and immunofluorescence analyses showed the marked colocalised expression of β5i and RIG-I in perifascicular myofibres. β5i overexpression in HSMMs significantly upregulated RIG-I, the muscle atrophy marker MuRF1, type I IFN-related proteins (MxA and IFNβ) and NF-κB pathway-related proteins (pIκBα, pIRF3 and pNF-κBp65). In addition, the viability of HSMMs decreased significantly after β5i overexpression and was partly recovered by treatment with a β5i inhibitor (PR957). Moreover, activation of RIG-I by pppRNA upregulated IFNβ and MuRF1 and reduced the cell viability of HSMMs. CONCLUSION The immunoproteasome subunit β5i promotes perifascicular muscle atrophy in DM via RIG-I upregulation; our findings suggest a pathomechanistic role of β5i and RIG-I in DM-associated muscle damage, highlighting these components as potential therapeutic targets for the treatment of DM.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Rheumatology, Key Myositis Laboratories, China-Japan Friendship Hospital, Beijing, China
| | - Qisheng Xia
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Wenli Li
- Department of Rheumatology, Key Myositis Laboratories, China-Japan Friendship Hospital, Beijing, China
| | - Qingyan Liu
- Department of Rheumatology, Key Myositis Laboratories, China-Japan Friendship Hospital, Beijing, China
| | - Lining Zhang
- Department of Rheumatology, Key Myositis Laboratories, China-Japan Friendship Hospital, Beijing, China
| | - Xiaolan Tian
- Department of Rheumatology, Key Myositis Laboratories, China-Japan Friendship Hospital, Beijing, China
| | - Lifang Ye
- Department of Rheumatology, Key Myositis Laboratories, China-Japan Friendship Hospital, Beijing, China
| | - Guochun Wang
- Department of Rheumatology, Key Myositis Laboratories, China-Japan Friendship Hospital, Beijing, China
| | - Qinglin Peng
- Department of Rheumatology, Key Myositis Laboratories, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
12
|
曾 银, 樊 嵘. [PCGF1 is highly expressed in rectal adenocarcinoma and silencing PCGF1 inhibits proliferation of rectal adenocarcinoma cells in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:1296-1302. [PMID: 36210701 PMCID: PMC9550553 DOI: 10.12122/j.issn.1673-4254.2022.09.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To investigate the expression of PCGF1 in rectal adenocarcinoma (READ) and the effect of PCGF1 silencing on proliferation READ cells in vitro. METHODS The UALCAN and ENCORI online databases were used to analyze the expression level of PCGF1 in READ tissues and normal tissues and its association with the clinicopathological parameters and survival outcomes of patients with READ. The expression levels of PCGF1 were detected in two READ cell lines and a normal rectal epithelial cell line (HcoEpiC cells) using qPCR and Western blotting. Lentiviral vectors were used to construct PCGF1-overexpressing and PCGF1-silenced cell lines, and the proliferative activity of the cells was assessed using CCK-8 assay. The effect of PCGF1 silencing on tumor proliferation in vivo was also evaluated by observing tumorigenicity of the cells in nude mice. RESULTS PCGF1 was highly expressed in READ tissue (P < 0.001), and its expression levels was correlated with READ stage, differentiation and lymph node metastasis (P < 0.001). A high PCGF1 expression level was associated with a poor survival outcome of READ patients (P < 0.05). In SW837 and SW1463 cells, PCGF1 silencing significantly lowered the proliferative activity of the cells both in vitro (P < 0.05) and in nude mice (P < 0.01). CONCLUSION PCGF1 is highly expressed in READ tissue and may potentially serve as a prognostic biomarker as well as a therapeutic target for READ.
Collapse
Affiliation(s)
- 银珍 曾
- 南方医科大学南方医院麻醉科,广东 广州 510515Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 嵘 樊
- 天津市西青医院中心实验室,天津 300380Central Laboratory, Tianjin Xiqing Hospital, Tianjin 300380, China
| |
Collapse
|
13
|
Critical Roles of Polycomb Repressive Complexes in Transcription and Cancer. Int J Mol Sci 2022; 23:ijms23179574. [PMID: 36076977 PMCID: PMC9455514 DOI: 10.3390/ijms23179574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Polycomp group (PcG) proteins are members of highly conserved multiprotein complexes, recognized as gene transcriptional repressors during development and shown to play a role in various physiological and pathological processes. PcG proteins consist of two Polycomb repressive complexes (PRCs) with different enzymatic activities: Polycomb repressive complexes 1 (PRC1), a ubiquitin ligase, and Polycomb repressive complexes 2 (PRC2), a histone methyltransferase. Traditionally, PRCs have been described to be associated with transcriptional repression of homeotic genes, as well as gene transcription activating effects. Particularly in cancer, PRCs have been found to misregulate gene expression, not only depending on the function of the whole PRCs, but also through their separate subunits. In this review, we focused especially on the recent findings in the transcriptional regulation of PRCs, the oncogenic and tumor-suppressive roles of PcG proteins, and the research progress of inhibitors targeting PRCs.
Collapse
|
14
|
Biomarkers Regulated by Lipid-Soluble Vitamins in Glioblastoma. Nutrients 2022; 14:nu14142873. [PMID: 35889829 PMCID: PMC9322598 DOI: 10.3390/nu14142873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma (GBM), a highly lethal form of adult malignant gliomas with little clinical advancement, raises the need for alternative therapeutic approaches. Lipid-soluble vitamins have gained attention in malignant brain tumors owing to their pleiotropic properties and their anti-cancer potential have been reported in a number of human GBM cell lines. The aim of this paper is to systematically review and describe the roles of various biomarkers regulated by lipid-soluble vitamins, such as vitamins A, D, E, and K, in the pathophysiology of GBM. Briefly, research articles published between 2005 and 2021 were systematically searched and selected from five databases (Scopus, PubMed, Ovid MEDLINE, EMBASE via Ovid, and Web of Science) based on the study’s inclusion and exclusion criteria. In addition, a number of hand-searched research articles identified from Google Scholar were also included for the analysis. A total of 40 differentially expressed biomarkers were identified from the 19 eligible studies. The results from the analysis suggest that retinoids activate cell differentiation and suppress the biomarkers responsible for stemness in human GBM cells. Vitamin D appears to preferentially modulate several cell cycle biomarkers, while vitamin E derivatives seem to predominantly modulate biomarkers related to apoptosis. However, vitamin K1 did not appear to induce any significant changes to the Raf/MEK/ERK signaling or apoptotic pathways in human GBM cell lines. From the systematic analysis, 12 biomarkers were identified that may be of interest for further studies, as these were modulated by one or two of these lipid-soluble vitamins.
Collapse
|
15
|
Qin Y, Qi Y, Zhang X, Guan Z, Han W, Peng X. Production and Stabilization of Specific Upregulated Long Noncoding RNA HOXD-AS2 in Glioblastomas Are Mediated by TFE3 and miR-661, Respectively. Int J Mol Sci 2022; 23:ijms23052828. [PMID: 35269968 PMCID: PMC8911140 DOI: 10.3390/ijms23052828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/24/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
Differential expression of long noncoding RNAs (lncRNA) plays a key role in the development of gliomas. Because gliomas are the most common primary central nervous system tumor and glioblastomas have poor prognosis, it is urgent to develop new diagnostic methods. We have previously reported that lncRNA HOXD-AS2, which is specifically up-regulated in gliomas, can activate cell cycle and promote the development of gliomas. It is expected to be a new marker for molecular diagnosis of gliomas, but little is known about HOXD-AS2. Here, we demonstrate that TFE3 and miR-661 maintain the high expression level of HOXD-AS2 by regulating its production and degradation. We found that TFE3 acted as a transcription factor binding to the HOXD-AS2 promoter region and raised H3K27ac to activate HOXD-AS2. As the cytoplasmic-located lncRNA, HOXD-AS2 could be degraded by miR-661. This process was inhibited in gliomas due to the low expression of miR-661. Our study explains why HOXD-AS2 was specifically up-regulated in gliomas, helps to understand the molecular characteristics of gliomas, and provids insights for the search for specific markers in gliomas.
Collapse
Affiliation(s)
| | | | | | | | - Wei Han
- Correspondence: (W.H.); or (X.P.)
| | | |
Collapse
|
16
|
Parreno V, Martinez AM, Cavalli G. Mechanisms of Polycomb group protein function in cancer. Cell Res 2022; 32:231-253. [PMID: 35046519 PMCID: PMC8888700 DOI: 10.1038/s41422-021-00606-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/10/2021] [Indexed: 02/01/2023] Open
Abstract
Cancer arises from a multitude of disorders resulting in loss of differentiation and a stem cell-like phenotype characterized by uncontrolled growth. Polycomb Group (PcG) proteins are members of multiprotein complexes that are highly conserved throughout evolution. Historically, they have been described as essential for maintaining epigenetic cellular memory by locking homeotic genes in a transcriptionally repressed state. What was initially thought to be a function restricted to a few target genes, subsequently turned out to be of much broader relevance, since the main role of PcG complexes is to ensure a dynamically choregraphed spatio-temporal regulation of their numerous target genes during development. Their ability to modify chromatin landscapes and refine the expression of master genes controlling major switches in cellular decisions under physiological conditions is often misregulated in tumors. Surprisingly, their functional implication in the initiation and progression of cancer may be either dependent on Polycomb complexes, or specific for a subunit that acts independently of other PcG members. In this review, we describe how misregulated Polycomb proteins play a pleiotropic role in cancer by altering a broad spectrum of biological processes such as the proliferation-differentiation balance, metabolism and the immune response, all of which are crucial in tumor progression. We also illustrate how interfering with PcG functions can provide a powerful strategy to counter tumor progression.
Collapse
Affiliation(s)
- Victoria Parreno
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, Montpellier, France
| | - Anne-Marie Martinez
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, Montpellier, France.
| | - Giacomo Cavalli
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, Montpellier, France.
| |
Collapse
|
17
|
Sui T, Qiu B, Qu J, Wang Y, Ran K, Han W, Peng X. Gambogic amide inhibits angiogenesis by suppressing VEGF/VEGFR2 in endothelial cells in a TrkA-independent manner. PHARMACEUTICAL BIOLOGY 2021; 59:1566-1575. [PMID: 34767490 PMCID: PMC8592593 DOI: 10.1080/13880209.2021.1998140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/09/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
CONTEXT Gambogic amide (GA-amide) is a non-peptide molecule that has high affinity for tropomyosin receptor kinase A (TrkA) and possesses robust neurotrophic activity, but its effect on angiogenesis is unclear. OBJECTIVE The study investigates the antiangiogenic effect of GA-amide on endothelial cells (ECs). MATERIALS AND METHODS The viability of endothelial cells (ECs) treated with 0.1, 0.15, 0.2, 0.3, 0.4, and 0.5 μM GA-amide for 48 h was detected by MTS assay. Wound healing and angiogenesis assays were performed on cells treated with 0.2 μM GA-amide. Chicken eggs at day 7 post-fertilization were divided into the dimethyl sulfoxide (DMSO), bevacizumab (40 μg), and GA-amide (18.8 and 62.8 ng) groups to assess the antiangiogenic effect for 3 days. mRNA and protein expression in cells treated with 0.1, 0.2, 0.4, 0.8, and 1.2 μM GA-amide for 6 h was detected by qRT-PCR and Western blots, respectively. RESULTS GA-amide inhibited HUVEC (IC50 = 0.1269 μM) and NhEC (IC50 = 0.1740 μM) proliferation, induced cell apoptosis, and inhibited the migration and angiogenesis at a relatively safe dose (0.2 μM) in vitro. GA-amide reduced the number of capillaries from 56 ± 14.67 (DMSO) to 20.3 ± 5.12 (62.8 ng) in chick chorioallantoic membrane (CAM) assay. However, inactivation of TrkA couldn't reverse the antiangiogenic effect of GA-amide. Moreover, GA-amide suppressed the expression of VEGF and VEGFR2, and decreased activation of the AKT/mTOR and PLCγ/Erk1/2 pathways. CONCLUSIONS Considering the antiangiogenic effect of GA-amide, it might be developed as a useful agent for use in clinical combination therapies.
Collapse
Affiliation(s)
- Tongtong Sui
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Bojun Qiu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jiaorong Qu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yuxin Wang
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Kunnian Ran
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Wei Han
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xiaozhong Peng
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| |
Collapse
|
18
|
He Y, Chen Y, Tong Y, Long W, Liu Q. Identification of a circRNA-miRNA-mRNA regulatory network for exploring novel therapeutic options for glioma. PeerJ 2021; 9:e11894. [PMID: 34434651 PMCID: PMC8351580 DOI: 10.7717/peerj.11894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/12/2021] [Indexed: 12/19/2022] Open
Abstract
Background Glioma is the most common brain neoplasm with a poor prognosis. Circular RNA (circRNA) and their associated competing endogenous RNA (ceRNA) network play critical roles in the pathogenesis of glioma. However, the alteration of the circRNA-miRNA-mRNA regulatory network and its correlation with glioma therapy haven't been systematically analyzed. Methods With GEO, GEPIA2, circBank, CSCD, CircInteractome, mirWalk 2.0, and mirDIP 4.1, we constructed a circRNA-miRNA-mRNA network in glioma. LASSO regression and multivariate Cox regression analysis established a hub mRNA signature to assess the prognosis. GSVA was used to estimate the immune infiltration level. Potential anti-glioma drugs were forecasted using the cMap database and evaluated with GSEA using GEO data. Results A ceRNA network of seven circRNAs (hsa_circ_0030788/0034182/0000227/ 0018086/0000229/0036592/0002765), 15 miRNAs(hsa-miR-1200/1205/1248/ 1303/3925-5p/5693/581/586/599/607/640/647/6867-5p/767-3p/935), and 46 mRNAs (including 11 hub genes of ARHGAP11A, DRP2, HNRNPA3, IGFBP5, IP6K2, KLF10, KPNA4, NRP2, PAIP1, RCN1, and SEMA5A) was constructed. Functional enrichment showed they influenced majority of the hallmarks of tumors. Eleven hub genes were proven to be decent prognostic signatures for glioma in both TCGA and CGGA datasets. Forty-six LASSO regression significant genes were closely related to immune infiltration. Finally, five compounds (fulvestrant, tanespimycin, mifepristone, tretinoin, and harman) were predicted as potential treatments for glioma. Among them, mifepristone and tretinoin were proven to inhibit the cell cycle and DNA repair in glioma. Conclusion This study highlights the potential pathogenesis of the circRNA-miRNA-mRNA regulatory network and identifies novel therapeutic options for glioma.
Collapse
Affiliation(s)
- Yi He
- Neurosurgery Department, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Yihong Chen
- Neurosurgery Department, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Yuxin Tong
- Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Wenyong Long
- Neurosurgery Department, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Qing Liu
- Neurosurgery Department, Xiangya Hospital Central South University, Changsha, Hunan, China
| |
Collapse
|
19
|
Poturnajova M, Kozovska Z, Matuskova M. Aldehyde dehydrogenase 1A1 and 1A3 isoforms - mechanism of activation and regulation in cancer. Cell Signal 2021; 87:110120. [PMID: 34428540 PMCID: PMC8505796 DOI: 10.1016/j.cellsig.2021.110120] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/15/2022]
Abstract
In some types of human cancer, aldehyde dehydrogenases represent stemness markers and their expression is associated with advanced disease stages and poor prognosis. Although several biological functions are mediated by their product Retinoid acid, the molecular mechanism is tissue-dependent and only partially understood. In this review, we summarize the current knowledge about the role of ALDH in solid tumours, especially ALDH1A1 and ALDH1A3 isoforms, regarding the molecular mechanism of their transcription and regulation, and their crosstalk with main molecular pathways resulting in the excessive proliferation, chemoresistance, stem cells properties and invasiveness. The recent knowledge of the regulatory effect of lnRNA on ALDH1A1 and ALDH1A3 is discussed too. Aldehyde dehydrogenases are important stem cell markers in many human cancer types. ALDH1A1 or ALDH1A3 activation participates in tumour progression, chemoresistance, stem-cell properties and invasiveness. ALDH1A1 interacts with oncogenic pathways Notch, NRF, CXCR4, Polycomb, MDR, and HOX.
Collapse
Affiliation(s)
- M Poturnajova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia.
| | - Z Kozovska
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - M Matuskova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| |
Collapse
|
20
|
Ji G, Zhou W, Du J, Zhou J, Wu D, Zhao M, Yang L, Hao A. PCGF1 promotes epigenetic activation of stemness markers and colorectal cancer stem cell enrichment. Cell Death Dis 2021; 12:633. [PMID: 34148069 PMCID: PMC8214626 DOI: 10.1038/s41419-021-03914-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/23/2022]
Abstract
Colorectal cancer (CRC) stem cells are resistant to cancer therapy and are therefore responsible for tumour progression after conventional therapy fails. However, the molecular mechanisms underlying the maintenance of stemness are poorly understood. In this study, we identified PCGF1 as a crucial epigenetic regulator that sustains the stem cell-like phenotype of CRC. PCGF1 expression was increased in CRC and was significantly correlated with cancer progression and poor prognosis in CRC patients. PCGF1 knockdown inhibited CRC stem cell proliferation and CRC stem cell enrichment. Importantly, PCGF1 silencing impaired tumour growth in vivo. Mechanistically, PCGF1 bound to the promoters of CRC stem cell markers and activated their transcription by increasing the H3K4 histone trimethylation (H3K4me3) marks and decreasing the H3K27 histone trimethylation (H3K27me3) marks on their promoters by increasing expression of the H3K4me3 methyltransferase KMT2A and the H3K27me3 demethylase KDM6A. Our findings suggest that PCGF1 is a potential therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Guangyu Ji
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Wenjuan Zhou
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jingyi Du
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Juan Zhou
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Dong Wu
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Man Zhao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Liping Yang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Aijun Hao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
21
|
Xu X, Wang L, Zang Q, Li S, Li L, Wang Z, He J, Qiang B, Han W, Zhang R, Peng X, Abliz Z. Rewiring of purine metabolism in response to acidosis stress in glioma stem cells. Cell Death Dis 2021; 12:277. [PMID: 33723244 PMCID: PMC7961141 DOI: 10.1038/s41419-021-03543-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/13/2021] [Accepted: 02/19/2021] [Indexed: 01/04/2023]
Abstract
Glioma stem cells (GSCs) contribute to therapy resistance and poor outcomes for glioma patients. A significant feature of GSCs is their ability to grow in an acidic microenvironment. However, the mechanism underlying the rewiring of their metabolism in low pH remains elusive. Here, using metabolomics and metabolic flux approaches, we cultured GSCs at pH 6.8 and pH 7.4 and found that cells cultured in low pH exhibited increased de novo purine nucleotide biosynthesis activity. The overexpression of glucose-6-phosphate dehydrogenase, encoded by G6PD or H6PD, supports the metabolic dependency of GSCs on nucleotides when cultured under acidic conditions, by enhancing the pentose phosphate pathway (PPP). The high level of reduced glutathione (GSH) under acidic conditions also causes demand for the PPP to provide NADPH. Taken together, upregulation of G6PD/H6PD in the PPP plays an important role in acidic-driven purine metabolic reprogramming and confers a predilection toward glioma progression. Our findings indicate that targeting G6PD/H6PD, which are closely related to glioma patient survival, may serve as a promising therapeutic target for improved glioblastoma therapeutics. An integrated metabolomics and metabolic flux analysis, as well as considering microenvironment and cancer stem cells, provide a precise insight into understanding cancer metabolic reprogramming.
Collapse
Affiliation(s)
- Xiaoyu Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liping Wang
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Biomedical Primate Research Center, Neuroscience Center Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Qingce Zang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shanshan Li
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Biomedical Primate Research Center, Neuroscience Center Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Limei Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhixing Wang
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Biomedical Primate Research Center, Neuroscience Center Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Boqin Qiang
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Biomedical Primate Research Center, Neuroscience Center Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Wei Han
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Biomedical Primate Research Center, Neuroscience Center Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Ruiping Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaozhong Peng
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Biomedical Primate Research Center, Neuroscience Center Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China. .,Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China.
| | - Zeper Abliz
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. .,Centre for Bioimaging and Systems Biology, Minzu University of China, Beijing, China.
| |
Collapse
|
22
|
Hu PS, Li T, Lin JF, Qiu MZ, Wang DS, Liu ZX, Chen ZH, Yang LP, Zhang XL, Zhao Q, Chen YX, Lu YX, Wu QN, Pu HY, Zeng ZL, Xie D, Ju HQ, Luo HY, Xu RH. VDR-SOX2 signaling promotes colorectal cancer stemness and malignancy in an acidic microenvironment. Signal Transduct Target Ther 2020; 5:183. [PMID: 32900990 PMCID: PMC7479104 DOI: 10.1038/s41392-020-00230-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/10/2020] [Accepted: 06/10/2020] [Indexed: 12/21/2022] Open
Abstract
The acidic tumor microenvironment provides an energy source driving malignant tumor progression. Adaptation of cells to an acidic environment leads to the emergence of cancer stem cells. The expression of the vitamin D receptor (VDR) is closely related to the initiation and development of colorectal carcinoma (CRC), but its regulatory mechanism in CRC stem cells is still unclear. Our study revealed that acidosis reduced VDR expression by downregulating peroxisome proliferator-activated receptor delta (PPARD) expression. Overexpression of VDR effectively suppressed the stemness and oxaliplatin resistance of cells in acidosis. The nuclear export signal in VDR was sensitive to acidosis, and VDR was exported from the nucleus. Chromatin immunoprecipitation (ChIP) and assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) analyses showed that VDR transcriptionally repressed SRY-box 2 (SOX2) by binding to the vitamin D response elements in the promoter of SOX2, impairing tumor growth and drug resistance. We demonstrated that a change in the acidic microenvironment combined with overexpression of VDR substantially restricted the occurrence and development of CRC in vivo. These findings reveal a new mechanism by which acidosis could affect the stemness of CRC cells by regulating the expression of SOX2 and show that abnormal VDR expression leads to ineffective activation of vitamin D signaling, resulting in a lack of efficacy of vitamin D in antineoplastic process.
Collapse
Affiliation(s)
- Pei-Shan Hu
- Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, People's Republic of China.,Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, 510060, Guangzhou, People's Republic of China
| | - Ting Li
- Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, People's Republic of China
| | - Jin-Fei Lin
- Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, People's Republic of China
| | - Miao-Zhen Qiu
- Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, People's Republic of China
| | - De-Shen Wang
- Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, People's Republic of China
| | - Ze-Xian Liu
- Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, People's Republic of China
| | - Zhan-Hong Chen
- Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, People's Republic of China.,Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease, the Third Affiliated Hospital of Sun Yat-sen University, 510060, Guangzhou, People's Republic of China
| | - Lu-Ping Yang
- Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, People's Republic of China
| | - Xiao-Long Zhang
- Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, People's Republic of China
| | - Qi Zhao
- Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, People's Republic of China
| | - Yan-Xing Chen
- Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, People's Republic of China
| | - Yun-Xin Lu
- Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, People's Republic of China
| | - Qi-Nian Wu
- Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, People's Republic of China
| | - Heng-Ying Pu
- Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, People's Republic of China
| | - Zhao-Lei Zeng
- Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, People's Republic of China
| | - Dan Xie
- Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, People's Republic of China
| | - Huai-Qiang Ju
- Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, People's Republic of China.,Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, 510060, Guangzhou, People's Republic of China
| | - Hui-Yan Luo
- Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, People's Republic of China. .,Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, 510060, Guangzhou, People's Republic of China.
| | - Rui-Hua Xu
- Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, People's Republic of China. .,Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, 510060, Guangzhou, People's Republic of China.
| |
Collapse
|
23
|
Gao C, Zhuang J, Li H, Liu C, Zhou C, Liu L, Feng F, Sun C, Wu J. Development of a risk scoring system for evaluating the prognosis of patients with Her2-positive breast cancer. Cancer Cell Int 2020; 20:121. [PMID: 32322168 PMCID: PMC7161270 DOI: 10.1186/s12935-020-01175-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/13/2020] [Indexed: 12/19/2022] Open
Abstract
Background As one of the many breast cancer subtypes, human epidermal growth factor receptor 2 (Her2)-positive breast cancer has higher invasiveness and poor prognosis, although the advent of anti-Her2 drugs has brought good news to patients. However, the emergence of drug resistance still limits its clinical efficacy, so there is an urgent need to explore new targets and develop a risk scoring system to improve treatments and evaluate patient prognosis. Methods Differentially expressed mRNAs associated with Her2-positive breast cancer were screened from a TCGA cohort. The prognostic risk scoring system was constructed according to univariate and Lasso Cox regression model analyses and combined with clinical factors (such as age and TNM) for univariate and multivariate analyses to verify the specificity and sensitivity of the risk scoring system. Finally, based on correlation and CNV mutation analyses, we explored the research value of the mRNAs involved in the system as key genes of the model. Results In this study, six mRNAs were screened and identified to construct a prognostic risk scoring system, including four up-regulated mRNA (RDH16, SPC25, SPC24, and SCUBE3) and two down-regulated mRNA (DGAT2 and CCDC69). The risk scoring system can divide Her2-positive breast cancer samples into high-risk and low-risk groups to evaluate patient prognosis. In addition, whether through the time-dependent receiver operating characteristics curve or compared with clinical factors, the risk scoring system showed high predictive sensitivity and specificity. Moreover, some CNV mutations in mRNA increase patient risk by influencing expression levels. Conclusion The risk scoring system constructed in this study is helpful to improve the screening of high-risk patients with Her2-positive breast cancer and is beneficial for implementing early diagnosis and personalized treatment. It is suggested that these mRNAs may play an important role in the progression of Her2-positive breast cancer.
Collapse
Affiliation(s)
- Chundi Gao
- 1College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong People's Republic of China
| | - Jing Zhuang
- Departmen of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261041 Shandong People's Republic of China
| | - Huayao Li
- 2College of Basic Medical, Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong People's Republic of China
| | - Cun Liu
- 1College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong People's Republic of China
| | - Chao Zhou
- Departmen of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261041 Shandong People's Republic of China
| | - Lijuan Liu
- Departmen of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261041 Shandong People's Republic of China
| | - Fubin Feng
- Departmen of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261041 Shandong People's Republic of China
| | - Changgang Sun
- 4Cancer and Immunology Institute, Shandong University of Traditional Chinese Medicine, Jinan, Shandong People's Republic of China
| | - Jibiao Wu
- 2College of Basic Medical, Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong People's Republic of China
| |
Collapse
|
24
|
Tian Y, Wang Z, Wang Y, Yin B, Yuan J, Qiang B, Han W, Peng X. Glioma-derived endothelial cells promote glioma cells migration via extracellular vesicles-mediated transfer of MYO1C. Biochem Biophys Res Commun 2020; 525:S0006-291X(20)30283-7. [PMID: 32081419 DOI: 10.1016/j.bbrc.2020.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/04/2020] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EV), as the intercellular information transfer molecules which can regulate the tumor microenvironment, promote migration and tumor progression. Previous studies reported that EV from endothelial cells was used to guide the fate and survival of gliomas, but many researches focus on normal human endothelial cells (NhEC) rather than tumor-derived endothelial cells. Our laboratory isolated human endothelial cells from glioma issue (GhEC). We have previously demonstrated that EV from GhEC and NhEC, which both can promote glioma stem cells (GSC) proliferation and tumorsphere formation in vitro and tumourigenicity in vivo by the transfer of CD9. However, NhEC-EV or GhEC-EV could suppress glioma cells (GC) proliferation in vitro. It demonstrates the undifferentiated impact of EV. Here, we first compared GhEC-EV proteins with NhEC-EV (Screening criteria: GhEC-EV/NhEC-EV, FC > 1.5), and obtained 70 differential expression proteins, most of which were associated with invasion and migration. We found that GhEC or GhEC-EV preferred promoting GC migration than treating with NhEC or NhEC-EV. In terms of mechanism, we further revealed that EV-mediated transfer of MYO1C induced glioma cell LN229 migration. Knockdown of MYO1C in GhEC or GhEC-EV suppressed this effect. Overexpression of MYO1C promoted migration on the contrary. MYO1C was also detected in glioma cerebrospinal fluid (CSF), which is more suitable as a liquid biopsy biomarker and contributes to early diagnosis and monitoring in glioma. Our findings provide a new protein-MYO1C in EV to target tumor blood vessels, and bring a new point-cut to the treatment of gliomablastoma (GBM).
Collapse
Affiliation(s)
- Yuan Tian
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Zhixing Wang
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Yuxin Wang
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Bin Yin
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Jiangang Yuan
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Boqin Qiang
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Wei Han
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| | - Xiaozhong Peng
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China.
| |
Collapse
|
25
|
Yan R, Cui F, Dong L, Liu Y, Chen X, Fan R. Repression of PCGF1 Decreases the Proliferation of Glioblastoma Cells in Association with Inactivation of c-Myc Signaling Pathway. Onco Targets Ther 2020; 13:253-261. [PMID: 32021272 PMCID: PMC6957096 DOI: 10.2147/ott.s234517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 12/12/2019] [Indexed: 12/31/2022] Open
Abstract
Purpose Glioblastoma (GBM) is the most common primary brain tumor with a poor therapeutic outcome. Polycomb group factor 1 (PCGF1), a member of the PcG (Polycomb group) family, is highly expressed in the developing nervous system of mice. However, the function and the mechanism of PCGF1 in GBM proliferation still remain unclear. Methods Knockdown of PCGF1 was performed in U87 GBM cell by shRNA strategy via lentivirus vector. MTT assay, colony formation assays, and flow cytometry were used to measure the properties of cell proliferation and cell cycle distribution, respectively. GeneChip analysis was performed to identify the downstream effector molecules. Rescue assay was constructed to verify the screening results. Results We first found that knockdown of PCGF1 led to the inhibition of U87 cells proliferation and decreased colony formation ability. The data from GeneChip expression profiling and Ingenuity Pathway Analysis (IPA) indicated that many of the altered gene cells are associated with the cell proliferation control pathways. We have further confirmed the suppression of AKT/GSK3β/c-Myc/cyclinD1 expressions by Western blotting analysis. The over-expression of c-Myc could partly restore the attenuated proliferation ability caused by knockdown of PCGF1. Conclusion All the above evidences suggested that PCGF1 might be closely associated with tumorigenesis and progression of glioblastoma (GBM), in which process the oncoprotein c-Myc may participate. PCGF1 could thus be a potential therapeutic target for the treatment of glioblastoma (GBM).
Collapse
Affiliation(s)
- Rui Yan
- Department of Thoracic Surgery, The Third Medical Center, Chinese People's Liberation Army General Hospital, Beijing 100039, People's Republic of China
| | - Fengmei Cui
- Department of Radiation Medicine, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, People's Republic of China
| | - Lijin Dong
- Editorial Department, Logistic University of Chinese People's Armed Police Force, Tianjin 300309, People's Republic of China
| | - Yong Liu
- Central Laboratory, Xi Qing Hospital, Tianjin 300380, People's Republic of China
| | - Xuewei Chen
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
| | - Rong Fan
- Central Laboratory, Xi Qing Hospital, Tianjin 300380, People's Republic of China
| |
Collapse
|
26
|
Zhu YH, Li JB, Wu RY, Yu Y, Li X, Li ZL, Zhang HL, Feng GK, Deng R, Zhu XF. Clinical significance and function of RDH16 as a tumor-suppressing gene in hepatocellular carcinoma. Hepatol Res 2020; 50:110-120. [PMID: 31661588 DOI: 10.1111/hepr.13432] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 12/18/2022]
Abstract
AIM Our previous transcriptome sequencing analysis detected that retinol dehydrogenase 16 (RDH16) was dramatically downregulated in hepatocellular carcinoma (HCC). RDH16 belongs to the short-chain dehydrogenases/reductases super family, and its role in HCC remains unknown. This study aimed to investigate the expression and function of RDH16 in HCC. METHODS The mRNA and protein level of RDH16 in HCC samples were detected by quantitative real-time polymerase chain reaction and immunohistochemistry analyses, respectively. The role of RDH16 in HCC was determined by in vitro and in vivo functional studies. RESULTS Downregulation of RDH16 has been detected in approximately 90% of primary HCCs, which was significantly associated with high serum alpha-fetoprotein level, tumor size, microsatellite formation, thrombus, and poor overall survival of HCC patients. Compared with non-tumor tissues, higher density of methylation was identified in HCC samples. In addition, RDH16 increases the level of retinoic acid and blocks the de novo synthesis of fatty acid in HCC cells. Functional study shows that ectopic expression of RDH16 in HCC cells suppresses cell growth, clonogenicity, and cell motility. CONCLUSIONS RDH16 might be a prognostic biomarker and intervention point for new therapeutic strategies in HCC.
Collapse
Affiliation(s)
- Ying-Hui Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jian-Biao Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China.,BGI-Shenzhen, Shenzhen, China.,China National Gene Bank, BGI-Shenzhen, Shenzhen, China
| | - Rui-Yan Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan Yu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xuan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhi-Ling Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hai-Liang Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Gong-Kan Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rong Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Feng Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
27
|
Li D, Tian Y, Hu Y, Qi Y, Tian N, Li S, Hu P, Wu F, Wei Q, Wei Z, Wang S, Yin B, Jiang T, Yuan J, Qiang B, Han W, Peng X. Glioma-associated human endothelial cell-derived extracellular vesicles specifically promote the tumourigenicity of glioma stem cells via CD9. Oncogene 2019; 38:6898-6912. [DOI: 10.1038/s41388-019-0903-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 10/07/2018] [Accepted: 05/01/2019] [Indexed: 11/09/2022]
|
28
|
Li T, Hu PS, Zuo Z, Lin JF, Li X, Wu QN, Chen ZH, Zeng ZL, Wang F, Zheng J, Chen D, Li B, Kang TB, Xie D, Lin D, Ju HQ, Xu RH. METTL3 facilitates tumor progression via an m 6A-IGF2BP2-dependent mechanism in colorectal carcinoma. Mol Cancer 2019; 18:112. [PMID: 31230592 PMCID: PMC6589893 DOI: 10.1186/s12943-019-1038-7] [Citation(s) in RCA: 535] [Impact Index Per Article: 89.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/19/2019] [Indexed: 12/12/2022] Open
Abstract
Background Colorectal carcinoma (CRC) is one of the most common malignant tumors, and its main cause of death is tumor metastasis. RNA N6-methyladenosine (m6A) is an emerging regulatory mechanism for gene expression and methyltransferase-like 3 (METTL3) participates in tumor progression in several cancer types. However, its role in CRC remains unexplored. Methods Western blot, quantitative real-time PCR (RT-qPCR) and immunohistochemical (IHC) were used to detect METTL3 expression in cell lines and patient tissues. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and transcriptomic RNA sequencing (RNA-seq) were used to screen the target genes of METTL3. The biological functions of METTL3 were investigated in vitro and in vivo. RNA pull-down and RNA immunoprecipitation assays were conducted to explore the specific binding of target genes. RNA stability assay was used to detect the half-lives of the downstream genes of METTL3. Results Using TCGA database, higher METTL3 expression was found in CRC metastatic tissues and was associated with a poor prognosis. MeRIP-seq revealed that SRY (sex determining region Y)-box 2 (SOX2) was the downstream gene of METTL3. METTL3 knockdown in CRC cells drastically inhibited cell self-renewal, stem cell frequency and migration in vitro and suppressed CRC tumorigenesis and metastasis in both cell-based models and PDX models. Mechanistically, methylated SOX2 transcripts, specifically the coding sequence (CDS) regions, were subsequently recognized by the specific m6A “reader”, insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2), to prevent SOX2 mRNA degradation. Further, SOX2 expression positively correlated with METTL3 and IGF2BP2 in CRC tissues. The combined IHC panel, including “writer”, “reader”, and “target”, exhibited a better prognostic value for CRC patients than any of these components individually. Conclusions Overall, our study revealed that METTL3, acting as an oncogene, maintained SOX2 expression through an m6A-IGF2BP2-dependent mechanism in CRC cells, and indicated a potential biomarker panel for prognostic prediction in CRC. Electronic supplementary material The online version of this article (10.1186/s12943-019-1038-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ting Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Pei-Shan Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
| | - Zhixiang Zuo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
| | - Jin-Fei Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xingyang Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
| | - Qi-Nian Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhan-Hong Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.,Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510060, China
| | - Zhao-Lei Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
| | - Feng Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jian Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
| | - Demeng Chen
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Bo Li
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Tie-Bang Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
| | - Dan Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Dongxin Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.,State Key Laboratory of Molecular Oncology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100021, China
| | - Huai-Qiang Ju
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.
| | - Rui-Hua Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China. .,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
29
|
Liang Z, Wang Y, Li H, Sun Y, Gong Y. lncRNAs combine and crosstalk with NSPc1 in ATRA-induced differentiation of U87 glioma cells. Oncol Lett 2019; 17:5821-5829. [PMID: 31186810 DOI: 10.3892/ol.2019.10254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 02/04/2019] [Indexed: 12/24/2022] Open
Abstract
Nervous system polycomb 1 (NSPc1) is a member of the polycomb group (PcG) family of proteins and has been demonstrated to maintain the differentiation and pluripotency of stem cells. Long non-coding RNAs (lncRNAs) have been demonstrated to be involved in the control of pluripotency and differentiation in embryonic and pluripotent cells. In the present study, the expression levels of NSPc1 were associated with the malignant potential of various glioma cell lines. Additionally, lncRNAs were differentially expressed in glioblastoma cell lines. Following induced differentiation of U87 glioblastoma cells with all-trans retinoic acid, the expression levels of NSPc1 decreased initially, reaching its lowest point on day 6, but then subsequently increased until day 10. The expression of lncRNA candidates decreased in the cell differentiation stage. Additionally, the expression of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), sex-determining region of the Y chromosome-box 2 overlapping transcript (SOX2OT) and antisense non-coding RNA in the INK4 locus (ANRIL) was significantly altered relative to the expression levels of NSPc1. RNA immunoprecipitation (RIP) assays demonstrated that MALAT1, SOX2OT and ANRIL bind to NSPc1 in U87 glioblastoma cells and the enrichment of ANRIL in anti-NSPc1 antibody group was associated with the expression levels of NSPc1 during U87 cell differentiation. Small interfering RNA mediated downregulation of NSPc1 expression with MALAT1, SOX2OT and ANRIL, inhibited the proliferation, and promoted apoptosis in U87 cells. The results of the present study demonstrate that MALAT1, SOX2OT and ANRIL combine and crosstalk with NSPc1 in U87 cells to affect proliferation and apoptosis.
Collapse
Affiliation(s)
- Zhikong Liang
- Department of Immunology, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P.R. China.,Jiangsu Provincial Corps Hospital of Chinese People's Armed Police Force, Yangzhou 225003, P.R. China
| | - Yuliang Wang
- Department of Biochemistry and Molecular Biology, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P.R. China.,Sixth Detachment of Second Mobile Corps of Chinese People's Armed Police Force, Guangzhou 510812, P.R. China
| | - Hui Li
- Department of Histology and Embryology, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P.R. China
| | - Yi Sun
- Department of Immunology, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P.R. China
| | - Yanhua Gong
- Department of Biochemistry and Molecular Biology, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P.R. China.,Institute of Disaster Medicine, Tianjin University, Tianjin 300072, P.R. China
| |
Collapse
|
30
|
Zhang L, Xia Q, Li W, Peng Q, Yang H, Lu X, Wang G. The RIG-I pathway is involved in peripheral T cell lymphopenia in patients with dermatomyositis. Arthritis Res Ther 2019; 21:131. [PMID: 31142372 PMCID: PMC6542107 DOI: 10.1186/s13075-019-1905-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 05/03/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Peripheral T cell lymphopenia is a clinical phenomenon in some patients with dermatomyositis (DM). Patients with T cell lymphopenia are more susceptible to life-threatening infections. However, the pathogenesis of T cell lymphopenia remains unclear. In this study, we aimed to determine retinoic acid-inducible gene I (RIG-I) expression in peripheral T lymphocytes and explore the correlation between RIG-I and T cell lymphopenia in DM. METHODS The mRNA and protein expression levels of RIG-I were determined in peripheral T lymphocytes of 26 treatment-naive DM patients by q-PCR and Western blot. The apoptosis of peripheral T lymphocytes was detected by flow cytometry. The associations between RIG-I expression levels and clinical characteristics were investigated. In Jurkat cell, we examined the relationship between RIG-I and cell apoptosis following RIG-I overexpression or activation by specific ligand (pppRNA). The CRISPR/Cas9 gene editing system was used for RIG-I knockout. Fas and caspase 3 were identified by Western blot. CCK8 colorimeter was performed to monitor cell proliferation. RESULTS In DM patients, we observed the peripheral T lymphocyte count decreased notably while the apoptosis of T lymphocytes increased significantly compared with healthy control. RIG-I expression levels in peripheral T cell correlated negatively with T cell count in DM patients. RIG-I protein expression decreased significantly, and the number of T cell increased when disease was improved. In Jurkat cells, increased apoptosis and elevated expression of Fas and cleaved-caspase 3 protein were observed following RIG-I overexpression or RIG-I-specific ligand (pppRNA) activation. Meanwhile, the proliferation of Jurkat cells was markedly reduced. Whereas, neither cell apoptosis nor the cell viability of the RIG-I knockout clones exhibited significant changes following pppRNA activation. CONCLUSION Our study showed for the first time that negative correlation between the increased RIG-I expression in peripheral T lymphocyte and T cell count in some patients with DM. We demonstrated that highly expressed RIG-I played a critical role in inducing apoptosis and inhibiting proliferation of T lymphocyte in vitro. Therefore, RIG-I-mediated apoptosis may be one of the possible mechanisms of T cell lymphopenia in some patients with DM. These findings expand our existing knowledge on the mechanisms of innate immunity in pathogenesis and provide new therapeutic avenues for DM.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Rheumatology, Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, 2 Yinhua Road, Chaoyang District, Beijing, 100029 China
| | - Qisheng Xia
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029 China
| | - Wenli Li
- Department of Rheumatology, Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, 2 Yinhua Road, Chaoyang District, Beijing, 100029 China
| | - Qinglin Peng
- Department of Rheumatology, Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, 2 Yinhua Road, Chaoyang District, Beijing, 100029 China
| | - Hanbo Yang
- Department of Rheumatology, Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, 2 Yinhua Road, Chaoyang District, Beijing, 100029 China
| | - Xin Lu
- Department of Rheumatology, Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, 2 Yinhua Road, Chaoyang District, Beijing, 100029 China
| | - Guochun Wang
- Department of Rheumatology, Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, 2 Yinhua Road, Chaoyang District, Beijing, 100029 China
| |
Collapse
|
31
|
Hu Y, Zhang M, Tian N, Li D, Wu F, Hu P, Wang Z, Wang L, Hao W, Kang J, Yin B, Zheng Z, Jiang T, Yuan J, Qiang B, Han W, Peng X. The antibiotic clofoctol suppresses glioma stem cell proliferation by activating KLF13. J Clin Invest 2019; 129:3072-3085. [PMID: 31112526 DOI: 10.1172/jci124979] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Gliomas account for approximately 80% of primary malignant tumors in the central nervous system. Despite aggressive therapy, the prognosis of patients remains extremely poor. Glioma stem cells (GSCs) which considered as the potential target of therapy for their crucial role in therapeutic resistance and tumor recurrence, are believed to be key factors for the disappointing outcome. Here, we took advantage of GSCs as the cell model to perform high-throughput drug screening and the old antibiotic, clofoctol, was identified as the most effective compound, showing reduction of colony-formation and induction of apoptosis of GSCs. Moreover, growth of tumors was inhibited obviously in vivo after clofoctol treatment especially in primary patient-derived xenografts (PDXs) and transgenic xenografts. The anticancer mechanisms demonstrated by analyzing related downstream genes and discovering the targeted binding protein revealed that clofoctol exhibited the inhibition of GSCs by upregulation of Kruppel-like factor 13 (KLF13), a tumor suppressor gene, through clofoctol's targeted binding protein, Upstream of N-ras (UNR). Collectively, these data demonstrated that induction of KLF13 expression suppressed growth of gliomas and provided a potential therapy for gliomas targeting GSCs. Importantly, our results also identified the RNA-binding protein UNR as a drug target.
Collapse
Affiliation(s)
- Yan Hu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Meilian Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Ningyu Tian
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Dengke Li
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Fan Wu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Peishan Hu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Zhixing Wang
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Liping Wang
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Wei Hao
- National Experimental Demonstration Center of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingting Kang
- National Experimental Demonstration Center of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Yin
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Zhi Zheng
- Centralab Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Tao Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiangang Yuan
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Boqin Qiang
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Wei Han
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xiaozhong Peng
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.,Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| |
Collapse
|
32
|
Chen ZH, Qi JJ, Wu QN, Lu JH, Liu ZX, Wang Y, Hu PS, Li T, Lin JF, Wu XY, Miao L, Zeng ZL, Xie D, Ju HQ, Xu RH, Wang F. Eukaryotic initiation factor 4A2 promotes experimental metastasis and oxaliplatin resistance in colorectal cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:196. [PMID: 31088567 PMCID: PMC6518650 DOI: 10.1186/s13046-019-1178-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/15/2019] [Indexed: 02/07/2023]
Abstract
Background Deregulation of protein translation control is a hallmark of cancers. Eukaryotic initiation factor 4A2 (EIF4A2) is required for mRNA binding to ribosome and plays an important role in translation initiation. However, little is known about its functions in colorectal cancer (CRC). Methods Analysis of CRC transcriptome data from TCGA identified that EIF4A2 was associated with poor prognosis. Immunohistochemistry study of EIF4A2 was carried out in 297 paired colorectal tumor and adjacent normal tissue samples. In vitro and in vivo cell-biological assays were performed to study the biological functions of EIF4A2 on experimental metastasis and sensitivity to oxaliplatin treatment. Bioinformatic prediction, chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assay were carried out to unveil the transcription factor of EIF4A2 regulation. Results EIF4A2 Expression is significantly higher in colorectal tumors. Multivariate analysis suggests EIF4A2 as an independent predictor of overall, disease-free and progression-free survival. Dysfunction of EIF4A2 by genetic knock-down or small-molecule inhibitor silvestrol dramatically inhibited CRC invasion and migration, sphere formation and enhanced sensitivity to oxaliplatin treatment in vitro and in vivo. Notably, EIF4A2 knock-down also suppressed lung metastasis in vivo. qRT-PCR and immunoblotting analyses identified c-Myc as a downstream target and effector of EIF4A2. ChIP and dual-luciferase reporter assays validated the bioinformatical prediction of ZNF143 as a specific transcription factor of EIF4A2. Conclusions EIF4A2 promotes experimental metastasis and oxaliplatin resistance in CRC. Silvestrol inhibits tumor growth and has synergistic effects with oxaliplatin to induce apoptosis in cell-derived xenograft (CDX) and patient-derived xenograft (PDX) models. Electronic supplementary material The online version of this article (10.1186/s13046-019-1178-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhan-Hong Chen
- Department of Medical Oncology of Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, China.,Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jing-Jing Qi
- Department of Medical Oncology of Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, China
| | - Qi-Nian Wu
- Department of pathology of Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jia-Huan Lu
- Department of Medical Oncology of Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, China
| | - Ze-Xian Liu
- Department of Medical Oncology of Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, China
| | - Yun Wang
- Department of Medical Oncology of Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, China
| | - Pei-Shan Hu
- Department of Medical Oncology of Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, China
| | - Ting Li
- Department of Medical Oncology of Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, China
| | - Jin-Fei Lin
- Department of Medical Oncology of Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, China
| | - Xiang-Yuan Wu
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lei Miao
- Department of Medical Oncology of Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, China
| | - Zhao-Lei Zeng
- Department of Medical Oncology of Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, China
| | - Dan Xie
- Department of pathology of Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Huai-Qiang Ju
- Department of Medical Oncology of Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, China
| | - Rui-Hua Xu
- Department of Medical Oncology of Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, China.
| | - Feng Wang
- Department of Medical Oncology of Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, China.
| |
Collapse
|
33
|
Hu P, Li S, Tian N, Wu F, Hu Y, Li D, Qi Y, Wei Z, Wei Q, Li Y, Yin B, Jiang T, Yuan J, Qiang B, Han W, Peng X. Acidosis enhances the self-renewal and mitochondrial respiration of stem cell-like glioma cells through CYP24A1-mediated reduction of vitamin D. Cell Death Dis 2019; 10:25. [PMID: 30631035 PMCID: PMC6328565 DOI: 10.1038/s41419-018-1242-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/16/2018] [Accepted: 11/22/2018] [Indexed: 02/07/2023]
Abstract
Acidosis is a significant feature of the tumor microenvironment in glioma, and it is closely related to multiple biological functions of cancer stem cells. Here, we found that the self-renewal ability, the mitochondrial activity and ATP production were elevated in stem cell-like glioma cells (SLCs) under acidic microenvironment, which promoted and maintained the stemness of SLCs. Under acidosis, 25-hydroxy vitamin D3-24-hydroxylase (CYP24A1) was upregulated and catalyzed the fast degradation of 1α,25(OH)2D3. We further revealed that the active form of vitamin D (1α,25(OH)2D3) could inhibit the expression of stemness markers, attenuate acidosis-induced increase of self-renewal ability and mitochondrial respiration in stem cell-like glioma cells. Our study indicates that the acidosis–CYP24A1–vitamin D pathway may be a key regulator of the cancer stem cell phenotype in malignant glioma and point out the potential value for the utilization of vitamin D to target cancer stem cells and to restrain the growth of malignant glioma in the future.
Collapse
Affiliation(s)
- Peishan Hu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China
| | - Shanshan Li
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China
| | - Ningyu Tian
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China
| | - Fan Wu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yan Hu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China
| | - Dengke Li
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China
| | - Yingjiao Qi
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China
| | - Zhizhong Wei
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China
| | - Qunfang Wei
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China
| | - Yanchao Li
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China
| | - Bin Yin
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China
| | - Tao Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiangang Yuan
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China
| | - Boqin Qiang
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China
| | - Wei Han
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China.
| | - Xiaozhong Peng
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China. .,Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China.
| |
Collapse
|
34
|
Han W, Hu P, Wu F, Wang S, Hu Y, Li S, Jiang T, Qiang B, Peng X. FHL3 links cell growth and self-renewal by modulating SOX4 in glioma. Cell Death Differ 2018; 26:796-811. [PMID: 29955125 DOI: 10.1038/s41418-018-0152-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/13/2018] [Accepted: 06/05/2018] [Indexed: 12/21/2022] Open
Abstract
Differentiation status significantly affects the properties of malignant glioma cells, with non-stem cells inducing tumor enlargement and stem-like cells driving tumor initiation and treatment resistance. It is not completely understood how the same protein can have a distinct role in these cell populations. Here, we report that four and a half LIM domain protein 3 (FHL3) has an inhibitory effect on proliferation in non-stem glioma cells and a non-proliferative effect in glioma stem cells (GSCs). In GSCs, we show that FHL3 interacts with the Smad2/3 protein complex at the SOX4 promoter region, inhibits SOX4 transcriptional activity by recruiting PPM1A phosphatase to Smad2/3, and then suppresses GSC tumor sphere formation and self-renewal in vitro and in vivo via downregulation of SOX2 expression. Altogether, these findings highlight the role of FHL3 as a stemness-suppressor in regulation of the Smad2/3-SOX4-SOX2 axis in glioma.
Collapse
Affiliation(s)
- Wei Han
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China
| | - Peishan Hu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China
| | - Fan Wu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, 100050, Beijing, China
| | - Shanshan Wang
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China
| | - Yan Hu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China
| | - Shanshan Li
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, 100050, Beijing, China
| | - Boqin Qiang
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China.
| | - Xiaozhong Peng
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China. .,Institute of Medical Biology, Chinese Academy of Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, 650118, Kunming, China.
| |
Collapse
|