1
|
Hwang JR, Cho YJ, Ryu JY, Choi JY, Choi JJ, Sa JK, Kim HS, Lee JW. Ulipristal acetate, a selective progesterone receptor modulator, induces cell death via inhibition of STAT3/CCL2 signaling pathway in uterine sarcoma. Biomed Pharmacother 2023; 168:115792. [PMID: 37924789 DOI: 10.1016/j.biopha.2023.115792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023] Open
Abstract
Ulipristal acetate (UPA) is a selective progesterone receptor modulator and is used for the treatment of uterine leiomyoma (a benign tumor). Uterine sarcoma which is highly malignant cancer with a poor prognosis is clinically resembled with uterine leiomyoma. There has been no experimental research on the effect of UPA on uterine sarcoma. In this study, we examined the efficacy of UPA in uterine sarcoma with in vitro and in vivo animal models. Cytotoxicity of UPA was determined in uterine sarcoma cell lines (MES-SA, SK-UT-1, and SK-LMS-1). Apoptotic genes and signaling pathways affected by UPA were analyzed by complementary DNA (cDNA) microarray of uterine sarcoma cell lines and western blot, respectively. An in vivo efficacy of UPA was examined with uterine sarcoma cell line- and patient-derived xenograft (PDX) mice models. UPA inhibited cell growth in uterine sarcoma cell lines and primary culture cells from a PDX mouse (PDX-C). cDNA microarray analysis revealed that CCL2 was highly down-regulated by UPA. Phosphorylation and the total expression of STAT3 were inhibited by UPA. UPA also inhibited CCL2 and STAT3 in PDX-C. The inhibitory effect of UPA had not changed in the overexpression of PR and treatment of progesterone. In vivo efficacy studies with cell line-derived xenografts and a PDX model with leiomyosarcoma, a typical uterine sarcoma, demonstrated that UPA significantly decreased tumor growth. UPA had significant anti-tumor effects in uterine sarcoma through the inhibition of STAT3/CCL2 signaling pathway and might be a potential therapeutic agent to treat this disease.
Collapse
Affiliation(s)
- Jae Ryoung Hwang
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul, South Korea
| | - Young-Jae Cho
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul, South Korea
| | - Ji-Yoon Ryu
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul, South Korea
| | - Ju-Yeon Choi
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul, South Korea
| | - Jung-Joo Choi
- Department of Obstetrics and Gynecology, Gynecologic Cancer Center, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul, South Korea
| | - Jason K Sa
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Hyun-Soo Kim
- Department of Pathology, Gynecologic Cancer Center, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul, South Korea
| | - Jeong-Won Lee
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul, South Korea; Department of Obstetrics and Gynecology, Gynecologic Cancer Center, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul, South Korea; Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, School of Medicine, Seoul, South Korea.
| |
Collapse
|
2
|
Baradaran A, Asadzadeh Z, Hemmat N, Baghbanzadeh A, Shadbad MA, Khosravi N, Derakhshani A, Alemohammad H, Afrashteh Nour M, Safarpour H, Silvestris N, Brunetti O, Baradaran B. The cross-talk between tumor-associated macrophages and tumor endothelium: Recent advances in macrophage-based cancer immunotherapy. Biomed Pharmacother 2022; 146:112588. [PMID: 35062062 DOI: 10.1016/j.biopha.2021.112588] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/02/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are among the abundant cell populations of the tumor microenvironment (TME), which have pivotal roles in tumor development, chemoresistance, immune evasion, and metastasis. Growing evidence indicates that TAMs and the cross-talk between TAMs and tumoral endothelial cells can substantially contribute to tumor angiogenesis, which is considered a vital process for cancer development. Besides, tumoral endothelial cells can regulate the leukocyte infiltration to the TME in solid cancers and contribute to immune evasion. Therefore, targeting the immunosuppressive TAMs and the cross-talk between them can be a promising strategy for improving anti-tumoral immune responses. This review aims to summarize the biology of TAMs, their recently identified roles in tumor development/angiogenesis, and recent advances in macrophage-based cancer immunotherapy approaches for treating cancers.
Collapse
Affiliation(s)
- Ali Baradaran
- Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia; Research & Development, BSD Robotics, Queensland, Australia
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Hemmat
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Abdoli Shadbad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Khosravi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afshin Derakhshani
- Experimental Pharmacology Laboratory, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Hajar Alemohammad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Afrashteh Nour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Safarpour
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Nicola Silvestris
- Medical Oncology Unit-IRCCS IstitutoTumori "Giovanni Paolo II" of Bari, Bari, Italy; Department of Biomedical Sciences and Human Oncology DIMO-University of Bari, Bari, Italy
| | - Oronzo Brunetti
- Medical Oncology Unit-IRCCS IstitutoTumori "Giovanni Paolo II" of Bari, Bari, Italy.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Taraschi A, Cimini C, Colosimo A, Ramal-Sanchez M, Moussa F, Mokh S, Valbonetti L, Capacchietti G, Tagaram I, Bernabò N, Barboni B. Human Immune System Diseasome Networks and Female Oviductal Microenvironment: New Horizons to be Discovered. Front Genet 2022; 12:795123. [PMID: 35154249 PMCID: PMC8829125 DOI: 10.3389/fgene.2021.795123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022] Open
Abstract
Human hypofertility and infertility are two worldwide conditions experiencing nowadays an alarming increase due to a complex ensemble of events. The immune system has been suggested as one of the responsible for some of the etiopathogenic mechanisms involved in these conditions. To shed some light into the strong correlation between the reproductive and immune system, as can be inferred by the several and valuable manuscripts published to date, here we built a network using a useful bioinformatic tool (DisGeNET), in which the key genes involved in the sperm-oviduct interaction were linked. This constitutes an important event related with Human fertility since this interaction, and specially the spermatozoa, represents a not-self entity immunotolerated by the female. As a result, we discovered that some proteins involved in the sperm-oviduct interaction are implicated in several immune system diseases while, at the same time, some immune system diseases could interfere by using different pathways with the reproduction process. The data presented here could be of great importance to understand the involvement of the immune system in fertility reduction in Humans, setting the basis for potential immune therapeutic tools in the near future.
Collapse
Affiliation(s)
- Angela Taraschi
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Costanza Cimini
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Alessia Colosimo
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Marina Ramal-Sanchez
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Fadl Moussa
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Doctoral School of Science and Technology Lebanese University, Beirut, Lebanon
| | - Samia Mokh
- National Council for Scientific Research (CNRS), Lebanese Atomic Energy Commission (LAEC), Laboratory for Analysis of Organic Compound (LACO), Beiru, Lebanon
| | - Luca Valbonetti
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), National Research Council, Rome, Italy
| | - Giulia Capacchietti
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Israiel Tagaram
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Nicola Bernabò
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), National Research Council, Rome, Italy
- *Correspondence: Nicola Bernabò,
| | - Barbara Barboni
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
4
|
Luo X, Xu J, Yu J, Yi P. Shaping Immune Responses in the Tumor Microenvironment of Ovarian Cancer. Front Immunol 2021; 12:692360. [PMID: 34248988 PMCID: PMC8261131 DOI: 10.3389/fimmu.2021.692360] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/02/2021] [Indexed: 12/21/2022] Open
Abstract
Reciprocal signaling between immune cells and ovarian cancer cells in the tumor microenvironment can alter immune responses and regulate disease progression. These signaling events are regulated by multiple factors, including genetic and epigenetic alterations in both the ovarian cancer cells and immune cells, as well as cytokine pathways. Multiple immune cell types are recruited to the ovarian cancer tumor microenvironment, and new insights about the complexity of their interactions have emerged in recent years. The growing understanding of immune cell function in the ovarian cancer tumor microenvironment has important implications for biomarker discovery and therapeutic development. This review aims to describe the factors that shape the phenotypes of immune cells in the tumor microenvironment of ovarian cancer and how these changes impact disease progression and therapy.
Collapse
Affiliation(s)
- Xin Luo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, United States.,Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, United States
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Liu W, Wang L, Zhang J, Qiao L, Liu Y, Yang X, Zhang J, Zheng W, Ma Z. Purification of recombinant human chemokine CCL2 in E. coli and its function in ovarian cancer. 3 Biotech 2021; 11:8. [PMID: 33442507 DOI: 10.1007/s13205-020-02571-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/27/2020] [Indexed: 10/22/2022] Open
Abstract
Chemokine (CC-motif) ligand 2 (CCL2) is an inflammatory cytokine that regulates the infiltration and migration of monocytes. It is highly expressed by both tumor and stromal cells and has been associated with tumorigenesis. However, the effect of the exogenous administration of CCL2 on ovarian cancer remains largely unknown. In this report, we attempted to establish an expression system in Escherichia coli to produce recombinant hCCL2. The recombinant plasmid containing the hCCL2 cDNA was prepared using the prokaryotic-expression plasmid pGEX-5X-3 and transformed into E. coli BL21. GST-hCCL2 was successfully induced by 0.1 mmol/L IPTG at 20 °C for 6 h, and the recombinant protein was purified using affinity chromatography. The purified protein was identified by SDS-PAGE and Western Blot. In vitro experiments revealed that rhCCL2 promoted the proliferation of ovarian cancer cells and increased the levels of phosphorylation of MEK and ERK1/2, and the levels of JUN, RELB and NF-κB2 mRNA. Furthermore, inhibition of ERK signaling by treatment with PD98059 decreased ovarian cancer cell proliferation and levels of JUN, RELB, and NF-κB2 mRNA, indicating that exogenous rhCCL2 increased the proliferation of ovarian cancer cells, partially by activating the MAPK/ERK pathway, and by targeting JUN, RELB, and NF-κB2. Our study uncovered a promoting role of exogenous CCL2 on ovarian cancer cell proliferation through the MAPK/ERK signaling pathway, which may facilitate the discovery of more potential roles of CCL2 in ovarian cancer. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-020-02571-0.
Collapse
|
6
|
MCP-1/CCR-2 axis in adipocytes and cancer cell respectively facilitates ovarian cancer peritoneal metastasis. Oncogene 2019; 39:1681-1695. [PMID: 31705064 DOI: 10.1038/s41388-019-1090-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 10/21/2019] [Accepted: 10/28/2019] [Indexed: 02/08/2023]
Abstract
Ovarian cancer selective metastasizes to the omentum contributing to the poor prognosis associated with ovarian cancer. However, the mechanism underlining this propensity and therapeutic approaches to counter this process has not been fully elucidated. Here, we show that MCP-1 produced by omental adipocytes binding to its cognate receptor CCR-2 on ovarian cancer cells facilitates migration and omental metastasis by activating the PI3K/AKT/mTOR pathway and its downstream effectors HIF-1α and VEGF-A in cell lines, xenografts, and transgenic murine models. MCP-1 antibody significantly decreased tumor burden and increased survival of mice in vivo. Interestingly, metformin decreased omental metastasis at least partially by inhibiting MCP-1 secretion from adipocytes independent of direct effects on cancer cells. Together this suggests a novel target of MCP-1/CCR-2 axis that could benefit ovarian cancer patients.
Collapse
|
7
|
Yi Y, Liu Y, Wu K, Wu W, Zhang W. The core genes involved in the promotion of depression in patients with ovarian cancer. Oncol Lett 2019; 18:5995-6007. [PMID: 31788074 PMCID: PMC6865084 DOI: 10.3892/ol.2019.10934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 08/08/2019] [Indexed: 12/09/2022] Open
Abstract
The present study aimed to identify the core genes and pathways involved in depression in patients with ovarian cancer (OC) who suffer from high or low-grade depression. The dataset GSE9116 from Gene Expression Omnibus database was analyzed to identify differentially expressed genes (DEGs) in these patients. To elucidate how certain genes could promote depression in patients with OC, pathway crosstalk, protein-protein interaction (PPI) and comprehensive gene-pathway analyses were determined using WebGestalt, ToppGene and Search Tool for the Retrieval of Interacting Genes and gene ontology analysis. Key genes and pathways were extracted from the gene-pathway network, and gene expression and survival analysis were evaluated. A total of 93 DEGs were identified from GSE9116 dataset, including 84 upregulated genes and nine downregulated genes. The PPI, pathway crosstalk and comprehensive gene-pathway analyses highlighted C-C motif chemokine ligand 2 (CCL2), Fos proto-oncogene, AP-1 transcription factor subunit (FOS), serpin family E member 1 (SERPINE1) and serpin family G member 1 (SERPING1) as core genes involved in the promotion of depression in patients with OC. These core genes were involved in the following four pathways 'Ensemble of genes encoding ECM-associated proteins including ECM-affiliated proteins', 'ECM regulators and secreted factors', 'Ensemble of genes encoding extracellular matrix and extracellular matrix-associated proteins' and 'MAPK signaling pathway and IL-17 signaling pathway'. The results from gene expression and survival analysis demonstrated that these four key genes were upregulated in patients with OC and high-grade depression and could worsen patients' survival. These results suggested that CCL2, FOS, SERPINE1 and SERPING1 may serve a crucial role in the promotion of depression in patients with OC. This finding may provide novel markers for predicting and treating depression in patients with OC; however, the underlying mechanisms remain unknown and require further investigation.
Collapse
Affiliation(s)
- Yuexiong Yi
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yanyan Liu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Kejia Wu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Wanrong Wu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
8
|
Gambaro K, Quinn MCJ, Cáceres-Gorriti KY, Shapiro RS, Provencher D, Rahimi K, Mes-Masson AM, Tonin PN. Low levels of IGFBP7 expression in high-grade serous ovarian carcinoma is associated with patient outcome. BMC Cancer 2015; 15:135. [PMID: 25886299 PMCID: PMC4381406 DOI: 10.1186/s12885-015-1138-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 02/26/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Insulin-like growth factor binding protein 7 (IGFBP7) has been suggested to act as a tumour suppressor gene in various human cancers, yet its role in epithelial ovarian cancer (EOC) has not yet been investigated. We previously observed that IGFBP7 was one of several genes found significantly upregulated in an EOC cell line model rendered non-tumourigenic as consequence of genetic manipulation. The aim of the present study was to investigate the role of IGFBP7 in high-grade serous ovarian carcinomas (HGSC), the most common type of EOC. METHODS We analysed IGFBP7 gene expression in 11 normal ovarian surface epithelial cells (NOSE), 79 high-grade serous ovarian carcinomas (HGSC), and seven EOC cell lines using a custom gene expression array platform. IGFBP7 mRNA expression profiles were also extracted from publicly available databases. Protein expression was assessed by immunohistochemistry of 175 HGSC and 10 normal fallopian tube samples using tissue microarray and related to disease outcome. We used EOC cells to investigate possible mechanisms of gene inactivation and describe various in vitro growth effects of exposing EOC cell lines to human recombinant IGFBP7 protein and conditioned media. RESULTS All HGSCs exhibited IGFBP7 expression levels that were significantly (p = 0.001) lower than the mean of the expression value of NOSE samples and that of a whole ovary sample. IGFBP7 gene and protein expression were lower in tumourigenic EOC cell lines relative to a non-tumourigenic EOC cell line. None of the EOC cell lines harboured a somatic mutation in IGFBP7, although loss of heterozygosity (LOH) of the IGFBP7 locus and epigenetic methylation silencing of the IGFBP7 promoter was observed in two of the cell lines exhibiting loss of gene/protein expression. In vitro functional assays revealed an alteration of the EOC cell migration capacity. Protein expression analysis of HGSC samples revealed that the large majority of tumour cores (72.6%) showed low or absence of IGFBP7 staining and revealed a significant correlation between IGFBP7 protein expression and a prolonged overall survival (p = 0.044). CONCLUSION The low levels of IGFPB7 in HGSC relative to normal tissues, and association with survival are consistent with a purported role in tumour suppressor pathways.
Collapse
Affiliation(s)
- Karen Gambaro
- Department of Human Genetics, McGill University, Montreal, H3A 1B1, Canada. .,Centre de recherche du Centre hospitalier de l'Université de Montréal/Institut du cancer de Montréal, Montreal, H2X 0B9, Canada.
| | - Michael C J Quinn
- Department of Human Genetics, McGill University, Montreal, H3A 1B1, Canada. .,Centre de recherche du Centre hospitalier de l'Université de Montréal/Institut du cancer de Montréal, Montreal, H2X 0B9, Canada.
| | - Katia Y Cáceres-Gorriti
- Centre de recherche du Centre hospitalier de l'Université de Montréal/Institut du cancer de Montréal, Montreal, H2X 0B9, Canada.
| | - Rebecca S Shapiro
- Department of Human Genetics, McGill University, Montreal, H3A 1B1, Canada.
| | - Diane Provencher
- Centre de recherche du Centre hospitalier de l'Université de Montréal/Institut du cancer de Montréal, Montreal, H2X 0B9, Canada. .,Department of Obstetric-Gynecology, Université de Montréal, Montreal, H2L 4M1, Canada.
| | - Kurosh Rahimi
- Department of Pathology, Université de Montréal, Montreal, H3C 3J7, Canada.
| | - Anne-Marie Mes-Masson
- Centre de recherche du Centre hospitalier de l'Université de Montréal/Institut du cancer de Montréal, Montreal, H2X 0B9, Canada. .,Department of Medicine, Université de Montréal, Montreal, H3C 3J7, Canada.
| | - Patricia N Tonin
- Department of Human Genetics, McGill University, Montreal, H3A 1B1, Canada. .,The Research Institute of the McGill University Health Centre, Montreal, H4A 3J1, Canada. .,Department of Medicine, McGill University, Montreal, H3G 1A4, Canada. .,Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Site Glen Pavillion Block E, Cancer Research Program E026217 (cubicle E), Montreal, Quebec, H4A 3J1, Canada.
| |
Collapse
|
9
|
Transcriptional regulation of chemokine expression in ovarian cancer. Biomolecules 2015; 5:223-43. [PMID: 25790431 PMCID: PMC4384120 DOI: 10.3390/biom5010223] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/04/2015] [Accepted: 03/09/2015] [Indexed: 12/14/2022] Open
Abstract
The increased expression of pro-inflammatory and pro-angiogenic chemokines contributes to ovarian cancer progression through the induction of tumor cell proliferation, survival, angiogenesis, and metastasis. The substantial potential of these chemokines to facilitate the progression and metastasis of ovarian cancer underscores the need for their stringent transcriptional regulation. In this Review, we highlight the key mechanisms that regulate the transcription of pro-inflammatory chemokines in ovarian cancer cells, and that have important roles in controlling ovarian cancer progression. We further discuss the potential mechanisms underlying the increased chemokine expression in drug resistance, along with our perspective for future studies.
Collapse
|
10
|
Zhang Q, Cai DJ, Li B. Ovarian cancer stem-like cells elicit the polarization of M2 macrophages. Mol Med Rep 2015; 11:4685-93. [PMID: 25672286 DOI: 10.3892/mmr.2015.3323] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 12/19/2014] [Indexed: 11/05/2022] Open
Abstract
Ovarian cancer is a life‑threatening disease in females worldwide. The polarization of macrophages is crucial in oncogenesis and the development of ovarian cancer. Increasing evidence has supported the correlation between ovarian cancer stem‑like cells (OCSCs) and macrophages, however, whether OCSCs can affect the polarization of macrophages and the underlying mechanisms involved remain to be elucidated. To examine the interplay between OCSCs and macrophages, a co‑culture system was used to detect the effect of OCSCs on macrophage polarization. The expression of cluster of differentiation 206+ and the secretion of interleukin‑10 were significantly increased and the production of tumor necrosis factor‑α was suppressed, confirming macrophage polarization to M2 macrophages. Further investigation of the macrophages in a Transwell culture system with OCSCs revealed polarization to the M2 macrophages to a similar extent, indicating that the cytokines of the OCSCs, rather than direct cell‑cell contact, are important for the polarization of M2 macrophages. Furthermore, the expression levels of chemokine (C‑C motif) ligand (CCL)2, cyclooxygenase (COX)‑2 and prostaglandin E2 (PGE2) were increased in the Transwell system and the inhibition of COX‑2, but not CCL2, significantly decreased the polarization of the M2 macrophages. In addition, mechanistic analysis revealed the importance of the COX‑2/PGE2 pathway in OCSCs to activate Janus kinase (JAK) signaling in macrophages to elicit M2 polarization. These findings provided the first evidence, to the best of our knowledge, that OCSCs are capable of altering macrophages into the M2 phenotype via the overexpression of COX‑2 and the increased production of PGE2 cytokines and that the JAK signaling pathway in macrophages is important for this alteration. The present study provided evidence supporting possible molecular targets for cancer treatment.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| | - Da-Jun Cai
- Department of Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| | - Bin Li
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
11
|
Wei X, Tian Y, Lu W, Li W, Zhang M, Lu X, Liu Y. Functional Polymorphisms in Monocyte Chemoattractant Protein-1 Are Associated with Increased Susceptibility to Ovarian Cancer. DNA Cell Biol 2015; 34:37-42. [PMID: 25289731 DOI: 10.1089/dna.2014.2644] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Xin Wei
- Department of Gynecology, Liaocheng People's Hospital, Liaocheng, Shandong Province, People's Republic of China
| | - Yinpu Tian
- Hospice, Liaocheng People's Hospital, Liaocheng, Shandong Province, People's Republic of China
| | - Wei Lu
- Department of Gynecology, Liaocheng People's Hospital, Liaocheng, Shandong Province, People's Republic of China
| | - Wei Li
- Department of Gynecology, Liaocheng People's Hospital, Liaocheng, Shandong Province, People's Republic of China
| | - Mei Zhang
- Department of Gynecology, Liaocheng People's Hospital, Liaocheng, Shandong Province, People's Republic of China
| | - Xiaofen Lu
- Department of Gynecology, Liaocheng People's Hospital, Liaocheng, Shandong Province, People's Republic of China
| | - Yihua Liu
- Central Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong Province, People's Republic of China
| |
Collapse
|
12
|
Gambaro K, Quinn MCJ, Wojnarowicz PM, Arcand SL, de Ladurantaye M, Barrès V, Ripeau JS, Killary AM, Davis EC, Lavoie J, Provencher DM, Mes-Masson AM, Chevrette M, Tonin PN. VGLL3 expression is associated with a tumor suppressor phenotype in epithelial ovarian cancer. Mol Oncol 2013; 7:513-30. [PMID: 23415753 DOI: 10.1016/j.molonc.2012.12.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 12/14/2012] [Accepted: 12/20/2012] [Indexed: 12/11/2022] Open
Abstract
Previous studies have implicated vestigial like 3 (VGLL3), a chromosome 3p12.3 gene that encodes a putative transcription co-factor, as a candidate tumor suppressor gene (TSG) in high-grade serous ovarian carcinomas (HGSC), the most common type of epithelial ovarian cancer. A complementation analysis based on microcell-mediated chromosome transfer (MMCT) using a centric fragment of chromosome 3 (der3p12-q12.1) into the OV-90 ovarian cancer cell line haploinsufficient for 3p and lacking VGLL3 expression was performed to assess the effect on tumorigenic potential and growth characteristics. Genetic characterization of the derived MMCT hybrids revealed that only the hybrid that contained an intact VGLL3 locus exhibited alterations of tumorigenic potential in a nude mouse xenograft model and various in vitro growth characteristics. Only stable OV-90 transfectant clones expressing low levels of VGLL3 were derived. These clones exhibited an altered cytoplasmic morphology characterized by numerous single membrane bound multivesicular-bodies (MVB) that were not attributed to autophagy. Overexpression of VGLL3 in OV-90 was achieved using a lentivirus-based tetracycline inducible gene expression system, which also resulted in MVB formation in the infected cell population. Though there was no significant differences in various in vitro and in vivo growth characteristics in a comparison of VGLL3-expressing clones with empty vector transfectant controls, loss of VGLL3 expression was observed in tumors derived from mouse xenograft models. VGLL3 gene and protein expression was significantly reduced in HGSC samples (>98%, p < 0.05) relative to either normal ovarian surface epithelial cells or epithelial cells of the fallopian tube, possible tissues of origin of HGSC. Also, there appeared to be to be more cases with higher staining levels in stromal tissue component from HGSC cases that had a prolonged disease-free survival. The results taken together suggest that VGLL3 is involved in tumor suppressor pathways, a feature that is characterized by the absence of VGLL3 expression in HGSC samples.
Collapse
Affiliation(s)
- Karen Gambaro
- Department of Human Genetics, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Montreal H3G 1A4, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|