1
|
Gonzalez-Martinez D, Roth L, Mumford TR, Guan J, Le A, Doebele RC, Huang B, Tulpule A, Niewiadomska-Bugaj M, Bivona TG, Bugaj LJ. Oncogenic EML4-ALK assemblies suppress growth factor perception and modulate drug tolerance. Nat Commun 2024; 15:9473. [PMID: 39488530 PMCID: PMC11531495 DOI: 10.1038/s41467-024-53451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/12/2024] [Indexed: 11/04/2024] Open
Abstract
Drug resistance remains a challenge for targeted therapy of cancers driven by EML4-ALK and related fusion oncogenes. EML4-ALK forms cytoplasmic protein condensates, which result from networks of interactions between oncogene and adapter protein multimers. While these assemblies are associated with oncogenic signaling, their role in drug response is unclear. Here, we use optogenetics and live-cell imaging to find that EML4-ALK assemblies suppress transmembrane receptor tyrosine kinase (RTK) signaling by sequestering RTK adapter proteins including GRB2 and SOS1. Furthermore, ALK inhibition, while suppressing oncogenic signaling, simultaneously releases the sequestered adapters and thereby resensitizes RTK signaling. Resensitized RTKs promote rapid and pulsatile ERK reactivation that originates from paracrine ligands shed by dying cells. Reactivated ERK signaling promotes cell survival, which can be counteracted by combination therapies that block paracrine signaling. Our results identify a regulatory role for RTK fusion assemblies and uncover a mechanism of tolerance to targeted therapies.
Collapse
Affiliation(s)
| | - Lee Roth
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Thomas R Mumford
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Juan Guan
- Department of Physics, Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL, 32611, USA
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Anh Le
- Division of Medical Oncology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Robert C Doebele
- Division of Medical Oncology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Bo Huang
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, 94143, USA
- Department of Biochemistry and Biophysics, UCSF, San Francisco, 94143, USA
- Chan Zuckerberg Biohub, San Francisco, 94158, USA
| | - Asmin Tulpule
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | | | - Trever G Bivona
- Department of Medicine, Division of Hematology and Oncology, UCSF, San Francisco, CA, 94143, USA
| | - Lukasz J Bugaj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute of Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
2
|
Wang R, Zheng Y, Zhang Z, Song K, Wu E, Zhu X, Wu TP, Ding J. MATES: a deep learning-based model for locus-specific quantification of transposable elements in single cell. Nat Commun 2024; 15:8798. [PMID: 39394211 PMCID: PMC11470080 DOI: 10.1038/s41467-024-53114-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 09/24/2024] [Indexed: 10/13/2024] Open
Abstract
Transposable elements (TEs) are crucial for genetic diversity and gene regulation. Current single-cell quantification methods often align multi-mapping reads to either 'best-mapped' or 'random-mapped' locations and categorize them at the subfamily levels, overlooking the biological necessity for accurate, locus-specific TE quantification. Moreover, these existing methods are primarily designed for and focused on transcriptomics data, which restricts their adaptability to single-cell data of other modalities. To address these challenges, here we introduce MATES, a deep-learning approach that accurately allocates multi-mapping reads to specific loci of TEs, utilizing context from adjacent read alignments flanking the TE locus. When applied to diverse single-cell omics datasets, MATES shows improved performance over existing methods, enhancing the accuracy of TE quantification and aiding in the identification of marker TEs for identified cell populations. This development facilitates the exploration of single-cell heterogeneity and gene regulation through the lens of TEs, offering an effective transposon quantification tool for the single-cell genomics community.
Collapse
Affiliation(s)
- Ruohan Wang
- School of Computer Science, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Yumin Zheng
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Quantitative Life Sciences, Faculty of Medicine & Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Zijian Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Kailu Song
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Quantitative Life Sciences, Faculty of Medicine & Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Erxi Wu
- Department of Neurosurgery, Baylor College of Medicine, Temple, TX, USA
- College of Medicine and Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, TX, USA
- LIVESTRONG Cancer Institutes and Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Neuroscience Institute and Department of Neurosurgery, Baylor Scott & White Health, Temple, TX, USA
| | | | - Tao P Wu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | - Jun Ding
- School of Computer Science, McGill University, Montreal, Quebec, Canada.
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
- Department of Medicine, McGill University, Montreal, Quebec, Canada.
- Quantitative Life Sciences, Faculty of Medicine & Health Sciences, McGill University, Montreal, Quebec, Canada.
- Mila-Quebec AI Institue, Montreal, Quebec, Canada.
| |
Collapse
|
3
|
Lobl MB, Clarey DD, Higgins S, Sutton A, Wysong A. Sequencing of cutaneous squamous cell carcinoma primary tumors and patient-matched metastases reveals ALK as a potential driver in metastases and low mutational concordance in immunocompromised patients. JID INNOVATIONS 2022; 2:100122. [PMID: 35620707 PMCID: PMC9127419 DOI: 10.1016/j.xjidi.2022.100122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/11/2022] [Accepted: 02/28/2022] [Indexed: 11/23/2022] Open
Abstract
Cutaneous squamous cell carcinoma is a common skin cancer that is responsible for 1,000,000 cases and up to 9,000 deaths annually in the United States. Metastases occur in 2–5% of patients and are responsible for significant morbidity and mortality. The objective of this study is to perform targeted next-generation sequencing on a cohort of squamous cell carcinoma primary tumors and patient-matched lymph node metastases. An oncology 76-gene panel was run from formalin-fixed paraffin-embedded samples of patient-matched primary squamous cell carcinomas (10) and resultant metastases (10). ALK was discovered to be a driver mutation in metastases using two different algorithms, oncoCLUSTand dNdScv. Mutational concordance between primary tumors and metastases was notably lower in immunosuppressed patients, especially among pathogenic mutations (41.7% vs. 83.3%, P = 0.01). Sequencing of matched squamous cell carcinoma primary tumors and lymph node metastases identified genes and pathways that may have clinical importance, most notably ALK as a potential driver mutation of metastasis. Sequencing of both primary tumors and metastases may improve the efficacy of targeted therapies.
Collapse
|
4
|
Tabbò F, Reale ML, Bironzo P, Scagliotti GV. Resistance to anaplastic lymphoma kinase inhibitors: knowing the enemy is half the battle won. Transl Lung Cancer Res 2021; 9:2545-2556. [PMID: 33489817 PMCID: PMC7815358 DOI: 10.21037/tlcr-20-372] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Anaplastic lymphoma kinase (ALK) translocations are responsible of neoplastic transformation in a limited subset of non-small cell lung cancer (NSCLC) patients. In recent years outcomes of these patients improved due to the development and clinical availability of specific and extremely active targeted therapies [i.e., next-generation Tyrosine Kinase Inhibitors (TKI)]: ALK+ patients are now reaching impressive results when treated with more potent inhibitors upfront with an average median progression-free survival (mPFS) around 35 months. However, under drug pressure, cancer cells develop resistance and patients eventually progress. Multiple mechanisms of intrinsic or acquired resistance have been extensively characterized. Less potent ALK inhibitors (ALKi)—like crizotinib—usually tend to induce a large spectrum of secondary intra-kinase mutations; however, these alterations may be observed also after sequential administration of multiple ALKi. Noteworthy, neoplastic cells may evade ALK targeting through a myriad of different mechanisms involving cell-stroma interaction, activation of parallel signaling pathways, intracellular downstream adaptation and histological reshaping, as relevant molecular events. Often these phenomena are restricted to a limited number of cases or even can be patient-specific, thus hindering the development of therapeutic strategies largely applicable. Consequently, the recognition of specific resistance mechanisms seldom translates in clinical opportunities. Management of ALK+ patients is drastically changed and deciphering the molecular biology underlying this disease during treatment is of paramount relevance. The bedrock of resistance to TKI is that, after the diagnosis, we face with a different disease that needs to be re-characterized through tissue or/and liquid biopsies. Understanding molecular pathways driving the resistant phenotype will give us the chance to know what we are dealing with and, rather than choose an empirical approach, will help us to properly define the best targeted treatment for these patients.
Collapse
Affiliation(s)
- Fabrizio Tabbò
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, TO, Italy
| | - Maria Lucia Reale
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, TO, Italy
| | - Paolo Bironzo
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, TO, Italy
| | - Giorgio V Scagliotti
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, TO, Italy
| |
Collapse
|
5
|
Vittrant B, Leclercq M, Martin-Magniette ML, Collins C, Bergeron A, Fradet Y, Droit A. Identification of a Transcriptomic Prognostic Signature by Machine Learning Using a Combination of Small Cohorts of Prostate Cancer. Front Genet 2020; 11:550894. [PMID: 33324443 PMCID: PMC7723980 DOI: 10.3389/fgene.2020.550894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/29/2020] [Indexed: 01/31/2023] Open
Abstract
Determining which treatment to provide to men with prostate cancer (PCa) is a major challenge for clinicians. Currently, the clinical risk-stratification for PCa is based on clinico-pathological variables such as Gleason grade, stage and prostate specific antigen (PSA) levels. But transcriptomic data have the potential to enable the development of more precise approaches to predict evolution of the disease. However, high quality RNA sequencing (RNA-seq) datasets along with clinical data with long follow-up allowing discovery of biochemical recurrence (BCR) biomarkers are small and rare. In this study, we propose a machine learning approach that is robust to batch effect and enables the discovery of highly predictive signatures despite using small datasets. Gene expression data were extracted from three RNA-Seq datasets cumulating a total of 171 PCa patients. Data were re-analyzed using a unique pipeline to ensure uniformity. Using a machine learning approach, a total of 14 classifiers were tested with various parameters to identify the best model and gene signature to predict BCR. Using a random forest model, we have identified a signature composed of only three genes (JUN, HES4, PPDPF) predicting BCR with better accuracy [74.2%, balanced error rate (BER) = 27%] than the clinico-pathological variables (69.2%, BER = 32%) currently in use to predict PCa evolution. This score is in the range of the studies that predicted BCR in single-cohort with a higher number of patients. We showed that it is possible to merge and analyze different small and heterogeneous datasets altogether to obtain a better signature than if they were analyzed individually, thus reducing the need for very large cohorts. This study demonstrates the feasibility to regroup different small datasets in one larger to identify a predictive genomic signature that would benefit PCa patients.
Collapse
Affiliation(s)
- Benjamin Vittrant
- Centre de Recherche du CHU de Québec - Université Laval, Québec, QC, Canada.,Département de Médecine Moléculaire, Université Laval, QC, Canada
| | - Mickael Leclercq
- Centre de Recherche du CHU de Québec - Université Laval, Québec, QC, Canada.,Département de Médecine Moléculaire, Université Laval, QC, Canada
| | - Marie-Laure Martin-Magniette
- Universities of Paris Saclay, Paris, Evry, CNRS, INRAE, Institute of Plant Sciences Paris Saclay (IPS2), 91192, GIf sur Yvette, France.,UMR MIA-Paris, AgroParisTech, INRA, Université Paris-Saclay, Paris, France
| | - Colin Collins
- Vancouver Prostate Cancer Centre, Vancouver, BC, Canada.,Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Alain Bergeron
- Centre de Recherche du CHU de Québec - Université Laval, Québec, QC, Canada.,Département de Chirurgie, Oncology Axis, Université Laval, Québec, QC, Canada
| | - Yves Fradet
- Centre de Recherche du CHU de Québec - Université Laval, Québec, QC, Canada.,Département de Chirurgie, Oncology Axis, Université Laval, Québec, QC, Canada
| | - Arnaud Droit
- Centre de Recherche du CHU de Québec - Université Laval, Québec, QC, Canada.,Département de Médecine Moléculaire, Université Laval, QC, Canada
| |
Collapse
|
6
|
Washah HN, Salifu EY, Soremekun O, Elrashedy AA, Munsamy G, Olotu FA, Soliman ME. Integrating Bioinformatics Strategies in Cancer Immunotherapy: Current and Future Perspectives. Comb Chem High Throughput Screen 2020; 23:687-698. [DOI: 10.2174/1386207323666200427113734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/21/2019] [Accepted: 02/26/2020] [Indexed: 02/08/2023]
Abstract
For the past few decades, the mechanisms of immune responses to cancer have been
exploited extensively and significant attention has been given into utilizing the therapeutic
potential of the immune system. Cancer immunotherapy has been established as a promising
innovative treatment for many forms of cancer. Immunotherapy has gained its prominence through
various strategies, including cancer vaccines, monoclonal antibodies (mAbs), adoptive T cell cancer
therapy, and immune checkpoint therapy. However, the full potential of cancer immunotherapy is yet
to be attained. Recent studies have identified the use of bioinformatics tools as a viable option to help
transform the treatment paradigm of several tumors by providing a therapeutically efficient method of
cataloging, predicting and selecting immunotherapeutic targets, which are known bottlenecks in the
application of immunotherapy. Herein, we gave an insightful overview of the types of
immunotherapy techniques used currently, their mechanisms of action, and discussed some
bioinformatics tools and databases applied in the immunotherapy of cancer. This review also provides
some future perspectives in the use of bioinformatics tools for immunotherapy.
Collapse
Affiliation(s)
- Houda N. Washah
- Molecular Bio-computation and Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Elliasu Y. Salifu
- Molecular Bio-computation and Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Opeyemi Soremekun
- Molecular Bio-computation and Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Ahmed A. Elrashedy
- Molecular Bio-computation and Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Geraldene Munsamy
- Molecular Bio-computation and Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Fisayo A. Olotu
- Molecular Bio-computation and Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Mahmoud E.S. Soliman
- Molecular Bio-computation and Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| |
Collapse
|
7
|
Feng YH, Su YC, Lin SF, Lin PR, Wu CL, Tung CL, Li CF, Shieh GS, Shiau AL. Oct4 upregulates osteopontin via Egr1 and is associated with poor outcome in human lung cancer. BMC Cancer 2019; 19:791. [PMID: 31399076 PMCID: PMC6688208 DOI: 10.1186/s12885-019-6014-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 08/05/2019] [Indexed: 12/23/2022] Open
Abstract
Background Roles of cancer stem cells and early growth response gene 1 (Egr1) in carcinogenesis have been extensively studied in lung cancer. However, the role of Egr1 in the metastasis of lung cancer remains undetermined, especially in regard to stem cell-related pathways. Methods Egr1, osteopontin (OPN) and Oct4 expression in human lung cancer was determined by performing immunohistochemistry. Immunoblotting, ELISA, luciferase reporter assay, chromatin immunoprecipitation assay and RT-PCR were performed to validate the regulation of Oct4-Egr1-OPN axis. Moreover, the effect of Oct4-Egr1-OPN axis on lung cancer progression was evaluated by cell migration assay and mice study. Results We detected Oct4, Egr1, and OPN expression in clinical specimens from 79 lung cancer patients, including 72 adenocarcinomas and 7 squamous cell carcinomas. High expression of Oct4, Egr1, and OPN accounted for 53, 51, and 57% of the patients, respectively. All of the three biomarkers were positively correlated in clinical human lung cancer. Patients with high expression of OPN were significantly associated with shorter disease-free survivals than those with low expression of OPN (p < 0.05). In lung cancer cells, Oct4 transactivated the Egr1 promoter and upregulated Egr1 expression. In a human lung cancer xenograft model, Oct4-overexpressing tumors expressed elevated levels of Egr1. Furthermore, overexpression of Oct4 in lung cancer cells increased the metastatic potential. Conclusions Egr1 exerts a promoting effect on cancer metastasis in Oct4-overexpressing lung cancer. Thus, therapeutic strategies targeting the Oct4/Egr1/OPN axis may be further explored for the treatment of lung cancer, especially when lung cancer is refractory to conventional treatment due to cancer stem cells. Electronic supplementary material The online version of this article (10.1186/s12885-019-6014-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yin-Hsun Feng
- Division of Hematology and Oncology, Department of Internal Medicine, Chi-Mei Medical Center, 901 Chung-Hwa Road, Tainan, 71004, Taiwan. .,Department of Nursing, Chung Hwa University of Medical Technology, Tainan, Taiwan.
| | - Yu-Chu Su
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Otolaryngology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shuo-Fu Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan
| | - Pey-Ru Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan
| | - Chao-Liang Wu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chao-Ling Tung
- Division of Hematology and Oncology, Department of Internal Medicine, Chi-Mei Medical Center, 901 Chung-Hwa Road, Tainan, 71004, Taiwan
| | - Chien-Feng Li
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Gia-Shing Shieh
- Department of Urology, Tainan Hospital, Ministry of Health and Welfare, Executive Yuan, Tainan, Taiwan
| | - Ai-Li Shiau
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan.
| |
Collapse
|
8
|
Yang W, Kang Y, Zhao Q, Bi L, Jiao L, Gu Y, Lu J, Yao J, Zhou D, Sun J, Zhao X, Xu L. Herbal formula Yangyinjiedu induces lung cancer cell apoptosis via activation of early growth response 1. J Cell Mol Med 2019; 23:6193-6202. [PMID: 31237749 PMCID: PMC6714142 DOI: 10.1111/jcmm.14501] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 12/24/2022] Open
Abstract
Traditional Chinese Medicine (TCM) has been extensively used in clinical practices and proven to be effective against cancer. However, the underlying mechanisms remain to be investigated. In this study, we examined the anticancer activities of Chinese herbal formula Yangyinjiedu (YYJD) and found that YYJD exhibits cytotoxicity against lung cancer cells. Transcriptome analysis indicated that 2178 genes were differentially expressed (P < 0.05) upon YYJD treatment, with 1464 being (67.2%) up‐regulated. Among these, we found that the tumour suppressor early growth response 1 (EGR1) is the most activated. We demonstrated that EGR1 contributes to YYJD‐induced apoptosis in A549. Through dissecting EGR1‐associated transcriptional network, we identified 275 genes as EGR1 direct targets, some targets are involved in apoptosis. Lastly, we observed that YYJD enhances EGR1 expression and induces cell death in tumour xenografts. Collectively, these findings suggest that YYJD exerts its anticancer activities through EGR1 activation, thus providing the evidence for its potential clinical application for lung cancer patients.
Collapse
Affiliation(s)
- Wenxiao Yang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yani Kang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Zhao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Bi
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lijing Jiao
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Clinical Immunology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunzhao Gu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Lu
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jialin Yao
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Di Zhou
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jielin Sun
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaodong Zhao
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Xu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cancer Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Beekhof R, van Alphen C, Henneman AA, Knol JC, Pham TV, Rolfs F, Labots M, Henneberry E, Le Large TY, de Haas RR, Piersma SR, Vurchio V, Bertotti A, Trusolino L, Verheul HM, Jimenez CR. INKA, an integrative data analysis pipeline for phosphoproteomic inference of active kinases. Mol Syst Biol 2019; 15:e8250. [PMID: 30979792 PMCID: PMC6461034 DOI: 10.15252/msb.20188250] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/15/2019] [Accepted: 03/20/2019] [Indexed: 12/19/2022] Open
Abstract
Identifying hyperactive kinases in cancer is crucial for individualized treatment with specific inhibitors. Kinase activity can be discerned from global protein phosphorylation profiles obtained with mass spectrometry-based phosphoproteomics. A major challenge is to relate such profiles to specific hyperactive kinases fueling growth/progression of individual tumors. Hitherto, the focus has been on phosphorylation of either kinases or their substrates. Here, we combined label-free kinase-centric and substrate-centric information in an Integrative Inferred Kinase Activity (INKA) analysis. This multipronged, stringent analysis enables ranking of kinase activity and visualization of kinase-substrate networks in a single biological sample. To demonstrate utility, we analyzed (i) cancer cell lines with known oncogenes, (ii) cell lines in a differential setting (wild-type versus mutant, +/- drug), (iii) pre- and on-treatment tumor needle biopsies, (iv) cancer cell panel with available drug sensitivity data, and (v) patient-derived tumor xenografts with INKA-guided drug selection and testing. These analyses show superior performance of INKA over its components and substrate-based single-sample tool KARP, and underscore target potential of high-ranking kinases, encouraging further exploration of INKA's functional and clinical value.
Collapse
Affiliation(s)
- Robin Beekhof
- Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Carolien van Alphen
- Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Alex A Henneman
- Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jaco C Knol
- Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Thang V Pham
- Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Frank Rolfs
- Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mariette Labots
- Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Evan Henneberry
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Tessa Ys Le Large
- Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Richard R de Haas
- Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sander R Piersma
- Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Valentina Vurchio
- Department of Oncology, Candiolo Cancer Institute IRCCS, University of Torino, Torino, Italy
| | - Andrea Bertotti
- Department of Oncology, Candiolo Cancer Institute IRCCS, University of Torino, Torino, Italy
| | - Livio Trusolino
- Department of Oncology, Candiolo Cancer Institute IRCCS, University of Torino, Torino, Italy
| | - Henk Mw Verheul
- Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Connie R Jimenez
- Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Bansal M, He J, Peyton M, Kustagi M, Iyer A, Comb M, White M, Minna JD, Califano A. Elucidating synergistic dependencies in lung adenocarcinoma by proteome-wide signaling-network analysis. PLoS One 2019; 14:e0208646. [PMID: 30615629 PMCID: PMC6322741 DOI: 10.1371/journal.pone.0208646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/20/2018] [Indexed: 12/26/2022] Open
Abstract
To understand drug combination effect, it is necessary to decipher the interactions between drug targets-many of which are signaling molecules. Previously, such signaling pathway models are largely based on the compilation of literature data from heterogeneous cellular contexts. Indeed, de novo reconstruction of signaling interactions from large-scale molecular profiling is still lagging, compared to similar efforts in transcriptional and protein-protein interaction networks. To address this challenge, we introduce a novel algorithm for the systematic inference of protein kinase pathways, and applied it to published mass spectrometry-based phosphotyrosine profile data from 250 lung adenocarcinoma (LUAD) samples. The resulting network includes 43 TKs and 415 inferred, LUAD-specific substrates, which were validated at >60% accuracy by SILAC assays, including "novel' substrates of the EGFR and c-MET TKs, which play a critical oncogenic role in lung cancer. This systematic, data-driven model supported drug response prediction on an individual sample basis, including accurate prediction and validation of synergistic EGFR and c-MET inhibitor activity in cells lacking mutations in either gene, thus contributing to current precision oncology efforts.
Collapse
Affiliation(s)
- Mukesh Bansal
- Psychogenics Inc., Paramus, New Jersey, United States of America
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Jing He
- Department of Systems Biology, Columbia University, New York, NY, United States of America
- Center for Computational Biology and Bioinformatics (C2B2), Columbia University, New York, NY, United States of America
- Department of Biomedical Informatics (DBMI), Columbia University, New York, NY, United States of America
| | - Michael Peyton
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Manjunath Kustagi
- Department of Systems Biology, Columbia University, New York, NY, United States of America
| | - Archana Iyer
- Department of Systems Biology, Columbia University, New York, NY, United States of America
| | - Michael Comb
- Cell Signaling Technology, 3 Trask Lane, Danvers, MA, United States of America
| | - Michael White
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - John D. Minna
- Hamon Center for Therapeutic Oncology Research, Simmons Comprehensive Cancer Center, Departments of Pharmacology, and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Andrea Califano
- Department of Systems Biology, Columbia University, New York, NY, United States of America
- Center for Computational Biology and Bioinformatics (C2B2), Columbia University, New York, NY, United States of America
- Department of Biomedical Informatics (DBMI), Columbia University, New York, NY, United States of America
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States of America
- Institute for Cancer Genetics, Columbia University, New York, NY, United States of America
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, United States of America
| |
Collapse
|
11
|
Tabbò F, Pizzi M, Kyriakides PW, Ruggeri B, Inghirami G. Oncogenic kinase fusions: an evolving arena with innovative clinical opportunities. Oncotarget 2018; 7:25064-86. [PMID: 26943776 PMCID: PMC5041889 DOI: 10.18632/oncotarget.7853] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/24/2016] [Indexed: 01/08/2023] Open
Abstract
Cancer biology relies on intrinsic and extrinsic deregulated pathways, involving a plethora of intra-cellular and extra-cellular components. Tyrosine kinases are frequently deregulated genes, whose aberrant expression is often caused by major cytogenetic events (e.g. chromosomal translocations). The resulting tyrosine kinase fusions (TKFs) prompt the activation of oncogenic pathways, determining the biological and clinical features of the associated tumors. First reported half a century ago, oncogenic TKFs are now found in a large series of hematologic and solid tumors. The molecular basis of TKFs has been thoroughly investigated and tailored therapies against recurrent TKFs have recently been developed. This review illustrates the biology of oncogenic TKFs and their role in solid as well as hematological malignancies. We also address the therapeutic implications of TKFs and the many open issues concerning their clinical impact.
Collapse
Affiliation(s)
- Fabrizio Tabbò
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino, Italy.,Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Marco Pizzi
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA.,General Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Peter W Kyriakides
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Bruce Ruggeri
- Pre-Clinical Discovery Biology, Incyte Corporation, Wilmington, DE, USA
| | - Giorgio Inghirami
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino, Italy.,Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA.,Department of Pathology, and NYU Cancer Center, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
12
|
Voena C, Varesio LM, Zhang L, Menotti M, Poggio T, Panizza E, Wang Q, Minero VG, Fagoonee S, Compagno M, Altruda F, Monti S, Chiarle R. Oncogenic ALK regulates EMT in non-small cell lung carcinoma through repression of the epithelial splicing regulatory protein 1. Oncotarget 2017; 7:33316-30. [PMID: 27119231 PMCID: PMC5078097 DOI: 10.18632/oncotarget.8955] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/29/2016] [Indexed: 11/25/2022] Open
Abstract
A subset of Non-Small Cell Lung Carcinoma (NSCLC) carries chromosomal rearrangements involving the Anaplastic Lymphoma Kinase (ALK) gene. ALK-rearranged NSCLC are typically adenocarcinoma characterized by a solid signet-ring cell pattern that is frequently associated with a metastatic phenotype. Recent reports linked the presence of ALK rearrangement to an epithelial-mesenchymal transition (EMT) phenotype in NSCLC, but the extent and the mechanisms of an ALK-mediated EMT in ALK-rearranged NSCLC are largely unknown. We found that the ALK-rearranged H2228 and DFCI032, but not the H3122, cell lines displayed a mesenchymal phenotype. In these cell lines, oncogenic ALK activity dictated an EMT phenotype by directly suppressing E-cadherin and up-regulating vimentin expression, as well as expression of other genes involved in EMT. We found that the epithelial splicing regulatory protein 1 (ESRP1), a key regulator of the splicing switch during EMT, was repressed by EML4-ALK activity. The treatment of NSCLC cells with ALK tyrosine kinase inhibitors (TKIs) led to up-regulation of ESRP1 and E-cadherin, thus reverting the phenotype from mesenchymal to epithelial (MET). Consistently, ESRP1 knock-down impaired E-cadherin up-regulation upon ALK inhibition, whereas enforced expression of ESRP1 was sufficient to increase E-cadherin expression. These findings demonstrate an ALK oncogenic activity in the regulation of an EMT phenotype in a subset of NSCLC with potential implications for the biology of ALK-rearranged NSCLC in terms of metastatic propensity and resistance to therapy.
Collapse
Affiliation(s)
- Claudia Voena
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza, Torino, Italy.,Department of Pathology, Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Lydia M Varesio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza, Torino, Italy
| | - Liye Zhang
- Section of Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Matteo Menotti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza, Torino, Italy
| | - Teresa Poggio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza, Torino, Italy
| | - Elena Panizza
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza, Torino, Italy
| | - Qi Wang
- Department of Pathology, Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Valerio G Minero
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza, Torino, Italy
| | - Sharmila Fagoonee
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Mara Compagno
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza, Torino, Italy.,Department of Pathology, Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Fiorella Altruda
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Stefano Monti
- Section of Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Roberto Chiarle
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza, Torino, Italy.,Department of Pathology, Children's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Awad MM, Mastini C, Blasco RB, Mologni L, Voena C, Mussolin L, Mach SL, Adeni AE, Lydon CA, Sholl LM, Jänne PA, Chiarle R. Epitope mapping of spontaneous autoantibodies to anaplastic lymphoma kinase (ALK) in non-small cell lung cancer. Oncotarget 2017; 8:92265-92274. [PMID: 29190913 PMCID: PMC5696179 DOI: 10.18632/oncotarget.21182] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 08/25/2017] [Indexed: 12/05/2022] Open
Abstract
The anaplastic lymphoma kinase (ALK) is recognized by the immune system as a tumor antigen, and preclinical evidence suggests that ALK-rearranged NSCLCs can also be successfully targeted immunologically using vaccine-based approaches. In contrast to ALK-rearranged lymphomas, the frequency and clinical significance of spontaneous ALK immune responses in patients with ALK-rearranged NSCLCs are largely unknown. We developed an enzyme-linked immunosorbent assay (ELISA) to measure anti-ALK antibody levels and mapped specific peptide epitope sequences within the ALK cytoplasmic domain in patients with non-small cell lung cancer. The ELISA method showed good correlation with ALK antibody titers measured with a standard immunocytochemical approach. Strong anti-ALK antibody responses were detected in 9 of 53 (17.0%) ALK-positive NSCLC patients and in 0 of 38 (0%) ALK-negative NSCLC patients (P<0.01), and the mean antibody levels were significantly higher in ALK-positive than in ALK-negative NSCLC patients (P=0.02). Across individual patients, autoantibodies recognized different epitopes in the ALK cytoplasmic domain, most of which clustered outside the tyrosine kinase domain. Whether the presence of high ALK autoantibody levels confers a more favorable prognosis in this patient population warrants further investigation.
Collapse
Affiliation(s)
- Mark M Awad
- Lowe Center for Thoracic Oncology, Department of Medical Oncology, Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Cristina Mastini
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Rafael B Blasco
- Department of Pathology, Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Luca Mologni
- Department of Health Sciences, University of Milano-Bicocca, Milan, Italy
| | - Claudia Voena
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Lara Mussolin
- Department of Women and Children's Health, University of Padua, Padua, Italy
| | - Stacy L Mach
- Lowe Center for Thoracic Oncology, Department of Medical Oncology, Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Anika E Adeni
- Lowe Center for Thoracic Oncology, Department of Medical Oncology, Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Christine A Lydon
- Lowe Center for Thoracic Oncology, Department of Medical Oncology, Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pasi A Jänne
- Lowe Center for Thoracic Oncology, Department of Medical Oncology, Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Roberto Chiarle
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy.,Department of Pathology, Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Ma W, Kang Y, Ning L, Tan J, Wang H, Ying Y. Identification of microRNAs involved in gefitinib resistance of non-small-cell lung cancer through the insulin-like growth factor receptor 1 signaling pathway. Exp Ther Med 2017; 14:2853-2862. [PMID: 28912847 PMCID: PMC5585727 DOI: 10.3892/etm.2017.4847] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 04/28/2017] [Indexed: 12/30/2022] Open
Abstract
Multiple clinical and experimental studies have suggested that epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) may be effective at treating advanced non-small cell lung cancer (NSCLC), however, the molecular basis of primary resistance to EGFR-TKIs in NSCLC remains unclear. In the current study, the insulin-like growth factor 1 receptor (IGF-1R) gene in the gefitinib-resistant human lung adenocarcinoma epithelial cell line A549 (A549/GR) was silenced using small interfering RNA (siRNA) in order to determine the role of microRNA (miRNA) in the development of resistance against epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) in lung adenocarcinoma. The relative gefitinib-resistant capacity in A549 and A549/GR cells was determined using a cell counting kit 8. A549/GR cells were transfected with chemically synthesized siRNA to silence the IGF-1R gene. A total of 48 h after siRNA transfection, IGF-1R expression in A549/GR cells was evaluated using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting. miRNA expression in A549/GR cells and A549/GR cells with silenced IGF-1R was analyzed using a miRNA microarray. The microarray results of 10 miRNAs were then compared with the results of RT-qPCR. The results demonstrated that the gefitinib-resistance capacity of A549/GR cells was six times higher than that of A549 cells. Additionally, RT-qPCR and western blotting demonstrated that the IGF-1R gene in A549/GR cells was successfully silenced by siRNA. The highest silencing rate (72%) of the IGF-1R gene was obtained using siRNA-2. The microarray identified 72 miRNAs with significantly different expression in A549/GR cells with silenced IGF-1R compared with A549/GR cells. Of the 72 differentially expressed miRNAs, 13 miRNAs (including miR-497-3p and miR-1273c) were up-regulated and 59 miRNAs (including miR-361-3p and miR-345-3p) were down-regulated in A549/GR cells with silenced IGF-1R compared with A549/GR cells. The changes in the expression of 10 different miRNAs were confirmed by RT-qPCR. Thus, the present study successfully established an A549/GR cell line with silenced IGF-1R. The results suggest that a number of miRNAs associated with the IGF-1R signaling pathway, including miR-497-3p and miR-144-5p, were involved in the development of resistance against EGFR-TKIs in A549 cells. These miRNAs may provide novel targets to treat lung adenocarcinoma exhibiting resistance against EGFR-TKIs.
Collapse
Affiliation(s)
- Wei Ma
- Department of Respiration, Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, P.R. China
| | - Yanhong Kang
- Department of Respiration, The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, P.R. China
| | - Lanlan Ning
- Department of Ultrasound, Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, P.R. China
| | - Jie Tan
- Department of Respiration, The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, P.R. China
| | - Hanping Wang
- Core Laboratory, Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, P.R. China
| | - Yi Ying
- Department of Hematology, Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, P.R. China
| |
Collapse
|
15
|
Vaishnavi A, Schubert L, Rix U, Marek LA, Le AT, Keysar SB, Glogowska MJ, Smith MA, Kako S, Sumi NJ, Davies KD, Ware KE, Varella-Garcia M, Haura EB, Jimeno A, Heasley LE, Aisner DL, Doebele RC. EGFR Mediates Responses to Small-Molecule Drugs Targeting Oncogenic Fusion Kinases. Cancer Res 2017; 77:3551-3563. [PMID: 28428274 DOI: 10.1158/0008-5472.can-17-0109] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/23/2017] [Accepted: 04/14/2017] [Indexed: 02/07/2023]
Abstract
Oncogenic kinase fusions of ALK, ROS1, RET, and NTRK1 act as drivers in human lung and other cancers. Residual tumor burden following treatment of ALK or ROS1+ lung cancer patients with oncogene-targeted therapy ultimately enables the emergence of drug-resistant clones, limiting the long-term effectiveness of these therapies. To determine the signaling mechanisms underlying incomplete tumor cell killing in oncogene-addicted cancer cells, we investigated the role of EGFR signaling in drug-naïve cancer cells harboring these oncogene fusions. We defined three distinct roles for EGFR in the response to oncogene-specific therapies. First, EGF-mediated activation of EGFR blunted fusion kinase inhibitor binding and restored fusion kinase signaling complexes. Second, fusion kinase inhibition shifted adaptor protein binding from the fusion oncoprotein to EGFR. Third, EGFR enabled bypass signaling to critical downstream pathways such as MAPK. While evidence of EGFR-mediated bypass signaling has been reported after ALK and ROS1 blockade, our results extended this effect to RET and NTRK1 blockade and uncovered the other additional mechanisms in gene fusion-positive lung cancer cells, mouse models, and human clinical specimens before the onset of acquired drug resistance. Collectively, our findings show how EGFR signaling can provide a critical adaptive survival mechanism that allows cancer cells to evade oncogene-specific inhibitors, providing a rationale to cotarget EGFR to reduce the risks of developing drug resistance. Cancer Res; 77(13); 3551-63. ©2017 AACR.
Collapse
Affiliation(s)
- Aria Vaishnavi
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Laura Schubert
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Uwe Rix
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Lindsay A Marek
- Department of Craniofacial Biology, University of Colorado School of Dental Medicine, Aurora, Colorado
| | - Anh T Le
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Stephen B Keysar
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Magdalena J Glogowska
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Matthew A Smith
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Severine Kako
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Natalia J Sumi
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kurtis D Davies
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado
| | - Kathryn E Ware
- Department of Craniofacial Biology, University of Colorado School of Dental Medicine, Aurora, Colorado
| | - Marileila Varella-Garcia
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Antonio Jimeno
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Lynn E Heasley
- Department of Craniofacial Biology, University of Colorado School of Dental Medicine, Aurora, Colorado
| | - Dara L Aisner
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado
| | - Robert C Doebele
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.
| |
Collapse
|
16
|
de Klerk N, Saroj SD, Wassing GM, Maudsdotter L, Jonsson AB. The Host Cell Transcription Factor EGR1 Is Induced by Bacteria through the EGFR-ERK1/2 Pathway. Front Cell Infect Microbiol 2017; 7:16. [PMID: 28180113 PMCID: PMC5264520 DOI: 10.3389/fcimb.2017.00016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/12/2017] [Indexed: 12/01/2022] Open
Abstract
The essential first step in bacterial colonization is adhesion to the host epithelial cells. The early host-responses post-bacterial adhesions are still poorly understood. Early growth response 1 (EGR1) is an early response transcriptional regulator that can be rapidly induced by various environmental stimuli. Several bacteria can induce EGR1 expression in host cells, but the involved bacterial characteristics and the underlying molecular mechanisms of this response are largely unknown. Here, we show that EGR1 can be induced in host epithelial cells by different species of bacteria independent of the adherence level, Gram-staining type and pathogenicity. However, bacterial viability and contact with host cells is necessary, indicating that an active interaction between bacteria and the host is important. Furthermore, the strongest response is observed in cells originating from the natural site of the infection, suggesting that the EGR1 induction is cell type specific. Finally, we show that EGFR–ERK1/2 and β1-integrin signaling are the main pathways used for bacteria-mediated EGR1 upregulation. In conclusion, the increase of EGR1 expression in epithelial cells is a common stress induced, cell type specific response upon host-bacteria interaction that is mediated by EGFR–ERK1/2 and β1-integrin signaling.
Collapse
Affiliation(s)
- Nele de Klerk
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University Stockholm, Sweden
| | - Sunil D Saroj
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University Stockholm, Sweden
| | - Gabriela M Wassing
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University Stockholm, Sweden
| | - Lisa Maudsdotter
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University Stockholm, Sweden
| | - Ann-Beth Jonsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University Stockholm, Sweden
| |
Collapse
|
17
|
A NOX2/Egr-1/Fyn pathway delineates new targets for TKI-resistant malignancies. Oncotarget 2016; 6:23631-46. [PMID: 26136341 PMCID: PMC4695141 DOI: 10.18632/oncotarget.4604] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/12/2015] [Indexed: 12/13/2022] Open
Abstract
Tyrosine kinase inhibitors (TKI) have improved CML response rates, and some are effective against resistance-promoting point mutations in BCR-ABL1. However, in the absence of point mutations, resistance still occurs. Here, we identify a novel pathway mediating resistance which connects p47phox, the organizer subunit of NADPH oxidase-2 (NOX2), with early growth response-1 (Egr-1) and the Src family kinase Fyn. We found up-regulation of p47phox, Egr-1, and Fyn mRNA and protein using paired isogenic CML cell lines and mined data. Isolation of CD34+ cells and tissue microarray staining from blast crisis CML patients confirmed in vivo over-expression of components of this pathway. Knockdown studies revealed that p47phox modulated reactive oxygen species and Egr-1 expression, which, in turn, controlled Fyn expression. Interestingly, Fyn knockdown sensitized TKI-resistant cells to dasatinib, a dual BCR-ABL1/Src inhibitor. Egr-1 knockdown had similar effects, indicating the utility of targeting Fyn expression over activation. Pointedly, p47phox knockdown also restored TKI-sensitivity, indicating that targeting the NOX2 complex can overcome resistance. The NOX2/Egr-1/Fyn pathway was also conserved within TKI-resistant EGFRΔIII-expressing glioblastoma and patient-derived glioblastoma stem cells. Thus, our findings suggest that targeting the NOX2/Egr-1/Fyn pathway may have clinical implications within multiple cancer types; particularly where efficacy of TKI is compromised.
Collapse
|
18
|
Voena C, Menotti M, Mastini C, Di Giacomo F, Longo DL, Castella B, Merlo MEB, Ambrogio C, Wang Q, Minero VG, Poggio T, Martinengo C, D'Amico L, Panizza E, Mologni L, Cavallo F, Altruda F, Butaney M, Capelletti M, Inghirami G, Jänne PA, Chiarle R. Efficacy of a Cancer Vaccine against ALK-Rearranged Lung Tumors. Cancer Immunol Res 2015; 3:1333-1343. [PMID: 26419961 DOI: 10.1158/2326-6066.cir-15-0089] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/23/2015] [Indexed: 01/14/2023]
Abstract
Non-small cell lung cancer (NSCLC) harboring chromosomal rearrangements of the anaplastic lymphoma kinase (ALK) gene is treated with ALK tyrosine kinase inhibitors (TKI), but the treatment is successful for only a limited amount of time; most patients experience a relapse due to the development of drug resistance. Here, we show that a vaccine against ALK induced a strong and specific immune response that both prophylactically and therapeutically impaired the growth of ALK-positive lung tumors in mouse models. The ALK vaccine was efficacious also in combination with ALK TKI treatment and significantly delayed tumor relapses after TKI suspension. We found that lung tumors containing ALK rearrangements induced an immunosuppressive microenvironment, regulating the expression of PD-L1 on the surface of lung tumor cells. High PD-L1 expression reduced ALK vaccine efficacy, which could be restored by administration of anti-PD-1 immunotherapy. Thus, combinations of ALK vaccine with TKIs and immune checkpoint blockade therapies might represent a powerful strategy for the treatment of ALK-driven NSCLC.
Collapse
Affiliation(s)
- Claudia Voena
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza, Torino, Italy
| | - Matteo Menotti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza, Torino, Italy
| | - Cristina Mastini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza, Torino, Italy
| | - Filomena Di Giacomo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza, Torino, Italy
| | - Dario Livio Longo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Molecular Imaging Center, University of Torino, Torino, Italy
| | - Barbara Castella
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza, Torino, Italy
| | - Maria Elena Boggio Merlo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza, Torino, Italy
| | - Chiara Ambrogio
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Qi Wang
- Department of Pathology, Children's Hospital Harvard Medical School, Boston, MA 02115, USA
| | - Valerio Giacomo Minero
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza, Torino, Italy
| | - Teresa Poggio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza, Torino, Italy
| | - Cinzia Martinengo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza, Torino, Italy
| | - Lucia D'Amico
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza, Torino, Italy
| | - Elena Panizza
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza, Torino, Italy
| | - Luca Mologni
- Department of Health Sciences, University of Milano-Bicocca, Milano, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Fiorella Altruda
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Mohit Butaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.,Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Marzia Capelletti
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.,Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Giorgio Inghirami
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza, Torino, Italy
| | - Pasi A Jänne
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.,Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.,Belfer Institute for Applied Cancer Science, Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - Roberto Chiarle
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza, Torino, Italy.,Department of Pathology, Children's Hospital Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
19
|
Crescenzo R, Abate F, Lasorsa E, Tabbo' F, Gaudiano M, Chiesa N, Di Giacomo F, Spaccarotella E, Barbarossa L, Ercole E, Todaro M, Boi M, Acquaviva A, Ficarra E, Novero D, Rinaldi A, Tousseyn T, Rosenwald A, Kenner L, Cerroni L, Tzankov A, Ponzoni M, Paulli M, Weisenburger D, Chan WC, Iqbal J, Piris MA, Zamo' A, Ciardullo C, Rossi D, Gaidano G, Pileri S, Tiacci E, Falini B, Shultz LD, Mevellec L, Vialard JE, Piva R, Bertoni F, Rabadan R, Inghirami G. Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large cell lymphoma. Cancer Cell 2015; 27:516-32. [PMID: 25873174 PMCID: PMC5898430 DOI: 10.1016/j.ccell.2015.03.006] [Citation(s) in RCA: 333] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 11/14/2014] [Accepted: 03/10/2015] [Indexed: 01/01/2023]
Abstract
A systematic characterization of the genetic alterations driving ALCLs has not been performed. By integrating massive sequencing strategies, we provide a comprehensive characterization of driver genetic alterations (somatic point mutations, copy number alterations, and gene fusions) in ALK(-) ALCLs. We identified activating mutations of JAK1 and/or STAT3 genes in ∼20% of 88 [corrected] ALK(-) ALCLs and demonstrated that 38% of systemic ALK(-) ALCLs displayed double lesions. Recurrent chimeras combining a transcription factor (NFkB2 or NCOR2) with a tyrosine kinase (ROS1 or TYK2) were also discovered in WT JAK1/STAT3 ALK(-) ALCL. All these aberrations lead to the constitutive activation of the JAK/STAT3 pathway, which was proved oncogenic. Consistently, JAK/STAT3 pathway inhibition impaired cell growth in vitro and in vivo.
Collapse
Affiliation(s)
- Ramona Crescenzo
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies, University of Torino, 10126 Torino, Italy; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Francesco Abate
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies, University of Torino, 10126 Torino, Italy; Department of Control and Computer Engineering, Politecnico di Torino, 10129 Torino, Italy; Department of Biomedical Informatics and Department of Systems Biology, Center for Computational Biology and Bioinformatics, Columbia University, New York, NY 10027, USA
| | - Elena Lasorsa
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies, University of Torino, 10126 Torino, Italy
| | - Fabrizio Tabbo'
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies, University of Torino, 10126 Torino, Italy; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Marcello Gaudiano
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies, University of Torino, 10126 Torino, Italy; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Nicoletta Chiesa
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies, University of Torino, 10126 Torino, Italy
| | - Filomena Di Giacomo
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies, University of Torino, 10126 Torino, Italy
| | - Elisa Spaccarotella
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies, University of Torino, 10126 Torino, Italy
| | - Luigi Barbarossa
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies, University of Torino, 10126 Torino, Italy
| | - Elisabetta Ercole
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies, University of Torino, 10126 Torino, Italy
| | - Maria Todaro
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies, University of Torino, 10126 Torino, Italy; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Michela Boi
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies, University of Torino, 10126 Torino, Italy; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Andrea Acquaviva
- Department of Control and Computer Engineering, Politecnico di Torino, 10129 Torino, Italy
| | - Elisa Ficarra
- Department of Control and Computer Engineering, Politecnico di Torino, 10129 Torino, Italy
| | - Domenico Novero
- Department of Pathology, A.O. Città della Salute e della Scienza (Molinette), 10126 Torino, Italy
| | - Andrea Rinaldi
- Lymphoma and Genomics Research Program, Institute of Oncology Research, 6500 Bellinzona, Switzerland
| | - Thomas Tousseyn
- Translational Cell and Tissue Research Lab, KU Leuven, 3000 Leuven, Belgium
| | - Andreas Rosenwald
- Institute of Pathology, University of Würzburg and Comprehensive Cancer Center Mainfranken, 97080 Würzburg, Germany
| | - Lukas Kenner
- Ludwing Boltzmann Institute for Cancer Research, 1090 Vienna, Austria
| | - Lorenzo Cerroni
- Research Unit Dermatopathology of the Medical University of Graz, 8036 Graz, Austria
| | - Alexander Tzankov
- Institute of Pathology, University Hospital Basel, 4031 Basel, Switzerland
| | - Maurilio Ponzoni
- Pathology & Lymphoid Malignancies Units, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Marco Paulli
- Department of Human Pathology, University of Pavia and Scientific Institute Fondazione Policlinico San Matteo, 27100 Pavia, Italy
| | | | - Wing C Chan
- Department of Pathology, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Javeed Iqbal
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Miguel A Piris
- Cancer Genomics, Instituto de Formación e Investigación Marqués de Valdecilla and Department of Pathology, Hospital Universitario Marqués de Valdecilla, 39008 Santander, Spain
| | - Alberto Zamo'
- Department of Pathology and Diagnostics, University of Verona, 37134 Verona, Italy
| | - Carmela Ciardullo
- Division of Hematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, 28100 Novara, Italy
| | - Davide Rossi
- Division of Hematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, 28100 Novara, Italy
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, 28100 Novara, Italy
| | - Stefano Pileri
- European Institute of Oncology, 20141 Milano, Italy; Bologna University School of Medicine, 40126 Bologna, Italy
| | - Enrico Tiacci
- Institute of Hematology-Centro di Ricerche Onco-Ematologiche (CREO), Ospedale S. Maria della Misericordia, University of Perugia, 06100 Perugia, Italy
| | - Brunangelo Falini
- Institute of Hematology-Centro di Ricerche Onco-Ematologiche (CREO), Ospedale S. Maria della Misericordia, University of Perugia, 06100 Perugia, Italy
| | | | - Laurence Mevellec
- Janssen Research & Development, a Division of Janssen-Cilag, Campus de Maigremont, CS10615, 27106 Val-de-Reuil Cedex, France
| | - Jorge E Vialard
- Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Roberto Piva
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies, University of Torino, 10126 Torino, Italy; Department of Pathology and NYU Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Francesco Bertoni
- Lymphoma and Genomics Research Program, Institute of Oncology Research, 6500 Bellinzona, Switzerland; Oncology Institute of Southern Switzerland, 6500 Bellinzona, Switzerland
| | - Raul Rabadan
- Department of Biomedical Informatics and Department of Systems Biology, Center for Computational Biology and Bioinformatics, Columbia University, New York, NY 10027, USA.
| | - Giorgio Inghirami
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies, University of Torino, 10126 Torino, Italy; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10021, USA; Department of Pathology and NYU Cancer Center, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
20
|
Wilson FH, Johannessen CM, Piccioni F, Tamayo P, Kim JW, Van Allen EM, Corsello SM, Capelletti M, Calles A, Butaney M, Sharifnia T, Gabriel SB, Mesirov JP, Hahn WC, Engelman JA, Meyerson M, Root DE, Jänne PA, Garraway LA. A functional landscape of resistance to ALK inhibition in lung cancer. Cancer Cell 2015; 27:397-408. [PMID: 25759024 PMCID: PMC4398996 DOI: 10.1016/j.ccell.2015.02.005] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/15/2014] [Accepted: 02/10/2015] [Indexed: 01/17/2023]
Abstract
We conducted a large-scale functional genetic study to characterize mechanisms of resistance to ALK inhibition in ALK-dependent lung cancer cells. We identify members of known resistance pathways and additional putative resistance drivers. Among the latter were members of the P2Y purinergic receptor family of G-protein-coupled receptors (P2Y1, P2Y2, and P2Y6). P2Y receptors mediated resistance in part through a protein-kinase-C (PKC)-dependent mechanism. Moreover, PKC activation alone was sufficient to confer resistance to ALK inhibitors, whereas combined ALK and PKC inhibition restored sensitivity. We observed enrichment of gene signatures associated with several resistance drivers (including P2Y receptors) in crizotinib-resistant ALK-rearranged lung tumors compared to treatment-naive controls, supporting a role for these identified mechanisms in clinical ALK inhibitor resistance.
Collapse
Affiliation(s)
- Frederick H Wilson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | | | - Pablo Tamayo
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jong Wook Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Steven M Corsello
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Marzia Capelletti
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Antonio Calles
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Mohit Butaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Tanaz Sharifnia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Stacey B Gabriel
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jill P Mesirov
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - William C Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jeffrey A Engelman
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David E Root
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Pasi A Jänne
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Levi A Garraway
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
21
|
Kogita A, Togashi Y, Hayashi H, Banno E, Terashima M, De Velasco MA, Sakai K, Fujita Y, Tomida S, Takeyama Y, Okuno K, Nakagawa K, Nishio K. Activated MET acts as a salvage signal after treatment with alectinib, a selective ALK inhibitor, in ALK-positive non-small cell lung cancer. Int J Oncol 2014; 46:1025-30. [PMID: 25502629 DOI: 10.3892/ijo.2014.2797] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/25/2014] [Indexed: 11/05/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) carrying echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) rearrangements is hypersensitive to ALK inhibitors, including crizotinib and alectinib. Crizotinib was initially designed as a MET inhibitor, whereas alectinib is a selective ALK inhibitor. The MET signal, which is inhibited by crizotinib but not by alectinib, is dysregulated in many human cancers. However, the role of the MET signal in ALK-positive NSCLC remains unclear. In this study, we found that hepatocyte growth factor (HGF), ligand of MET, mediated the resistance to alectinib, but not to crizotinib, via the MET signal in ALK-positive NSCLC cell lines (H3122 and H2228 cell lines). In addition, alectinib activated the MET signal even in the absence of HGF and the inhibition of the MET signal enhanced the efficacy of alectinib. These findings suggest that activated MET acts as a salvage signal in ALK-positive NSCLC. This novel role of the MET signal in ALK-positive NSCLC may pave the way for further clinical trials examining MET inhibitors.
Collapse
Affiliation(s)
- Akihiro Kogita
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka 589-8511, Japan
| | - Yosuke Togashi
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka 589-8511, Japan
| | - Hidetoshi Hayashi
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka 589-8511, Japan
| | - Eri Banno
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka 589-8511, Japan
| | - Masato Terashima
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka 589-8511, Japan
| | - Marco A De Velasco
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka 589-8511, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka 589-8511, Japan
| | - Yoshihiko Fujita
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka 589-8511, Japan
| | - Shuta Tomida
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka 589-8511, Japan
| | - Yoshifumi Takeyama
- Department of Surgery, Kinki University Faculty of Medicine, Osaka 589-8511, Japan
| | - Kiyotaka Okuno
- Department of Surgery, Kinki University Faculty of Medicine, Osaka 589-8511, Japan
| | - Kazuhiko Nakagawa
- Department of Medical Oncology, Kinki University Faculty of Medicine, Osaka 589-8511, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka 589-8511, Japan
| |
Collapse
|
22
|
Martinengo C, Poggio T, Menotti M, Scalzo MS, Mastini C, Ambrogio C, Pellegrino E, Riera L, Piva R, Ribatti D, Pastorino F, Perri P, Ponzoni M, Wang Q, Voena C, Chiarle R. ALK-dependent control of hypoxia-inducible factors mediates tumor growth and metastasis. Cancer Res 2014; 74:6094-106. [PMID: 25193384 DOI: 10.1158/0008-5472.can-14-0268] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rearrangements involving the anaplastic lymphoma kinase (ALK) gene are defining events in several tumors, including anaplastic large-cell lymphoma (ALCL) and non-small cell lung carcinoma (NSCLC). In such cancers, the oncogenic activity of ALK stimulates signaling pathways that induce cell transformation and promote tumor growth. In search for common pathways activated by oncogenic ALK across different tumors types, we found that hypoxia pathways were significantly enriched in ALK-rearranged ALCL and NSCLC, as compared with other types of T-cell lymphoma or EGFR- and K-RAS-mutated NSCLC, respectively. Consistently, in both ALCL and NSCLC, we found that under hypoxic conditions, ALK directly regulated the abundance of hypoxia-inducible factors (HIF), which are key players of the hypoxia response in normal tissues and cancers. In ALCL, the upregulation of HIF1α and HIF2α in hypoxic conditions required ALK activity and its downstream signaling proteins STAT3 and C/EBPβ. In vivo, ALK regulated VEGFA production and tumor angiogenesis in ALCL and NSCLC, and the treatment with the anti-VEGFA antibody bevacizumab strongly impaired ALCL growth in mouse xenografts. Finally, HIF2α, but not HIF1α, was required for ALCL growth in vivo whereas the growth and metastasis potential of ALK-rearranged NSCLC required both HIF1α and HIF2α. In conclusion, we uncovered an ALK-specific regulation of the hypoxia response across different ALK(+) tumor types and propose HIFs as a powerful specific therapeutic target in ALK-rearranged ALCL and NSCLC.
Collapse
Affiliation(s)
- Cinzia Martinengo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy. Center for Experimental Research and Medical Studies (CERMS), Torino, Italy
| | - Teresa Poggio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy. Center for Experimental Research and Medical Studies (CERMS), Torino, Italy
| | - Matteo Menotti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy. Center for Experimental Research and Medical Studies (CERMS), Torino, Italy
| | | | - Cristina Mastini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy. Center for Experimental Research and Medical Studies (CERMS), Torino, Italy
| | - Chiara Ambrogio
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Elisa Pellegrino
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy. Center for Experimental Research and Medical Studies (CERMS), Torino, Italy
| | - Ludovica Riera
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy. Center for Experimental Research and Medical Studies (CERMS), Torino, Italy
| | - Roberto Piva
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy. Center for Experimental Research and Medical Studies (CERMS), Torino, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy. National Cancer Institute "Giovanni Paolo II," Bari, Italy
| | - Fabio Pastorino
- Experimental Therapy Unit, Laboratory of Oncology, G. Gaslini Children's Hospital, Genoa, Italy
| | - Patrizia Perri
- Experimental Therapy Unit, Laboratory of Oncology, G. Gaslini Children's Hospital, Genoa, Italy
| | - Mirco Ponzoni
- Experimental Therapy Unit, Laboratory of Oncology, G. Gaslini Children's Hospital, Genoa, Italy
| | - Qi Wang
- Department of Pathology, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts
| | - Claudia Voena
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy. Center for Experimental Research and Medical Studies (CERMS), Torino, Italy.
| | - Roberto Chiarle
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy. Center for Experimental Research and Medical Studies (CERMS), Torino, Italy. Department of Pathology, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
23
|
Blocking the PI3K pathway enhances the efficacy of ALK-targeted therapy in EML4-ALK-positive nonsmall-cell lung cancer. Tumour Biol 2014; 35:9759-67. [DOI: 10.1007/s13277-014-2252-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 06/18/2014] [Indexed: 11/27/2022] Open
|
24
|
Davies KD, Mahale S, Astling DP, Aisner DL, Le AT, Hinz TK, Vaishnavi A, Bunn PA, Heasley LE, Tan AC, Camidge DR, Varella-Garcia M, Doebele RC. Resistance to ROS1 inhibition mediated by EGFR pathway activation in non-small cell lung cancer. PLoS One 2013; 8:e82236. [PMID: 24349229 PMCID: PMC3862576 DOI: 10.1371/journal.pone.0082236] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 10/22/2013] [Indexed: 01/15/2023] Open
Abstract
The targeting of oncogenic ‘driver’ kinases with small molecule inhibitors has proven to be a highly effective therapeutic strategy in selected non-small cell lung cancer (NSCLC) patients. However, acquired resistance to targeted therapies invariably arises and is a major limitation to patient care. ROS1 fusion proteins are a recently described class of oncogenic driver, and NSCLC patients that express these fusions generally respond well to ROS1-targeted therapy. In this study, we sought to determine mechanisms of acquired resistance to ROS1 inhibition. To accomplish this, we analyzed tumor samples from a patient who initially responded to the ROS1 inhibitor crizotinib but eventually developed acquired resistance. In addition, we generated a ROS1 inhibition-resistant derivative of the initially sensitive NSCLC cell line HCC78. Previously described mechanisms of acquired resistance to tyrosine kinase inhibitors including target kinase-domain mutation, target copy number gain, epithelial-mesenchymal transition, and conversion to small cell lung cancer histology were found to not underlie resistance in the patient sample or resistant cell line. However, we did observe a switch in the control of growth and survival signaling pathways from ROS1 to EGFR in the resistant cell line. As a result of this switch, ROS1 inhibition-resistant HCC78 cells became sensitive to EGFR inhibition, an effect that was enhanced by co-treatment with a ROS1 inhibitor. Our results suggest that co-inhibition of ROS1 and EGFR may be an effective strategy to combat resistance to targeted therapy in some ROS1 fusion-positive NSCLC patients.
Collapse
Affiliation(s)
- Kurtis D. Davies
- Department of Medicine, Division of Medical Oncology, University of Colorado - Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Sakshi Mahale
- Department of Medicine, Division of Medical Oncology, University of Colorado - Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - David P. Astling
- Department of Medicine, Division of Medical Oncology, University of Colorado - Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Dara L. Aisner
- Department of Pathology, University of Colorado - Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Anh T. Le
- Department of Medicine, Division of Medical Oncology, University of Colorado - Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Trista K. Hinz
- Department of Craniofacial Biology, University of Colorado - Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Aria Vaishnavi
- Department of Medicine, Division of Medical Oncology, University of Colorado - Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Paul A. Bunn
- Department of Medicine, Division of Medical Oncology, University of Colorado - Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Lynn E. Heasley
- Department of Craniofacial Biology, University of Colorado - Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Aik-Choon Tan
- Department of Medicine, Division of Medical Oncology, University of Colorado - Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - D. Ross Camidge
- Department of Medicine, Division of Medical Oncology, University of Colorado - Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Marileila Varella-Garcia
- Department of Medicine, Division of Medical Oncology, University of Colorado - Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Robert C. Doebele
- Department of Medicine, Division of Medical Oncology, University of Colorado - Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
25
|
Chen QY, Jiao DM, Wu YQ, Wang L, Hu HZ, Song J, Yan J, Wu LJ. Functional and pathway enrichment analysis for integrated regulatory network of high- and low-metastatic lung cancer. MOLECULAR BIOSYSTEMS 2013; 9:3080-90. [PMID: 24077187 DOI: 10.1039/c3mb70288j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metastasis is a common feature of lung cancer, involving relationships between genes, proteins and miRNAs. However, lack of early detection and limited options for targeted therapies are weaknesses that cantribute to the dismal statistics observed in lung cancer metastasis. In this paper, gene expression profiling analysis for genes differentially expressed between high- (95D) and low-metastatic lung cancer cell lines (95C) was performed using gene annotation, pathway analysis, literature mining, and the integrated regulatory network as well as motif analysis of miRNA-DEG and TF-DEG. In addition, the expression of EGR-1 (early growth reponse-1) in surgically resected lung squamous carcinomas, adenocarcinomas and normal lung tissue was detected by immunohistochemistry to reveal the relationships between EGR-1 and lung cancer metastasis. A total of 570 different expressed genes (DEGs) were screened, the vast majority of up-regulated DEGs were connected to cell adhesion and focal adhesion. EGR-1 was observed in the center node of the regulatory network, which seems to play a role in the process of cancer metastasis, and further immunohistochemistry detection confirmed this reasoning. Besides EGR-1, several significant module-related DEGs were enriched in the pathway within cancer and focal adhesion according to KEGG pathway enrichment analysis of network modules. The construction of an integrated regulatory network and the functional prediction of EGR-1 provided us with the cytological basis of lung cancer metastasis research and an understanding of the mechanism of metastasis in lung cancer. EGR-1 should be considered as a potential target gene in therapeutic agent for lung cancer metastasis.
Collapse
Affiliation(s)
- Qing-yong Chen
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, Zhejiang 310013, P.R. China.
| | | | | | | | | | | | | | | |
Collapse
|