1
|
Du F, Peng L, Wang Q, Dong K, Pei W, Zhuo H, Xu T, Jing C, Li L, Zhang J. CCDC12 promotes tumor development and invasion through the Snail pathway in colon adenocarcinoma. Cell Death Dis 2022; 13:187. [PMID: 35217636 PMCID: PMC8881494 DOI: 10.1038/s41419-022-04617-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/10/2022] [Accepted: 02/09/2022] [Indexed: 12/02/2022]
Abstract
Integrative expression Quantitative Trait Loci (eQTL) analysis found that rs8180040 was significantly associated with Coiled-coil domain containing 12 (CCDC12) in colon adenocarcinoma (COAD) patients. Immunohistochemical staining and western blotting confirmed CCDC12 was highly expressed in COAD tissues, which was consistent with RNA-Seq data from the TCGA database. Knockdown of CCDC12 could significantly reduce proliferation, migration, invasion, and tumorigenicity of colon cancer cells, while exogenous overexpression of CCDC12 had the opposite effect. Four plex Isobaric Tags for Relative and Absolute Quantitation assays were performed to determine its function and potential regulatory mechanism and demonstrated that overexpression of CCDC12 would change proteins on the adherens junction pathway. Overexpressed Snail and knocked down CCDC12 subsequently in SW480 cells, and we found that overexpression of Snail did not significantly change CCDC12 levels in SW480 cells, while knockdown of CCDC12 reduced that of Snail. CCDC12 plays a significant role in tumorigenesis, development, and invasion of COAD and may affect the epithelial to mesenchymal transformation process of colon cancer cells by regulating the Snail pathway.
Collapse
|
2
|
Guo JN, Xia TY, Deng SH, Xue WN, Cui BB, Liu YL. Prognostic Immunity and Therapeutic Sensitivity Analyses Based on Differential Genomic Instability-Associated LncRNAs in Left- and Right-Sided Colon Adenocarcinoma. Front Mol Biosci 2021; 8:668888. [PMID: 34532341 PMCID: PMC8438528 DOI: 10.3389/fmolb.2021.668888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 08/06/2021] [Indexed: 01/22/2023] Open
Abstract
Background: The purpose of our study was to develop a prognostic risk model based on differential genomic instability-associated (DGIA) long non-coding RNAs (lncRNAs) of left-sided and right-sided colon cancers (LCCs and RCCs); therefore, the prognostic key lncRNAs could be identified. Methods: We adopted two independent gene datasets, corresponding somatic mutation and clinical information from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Identification of differential DGIA lncRNAs from LCCs and RCCs was conducted with the appliance of “Limma” analysis. Then, we screened out key lncRNAs based on univariate and multivariate Cox proportional hazard regression analysis. Meanwhile, DGIA lncRNAs related prognostic model (DRPM) was established. We employed the DRPM in the model group and internal verification group from TCGA for the purpose of risk grouping and accuracy verification of DRPM. We also verified the accuracy of key lncRNAs with GEO data. Finally, the differences of immune infiltration, functional pathways, and therapeutic sensitivities were analyzed within different risk groups. Results: A total of 123 DGIA lncRNAs were screened out by differential expression analysis. We obtained six DGIA lncRNAs by the construction of DRPM, including AC004009.1, AP003555.2, BOLA3-AS1, NKILA, LINC00543, and UCA1. After the risk grouping by these DGIA lncRNAs, we found the prognosis of the high-risk group (HRG) was significantly worse than that in the low-risk group (LRG) (all p < 0.05). In all TCGA samples and model group, the expression of CD8+ T cells in HRG was lower than that in LRG (all p < 0.05). The functional analysis indicated that there was significant upregulation with regard to pathways related to both genetic instability and immunity in LRG, including cytosolic DNA sensing pathway, response to double-strand RNA, RIG-Ⅰ like receptor signaling pathway, and Toll-like receptor signaling pathway. Finally, we analyzed the difference and significance of key DGIA lncRNAs and risk groups in multiple therapeutic sensitivities. Conclusion: Through the analysis of the DGIA lncRNAs between LCCs and RCCs, we identified six key DGIA lncRNAs. They can not only predict the prognostic risk of patients but also serve as biomarkers for evaluating the differences of genetic instability, immune infiltration, and therapeutic sensitivity.
Collapse
Affiliation(s)
- Jun-Nan Guo
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tian-Yi Xia
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shen-Hui Deng
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei-Nan Xue
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Bin-Bin Cui
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yan-Long Liu
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
3
|
Li Y, He X, Zhang X, Xu Y, Chen W, Liu X, Xu X. RMI2 is a prognostic biomarker and promotes tumor growth in hepatocellular carcinoma. Clin Exp Med 2021; 22:229-243. [PMID: 34275027 DOI: 10.1007/s10238-021-00742-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/02/2021] [Indexed: 02/08/2023]
Abstract
Genomic instability is a hallmark of all cancers. RMI2 is a crucial component of the BLM-TopoIIIa-RMI1-RMI2 complex that maintains genome stability. It has been shown to accelerate tumor progression in lung cancer, cervical cancer, and prostate cancer. However, its expression and function in hepatocellular carcinoma (HCC) remain poorly defined. In this study, gene expression data and corresponding clinical information of HCC were downloaded from the TCGA, ICGC, and GEO databases. The expression level and clinical significance of RMI2 in HCC were then analyzed. In addition, cellular and molecular biology experiments were conducted to explore the effects of silencing and overexpression of RMI2 on human liver cancer cells and the associated mechanisms. The results showed that RMI2 expression was elevated in HCC tissues. High expression of RMI2 was correlated with shorter survival and poor prognosis of patients. The results of CCK-8, Edu, and clonogenic assays confirmed that RMI2 overexpression promoted the proliferation of HCC cells. Flow cytometric analysis demonstrated that RMI2 overexpression enhanced G1-S phase transition and decreased apoptosis. Moreover, the protein expression of key effector molecules in the p53 signaling pathway was reduced following RMI2 overexpression. In summary, these results indicate that RMI2 promotes the growth of HCC cells and suppresses their apoptosis by inhibiting the p53 signaling pathway. This study provides new insights into the mechanisms driving HCC tumorigenesis and new therapeutic targets.
Collapse
Affiliation(s)
- Yue Li
- Cancer Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Xiaoqin He
- Cancer Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Xiaoyu Zhang
- Cancer Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Yangtao Xu
- Cancer Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Wenliang Chen
- Cancer Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Xin Liu
- Cancer Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Ximing Xu
- Cancer Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China.
| |
Collapse
|
4
|
Cristini A, Géraud M, Sordet O. Transcription-associated DNA breaks and cancer: A matter of DNA topology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 364:195-240. [PMID: 34507784 DOI: 10.1016/bs.ircmb.2021.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transcription is an essential cellular process but also a major threat to genome integrity. Transcription-associated DNA breaks are particularly detrimental as their defective repair can induce gene mutations and oncogenic chromosomal translocations, which are hallmarks of cancer. The past few years have revealed that transcriptional breaks mainly originate from DNA topological problems generated by the transcribing RNA polymerases. Defective removal of transcription-induced DNA torsional stress impacts on transcription itself and promotes secondary DNA structures, such as R-loops, which can induce DNA breaks and genome instability. Paradoxically, as they relax DNA during transcription, topoisomerase enzymes introduce DNA breaks that can also endanger genome integrity. Stabilization of topoisomerases on chromatin by various anticancer drugs or by DNA alterations, can interfere with transcription machinery and cause permanent DNA breaks and R-loops. Here, we review the role of transcription in mediating DNA breaks, and discuss how deregulation of topoisomerase activity can impact on transcription and DNA break formation, and its connection with cancer.
Collapse
Affiliation(s)
- Agnese Cristini
- Cancer Research Center of Toulouse, INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, Toulouse, France.
| | - Mathéa Géraud
- Cancer Research Center of Toulouse, INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, Toulouse, France
| | - Olivier Sordet
- Cancer Research Center of Toulouse, INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, Toulouse, France.
| |
Collapse
|
5
|
Gene Instability-Related lncRNA Prognostic Model of Melanoma Patients via Machine Learning Strategy. JOURNAL OF ONCOLOGY 2021; 2021:5582920. [PMID: 34122546 PMCID: PMC8169244 DOI: 10.1155/2021/5582920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/30/2021] [Accepted: 05/08/2021] [Indexed: 12/03/2022]
Abstract
Background Melanoma is a common tumor characterized by a high mortality rate in its late stage. After metastasis, current treatment methods are relatively ineffective. Many studies have shown that long noncoding RNA (lncRNA) may participate in gene mutation and genomic instability in cancer. Methods We downloaded transcriptome data, mutation data, and clinical follow-up data of melanoma patients from The Cancer Genome Atlas. We divided samples into groups according to the number of somatic cell mutations and then performed a differential analysis to screen out the differentially expressed genes. We then divided samples into genomic unstable and genomic stable groups. We compared lncRNA expression profiles in these groups and constructed a protein-coding genes network coexpressed with selected lncRNA to analyze the pathways enriched by these genes. Two machine learning methods, least absolute shrinkage and selector operation (LASSO) and support vector machine-recursive feature elimination (SVM-RFE), were applied to conduct the lncRNA-related prognostic model. Afterward, we performed survival analysis, risk correlation analysis, independent prognostic analysis, and clinical subgroup model validation. Finally, through wound healing assay and transwell assay, the function of AATBC was verified by A375 cell lines. Results We screened 61 prognostic-related lncRNAs and constructed an lncRNA-mRNA coexpression network based on these lncRNAs. Seven lncRNAs were selected as common characteristic factors based on the two machine learning methods. The model formula was as follows: risk score = 0.085∗AATBC + 0.190∗ AC026689.1−0.117∗AC083799.1 + 0.036∗ AC091544.6−0.039∗ LINC01287−0.291∗ SPRY4.AS1 + 0.056∗ ZNF667.AS1. The seven lncRNAs in this formula are key candidates. Cell experiments have verified that knocking down AATBC in A375 cell lines can reduce the proliferation and invasion ability of melanoma cells. Conclusion The lncRNA we identified provides a new way to study lncRNA's role in the genomic instability of melanoma. Our findings may provide essential candidate biomarkers for the diagnosis and treatment of melanoma.
Collapse
|
6
|
Abstract
Tumor metastasis is a singularly important determinant of survival in most cancers. Historically, radiation therapy (RT) directed at a primary tumor mass was associated infrequently with remission of metastasis outside the field of irradiation. This away-from-target or "abscopal effect" received fringe attention because of its rarity. With the advent of immunotherapy, there are now increasing reports of abscopal effects upon RT in combination with immune checkpoint inhibition. This sparked investigation into underlying mechanisms and clinical trials aimed at enhancement of this effect. While these studies clearly attribute the abscopal effect to an antitumor immune response, the initial molecular triggers for its onset and specificity remain enigmatic. Here, we propose that DNA damage-induced inflammation coupled with neoantigen generation is essential during this intriguing phenomenon of systemic tumor regression and discuss the implications of this model for treatment aimed at triggering the abscopal effect in metastatic cancer.
Collapse
|
7
|
Blasiak J, Pawlowska E, Sobczuk A, Szczepanska J, Kaarniranta K. The Aging Stress Response and Its Implication for AMD Pathogenesis. Int J Mol Sci 2020; 21:ijms21228840. [PMID: 33266495 PMCID: PMC7700335 DOI: 10.3390/ijms21228840] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/12/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
Aging induces several stress response pathways to counterbalance detrimental changes associated with this process. These pathways include nutrient signaling, proteostasis, mitochondrial quality control and DNA damage response. At the cellular level, these pathways are controlled by evolutionarily conserved signaling molecules, such as 5’AMP-activated protein kinase (AMPK), mechanistic target of rapamycin (mTOR), insulin/insulin-like growth factor 1 (IGF-1) and sirtuins, including SIRT1. Peroxisome proliferation-activated receptor coactivator 1 alpha (PGC-1α), encoded by the PPARGC1A gene, playing an important role in antioxidant defense and mitochondrial biogenesis, may interact with these molecules influencing lifespan and general fitness. Perturbation in the aging stress response may lead to aging-related disorders, including age-related macular degeneration (AMD), the main reason for vision loss in the elderly. This is supported by studies showing an important role of disturbances in mitochondrial metabolism, DDR and autophagy in AMD pathogenesis. In addition, disturbed expression of PGC-1α was shown to associate with AMD. Therefore, the aging stress response may be critical for AMD pathogenesis, and further studies are needed to precisely determine mechanisms underlying its role in AMD. These studies can include research on retinal cells produced from pluripotent stem cells obtained from AMD donors with the mutations, either native or engineered, in the critical genes for the aging stress response, including AMPK, IGF1, MTOR, SIRT1 and PPARGC1A.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
- Correspondence: ; Tel.: +48-426354334
| | - Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Anna Sobczuk
- Department of Gynaecology and Obstetrics, Medical University of Lodz, 93-338 Lodz, Poland;
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, 70211 Kuopio, Finland;
- Department of Ophthalmology, Kuopio University Hospital, 70211 Kuopio, Finland
| |
Collapse
|
8
|
Bianchi JJ, Murigneux V, Bedora-Faure M, Lescale C, Deriano L. Breakage-Fusion-Bridge Events Trigger Complex Genome Rearrangements and Amplifications in Developmentally Arrested T Cell Lymphomas. Cell Rep 2020; 27:2847-2858.e4. [PMID: 31167132 PMCID: PMC6581794 DOI: 10.1016/j.celrep.2019.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 02/15/2019] [Accepted: 05/01/2019] [Indexed: 12/30/2022] Open
Abstract
To reveal the relative contribution of the recombination activating gene (RAG)1/2 nuclease to lymphomagenesis, we conducted a genome-wide analysis of T cell lymphomas from p53-deficient mice expressing or lacking RAG2. We found that while p53−/− lymphoblastic T cells harbor primarily ectopic DNA deletions, Rag2−/−p53−/− T cell lymphomas display complex genomic rearrangements associated with amplification of the chromosomal location 9qA4-5.3. We show that this amplicon is generated by breakage-fusion-bridge during mitosis and arises distinctly in T cell lymphomas originating from an early progenitor stage. Notably, we report amplification of the corresponding syntenic region (11q23) in a subset of human leukemia leading to the overexpression of several cancer genes, including MLL/KMT2A. Our findings provide direct evidence that lymphocytes undergo malignant transformation through distinct genome architectural routes that are determined by both RAG-dependent and RAG-independent DNA damage and a block in cell development. Lymphomas from RAG2/p53- and p53-deficient mice bear distinct genome architectures Block in T cell development leads to 9qA4-5.3 rearrangements and amplifications Breakage-fusion-bridge events trigger 9qA4-5.3 aberrations in early T cell lymphomas The syntenic region 11q23 is amplified in some human hematological cancers
Collapse
Affiliation(s)
- Joy J Bianchi
- Genome Integrity, Immunity and Cancer Unit, Equipe Labellisée Ligue Contre le Cancer, Department of Immunology, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France; Cellule Pasteur, University of Paris René Descartes, Sorbonne Paris Cité, 75015 Paris, France
| | - Valentine Murigneux
- Genome Integrity, Immunity and Cancer Unit, Equipe Labellisée Ligue Contre le Cancer, Department of Immunology, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Marie Bedora-Faure
- Genome Integrity, Immunity and Cancer Unit, Equipe Labellisée Ligue Contre le Cancer, Department of Immunology, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Chloé Lescale
- Genome Integrity, Immunity and Cancer Unit, Equipe Labellisée Ligue Contre le Cancer, Department of Immunology, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Ludovic Deriano
- Genome Integrity, Immunity and Cancer Unit, Equipe Labellisée Ligue Contre le Cancer, Department of Immunology, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France.
| |
Collapse
|
9
|
Cell organelles as targets of mammalian cadmium toxicity. Arch Toxicol 2020; 94:1017-1049. [PMID: 32206829 DOI: 10.1007/s00204-020-02692-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
Ever increasing environmental presence of cadmium as a consequence of industrial activities is considered a health hazard and is closely linked to deteriorating global health status. General animal and human cadmium exposure ranges from ingestion of foodstuffs sourced from heavily polluted hotspots and cigarette smoke to widespread contamination of air and water, including cadmium-containing microplastics found in household water. Cadmium is promiscuous in its effects and exerts numerous cellular perturbations based on direct interactions with macromolecules and its capacity to mimic or displace essential physiological ions, such as iron and zinc. Cell organelles use lipid membranes to form complex tightly-regulated, compartmentalized networks with specialized functions, which are fundamental to life. Interorganellar communication is crucial for orchestrating correct cell behavior, such as adaptive stress responses, and can be mediated by the release of signaling molecules, exchange of organelle contents, mechanical force generated through organelle shape changes or direct membrane contact sites. In this review, cadmium effects on organellar structure and function will be critically discussed with particular consideration to disruption of organelle physiology in vertebrates.
Collapse
|
10
|
Cristini A, Gromak N, Sordet O. Transcription-dependent DNA double-strand breaks and human disease. Mol Cell Oncol 2020; 7:1691905. [PMID: 32158914 PMCID: PMC7051148 DOI: 10.1080/23723556.2019.1691905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022]
Abstract
Accumulation of DNA damage in resting cells is an emerging cause of human disease. We identified a mechanism of DNA double-strand break (DSB) formation in non-replicating cells, which strictly depends on transcription. These transcriptional DSBs arise from the twinned processing of R-loops and topoisomerase I and may underlie neurological disorders and cancers.
Collapse
Affiliation(s)
- Agnese Cristini
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Olivier Sordet
- Cancer Research Center of Toulouse, INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, Toulouse, France
| |
Collapse
|
11
|
Cellular Stress Responses in Radiotherapy. Cells 2019; 8:cells8091105. [PMID: 31540530 PMCID: PMC6769573 DOI: 10.3390/cells8091105] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/11/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022] Open
Abstract
Radiotherapy is one of the major cancer treatment strategies. Exposure to penetrating radiation causes cellular stress, directly or indirectly, due to the generation of reactive oxygen species, DNA damage, and subcellular organelle damage and autophagy. These radiation-induced damage responses cooperatively contribute to cancer cell death, but paradoxically, radiotherapy also causes the activation of damage-repair and survival signaling to alleviate radiation-induced cytotoxic effects in a small percentage of cancer cells, and these activations are responsible for tumor radio-resistance. The present study describes the molecular mechanisms responsible for radiation-induced cellular stress response and radioresistance, and the therapeutic approaches used to overcome radioresistance.
Collapse
|
12
|
Pfeifer M, Brem R, Lippert TP, Boulianne B, Ho HN, Robinson ME, Stebbing J, Feldhahn N. SSB1/SSB2 Proteins Safeguard B Cell Development by Protecting the Genomes of B Cell Precursors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:3423-3433. [PMID: 31085591 PMCID: PMC6545462 DOI: 10.4049/jimmunol.1801618] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/12/2019] [Indexed: 12/22/2022]
Abstract
Induction of programmed DNA damage and its recognition and repair are fundamental for B cell development. The ssDNA-binding protein SSB1 has been described in human cells as essential for the recognition and repair of DNA damage. To study its relevance for B cells, we recently developed Ssb1 -/- and conditional Ssb1 -/- mice. Although SSB1 loss did not affect B cell development, Ssb1 -/- cells exhibited compensatory expression of its homolog SSB2. We have now generated Ssb2 -/- mice and show in this study that SSB2 is also dispensable for B cell development and DNA damage response activation. In contrast to the single loss of Ssb1 or Ssb2, however, combined SSB1/2 deficiency caused a defect in early B cell development. We relate this to the sensitivity of B cell precursors as mature B cells largely tolerated their loss. Toxicity of combined genetic SSB1/2 loss can be rescued by ectopic expression of either SSB1 or SSB2, mimicked by expression of SSB1 ssDNA-binding mutants, and attenuated by BCL2-mediated suppression of apoptosis. SSB1/2 loss in B cell precursors further caused increased exposure of ssDNA associated with disruption of genome fragile sites, inefficient cell cycle progression, and increased DNA damage if apoptosis is suppressed. As such, our results establish SSB1/2 as safeguards of B cell development and unveil their differential requirement in immature and mature B lymphocytes.
Collapse
Affiliation(s)
- Matthias Pfeifer
- Centre for Hematology, Department of Medicine, Imperial College London, W12 0NN London, United Kingdom; and
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, W12 0NN London, United Kingdom
| | - Reto Brem
- Centre for Hematology, Department of Medicine, Imperial College London, W12 0NN London, United Kingdom; and
| | - Timothy P Lippert
- Centre for Hematology, Department of Medicine, Imperial College London, W12 0NN London, United Kingdom; and
| | - Bryant Boulianne
- Centre for Hematology, Department of Medicine, Imperial College London, W12 0NN London, United Kingdom; and
| | - Howin Ng Ho
- Centre for Hematology, Department of Medicine, Imperial College London, W12 0NN London, United Kingdom; and
| | - Mark E Robinson
- Centre for Hematology, Department of Medicine, Imperial College London, W12 0NN London, United Kingdom; and
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, W12 0NN London, United Kingdom
| | - Justin Stebbing
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, W12 0NN London, United Kingdom
| | - Niklas Feldhahn
- Centre for Hematology, Department of Medicine, Imperial College London, W12 0NN London, United Kingdom; and
| |
Collapse
|
13
|
Belotserkovskii BP, Tornaletti S, D'Souza AD, Hanawalt PC. R-loop generation during transcription: Formation, processing and cellular outcomes. DNA Repair (Amst) 2018; 71:69-81. [PMID: 30190235 PMCID: PMC6340742 DOI: 10.1016/j.dnarep.2018.08.009] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
R-loops are structures consisting of an RNA-DNA duplex and an unpaired DNA strand. They can form during transcription upon nascent RNA "threadback" invasion into the DNA duplex to displace the non-template strand. Although R-loops occur naturally in all kingdoms of life and serve regulatory roles, they are often deleterious and can cause genomic instability. Of particular importance are the disastrous consequences when replication forks or transcription complexes collide with R-loops. The appropriate processing of R-loops is essential to avoid a number of human neurodegenerative and other clinical disorders. We provide a perspective on mechanistic aspects of R-loop formation and their resolution learned from studies in model systems. This should contribute to improved understanding of R-loop biological functions and enable their practical applications. We propose the novel employment of artificially-generated stable R-loops to selectively inactivate tumor cells.
Collapse
Affiliation(s)
- Boris P Belotserkovskii
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA, 94305-5020, United States
| | - Silvia Tornaletti
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA, 94305-5020, United States
| | - Alicia D D'Souza
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA, 94305-5020, United States
| | - Philip C Hanawalt
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA, 94305-5020, United States.
| |
Collapse
|
14
|
Annala M, Taavitsainen S, Vandekerkhove G, Bacon JVW, Beja K, Chi KN, Nykter M, Wyatt AW. Frequent mutation of the FOXA1 untranslated region in prostate cancer. Commun Biol 2018; 1:122. [PMID: 30272002 PMCID: PMC6123809 DOI: 10.1038/s42003-018-0128-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/03/2018] [Indexed: 12/26/2022] Open
Abstract
Prostate cancer has a low somatic mutation rate but non-coding regions remain underexplored. We sequenced the untranslated regions (UTRs) of 72 established driver genes in 428 patients with metastatic prostate cancer and identified FOXA1 3'-UTR mutations in 12% of patients. The mutations were predominantly insertions or deletions, covered the entire UTR without motif enrichment, and were not detected in other cancers. FOXA1 lies in head-on orientation with the androgen-regulated non-coding gene AL121790.1, resulting in strong prostate lineage-specific bidirectional transcription across the FOXA1 3'-UTR. This suggests transcriptional activity as a cause for the localized hypermutation. The indel-dominant pattern of somatic mutation extends into the FOXA1 coding region, where it is shaped by clonal selection to yield a cluster of non-frameshift indels inside the forkhead domain. Somatic FOXA1 3'-UTR mutations may prove useful for diagnostic and screening approaches, given their high frequency and lineage specificity.
Collapse
Affiliation(s)
- Matti Annala
- Faculty of Medicine and Life Sciences and Biomeditech Institute, University of Tampere, FI-33520, Tampere, Finland
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada
| | - Sinja Taavitsainen
- Faculty of Medicine and Life Sciences and Biomeditech Institute, University of Tampere, FI-33520, Tampere, Finland
| | - Gillian Vandekerkhove
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada
| | - Jack V W Bacon
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada
| | - Kevin Beja
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada
| | - Kim N Chi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada
- Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, BC, V5Z 1G1, Canada
| | - Matti Nykter
- Faculty of Medicine and Life Sciences and Biomeditech Institute, University of Tampere, FI-33520, Tampere, Finland
| | - Alexander W Wyatt
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada.
| |
Collapse
|