1
|
Su P, Zhang M, Kang X. Targeting c-Met in the treatment of urologic neoplasms: Current status and challenges. Front Oncol 2023; 13:1071030. [PMID: 36959792 PMCID: PMC10028134 DOI: 10.3389/fonc.2023.1071030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
At present, studies have found that c-Met is mainly involved in epithelial-mesenchymal transition (EMT) of tumor tissues in urologic neoplasms. Hepatocyte growth factor (HGF) combined with c-Met promotes the mitosis of tumor cells, and then induces motility, angiogenesis, migration, invasion and drug resistance. Therefore, c-Met targeting therapy may have great potential in urologic neoplasms. Many strategies targeting c-Met have been widely used in the study of urologic neoplasms. Although the use of targeting c-Met therapy has a strong biological basis for the treatment of urologic neoplasms, the results of current clinical trials have not yielded significant results. To promote the application of c-Met targeting drugs in the clinical treatment of urologic neoplasms, it is very important to study the detailed mechanism of c-Met in urologic neoplasms and innovate c-Met targeted drugs. This paper firstly discussed the value of c-Met targeted therapy in urologic neoplasms, then summarized the related research progress, and finally explored the potential targets related to the HGF/c-Met signaling pathway. It may provide a new concept for the treatment of middle and late urologic neoplasms.
Collapse
|
2
|
Zhang Z, Li D, Yun H, Tong J, Liu W, Chai K, Zeng T, Gao Z, Xie Y. Opportunities and challenges of targeting c-Met in the treatment of digestive tumors. Front Oncol 2022; 12:923260. [PMID: 35978812 PMCID: PMC9376446 DOI: 10.3389/fonc.2022.923260] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
At present, a large number of studies have demonstrated that c-Met generally exerts a crucial function of promoting tumor cells proliferation and differentiation in digestive system tumors. c-Met also mediates tumor progression and drug resistance by signaling interactions with other oncogenic molecules and then activating downstream pathways. Therefore, c-Met is a promising target for the treatment of digestive system tumors. Many anti-tumor therapies targeting c-Met (tyrosine kinase inhibitors, monoclonal antibodies, and adoptive immunotherapy) have been developed in treating digestive system tumors. Some drugs have been successfully applied to clinic, but most of them are defective due to their efficacy and complications. In order to promote the clinical application of targeting c-Met drugs in digestive system tumors, it is necessary to further explore the mechanism of c-Met action in digestive system tumors and optimize the anti-tumor treatment of targeting c-Met drugs. Through reading a large number of literatures, the author systematically reviewed the biological functions and molecular mechanisms of c-Met associated with tumor and summarized the current status of targeting c-Met in the treatment of digestive system tumors so as to provide new ideas for the treatment of digestive system tumors.
Collapse
Affiliation(s)
- Zhengchao Zhang
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China
| | - Dong Li
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Heng Yun
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Jie Tong
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Wei Liu
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Keqiang Chai
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Tongwei Zeng
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Zhenghua Gao
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
- *Correspondence: Yongqiang Xie, ; Zhenghua Gao,
| | - Yongqiang Xie
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
- *Correspondence: Yongqiang Xie, ; Zhenghua Gao,
| |
Collapse
|
3
|
The Emerging Role of c-Met in Carcinogenesis and Clinical Implications as a Possible Therapeutic Target. JOURNAL OF ONCOLOGY 2022; 2022:5179182. [PMID: 35069735 PMCID: PMC8776431 DOI: 10.1155/2022/5179182] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/15/2021] [Accepted: 12/29/2021] [Indexed: 02/08/2023]
Abstract
Background c-MET is a receptor tyrosine kinase receptor (RTK) for the hepatocyte growth factor (HGF). The binding of HGF to c-MET regulates several cellular functions: differentiation, proliferation, epithelial cell motility, angiogenesis, and epithelial-mesenchymal transition (EMT). Moreover, it is known to be involved in carcinogenesis. Comprehension of HGF-c-MET signaling pathway might have important clinical consequences allowing to predict prognosis, response to treatment, and survival rates based on its expression and dysregulation. Discussion. c-MET represents a useful molecular target for novel engineered drugs. Several clinical trials are underway for various solid tumors and the development of new specific monoclonal antibodies depends on the recent knowledge about the definite c-MET role in each different malignance. Recent clinical trials based on c-MET molecular targets result in good safety profile and represent a promising therapeutic strategy for solid cancers, in monotherapy or in combination with other target drugs. Conclusion The list of cell surface receptors crosslinking with the c-MET signaling is constantly growing, highlighting the importance of this pathway for personalized target therapy. Research on the combination of c-MET inhibitors with other drugs will hopefully lead to discovery of new effective treatment options.
Collapse
|
4
|
Yang X, Liao HY, Zhang HH. Roles of MET in human cancer. Clin Chim Acta 2021; 525:69-83. [PMID: 34951962 DOI: 10.1016/j.cca.2021.12.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 01/18/2023]
Abstract
The MET proto-oncogene was first identified in osteosarcoma cells exposed to carcinogens. Although expressed in many normal cells, MET is overexpressed in many human cancers. MET is involved in the initiation and development of various human cancers and mediates proliferation, migration and invasion. Accordingly, MET has been successfully used as a biomarker for diagnosis and prognosis, survival, post-operative recurrence, risk assessment and pathologic grading, as well as a therapeutic target. In addition, recent work indicates that inhibition of MET expression and function has potential clinical benefit. This review summarizes the role, mechanism, and clinical significance of MET in the formation and development of human cancer.
Collapse
Affiliation(s)
- Xin Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, PR China; Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730000, PR China
| | - Hai-Yang Liao
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, PR China; Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730000, PR China
| | - Hai-Hong Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, PR China; Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730000, PR China.
| |
Collapse
|
5
|
Kato A, Ng S, Thangasamy A, Han H, Zhou W, Raeppel S, Fallon M, Guha S, Ammanamanchi S. A potential signaling axis between RON kinase receptor and hypoxia-inducible factor-1 alpha in pancreatic cancer. Mol Carcinog 2021; 60:734-745. [PMID: 34347914 PMCID: PMC9292374 DOI: 10.1002/mc.23339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/06/2022]
Abstract
The Cancer Genome Atlas (TCGA) of a pancreatic cancer cohort identified high MST1R (RON tyrosine kinase receptor) expression correlated with poor prognosis in human pancreatic cancer. RON expression is null/minimal in normal pancreas but elevates from pan-in lesions through invasive carcinomas. We report using multiple approaches RON directly regulates HIF-1α, a critical driver of genes involved in cancer cell invasion and metastasis. RON and HIF-1α are highly co-expressed in the 101 human PDAC tumors analyzed and RON expression correlated with HIF-1α expression in a subset of PDAC cell lines. knockdown of RON expression in RON positive cells blocked HIF-1α expression, whereas ectopic RON expression in RON null cells induced HIF-1α expression suggesting the direct regulation of HIF-1α by RON kinase receptor. RON regulates HIF-1α through an unreported transcriptional mechanism involving PI3 kinase-mediated AKT phosphorylation and Sp1-dependent HIF-1α promoter activity leading to increased HIF-1α mRNA expression. RON/HIF-1α modulation altered the invasive behavior of PDAC cells. A small-molecule RON kinase inhibitor decreased RON ligand, MSP-induced HIF-1α expression, and invasion of PDAC cells. Immunohistochemical analysis on RON knockdown orthotopic PDAC tumor xenograft confirmed that RON inhibition significantly blocked HIF-1α expression. RON/HIF-1α co-expression also exists in triple-negative breast cancer cells, a tumor type that also lacks molecular therapeutic targets. This is the first report describing RON/HIF-1α axis in any tumor type and is a potential novel therapeutic target.
Collapse
Affiliation(s)
- Akihisa Kato
- Department of Internal Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, USA.,Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Serina Ng
- Division of Molecular Medicine, TGen, Phoenix, Arizona, USA
| | - Amalraj Thangasamy
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Haiyong Han
- Division of Molecular Medicine, TGen, Phoenix, Arizona, USA
| | - Wendi Zhou
- Department of Pathology, Banner University Medical Center, Phoenix, Arizona, USA
| | | | - Michael Fallon
- Department of Internal Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, USA
| | - Sushovan Guha
- Department of Internal Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, USA
| | - Sudhakar Ammanamanchi
- Department of Internal Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, USA
| |
Collapse
|
6
|
Zhou D, Zhu X, Wu X, Zheng J, Tou L, Zhou Y. The effect of splicing MST1R in gastric cancer was enhanced by lncRNA FENDRR. Exp Ther Med 2021; 22:798. [PMID: 34093754 PMCID: PMC8170639 DOI: 10.3892/etm.2021.10230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/17/2021] [Indexed: 12/15/2022] Open
Abstract
Gastric cancer (GC) poses a serious threat to human health worldwide. Serine/arginine rich splicing factor 1 (SRSF1) has been reported to serve regulatory roles during the tumorigenesis of GC. In addition, the macrophage stimulating 1 receptor (MST1R) signaling pathway was found to participate in the progression of GC. However, the association between MST1R and SRSF1 in the tumorigenesis of GC remains unclear. The expression levels of MST1R and the recepteur d'origine nantais (RON) Δ160 splicing variant were analyzed in cells using western blotting and immunofluorescence staining. Co-immunoprecipitation assays were used to investigate the interaction between SRSF1 and MST1R. A Cell Counting Kit-8 assay was performed to analyze cell viability. Flow cytometry and Transwell assays were used to determine cell apoptosis and invasiveness levels. The potential interaction between SFSR1 and long non-coding RNAs (lncRNAs) was investigated with an online bioinformatics tool. The findings of the present study revealed that the expression levels of MST1R and RON Δ160 were significantly upregulated in GC Kato III cells. SRSF1 was found to be regulated by the lncRNA FOXF1 adjacent non-coding developmental regulatory RNA (FENDRR). The knockdown of SRSF1 or FENDRR downregulated the expression levels of MST1R in Kato III cells. In addition, the expression levels of RON Δ160 were markedly downregulated in Kato III cells following the knockdown of FENDRR. Meanwhile, SRSF1 directly bound to MST1R, while this phenomenon was partially reversed by FENDRR short interfering RNA. FENDRR could interact with SRSF1 in Kato III cells and the knockdown of FENDRR also induced the apoptosis of GC cells. In conclusion, the findings of the present study suggested that the lncRNA FENDRR may function as an oncogene during the progression of GC by regulating alternative splicing of MST1R and SRSF1 expression levels. lncRNA FENDRR may serve as a potential marker for the diagnosis or target for the treatment of GC.
Collapse
Affiliation(s)
- Donghui Zhou
- Department of Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Xiaohua Zhu
- Department of Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Xuan Wu
- Department of Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Jingjing Zheng
- Department of General Surgery, Lishui Municipal Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Laizhen Tou
- Department of Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Yong Zhou
- Department of Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
7
|
Batth IS, Huang SB, Villarreal M, Gong J, Chakravarthy D, Keppler B, Jayamohan S, Osmulski P, Xie J, Rivas P, Bedolla R, Liss MA, Yeh IT, Reddick R, Miyamoto H, Ghosh R, Kumar AP. Evidence for 2-Methoxyestradiol-Mediated Inhibition of Receptor Tyrosine Kinase RON in the Management of Prostate Cancer. Int J Mol Sci 2021; 22:ijms22041852. [PMID: 33673346 PMCID: PMC7918140 DOI: 10.3390/ijms22041852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 11/16/2022] Open
Abstract
2-Methoxyestradiol (2-ME2) possesses anti-tumorigenic activities in multiple tumor models with acceptable tolerability profile in humans. Incomplete understanding of the mechanism has hindered its development as an anti-tumorigenic compound. We have identified for the first-time macrophage stimulatory protein 1 receptor (MST1R) as a potential target of 2-ME2 in prostate cancer cells. Human tissue validation studies show that MST1R (a.k.a RON) protein levels are significantly elevated in prostate cancer tissues compared to adjacent normal/benign glands. Serum levels of macrophage stimulatory protein (MSP), a ligand for RON, is not only associated with the risk of disease recurrence, but also significantly elevated in samples from African American patients. 2-ME2 treatment inhibited mechanical properties such as adhesion and elasticity that are associated with epithelial mesenchymal transition by downregulating mRNA expression and protein levels of MST1R in prostate cancer cell lines. Intervention with 2-ME2 significantly reduced tumor burden in mice. Notably, global metabolomic profiling studies identified significantly higher circulating levels of bile acids in castrated animals that were decreased with 2-ME2 intervention. In summary, findings presented in this manuscript identified MSP as a potential marker for predicting biochemical recurrence and suggest repurposing 2-ME2 to target RON signaling may be a potential therapeutic modality for prostate cancer.
Collapse
Affiliation(s)
- Izhar Singh Batth
- Department of Molecular Medicine, University of Texas Health, San Antonio, TX 78229, USA; (I.S.B.); (S.-B.H.); (M.V.); (J.G.); (D.C.); (B.K.); (S.J.); (P.O.); (J.X.); (P.R.); (R.B.)
| | - Shih-Bo Huang
- Department of Molecular Medicine, University of Texas Health, San Antonio, TX 78229, USA; (I.S.B.); (S.-B.H.); (M.V.); (J.G.); (D.C.); (B.K.); (S.J.); (P.O.); (J.X.); (P.R.); (R.B.)
| | - Michelle Villarreal
- Department of Molecular Medicine, University of Texas Health, San Antonio, TX 78229, USA; (I.S.B.); (S.-B.H.); (M.V.); (J.G.); (D.C.); (B.K.); (S.J.); (P.O.); (J.X.); (P.R.); (R.B.)
| | - Jingjing Gong
- Department of Molecular Medicine, University of Texas Health, San Antonio, TX 78229, USA; (I.S.B.); (S.-B.H.); (M.V.); (J.G.); (D.C.); (B.K.); (S.J.); (P.O.); (J.X.); (P.R.); (R.B.)
| | - Divya Chakravarthy
- Department of Molecular Medicine, University of Texas Health, San Antonio, TX 78229, USA; (I.S.B.); (S.-B.H.); (M.V.); (J.G.); (D.C.); (B.K.); (S.J.); (P.O.); (J.X.); (P.R.); (R.B.)
| | - Brian Keppler
- Department of Molecular Medicine, University of Texas Health, San Antonio, TX 78229, USA; (I.S.B.); (S.-B.H.); (M.V.); (J.G.); (D.C.); (B.K.); (S.J.); (P.O.); (J.X.); (P.R.); (R.B.)
| | - Sridharan Jayamohan
- Department of Molecular Medicine, University of Texas Health, San Antonio, TX 78229, USA; (I.S.B.); (S.-B.H.); (M.V.); (J.G.); (D.C.); (B.K.); (S.J.); (P.O.); (J.X.); (P.R.); (R.B.)
| | - Pawel Osmulski
- Department of Molecular Medicine, University of Texas Health, San Antonio, TX 78229, USA; (I.S.B.); (S.-B.H.); (M.V.); (J.G.); (D.C.); (B.K.); (S.J.); (P.O.); (J.X.); (P.R.); (R.B.)
| | - Jianping Xie
- Department of Molecular Medicine, University of Texas Health, San Antonio, TX 78229, USA; (I.S.B.); (S.-B.H.); (M.V.); (J.G.); (D.C.); (B.K.); (S.J.); (P.O.); (J.X.); (P.R.); (R.B.)
| | - Paul Rivas
- Department of Molecular Medicine, University of Texas Health, San Antonio, TX 78229, USA; (I.S.B.); (S.-B.H.); (M.V.); (J.G.); (D.C.); (B.K.); (S.J.); (P.O.); (J.X.); (P.R.); (R.B.)
| | - Roble Bedolla
- Department of Molecular Medicine, University of Texas Health, San Antonio, TX 78229, USA; (I.S.B.); (S.-B.H.); (M.V.); (J.G.); (D.C.); (B.K.); (S.J.); (P.O.); (J.X.); (P.R.); (R.B.)
| | - Michael A. Liss
- Urology, University of Texas Health, San Antonio, TX 78229, USA; (M.A.L.); (R.G.)
- Mays Cancer Center, San Antonio, TX 78229, USA
| | - I-Tien Yeh
- Pathology, University of Texas Health, San Antonio, TX 78229, USA; (I.-T.Y.); (R.R.)
| | - Robert Reddick
- Pathology, University of Texas Health, San Antonio, TX 78229, USA; (I.-T.Y.); (R.R.)
| | - Hiroshi Miyamoto
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Rita Ghosh
- Urology, University of Texas Health, San Antonio, TX 78229, USA; (M.A.L.); (R.G.)
- Mays Cancer Center, San Antonio, TX 78229, USA
| | - Addanki P. Kumar
- Department of Molecular Medicine, University of Texas Health, San Antonio, TX 78229, USA; (I.S.B.); (S.-B.H.); (M.V.); (J.G.); (D.C.); (B.K.); (S.J.); (P.O.); (J.X.); (P.R.); (R.B.)
- Urology, University of Texas Health, San Antonio, TX 78229, USA; (M.A.L.); (R.G.)
- Mays Cancer Center, San Antonio, TX 78229, USA
- South Texas Veterans Health Care System, San Antonio, TX 78229, USA
- Correspondence:
| |
Collapse
|
8
|
Zhang X, Zuo J, Wang L, Han J, Feng L, Wang Y, Fan Z. Identification of differentially expressed genes between mucinous adenocarcinoma and other adenocarcinoma of colorectal cancer using bioinformatics analysis. J Int Med Res 2020; 48:300060520949036. [PMID: 32840168 PMCID: PMC7450470 DOI: 10.1177/0300060520949036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Objective As a unique histological subtype of colorectal cancer (CRC), mucinous
adenocarcinoma (MC) has a poor prognosis and responds poorly to treatment.
Genes and markers related to MC have not been reported. Methods To identify biomarkers involved in development of MC compared with other
common adenocarcinoma (AC) subtypes, four datasets were obtained from the
Gene Expression Omnibus database. Differentially expressed genes (DEGs) were
identified using GEO2R. A protein–protein interaction network was
constructed. Functional annotation for DEGs was performed via DAVID,
Metascape, and BiNGO. Significant modules and hub genes were identified
using Cytoscape, and expression of hub genes and relationships between hub
genes and MC were analyzed. Results The DEGs were mainly enriched in negative regulation of cell proliferation,
bicarbonate transport, response to peptide hormone, cell–cell signaling,
cell proliferation, and positive regulation of the canonical Wnt signaling
pathway. The Venn diagram revealed eight significant hub genes:
CXCL9, IDO1, MET,
SNAI2, and ZEB2 were highly expressed
in MC compared with AC, whereas AREG,
TWIST1, and ZEB1 were expressed at a
low level. AREG and MET might be
significant biomarkers for MC. Conclusion The identified DEGs might help elucidate the pathogenesis of MC, identify
potential targets, and improve treatment for CRC.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Medical Oncology, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, P. R. China
| | - Jing Zuo
- Department of Medical Oncology, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, P. R. China
| | - Long Wang
- Department of Medical Oncology, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, P. R. China
| | - Jing Han
- Department of Medical Oncology, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, P. R. China
| | - Li Feng
- Department of Medical Oncology, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, P. R. China
| | - Yudong Wang
- Department of Medical Oncology, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, P. R. China
| | - Zhisong Fan
- Department of Medical Oncology, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, P. R. China
| |
Collapse
|
9
|
A combined FAK, c-MET, and MST1R three-protein panel risk-stratifies colorectal cancer patients. Transl Oncol 2020; 13:100836. [PMID: 32739842 PMCID: PMC7399195 DOI: 10.1016/j.tranon.2020.100836] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022] Open
Abstract
Focal adhesion kinase (FAK) is a key tyrosine kinase downstream of c-MET (or hepatocyte growth factor receptor, HGFR) and MST1R (macrophage-stimulating protein receptor or recepteur d'origine Nantais, RON) membrane receptors. The pathway plays an important role in cancer survival and invasion. In this study, we examined the protein expression of FAK, c-MET, and MST1R levels in a well-annotated cohort of 330 colorectal cancer patients. We found FAK to be overexpressed in colorectal adenocarcinomas (p = 0.0002), and FAK levels correlated positively with phospho-FAK levels (R2 = 0.81). In comparison, MST1R levels were not significantly different, and c-MET levels were slightly higher in the normal samples. We then developed a combined 3-protein panel of FAK, c-MET, and MST1R expression signatures that can robustly risk-stratify colorectal cancer across all stages into three clusters that differ in progression-free survival. The colorectal cancer subgroup with high FAK, low c-MET, and low MST1R protein levels showed the worst progression-free survival with particularly early progression of disease (p = 0.0053). Combined FAK, c-MET, and MST1R were independently prognostic for progression-free survival in stage II colorectal cancers in a multivariate model. The 3-protein panel provides a potentially clinically attractive method for risk-stratification and adjuvant therapy guidance, especially in stage II disease.
Collapse
|
10
|
Yao HP, Suthe SR, Tong XM, Wang MH. Targeting RON receptor tyrosine kinase for treatment of advanced solid cancers: antibody-drug conjugates as lead drug candidates for clinical trials. Ther Adv Med Oncol 2020; 12:1758835920920069. [PMID: 32426050 PMCID: PMC7222236 DOI: 10.1177/1758835920920069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Abstract
The recepteur d'origine nantais (RON) receptor tyrosine kinase, belonging to the mesenchymal-to-epithelial transition proto-oncogene family, has been implicated in the pathogenesis of cancers derived from the colon, lung, breast, and pancreas. These findings lay the foundation for targeting RON for cancer treatment. However, development of RON-targeted therapeutics has not gained sufficient attention for the last decade. Although therapeutic monoclonal antibodies (TMABs) targeting RON have been validated in preclinical studies, results from clinical trials have met with limited success. This outcome diminishes pharmaceutical enthusiasm for further development of RON-targeted therapeutics. Recently, antibody-drug conjugates (ADCs) targeting RON have drawn special attention owing to their increased therapeutic activity. The rationale for developing anti-RON ADCs is based on the observation that cancer cells are not sufficiently addicted to RON signaling for survival. Thus, TMAB-mediated inhibition of RON signaling is ineffective for clinical application. In contrast, anti-RON ADCs combine a target-specific antibody with potent cytotoxins for cancer cell killing. This approach not only overcomes the shortcomings in TMAB-targeted therapies but also holds the promise for advancing anti-RON ADCs into clinical trials. In this review, we discuss the latest advancements in the development of anti-RON ADCs for targeted cancer therapy including drug conjugation profile, pharmacokinetic properties, cytotoxic effect in vitro, efficacy in tumor models, and toxicological activities in primates.
Collapse
Affiliation(s)
- Hang-Ping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sreedhar Reddy Suthe
- Cancer Biology Research Center, Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Xiang-Min Tong
- Department of Hematology, Zhejiang Provincial People’s Hospital and People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ming-Hai Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Biology Research Center, Texas Tech University Health Sciences Jerry H. Hodge School of Pharmacy, 1406 Coulter Street, Amarillo, TX 79106, USA
| |
Collapse
|
11
|
RON receptor tyrosine kinase in pancreatic ductal adenocarcinoma: Pathogenic mechanism in malignancy and pharmaceutical target for therapy. Biochim Biophys Acta Rev Cancer 2020; 1873:188360. [PMID: 32234337 DOI: 10.1016/j.bbcan.2020.188360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 01/14/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers with poor prognosis and high mortality. Molecular aberrations associated with PDAC pathogenesis and progression have been extensively investigated. Nevertheless, these findings have not been translated into clinical practice. Lack of therapeutics for PDAC treatment is another challenge. Recent application of molecularly targeted and immunoregulatory therapies appears to be disappointing. Thus, discovery of new targets and therapeutics is urgently needed to combat this malignant disease. The RON receptor tyrosine kinase is a tumorigenic determinant in PDAC malignancy, which provides the rationale to target RON for PDAC treatment. In this review, we summarize the latest evidence of RON in PDAC pathogenesis and the development of anti-RON antibody-drug conjugates for potential PDAC therapy. The finding that anti-RON antibody-drug conjugates show efficacy in preclinical animal models highlights the potential of this novel class of anti-cancer biotherapeutics in future clinical trials.
Collapse
|
12
|
Lee J, Lee J, Sim W, Kim JH. Differential Dependency of Human Pancreatic Cancer Cells on Targeting PTEN via PLK 1 Expression. Cancers (Basel) 2020; 12:cancers12020277. [PMID: 31979216 PMCID: PMC7072440 DOI: 10.3390/cancers12020277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023] Open
Abstract
Even though the tumour suppressive role of PTEN is well-known, its prognostic implications are ambiguous. The objective of this study was to further explore the function of PTEN expression in human pancreatic cancer. The expression of PTEN has been dominant in various human cancers including pancreatic cancer when compared with their matched normal tissues. The pancreatic cancer cells have been divided into PTEN blockade-susceptible and PTEN blockade-impassible groups dependent on targeting PTEN by altering intracellular signaling. The expression of PTEN has led to varying clinical outcomes of pancreatic cancer based on GEO Series (GSE) data analysis and Liptak’s z analysis. Differential dependency to PTEN blockade has been ascertained based on the expression of polo-like kinase1 PLK1 in pancreatic cancer cells. The prognostic value of PTEN also depends on PLK1 expression in pancreatic cancer. Collectively, the present study provides a rationale for targeting PTEN as a promising therapeutic strategy dependent on PLK1 expressions using a companion biomarker discovery platform.
Collapse
Affiliation(s)
- Jungwhoi Lee
- Department of Applied Life Science, SARI, Jeju National University, Jeju-do 63243, Korea
- Correspondence: (J.L.); (J.-H.K.); Tel.: +82-64-729-8556 (J.L.); Fax: +82-64-756-3351 (J.L.)
| | - Jungsul Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Korea; (J.L.); (W.S.)
| | - Woogwang Sim
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Korea; (J.L.); (W.S.)
| | - Jae-Hoon Kim
- Department of Applied Life Science, SARI, Jeju National University, Jeju-do 63243, Korea
- Subtropical/tropical Organism Gene Bank, Jeju National University, Jeju-do 63243, Korea
- Correspondence: (J.L.); (J.-H.K.); Tel.: +82-64-729-8556 (J.L.); Fax: +82-64-756-3351 (J.L.)
| |
Collapse
|
13
|
Hu CY, Xu XM, Hong B, Wu ZG, Qian Y, Weng TH, Liu YZ, Tang TM, Wang MH, Yao HP. Aberrant RON and MET Co-overexpression as Novel Prognostic Biomarkers of Shortened Patient Survival and Therapeutic Targets of Tyrosine Kinase Inhibitors in Pancreatic Cancer. Front Oncol 2019; 9:1377. [PMID: 31867280 PMCID: PMC6906148 DOI: 10.3389/fonc.2019.01377] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/22/2019] [Indexed: 12/14/2022] Open
Abstract
RON (recepteur d'origine nantais) and MET (hepatocyte growth factor receptor) are tyrosine kinase receptors. Various cancers have aberrant RON and MET expression and activation, which contribute to cancer cell proliferation, invasiveness, and metastasis. Here, we explored RON and MET expression in pancreatic cancer and their relationship with overall survival (OS) time, and evaluated their significance as therapeutic targets of tyrosine kinase inhibitors in pancreatic cancer. We enrolled 227 patients with pancreatic cancer in the study. RON and MET expression was analyzed by immunohistochemical staining. Four human pancreatic cancer cell lines expressing variable levels of RON or MET and four MET superfamily inhibitors (BMS777607, PHA665752, INCB28060, Tivantinib) were used. The effect of the four tyrosine kinase inhibitors on cell viability, migration, and apoptosis were determined using cell viability, scratch wound healing, and Caspase-Glo 3/7 assays. Cellular signaling was analyzed by immunoprecipitation and western blotting. The therapeutic efficacy of the tyrosine kinase inhibitors was determined with mouse xenograft pancreatic cancer models in vivo. There was wide aberrant RON and MET expression in the cancer tissues. In 227 pancreatic cancer samples, 33% had RON overexpression, 41% had MET overexpression, and 15.4% had RON and MET co-overexpression. RON and MET expression were highly correlated. RON and MET expression levels were significantly related to OS. Patients with RON and MET co-overexpression had poorer OS. BMS777607 and PHA665752 inhibited pancreatic cancer cell viability and migration, and promoted apoptosis by inhibiting RON and MET phosphorylation and further inhibiting the downstream signaling pathways in vitro. They also inhibited tumor growth and further inhibited phosphorylated (phosphor)-RON and phospho-MET expression in the mouse xenograft models in vivo effectively. INCB28060, which inhibits the MET signaling pathway alone, was not effective. RON and MET can be important indicators of prognosis in pancreatic cancer. Tyrosine kinase inhibitors targeting RON and MET in pancreatic cancer are a novel and potential approach for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Chen-Yu Hu
- State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiang-Ming Xu
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bo Hong
- Department of Pathology, The Second Affiliated Hospital, Hangzhou, China
| | - Zhi-Gang Wu
- State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yun Qian
- Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tian-Hao Weng
- State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi-Zhi Liu
- State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao-Ming Tang
- State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming-Hai Wang
- State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Biology Research Center, Amarillo, TX, United States.,Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, United States
| | - Hang-Ping Yao
- State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
14
|
Vanderwerff BR, Church KJ, Kawas LH, Harding JW. Comparative characterization of the HGF/Met and MSP/Ron systems in primary pancreatic adenocarcinoma. Cytokine 2019; 123:154762. [PMID: 31254927 DOI: 10.1016/j.cyto.2019.154762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/17/2022]
Abstract
Pancreatic cancer is an aggressive disease with a poor prognosis for which current standard chemotherapeutic treatments offer little survival benefit. Receptor tyrosine kinases (RTK)s have garnered interest as therapeutic targets to augment or replace standard chemotherapeutic treatments because of their ability to promote cell growth, migration, and survival in various cancers. Met and Ron, which are homologous RTKs activated by the ligands hepatocyte growth factor (HGF) and macrophage stimulating protein (MSP), respectively, are over-activated and display synergistic malignant effects in several cancers. Despite the homology between Met and Ron, studies that have directly compared the functional outcomes of these systems in any context are limited. To address this, we sought to determine if the HGF/Met and MSP/Ron systems produce overlapping or divergent contributions towards a malignant phenotype by performing a characterization of MSP and HGF driven signaling, behavioral, and transcriptomic responses in a primary pancreatic adenocarcinoma (PAAD) cell line in vitro. The impact of dual Met and Ron expression signatures on the overall survival of PAAD patients was also assessed. We found HGF and MSP both encouraged PAAD cell migration, but only HGF increased proliferation. RNA sequencing revealed that the transcriptomic effects of MSP mimicked a narrow subset of the responses induced by HGF. Analysis of clinical data indicated that the strong prognostic value of Met expression in primary PAAD does not appear to be modulated by Ron expression. The relatively reduced magnitude of MSP-dependent effects on primary PAAD cells are consistent with the limited prognostic value of Ron expression in this cancer when compared to Met. Although HGF and MSP produced a differing breadth of responses in vitro, overlapping pro-cancer signaling, behavioral, and transcriptional effects still point to a potential role for the MSP/Ron system in pancreatic cancer.
Collapse
Affiliation(s)
- Brett R Vanderwerff
- Department of School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA.
| | - Kevin J Church
- Athira Pharma, Inc., 4000 Mason Rd Suite 300, Box 352141, Seattle, WA 98195-2141, USA.
| | - Leen H Kawas
- Athira Pharma, Inc., 4000 Mason Rd Suite 300, Box 352141, Seattle, WA 98195-2141, USA.
| | - Joseph W Harding
- Department of School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA; Athira Pharma, Inc., 4000 Mason Rd Suite 300, Box 352141, Seattle, WA 98195-2141, USA; Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
15
|
Lakkakula BVKS, Farran B, Lakkakula S, Peela S, Yarla NS, Bramhachari PV, Kamal MA, Saddala MS, Nagaraju GP. Small molecule tyrosine kinase inhibitors and pancreatic cancer—Trials and troubles. Semin Cancer Biol 2019; 56:149-167. [PMID: 30314681 DOI: 10.1016/j.semcancer.2018.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/18/2018] [Accepted: 09/29/2018] [Indexed: 12/20/2022]
|
16
|
Chen MK, Du Y, Sun L, Hsu JL, Wang YH, Gao Y, Huang J, Hung MC. H 2O 2 induces nuclear transport of the receptor tyrosine kinase c-MET in breast cancer cells via a membrane-bound retrograde trafficking mechanism. J Biol Chem 2019; 294:8516-8528. [PMID: 30962283 DOI: 10.1074/jbc.ra118.005953] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/27/2019] [Indexed: 02/05/2023] Open
Abstract
Reactive oxygen species (ROS) are cellular by-products produced from metabolism and also anticancer agents, such as ionizing irradiation and chemotherapy drugs. The ROS H2O2 has high rates of production in cancer cells because of their rapid proliferation. ROS oxidize DNA, protein, and lipids, causing oxidative stress in cancer cells and making them vulnerable to other stresses. Therefore, cancer cell survival relies on maintaining ROS-induced stress at tolerable levels. Hepatocyte growth factor receptor (c-MET) is a receptor tyrosine kinase overexpressed in malignant cancer types, including breast cancer. Full-length c-MET triggers a signal transduction cascade from the plasma membrane that, through downstream signaling proteins, up-regulates cell proliferation and migration. Recently, c-MET was shown to interact and phosphorylate poly(ADP-ribose) polymerase 1 in the nucleus and to induce poly(ADP-ribose) polymerase inhibitor resistance. However, it remains unclear how c-MET moves from the cell membrane to the nucleus. Here, we demonstrate that H2O2 induces retrograde transport of membrane-associated full-length c-MET into the nucleus of human MCF10A and MCF12A or primary breast cancer cells. We further show that knocking down either coatomer protein complex subunit γ1 (COPG1) or Sec61 translocon β subunit (SEC61β) attenuates the accumulation of full-length nuclear c-MET. However, a c-MET kinase inhibitor did not block nuclear c-MET transport. Moreover, nuclear c-MET interacted with KU proteins in breast cancer cells, suggesting a role of full-length nuclear c-MET in ROS-induced DNA damage repair. We conclude that a membrane-bound retrograde vesicle transport mechanism facilitates membrane-to-nucleus transport of c-MET in breast cancer cells.
Collapse
Affiliation(s)
- Mei-Kuang Chen
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030; Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Yi Du
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Linlin Sun
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030; Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jennifer L Hsu
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Yu-Han Wang
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030; Graduate Institute of Biomedical Sciences, China Medical University, Taichung 402, Taiwan
| | - Yuan Gao
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030; Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jiaxing Huang
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030; Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mien-Chie Hung
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030; Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030; Graduate Institute of Biomedical Sciences, China Medical University, Taichung 402, Taiwan; Center of Molecular Medicine, China Medical University, Taichung 402, Taiwan.
| |
Collapse
|
17
|
Baird AM, Easty D, Jarzabek M, Shiels L, Soltermann A, Klebe S, Raeppel S, MacDonagh L, Wu C, Griggs K, Kirschner MB, Stanfill B, Nonaka D, Goparaju CM, Murer B, Fennell DA, O'Donnell DM, Barr MP, Mutti L, Reid G, Finn S, Cuffe S, Pass HI, Opitz I, Byrne AT, O'Byrne KJ, Gray SG. When RON MET TAM in Mesothelioma: All Druggable for One, and One Drug for All? Front Endocrinol (Lausanne) 2019; 10:89. [PMID: 30863365 PMCID: PMC6399142 DOI: 10.3389/fendo.2019.00089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/31/2019] [Indexed: 12/12/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive inflammatory cancer with a poor survival rate. Treatment options are limited at best and drug resistance is common. Thus, there is an urgent need to identify novel therapeutic targets in this disease in order to improve patient outcomes and survival times. MST1R (RON) is a trans-membrane receptor tyrosine kinase (RTK), which is part of the c-MET proto-oncogene family. The only ligand recognized to bind MST1R (RON) is Macrophage Stimulating 1 (MST1), also known as Macrophage Stimulating Protein (MSP) or Hepatocyte Growth Factor-Like Protein (HGFL). In this study, we demonstrate that the MST1-MST1R (RON) signaling axis is active in MPM. Targeting this pathway with a small molecule inhibitor, LCRF-0004, resulted in decreased proliferation with a concomitant increase in apoptosis. Cell cycle progression was also affected. Recombinant MST1 treatment was unable to overcome the effect of LCRF-0004 in terms of either proliferation or apoptosis. Subsequently, the effect of an additional small molecular inhibitor, BMS-777607 (which targets MST1R (RON), MET, Tyro3, and Axl) also resulted in a decreased proliferative capacity of MPM cells. In a cohort of MPM patient samples, high positivity for total MST1R by IHC was an independent predictor of favorable prognosis. Additionally, elevated expression levels of MST1 also correlated with better survival. This study also determined the efficacy of LCRF-0004 and BMS-777607 in xenograft MPM models. Both LCRF-0004 and BMS-777607 demonstrated significant anti-tumor efficacy in vitro, however BMS-777607 was far superior to LCRF-0004. The in vivo and in vitro data generated by this study indicates that a multi-TKI, targeting the MST1R/MET/TAM signaling pathways, may provide a more effective therapeutic strategy for the treatment of MPM as opposed to targeting MST1R alone.
Collapse
Affiliation(s)
- Anne-Marie Baird
- Thoracic Oncology Research Group, Labmed Directorate, St. James's Hospital, Dublin, Ireland
- Cancer and Ageing Research Program, Queensland University of Technology, Brisbane, QLD, Australia
| | - David Easty
- Thoracic Oncology Research Group, Labmed Directorate, St. James's Hospital, Dublin, Ireland
| | - Monika Jarzabek
- Department of Physiology and Medical Physics and Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Liam Shiels
- Department of Physiology and Medical Physics and Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Alex Soltermann
- Department of Clinical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Sonja Klebe
- Department of Anatomical Pathology, Flinders University of South Australia, Bedford Park, SA, Australia
| | | | - Lauren MacDonagh
- Thoracic Oncology Research Group, Labmed Directorate, St. James's Hospital, Dublin, Ireland
| | - Chengguang Wu
- Department of Clinical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Kim Griggs
- Department of Anatomical Pathology, Flinders University of South Australia, Bedford Park, SA, Australia
| | - Michaela B. Kirschner
- Asbestos Diseases Research Institute, Sydney, NSW, Australia
- Sydney Medical School, University of Sydney, NSW, Australia
| | - Bryan Stanfill
- The Commonwealth Scientific and Industrial Research Organization, Brisbane, QLD, Australia
| | - Daisuke Nonaka
- Department of Histopathology, The Christie NHS Foundation Trust, Manchester, United Kingdom
- Department of Cardiothoracic Surgery, New York University (NYU) Langone Medical Center, New York, NY, United States
| | - Chandra M. Goparaju
- Department of Cardiothoracic Surgery, New York University (NYU) Langone Medical Center, New York, NY, United States
| | - Bruno Murer
- Department of Clinical Pathology, Ospedale dell'Angelo, Venice, Italy
| | - Dean A. Fennell
- MRC Toxicology Unit, University of Leicester and Leicester University Hospitals, Leicester, United Kingdom
| | | | - Martin P. Barr
- Thoracic Oncology Research Group, Labmed Directorate, St. James's Hospital, Dublin, Ireland
| | - Luciano Mutti
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Glen Reid
- Asbestos Diseases Research Institute, Sydney, NSW, Australia
- Sydney Medical School, University of Sydney, NSW, Australia
| | - Stephen Finn
- Department of Histopathology and Morbid Anatomy, Trinity College Dublin, Dublin, Ireland
| | - Sinead Cuffe
- HOPE Directorate, St James's Hospital, Dublin, Ireland
| | - Harvey I. Pass
- Department of Cardiothoracic Surgery, New York University (NYU) Langone Medical Center, New York, NY, United States
| | - Isabelle Opitz
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Annette T. Byrne
- Department of Physiology and Medical Physics and Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Kenneth J. O'Byrne
- Thoracic Oncology Research Group, Labmed Directorate, St. James's Hospital, Dublin, Ireland
- Cancer and Ageing Research Program, Queensland University of Technology, Brisbane, QLD, Australia
- HOPE Directorate, St James's Hospital, Dublin, Ireland
- Division of Cancer Services, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Steven G. Gray
- Thoracic Oncology Research Group, Labmed Directorate, St. James's Hospital, Dublin, Ireland
- Department of Clinical Medicine, Trinity College Dublin, Dublin, Ireland
- *Correspondence: Steven G. Gray
| |
Collapse
|
18
|
Zhang Y, Xia M, Jin K, Wang S, Wei H, Fan C, Wu Y, Li X, Li X, Li G, Zeng Z, Xiong W. Function of the c-Met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities. Mol Cancer 2018; 17:45. [PMID: 29455668 PMCID: PMC5817860 DOI: 10.1186/s12943-018-0796-y] [Citation(s) in RCA: 349] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 02/01/2018] [Indexed: 12/15/2022] Open
Abstract
c-Met is a receptor tyrosine kinase belonging to the MET (MNNG HOS transforming gene) family, and is expressed on the surfaces of various cells. Hepatocyte growth factor (HGF) is the ligand for this receptor. The binding of HGF to c-Met initiates a series of intracellular signals that mediate embryogenesis and wound healing in normal cells. However, in cancer cells, aberrant HGF/c-Met axis activation, which is closely related to c-Met gene mutations, overexpression, and amplification, promotes tumor development and progression by stimulating the PI3K/AKT, Ras/MAPK, JAK/STAT, SRC, Wnt/β-catenin, and other signaling pathways. Thus, c-Met and its associated signaling pathways are clinically important therapeutic targets. In this review, we elaborate on the molecular structure of c-Met and HGF and the mechanism through which their interaction activates the PI3K/AKT, Ras/MAPK, and Wnt signaling pathways. We also summarize the connection between c-Met and RON and EGFR, which are also receptor tyrosine kinases. Finally, we introduce the current therapeutic drugs that target c-Met in primary tumors, and their use in clinical research.
Collapse
Affiliation(s)
- Yazhuo Zhang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mengfang Xia
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ke Jin
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Shufei Wang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Hang Wei
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Chunmei Fan
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yingfen Wu
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
19
|
Analogs of the hepatocyte growth factor and macrophage-stimulating protein hinge regions act as Met and Ron dual inhibitors in pancreatic cancer cells. Anticancer Drugs 2017; 27:766-79. [PMID: 27314431 DOI: 10.1097/cad.0000000000000390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pancreatic cancer is among the leading causes of cancer death in the USA, with limited effective treatment options. A major contributor toward the formation and persistence of pancreatic cancer is the dysregulation of the hepatocyte growth factor (HGF)/Met (HGF receptor) and the macrophage-stimulating protein (MSP)/Ron (MSP receptor) systems. These systems normally mediate a variety of cellular behaviors including proliferation, survival, and migration, but are often overactivated in pancreatic cancer and contribute toward cancer progression. Previous studies have shown that HGF must dimerize to activate Met. Small-molecule antagonists with homology to a 'hinge' region within the putative dimerization domain of HGF have been developed that bind to HGF and block dimerization, therefore inhibiting Met signaling. Because of the structural and sequence homology between MSP and HGF, we hypothesized that the inhibition of HGF by the hinge analogs may extend to MSP. The primary aim of this 'proof-of-concept' study was to determine whether hinge analogs could inhibit cellular responses to both HGF and MSP in pancreatic cancer cells. Our results showed that these compounds inhibited HGF and MSP activity. Hinge analog treatment resulted in decreased Met and Ron activation, and suppressed malignant cell behaviors including proliferation, migration, and invasion in pancreatic cancer cells in vitro. These results suggest that the hinge analogs represent a novel group of molecules that may offer a therapeutic approach for the treatment of pancreatic cancer and warrant further development and optimization.
Collapse
|
20
|
Batth I, Yun H, Hussain S, Meng P, Osmulski P, Huang THM, Bedolla R, Profit A, Reddick R, Kumar A. Crosstalk between RON and androgen receptor signaling in the development of castration resistant prostate cancer. Oncotarget 2017; 7:14048-63. [PMID: 26872377 PMCID: PMC4924697 DOI: 10.18632/oncotarget.7287] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/29/2016] [Indexed: 12/23/2022] Open
Abstract
Castrate-resistant prostate cancer (CRPC) is the fatal form of prostate cancer. Although reactivation of androgen receptor (AR) occurs following androgen deprivation, the precise mechanism involved is unclear. Here we show that the receptor tyrosine kinase, RON alters mechanical properties of cells to influence epithelial to mesenchymal transition and functions as a transcription factor to differentially regulate AR signaling. RON inhibits AR activation and subset of AR-regulated transcripts in androgen responsive LNCaP cells. However in C4-2B, a castrate-resistant sub-line of LNCaP and AR-negative androgen independent DU145 cells, RON activates subset of AR-regulated transcripts. Expression of AR in PC-3 cells leads to activation of RON under androgen deprivation but not under androgen proficient conditions implicating a role for RON in androgen independence. Consistently, RON expression is significantly elevated in castrate resistant prostate tumors. Taken together our results suggest that RON activation could aid in promoting androgen independence and that inhibition of RON in combination with AR antagonist(s) merits serious consideration as a therapeutic option during hormone deprivation therapy.
Collapse
Affiliation(s)
- Izhar Batth
- Department of Urology, The University of Texas Health Science Center, San Antonio, TX, USA.,Current address: Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Huiyoung Yun
- Department of Pharmacology, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Suleman Hussain
- Department of Pharmacology, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Peng Meng
- Department of Urology, The University of Texas Health Science Center, San Antonio, TX, USA.,Current address: Life Sciences Division, Lawrence Berkley National Laboratory, Berkley, CA, USA
| | - Pawel Osmulski
- Department of Molecular Medicine, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Tim Hui-Ming Huang
- Department of Molecular Medicine, The University of Texas Health Science Center, San Antonio, TX, USA.,Cancer Therapy and Research Center, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Roble Bedolla
- Department of Urology, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Amanda Profit
- Department of Pathology, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Robert Reddick
- Department of Pathology, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Addanki Kumar
- Department of Urology, The University of Texas Health Science Center, San Antonio, TX, USA.,Department of Pharmacology, The University of Texas Health Science Center, San Antonio, TX, USA.,Department of Molecular Medicine, The University of Texas Health Science Center, San Antonio, TX, USA.,Cancer Therapy and Research Center, The University of Texas Health Science Center, San Antonio, TX, USA.,The University of Texas Health Science Center at San Antonio and South Texas Veterans Health Care System, San Antonio, TX, USA
| |
Collapse
|
21
|
Yang SY, Nguyen TT, Ung TT, Jung YD. Role of Recepteur D'origine Nantais on Gastric Cancer Development and Progression. Chonnam Med J 2017; 53:178-186. [PMID: 29026705 PMCID: PMC5636756 DOI: 10.4068/cmj.2017.53.3.178] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 01/12/2023] Open
Abstract
Recepteur d'origine nantais (RON) is a receptor tyrosine kinase belonging to the subfamily of which c-MET is the prototype. Large epidemiologic studies have confirmed the strong association between RON and gastric cancer development. Constitutive activation of RON signaling directly correlates with tumorigenic phenotypes of gastric cancer and a poor survival rate in advanced gastric cancer patients. In this review, we focus on recent evidence of the aberrant expression and activation of RON in gastric cancer tumors and provide insights into the mechanism of RON signaling associated with gastric cancer progression and metastasis. Current therapeutics against RON in gastric cancer are summarized.
Collapse
Affiliation(s)
- Sung Yeul Yang
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, Korea
| | - Thi Thinh Nguyen
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, Korea
| | - Trong Thuan Ung
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, Korea
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
22
|
Safaie Qamsari E, Safaei Ghaderi S, Zarei B, Dorostkar R, Bagheri S, Jadidi-Niaragh F, Somi MH, Yousefi M. The c-Met receptor: Implication for targeted therapies in colorectal cancer. Tumour Biol 2017; 39:1010428317699118. [DOI: 10.1177/1010428317699118] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
c-Met (mesenchymal–epithelial transition factor) is a tyrosine kinase receptor activated by hepatocyte growth factor and regulates multiple biological processes, such as cell scattering, survival, and proliferation. Aberrant c-Met signaling has been implicated in a variety of cancer types, including colorectal cancer. c-Met is genetically altered through various mechanisms that is associated with colorectal cancer progression and metastasis. Especially, in colorectal cancer, preclinical evidence for the aberrant activation of the c-Met signaling exists. Accordingly, molecular targeting of c-Met receptor could be a promising strategy, in the treatment of colorectal cancer patients. Recently, it was also shown that crosstalk between c-Met and other cell surface receptors attributes to tumorigenesis and development of therapeutic resistance. Characterization of the molecular mechanisms through which c-Met crosstalks with other receptors in favor of tumor formation and progression remains to explore. This review will describe the mechanisms of aberrant c-Met signaling in colorectal cancer and discuss on additional roles for c-Met receptor through crosstalk with other tyrosine kinase receptors and cell surface proteins in colorectal cancer. Novel therapeutic approaches for c-Met pathway targeting will also be discussed.
Collapse
Affiliation(s)
- Elmira Safaie Qamsari
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Safaei Ghaderi
- Department of Biotechnology, Faculty of Advanced Science & Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
- Hybridoma Laboratory, Immunology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Bahareh Zarei
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ruhollah Dorostkar
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Salman Bagheri
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
23
|
Faham N, Welm AL. RON Signaling Is a Key Mediator of Tumor Progression in Many Human Cancers. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 81:177-188. [PMID: 28057847 DOI: 10.1101/sqb.2016.81.031377] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
With an increasing body of literature covering RON receptor tyrosine kinase function in different types of human cancers, it is becoming clear that RON has prominent roles in both cancer cells and in the tumor-associated microenvironment. RON not only activates several oncogenic signaling pathways in cancer cells, leading to more aggressive behavior, but also promotes an immunosuppressive, alternatively activated phenotype in macrophages and limits the antitumor immune response. These two unique functions of this oncogene, the strong correlation between RON expression and poor outcomes in cancer, and the high tolerability of a new RON inhibitor make it an exciting therapeutic target, the blocking of which offers an advantage toward improving the survival of cancer patients. Here, we discuss recent findings on the role of RON signaling in cancer progression and its potential in cancer therapy.
Collapse
Affiliation(s)
- Najme Faham
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112
| | - Alana L Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
24
|
Han Z, Harris PKW, Karmakar P, Kim T, Owusu BY, Wildman SA, Klampfer L, Janetka JW. α-Ketobenzothiazole Serine Protease Inhibitors of Aberrant HGF/c-MET and MSP/RON Kinase Pathway Signaling in Cancer. ChemMedChem 2016; 11:585-99. [PMID: 26889658 DOI: 10.1002/cmdc.201500600] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Indexed: 12/20/2022]
Abstract
Upregulation of the HGF and MSP growth-factor processing serine endopeptidases HGFA, matriptase and hepsin is correlated with increased metastasis in multiple tumor types driven by c-MET or RON kinase signaling. We rationally designed P1' α-ketobenzothiazole mechanism-based inhibitors of these proteases. Structure-activity studies are presented, which resulted in the identification of potent inhibitors with differential selectivity. The tetrapeptide inhibitors span the P1-P1' substrate cleavage site via a P1' amide linker off the benzothiazole, occupying the S3' pocket. Optimized inhibitors display sub-nanomolar enzyme inhibition against one, two, or all three of HGFA, matriptase, and hepsin. Several compounds also have good selectivity against the related trypsin-like proteases, thrombin and Factor Xa. Finally, we show that inhibitors block the fibroblast (HGF)-mediated migration of invasive DU145 prostate cancer cells. In addition to prostate cancer, breast, colon, lung, pancreas, gliomas, and multiple myeloma tumors all depend on HGF and MSP for tumor survival and progression. Therefore, these unique inhibitors have potential as new therapeutics for a diverse set of tumor types.
Collapse
Affiliation(s)
- Zhenfu Han
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Ave., Saint Louis, MO, 63110, USA
| | - Peter K W Harris
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Ave., Saint Louis, MO, 63110, USA
| | - Partha Karmakar
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Ave., Saint Louis, MO, 63110, USA
| | - Tommy Kim
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Ave., Saint Louis, MO, 63110, USA
| | - Ben Y Owusu
- Department of Oncology, Southern Research Institute, 2000 9th Ave., Birmingham, AL, 35205, USA
| | - Scott A Wildman
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Ave., Saint Louis, MO, 63110, USA.,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53792, USA
| | - Lidija Klampfer
- Department of Oncology, Southern Research Institute, 2000 9th Ave., Birmingham, AL, 35205, USA
| | - James W Janetka
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Ave., Saint Louis, MO, 63110, USA.
| |
Collapse
|
25
|
Cui J, Xia T, Xie D, Gao Y, Jia Z, Wei D, Wang L, Huang S, Quan M, Xie K. HGF/Met and FOXM1 form a positive feedback loop and render pancreatic cancer cells resistance to Met inhibition and aggressive phenotypes. Oncogene 2016; 35:4708-18. [PMID: 26876216 PMCID: PMC4985506 DOI: 10.1038/onc.2016.14] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/30/2015] [Accepted: 12/27/2015] [Indexed: 02/06/2023]
Abstract
Purpose Hepatocyte growth factor (HGF)/Met signaling plays critical roles in pancreatic ductal adenocarcinoma (PDA) development and progression and is considered a potential therapeutic target for this disease. However, the mechanism of aberrant activation of HGF/Met signaling and resistance to Met inhibition in PDA remains unclear. Experimental Design The mechanistic role of cross-talk between Forkhead box M1 (FOXM1) and HGF/Met signaling in promotion of PDA growth and resistance to Met inhibition was examined using cell culture, molecular biology and mouse models; and the relevance of our experimental and mechanistic findings were validated using human PDA tissues. Results Met was markedly overexpressed in both PDA cell lines and pancreatic tumor specimens, and the expression of Met correlated directly with that of FOXM1 in human tumor specimens. Mechanistically, FOXM1 bound to the promoter region of the Met gene and transcriptionally increased the expression of Met. Increased expression of FOXM1 enhanced the activation of HGF/Met signaling and its downstream pathways, including RAS/extracellular signal-regulated kinase 1/2, phosphoinositide 3-kinase/AKT, and signal transducer and activator of transcription 3. Furthermore, activation of HGF/Met signaling increased the expression and transcriptional activity of FOXM1, and the cross-talk between FOXM1 and HGF/Met signaling promoted PDA growth and resistance to Met inhibition. Conclusions Collectively, our findings identified a positive feedback loop formed by FOXM1 and HGF/Met and revealed that this loop is a potentially effective therapeutic target for PDA.
Collapse
Affiliation(s)
- J Cui
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - T Xia
- Department of Gastroenterology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - D Xie
- Department of Oncology, Shanghai Tongji University Affiliated East Hospital, Shanghai, People's Republic of China
| | - Y Gao
- Department of Oncology, Shanghai Tongji University Affiliated East Hospital, Shanghai, People's Republic of China
| | - Z Jia
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - D Wei
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Wang
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - S Huang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M Quan
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Oncology, Shanghai Tongji University Affiliated East Hospital, Shanghai, People's Republic of China
| | - K Xie
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
26
|
Chang K, Karnad A, Zhao S, Freeman JW. Roles of c-Met and RON kinases in tumor progression and their potential as therapeutic targets. Oncotarget 2016; 6:3507-18. [PMID: 25784650 PMCID: PMC4414132 DOI: 10.18632/oncotarget.3420] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 01/21/2015] [Indexed: 02/06/2023] Open
Abstract
c-Met and receptor originated from nantes (RON) are structurally related transmembrane phosphotyrosine kinase receptors. c-Met and RON show increased expression or activity in a variety of tumors leading to tumor progression and may play a role in acquired resistance to therapy. Although often co-expressed, the distinct functional roles of c-Met and RON are not fully understood. c-Met and RON form both activated homodimers and heterodimers with themselves and other families of phosphotyrosine kinase receptors. Inhibitors for c-Met and RON including small molecular weigh kinase inhibitors and neutralizing antibodies are in pre-clinical investigation and clinical trials. Several of the tyrosine kinase inhibitors have activity against both c-Met and RON kinases whereas the antibodies generally are target specific. As with many targeted agents used to treat solid tumors, it is likely that c-Met/RON inhibitors will have greater benefit when used in combination with chemotherapy or other targeted agents. A careful analysis of c-Met/RON expression or activity and a better elucidation of how they influence cell signaling will be useful in predicting which tumors respond best to these inhibitors as well as determining which agents can be used with these inhibitors for combined therapy.
Collapse
Affiliation(s)
- Katherine Chang
- Department of Medicine, Division of Medical Oncology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Cancer Therapy and Research Center, Experimental and Developmental Therapeutics Program, San Antonio, TX, USA
| | - Anand Karnad
- Department of Medicine, Division of Medical Oncology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Cancer Therapy and Research Center, Experimental and Developmental Therapeutics Program, San Antonio, TX, USA
| | - Shujie Zhao
- Department of Medicine, Division of Medical Oncology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - James W Freeman
- Department of Medicine, Division of Medical Oncology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Cancer Therapy and Research Center, Experimental and Developmental Therapeutics Program, San Antonio, TX, USA.,Research and Development, Audie Murphy Veterans Administration Hospital, San Antonio, TX, USA
| |
Collapse
|
27
|
Barceló C, Etchin J, Mansour MR, Sanda T, Ginesta MM, Sanchez-Arévalo Lobo VJ, Real FX, Capellà G, Estanyol JM, Jaumot M, Look AT, Agell N. Ribonucleoprotein HNRNPA2B1 interacts with and regulates oncogenic KRAS in pancreatic ductal adenocarcinoma cells. Gastroenterology 2014; 147:882-892.e8. [PMID: 24998203 DOI: 10.1053/j.gastro.2014.06.041] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 06/26/2014] [Accepted: 06/29/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Development of pancreatic ductal adenocarcinoma (PDAC) involves activation of c-Ki-ras2 Kirsten rat sarcoma oncogene homolog (KRAS) signaling, but little is known about the roles of proteins that regulate the activity of oncogenic KRAS. We investigated the activities of proteins that interact with KRAS in PDAC cells. METHODS We used mass spectrometry to demonstrate that heterogeneous nuclear ribonucleoproteins (HNRNP) A2 and B1 (encoded by the gene HNRNPA2B1) interact with KRAS G12V. We used co-immunoprecipitation analyses to study interactions between HNRNPA2B1 and KRAS in KRAS-dependent and KRAS-independent PDAC cell lines. We knocked down HNRNPA2B1 using small hairpin RNAs and measured viability, anchorage-independent proliferation, and growth of xenograft tumors in mice. We studied KRAS phosphorylation using the Phos-tag system. RESULTS We found that interactions between HRNPA2B1 and KRAS correlated with KRAS-dependency of some human PDAC cell lines. Knock down of HNRNPA2B1 significantly reduced viability, anchorage-independent proliferation, and formation of xenograft tumors by KRAS-dependent PDAC cells. HNRNPA2B1 knock down also increased apoptosis of KRAS-dependent PDAC cells, inactivated c-akt murine thymoma oncogene homolog 1 signaling via mammalian target of rapamycin, and reduced interaction between KRAS and phosphatidylinositide 3-kinase. Interaction between HNRNPA2B1 and KRAS required KRAS phosphorylation at serine 181. CONCLUSIONS In KRAS-dependent PDAC cell lines, HNRNPA2B1 interacts with and regulates the activity of KRAS G12V and G12D. HNRNPA2B1 is required for KRAS activation of c-akt murine thymoma oncogene homolog 1-mammalian target of rapamycin signaling, interaction with phosphatidylinositide 3-kinase, and PDAC cell survival and tumor formation in mice. HNRNPA2B1 might be a target for treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Carles Barceló
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Julia Etchin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Marc R Mansour
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Takaomi Sanda
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts; Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Mireia M Ginesta
- Hereditary Cancer Program, Translational Research Laboratory, Catalan Institute of Oncology, ICO-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Victor J Sanchez-Arévalo Lobo
- Grupo de Carcinogénesis Epitelial, Programa de Patología Molecular, CNIO-Spanish National Cancer Research Center, Madrid, Spain
| | - Francisco X Real
- Grupo de Carcinogénesis Epitelial, Programa de Patología Molecular, CNIO-Spanish National Cancer Research Center, Madrid, Spain
| | - Gabriel Capellà
- Hereditary Cancer Program, Translational Research Laboratory, Catalan Institute of Oncology, ICO-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Josep M Estanyol
- Centres Científics i Tecnològics-UB (CCiTUB), Universitat de Barcelona, Barcelona, Spain
| | - Montserrat Jaumot
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - A Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Neus Agell
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, IDIBAPS, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
28
|
Chang Z, Ju H, Ling J, Zhuang Z, Li Z, Wang H, Fleming JB, Freeman JW, Yu D, Huang P, Chiao PJ. Cooperativity of oncogenic K-ras and downregulated p16/INK4A in human pancreatic tumorigenesis. PLoS One 2014; 9:e101452. [PMID: 25029561 PMCID: PMC4100754 DOI: 10.1371/journal.pone.0101452] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 06/05/2014] [Indexed: 12/23/2022] Open
Abstract
Activation of K-ras and inactivation of p16 are the most frequently identified genetic alterations in human pancreatic epithelial adenocarcinoma (PDAC). Mouse models engineered with mutant K-ras and deleted p16 recapitulate key pathological features of PDAC. However, a human cell culture transformation model that recapitulates the human pancreatic molecular carcinogenesis is lacking. In this study, we investigated the role of p16 in hTERT-immortalized human pancreatic epithelial nestin-expressing (HPNE) cells expressing mutant K-ras (K-rasG12V). We found that expression of p16 was induced by oncogenic K-ras in these HPNE cells and that silencing of this induced p16 expression resulted in tumorigenic transformation and development of metastatic PDAC in an orthotopic xenograft mouse model. Our results revealed that PI3K/Akt, ERK1/2 pathways and TGFα signaling were activated by K-ras and involved in the malignant transformation of human pancreatic cells. Also, p38/MAPK pathway was involved in p16 up-regulation. Thus, our findings establish an experimental cell-based model for dissecting signaling pathways in the development of human PDAC. This model provides an important tool for studying the molecular basis of PDAC development and gaining insight into signaling mechanisms and potential new therapeutic targets for altered oncogenic signaling pathways in PDAC.
Collapse
Affiliation(s)
- Zhe Chang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Huaiqiang Ju
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jianhua Ling
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Zhuonan Zhuang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Zhongkui Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Jason B. Fleming
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - James W. Freeman
- The Division of Hematology and Medical Oncology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Peng Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Paul J. Chiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|