1
|
El-Arid S, Lenihan JM, Beeler AB, Grinstaff MW. Truxinates and truxillates: building blocks for architecturally complex polymers and advanced materials. Polym Chem 2024; 15:3935-3953. [PMID: 39310896 PMCID: PMC11414186 DOI: 10.1039/d4py00548a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024]
Abstract
Significant advancements in the syntheses of cyclobutane containing small molecules and polymers are described in the last 15 years. Small molecule cyclobutanes are under investigation for their diverse pharmacological activities, while polymers with cyclobutane backbones are emerging as novel mechanophores, stress-responsive materials, and sustainable plastics. Within these chemistries, [2 + 2] photocycloadditions to yield truxinates and truxillates are highly efficient offering a versatile strategy to access complex scaffolds. This article provides a comprehensive review on the synthetic methodologies, properties, and applications of polymer truxinates and truxillates, providing the background necessary to understand current developments and envision future applications. Additionally, we highlight the links between the development, discoveries, and synthetic methodologies of small molecules and cyclobutane polymers. We emphasize structure property relationships and discuss methods to control composition and structure for desired applications. We begin with a discussion of synthetic techniques for small molecule and polymer cyclobutanes followed by their greater applications, including pharmacological and material properties with examples including sustainable plastics and stimuli-responsive systems.
Collapse
Affiliation(s)
- Sara El-Arid
- Department of Chemistry, Boston University Boston Massachusetts 02215 USA
| | - Jason M Lenihan
- Department of Chemistry, Boston University Boston Massachusetts 02215 USA
| | - Aaron B Beeler
- Department of Chemistry, Boston University Boston Massachusetts 02215 USA
| | - Mark W Grinstaff
- Department of Chemistry, Boston University Boston Massachusetts 02215 USA
- Department of Biomedical Engineering, Boston University Boston Massachusetts 02215 USA
| |
Collapse
|
2
|
Watanabe Y, Fukushima K, Kato T. Degradation of a Wholly Aromatic Main-Chain Thermotropic Liquid-Crystalline Polymer Mediated by Superbases. JACS AU 2024; 4:2944-2956. [PMID: 39211589 PMCID: PMC11350567 DOI: 10.1021/jacsau.4c00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024]
Abstract
Plastic circular economy needs to be established to solve environmental issues related to plastic waste. Superengineering plastics such as liquid-crystalline (LC) polymers exhibit excellent thermal and mechanical properties, resulting in poor degradability in natural environment. Herein, we report the degradation of a wholly aromatic thermotropic LC polyester, poly(4-hydroxybenzoic acid-co-6-hydroxy-2-naphthoic acid) (Vectra) mediated by superbases. Methanolysis and hydrolysis of Vectra yield its monomeric compounds, 4-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, and their methyl esters. Among several transesterification catalysts explored, 1,5,7-triazabicylco[4.4.0]dec-5-ene (TBD) is the most suitable for the methanolysis of Vectra. The complete degradation of Vectra is achieved under reflux. The degradation proceeds heterogeneously via a surface erosion mechanism, preferentially starting from less chain-packed regions. Model reactions using aryl arylates reveal that monomeric compound-superbase complexes could mediate the cleavage of the ester bonds in both homogeneous and heterogeneous systems. The ester bonds of Vectra have inherent poor reactivity and are protected by oriented robust structures of the polymer. Nevertheless, the superbases enable the degradation of Vectra via the cleavage of the ester bonds by methanol. These outcomes open the way for recycling high-performance plastics as well as demonstrate the feasibility of recovering precious aromatic compounds from plastic waste as aromatic feedstock.
Collapse
Affiliation(s)
- Yuya Watanabe
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazuki Fukushima
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Japan
Science and Technology Agency (JST), PRESTO, Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takashi Kato
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Research
Initiative for Supra-Materials, Shinshu
University, Wakasato, Nagano 380-8553, Japan
| |
Collapse
|
3
|
Pratap G, Reddy YSK, Lobo NP, Ramanathan KV, Narasimhaswamy T. 13C CSA Tensors and Orientational Order of Model and Dimer Mesogens Comprising of Phenyl Benzoate. Chemphyschem 2024:e202300749. [PMID: 39177165 DOI: 10.1002/cphc.202300749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 08/24/2024]
Abstract
A Model mesogen and its symmetrical Dimer made up of phenyl benzoate core unit are investigated by 13C NMR spectroscopy. The existence of layer order in smectic A and smectic C phases of Dimer mesogen is established by powder X-ray diffraction. The chemical shift anisotropy (CSA) tensors of Model mesogen are determined by 2D separation of undistorted powder patterns by effortless recoupling (SUPER) experiment and are utilized for calculating the order parameters employing the alignment-induced chemical shifts (AIS). Additionally, 2D separated local field (SLF) NMR is availed for extracting 13C-1H dipolar couplings for both mesogens and used for computing the order parameters. A good agreement in the order parameters calculated from 13C-1H dipolar couplings and AIS is observed. Accordingly, the main order parameter (Szz) for the phenyl rings of the Model mesogen is found to be in the range 0.54-0.82, and for the Dimer mesogen, the values span 0.64-0.82 across mesophases. Since the phenyl benzoate core unit is frequently employed structural moiety for constructing the main chain as well as side chain liquid crystalline polymers and liquid crystalline elastomers, the CSA tensors reported here will be of immense utility for the structural characterization of these materials.
Collapse
Affiliation(s)
- Gallelli Pratap
- Polymer Science and Technology, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Yanati Santhosh K Reddy
- Polymer Science and Technology, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India
| | - Nitin P Lobo
- Centre for Analysis, Testing, Evaluation & Reporting Services (CATERS), CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | | | - Tanneru Narasimhaswamy
- Polymer Science and Technology, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
4
|
Zeng CY, Deng WJ, Zhao KQ, Redshaw C, Donnio B. Phenanthrothiophene-Triazine Star-Shaped Discotic Liquid Crystals: Synthesis, Self-Assembly, and Stimuli-Responsive Fluorescence Properties. Chemistry 2024; 30:e202400296. [PMID: 38427538 DOI: 10.1002/chem.202400296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/03/2024]
Abstract
Lipophilic biphenylthiophene- and phenanthrothiophene-triazine compounds, BPTTn and CPTTn, respectively, were prepared by a tandem procedure involving successive Suzuki-Miyaura coupling and Scholl cyclodehydrogenation reactions. These compounds display photoluminescence in solution and in thin film state, solvatochromism with increasing solvent's polarity, as well as acidochromism and metal ion recognition stimuli-responsive fluorescence. Protonation of BPTT10 and CPTT10 by trifluoroacetic acid results in fluorescence quenching, which is reversibly restored once treated with triethylamine (ON-OFF switch). DFT computational studies show that intramolecular charge transfer (ICT) phenomena occurs for both molecules, and reveal that protonation enhances the electron-withdrawing ability of the triazine core and reduces the band gap. This acidochromic behavior was applied to a prototype fluorescent anti-counterfeiting device. They also specifically recognize Fe3+ through coordination, and the recognition mechanism is closely related to the photoinduced electron transfer between Fe3+ and BPTT10/CPTT10. CPTTn self-assemble into columnar rectangular (Colrec) mesophase, which can be modulated by oleic acid via the formation of a hydrogen-bonded supramolecular liquid crystal hexagonal Colhex mesophase. Finally, CPTTn also form organic gels in alkanes at low critical gel concentration (3.0 mg/mL). Therefore, these star-shaped triazine molecules possess many interesting features and thus hold great promises for information processing, liquid crystal semiconductors and organogelators.
Collapse
Affiliation(s)
- Chong-Yang Zeng
- College of Chemistry and Materials Science, Sichuan Normal University, 610066, Chengdu, China
| | - Wen-Jing Deng
- College of Chemistry and Materials Science, Sichuan Normal University, 610066, Chengdu, China
| | - Ke-Qing Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, 610066, Chengdu, China
| | - Carl Redshaw
- Department of Chemistry, University of Hull, School of Natural Sciences, Hull, HU6 7RX, UK
| | - Bertrand Donnio
- Institut de Chimie et Physique des Matériaux de Strasbourg, UMR 7504, CNRS-University of Strasbourg, 67034, Strasbourg, France
| |
Collapse
|
5
|
Mikami T, Kato R, Hosokawa Y, Miyamoto N, Kato T. Nanostructure Control in Zinc Oxide Films and Microfibers through Bioinspired Synthesis of Liquid-Crystalline Zinc Hydroxide Carbonate; Formation of Free-Standing Materials in Centimeter-Level Lengths. SMALL METHODS 2024; 8:e2300353. [PMID: 37665220 DOI: 10.1002/smtd.202300353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/30/2023] [Indexed: 09/05/2023]
Abstract
Free-standing zinc oxide in the forms of films and fibrous materials are expected to be used as functional devices such as piezoelectric devices and catalyst filters without being limited by the growth substrate. Herein, a synthetic morphology-control method for 2D and 1D free-standing ZnO materials with ordered and nanoporous structures by conversion of liquid-crystalline (LC) zinc hydroxide carbonate (ZHC) nanoplates is reported. As a new colloidal liquid crystal, the LC ZHC nanoplate precursors are obtained by a biomineralization-inspired method. The approach is to control the morphology and crystallographic orientation of ZHC crystals by using acidic macromolecules. Their nano-scale and oriented structures are examined. The LC oriented ZHC nanoplates have led to the synthesis of free-standing films and microfibers of ZHC in centimeter-level lengths, with the successful thermal conversion into free-standing films and microfibers of ZnO. The resultant ZnO films and ZnO microfibers have nanoporous structures and preferential crystallographic orientations that preserve the alignment of ZHC nanoplates before conversion.
Collapse
Affiliation(s)
- Takahiro Mikami
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Riki Kato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yoshihiro Hosokawa
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Nobuyoshi Miyamoto
- Department of Life, Environment and Applied Chemistry, The Faculty of Engineering, Fukuoka Institute of Technology, Wajiro-higashi, Higashi-ku, Fukuoka, 811-0295, Japan
| | - Takashi Kato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Research Initiative for Supra-Materials, Shinshu University, Wakasato, Nagano, 380-8553, Japan
| |
Collapse
|
6
|
Saberi Riseh R, Hassanisaadi M, Vatankhah M, Varma RS, Thakur VK. Nano/Micro-Structural Supramolecular Biopolymers: Innovative Networks with the Boundless Potential in Sustainable Agriculture. NANO-MICRO LETTERS 2024; 16:147. [PMID: 38457088 PMCID: PMC10923760 DOI: 10.1007/s40820-024-01348-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/09/2024] [Indexed: 03/09/2024]
Abstract
Sustainable agriculture plays a crucial role in meeting the growing global demand for food while minimizing adverse environmental impacts from the overuse of synthetic pesticides and conventional fertilizers. In this context, renewable biopolymers being more sustainable offer a viable solution to improve agricultural sustainability and production. Nano/micro-structural supramolecular biopolymers are among these innovative biopolymers that are much sought after for their unique features. These biomaterials have complex hierarchical structures, great stability, adjustable mechanical strength, stimuli-responsiveness, and self-healing attributes. Functional molecules may be added to their flexible structure, for enabling novel agricultural uses. This overview scrutinizes how nano/micro-structural supramolecular biopolymers may radically alter farming practices and solve lingering problems in agricultural sector namely improve agricultural production, soil health, and resource efficiency. Controlled bioactive ingredient released from biopolymers allows the tailored administration of agrochemicals, bioactive agents, and biostimulators as they enhance nutrient absorption, moisture retention, and root growth. Nano/micro-structural supramolecular biopolymers may protect crops by appending antimicrobials and biosensing entities while their eco-friendliness supports sustainable agriculture. Despite their potential, further studies are warranted to understand and optimize their usage in agricultural domain. This effort seeks to bridge the knowledge gap by investigating their applications, challenges, and future prospects in the agricultural sector. Through experimental investigations and theoretical modeling, this overview aims to provide valuable insights into the practical implementation and optimization of supramolecular biopolymers in sustainable agriculture, ultimately contributing to the development of innovative and eco-friendly solutions to enhance agricultural productivity while minimizing environmental impact.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan, 7718897111, Iran.
| | - Mohadeseh Hassanisaadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan, 7718897111, Iran
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan, 7718897111, Iran
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil.
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural Collage (SRUC), Edinburgh, EH9 3JG, UK.
| |
Collapse
|
7
|
Kato T, Uchida J, Ishii Y, Watanabe G. Aquatic Functional Liquid Crystals: Design, Functionalization, and Molecular Simulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306529. [PMID: 38126650 PMCID: PMC10885670 DOI: 10.1002/advs.202306529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/26/2023] [Indexed: 12/23/2023]
Abstract
Aquatic functional liquid crystals, which are ordered molecular assemblies that work in water environment, are described in this review. Aquatic functional liquid crystals are liquid-crystalline (LC) materials interacting water molecules or aquatic environment. They include aquatic lyotropic liquid crystals and LC based materials that have aquatic interfaces, for example, nanoporous water treatment membranes that are solids preserving LC order. They can remove ions and viruses with nano- and subnano-porous structures. Columnar, smectic, bicontinuous LC structures are used for fabrication of these 1D, 2D, 3D materials. Design and functionalization of aquatic LC sensors based on aqueous/LC interfaces are also described. The ordering transitions of liquid crystals induced by molecular recognition at the aqueous interfaces provide distinct optical responses. Molecular orientation and dynamic behavior of these aquatic functional LC materials are studied by molecular dynamics simulations. The molecular interactions of LC materials and water are key of these investigations. New insights into aquatic functional LC materials contribute to the fields of environment, healthcare, and biotechnology.
Collapse
Affiliation(s)
- Takashi Kato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Research Initiative for Supra-Materials, Shinshu University, Nagano, 380-8553, Japan
| | - Junya Uchida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yoshiki Ishii
- Department of Data Science, School of Frontier Engineering, Kitasato University, Sagamihara, 252-0373, Japan
| | - Go Watanabe
- Department of Data Science, School of Frontier Engineering, Kitasato University, Sagamihara, 252-0373, Japan
- Kanagawa Institute of Industrial Science and Technology (KISTEC), Ebina, 243-0435, Japan
| |
Collapse
|
8
|
Zhang Z, Yang X, Zhao Y, Ye F, Shang L. Liquid Crystal Materials for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300220. [PMID: 37235719 DOI: 10.1002/adma.202300220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/04/2023] [Indexed: 05/28/2023]
Abstract
Liquid crystal is a state of matter being intermediate between solid and liquid. Liquid crystal materials exhibit both orientational order and fluidity. While liquid crystals have long been highly recognized in the display industry, in recent decades, liquid crystals provide new opportunities into the cross-field of material science and biomedicine due to their biocompatibility, multifunctionality, and responsiveness. In this review, the latest achievements of liquid crystal materials applied in biomedical fields are summarized. The start is made by introducing the basic concepts of liquid crystals, and then shifting to the components of liquid crystals as well as functional materials derived therefrom. After that, the ongoing and foreseeable applications of liquid crystal materials in the biomedical field with emphasis put on several cutting-edge aspects, including drug delivery, bioimaging, tissue engineering, implantable devices, biosensing, and wearable devices are discussed. It is hoped that this review will stimulate ingenious ideas for the future generation of liquid crystal-based drug development, artificial implants, disease diagnosis, health status monitoring, and beyond.
Collapse
Affiliation(s)
- Zhuohao Zhang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Xinyuan Yang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yuanjin Zhao
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering Southeast University, Nanjing, 210096, China
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Luoran Shang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering Southeast University, Nanjing, 210096, China
| |
Collapse
|
9
|
Martínez-Fernández D, Herranz M, Foteinopoulou K, Karayiannis NC, Laso M. Local and Global Order in Dense Packings of Semi-Flexible Polymers of Hard Spheres. Polymers (Basel) 2023; 15:polym15030551. [PMID: 36771852 PMCID: PMC9919756 DOI: 10.3390/polym15030551] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
The local and global order in dense packings of linear, semi-flexible polymers of tangent hard spheres are studied by employing extensive Monte Carlo simulations at increasing volume fractions. The chain stiffness is controlled by a tunable harmonic potential for the bending angle, whose intensity dictates the rigidity of the polymer backbone as a function of the bending constant and equilibrium angle. The studied angles range between acute and obtuse ones, reaching the limit of rod-like polymers. We analyze how the packing density and chain stiffness affect the chains' ability to self-organize at the local and global levels. The former corresponds to crystallinity, as quantified by the Characteristic Crystallographic Element (CCE) norm descriptor, while the latter is computed through the scalar orientational order parameter. In all cases, we identify the critical volume fraction for the phase transition and gauge the established crystal morphologies, developing a complete phase diagram as a function of packing density and equilibrium bending angle. A plethora of structures are obtained, ranging between random hexagonal closed packed morphologies of mixed character and almost perfect face centered cubic (FCC) and hexagonal close-packed (HCP) crystals at the level of monomers, and nematic mesophases, with prolate and oblate mesogens at the level of chains. For rod-like chains, a delay is observed between the establishment of the long-range nematic order and crystallization as a function of the packing density, while for right-angle chains, both transitions are synchronized. A comparison is also provided against the analogous packings of monomeric and fully flexible chains of hard spheres.
Collapse
|
10
|
Madhu Mohan MLN. Dielectric relaxations in a liquid crystal along with thermistor application. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2022; 45:97. [PMID: 36459340 DOI: 10.1140/epje/s10189-022-00249-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
A thermotropic hydrogen bond liquid crystal ClBAO + 6BAO is synthesized by mixing in equimolar ratios of chlorobenzoic acid and hexyloxybenzoic acid. FTIR studies conform the formation of hydrogen bond between the precursors. This mesogen exhibits nematic phase with long thermal range. DSC thermogram specified the transition temperatures and their respective enthalpy values. Dielectric spectroscopy is performed in the range between 5 Hz and 13 MHz; two types of relaxations, namely type 1 and types 2, are identified and studied extensively. Both of these relaxation are observed to follow Debye relaxation behavior. Type 1 relaxation process, referred as soft mode, is examined at 1 kHz; a mild shift in the relaxation frequency is noticed as temperature decreased. Type 2 relaxation is observed at 9.4 MHz, and the relaxation frequency magnitude shifted to 10.61 MHz with decrement in the temperature. Cole-Cole plots are constructed for both of these relaxation, and the corresponding activation energy is experimentally deduced from the Arrhenius plots. Another interesting observation is the temperature response of this mesogen to resistance. Both positive and negative slopes are identified in thermos-resistive plots thus by modulating the liquid crystal temperature. Perhaps, this is the first report to notice both behaviors in a mono-mesogen segregated by few degrees of temperature. Features of dielectric studies and thermistor applications are discussed in detail.
Collapse
Affiliation(s)
- M L N Madhu Mohan
- Liquid Crystal Research Laboratory, Research Park, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, 638401, India.
| |
Collapse
|
11
|
Watanabe Y, Kato R, Fukushima K, Kato T. Degradable and Nanosegregated Elastomers with Multiblock Sequences of Biobased Aromatic Mesogens and Biofunctional Aliphatic Oligocarbonates. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Yuya Watanabe
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Riki Kato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazuki Fukushima
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Japan Science and Technology Agency (JST), PRESTO, Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takashi Kato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Research Initiative for Supra-Materials, Shinshu University, Wakasato, Nagano 380-8553, Japan
| |
Collapse
|
12
|
Iguarbe V, Romero P, Barberá J, Elduque A, Giménez R. Dual liquid Crystalline/Gel behavior with AIE effect promoted by Self-assembly of pyrazole dendrons. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
13
|
Inoue Y, Takada K, Kawamura A, Miyata T. Amphiphilic Liquid Crystalline Polymer Micelles That Exhibit a Phase Transition at Body Temperature. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31513-31524. [PMID: 35767380 DOI: 10.1021/acsami.2c00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Liquid crystalline polymers (LCPs), which exhibit unique structures and properties intermediate between those of liquids and solids, are widely utilized as functional and advanced materials for fabricating optical devices and high-performance fibers. This utility stems from their ability to abruptly change their organized structures and mobilities at their liquid crystalline-isotropic phase transition temperatures, similar to the properties of biological membranes. Despite these numerous potential applications of LCPs, no study on their use in medical applications such as drug delivery has been reported. In the present study, we synthesized amphiphilic side-chain LCPs (LCP-g-OEGs, where OEG is oligo(ethylene glycol)) for medical applications, where the LCP-g-OEGs undergo a nematic-isotropic phase transition at body temperature. The LCP-g-OEGs formed micelles with a diameter of approximately 130 nm in aqueous media. The micelles were stable and did not dissociate in aqueous media even when the temperature exceeded the nematic-isotropic phase transition temperature (TNI). Although the release of a dye as a model drug from micelles was suppressed at temperatures lower than TNI, their dye release was drastically enhanced at temperatures higher than TNI. The LCP-g-OEG micelles regulated dye release reversibly in accordance with stepwise changes in temperature, without undergoing dissociation, differing from the behavior of standard temperature-responsive micelles. The temperature-responsive dye release behavior is induced by dramatic changes in their well-organized and dynamic structures as a result of the nematic-isotropic phase transition. These results demonstrate that the LCP-g-OEG micelles have a lot of medical applications as reversibly stimuli-responsive drug carriers.
Collapse
Affiliation(s)
- Yasuaki Inoue
- Department of Chemistry and Materials Engineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Kazuhito Takada
- Department of Chemistry and Materials Engineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Akifumi Kawamura
- Department of Chemistry and Materials Engineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680, Japan
- Organization for Research and Development of Innovative Science and Technology, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Takashi Miyata
- Department of Chemistry and Materials Engineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680, Japan
- Organization for Research and Development of Innovative Science and Technology, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680, Japan
| |
Collapse
|
14
|
He E, Tu K, Cheng J, Wang Y, Lu H, Zhang L, Cheng Z. Synthesis and Phase Behavior of (Semifluorinated Alkane)‐based Side‐Chain Liquid Crystalline Copolymers. Macromol Rapid Commun 2022; 43:e2200266. [DOI: 10.1002/marc.202200266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/16/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Enjie He
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Kai Tu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Jiannan Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Yuxue Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Huanjun Lu
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application School of Physical Science and Technology Suzhou University of Science and Technology Suzhou 215009 China
| | - Lifen Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Zhenping Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| |
Collapse
|
15
|
Uchida J, Soberats B, Gupta M, Kato T. Advanced Functional Liquid Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109063. [PMID: 35034382 DOI: 10.1002/adma.202109063] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Liquid crystals have been intensively studied as functional materials. Recently, integration of various disciplines has led to new directions in the design of functional liquid-crystalline materials in the fields of energy, water, photonics, actuation, sensing, and biotechnology. Here, recent advances in functional liquid crystals based on polymers, supramolecular complexes, gels, colloids, and inorganic-based hybrids are reviewed, from design strategies to functionalization of these materials and interfaces. New insights into liquid crystals provided by significant progress in advanced measurements and computational simulations, which enhance new design and functionalization of liquid-crystalline materials, are also discussed.
Collapse
Affiliation(s)
- Junya Uchida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Bartolome Soberats
- Department of Chemistry, University of the Balearic Islands, Cra. Valldemossa Km. 7.5, Palma de Mallorca, 07122, Spain
| | - Monika Gupta
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takashi Kato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Research Initiative for Supra-Materials, Shinshu University, Wakasato, Nagano, 380-8553, Japan
| |
Collapse
|
16
|
Milchev A, Binder K. Surface enrichment and interdiffusion in blends of semiflexible polymers of different stiffness. SOFT MATTER 2022; 18:3781-3792. [PMID: 35514321 DOI: 10.1039/d2sm00036a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A model for a mixture of two kinds of semiflexible polymers (A and B) with the same chain length (NA = NB = 32), but different persistence lengths, confined between parallel planar repulsive walls in a common good solvent is studied by molecular dynamics simulations. In the isotropic phase at low polymer concentrations, both polymers are repelled by the walls, and the system is anisotropic near the walls over a range controlled by the polymer linear dimensions. Close to the concentrations where in the bulk nematic order sets in, precursors of thick nematic layers at the walls are observed, strongly enriched by a stiffer component, which hence is depleted in the center of the slit pore. At larger concentrations, where in the bulk a uniformly mixed nematic phase occurs, the enrichment of B-chains at the walls is rather minor, extending over the scale of the transverse correlation length of concentration fluctuations, which is of the order of a few monomeric diameters only for the present model. In this ordered phase, both self-diffusion and interdiffusion of chains (in the direction perpendicular to the director) are found to be significantly slowed down in comparison to dilute solutions. Since equilibration times scale with the square of the slit thickness, incomplete equilibration is predicted when polymeric coatings on substrate containing polymers differing in stiffness are produced.
Collapse
Affiliation(s)
- Andrey Milchev
- Institute for Physical Chemistry, Bulgarian Academia of Sciences, 1113, Sofia, Bulgaria.
| | - Kurt Binder
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| |
Collapse
|
17
|
Jayoti D, Peeketi AR, Annabattula RK, Prasad SK. Dynamics of the photo-thermo-mechanical actuations in NIR-dye doped liquid crystal polymer networks. SOFT MATTER 2022; 18:3358-3368. [PMID: 35411357 DOI: 10.1039/d2sm00156j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We describe photo-thermo-mechanical actuation and its dynamics in thin films of a liquid crystal networks (LCN) under near infrared (NIR) illumination through experiments and simulations. Splay aligned films of different thicknesses (25 μm to 100 μm) were obtained by crosslinking a mixture of mono-functional and bi-functional liquid crystal monomers. The NIR-driven thermo-mechanical actuation was achieved by adding an NIR dye to the monomer mixture. The absorption of incoming radiation by the dye molecules raises the local temperature of the film causing an order-disorder (nematic-isotropic) transition, thereby resulting in a macroscopic shape change. We have investigated the effect of film thickness, NIR laser power and dye concentration on the tip displacement of the films in a cantilever configuration. The experimental findings and finite element simulation results are in reasonably good quantitative agreement. Despite using lower NIR powers than typically employed, the films show high actuation and large displacements. After achieving saturation in actuation, the films exhibit a flutter behavior which is discussed in light of the observed overshoot in the tip displacement for certain intensities and thicknesses. Finally, using a solar simulator, we also show the visible light response of the film.
Collapse
Affiliation(s)
- Divya Jayoti
- Centre for Nano and Soft Matter Sciences, Shivanapura, Bengaluru 562162, India.
- Center for Responsive Soft Matter, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai-600036, India
| | - Akhil R Peeketi
- Center for Responsive Soft Matter, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai-600036, India
| | - Ratna K Annabattula
- Center for Responsive Soft Matter, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai-600036, India
| | - S Krishna Prasad
- Centre for Nano and Soft Matter Sciences, Shivanapura, Bengaluru 562162, India.
| |
Collapse
|
18
|
Kuo D, Sakamoto T, Torii S, Liu M, Katayama H, Kato T. Removal of viruses from their cocktail solution by liquid-crystalline water-treatment membranes. Polym J 2022; 54:821-825. [PMID: 35311245 PMCID: PMC8919176 DOI: 10.1038/s41428-022-00631-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/23/2022]
Abstract
Liquid-crystalline (LC) water-treatment membranes obtained by in situ photopolymerization of ionic mesogenic monomers have been shown to efficiently remove viruses. In our previous works, bicontinuous cubic (Cubbi) and smectic (Sm) LC membranes prepared from ionic taper- and rod-shaped polymerizable mesogens, respectively, were used for this purpose. Here, we report the results of virus removal by columnar (Col) LC water-treatment membranes having ionic nanochannels obtained from ionic taper-shaped mesogens. These effects are compared with those obtained for Cubbi membranes. The effects of these Col and Cubbi LC ionic membranes on the removal of several viruses from their cocktail solution are also examined. Nanostructured polymer membranes were prepared from ionic liquid-crystalline (LC) monomers with taper-shaped mesogens. The virus removal properties of the ionic 1D channels prepared from a columnar (Col) LC phase were examined. In addition, as the first approach for LC membranes, the removal of several viruses from their cocktail solution by the 1D channels of Col membrane and 3D channels of bicontinuous cubic membrane was also studied. ![]()
Collapse
|
19
|
Xue PC, Chen Q, Chen X, Han Y, Liang M. Luminescent organic porous crystals from non-cyclic molecules and their applications. CrystEngComm 2022. [DOI: 10.1039/d1ce01702k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organic porous crystals from small and non-cyclic organic molecules can be constructed by various intermolecular weak interactions. Owing to their precise stacking types, intermolecular interaction and pore microstructure, the relationship...
Collapse
|
20
|
Kabata D, Ryoki A, Kitamura S, Terao K. Chain Alignment of a Rigid Ring Polymer in the Lyotropic Liquid Crystal Phase: Cyclic Amylose Tris( n-butylcarbamate) in Tetrahydrofuran and Ethyl Lactate. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daigo Kabata
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Akiyuki Ryoki
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Shinichi Kitamura
- Center for Research and Development of Bioresources, Organization for Research Promotion, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai 599-8570, Japan
| | - Ken Terao
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
21
|
MS F, NI G, SA S, EA B, IA F, MR K. New supramolecular hydrogen-bonded liquid crystals based on 4-alkylbenzenesulfonic acids and 4-pyridyl 4′-alkyloxybenzoates: Quantum chemical modeling and mesomorphic properties. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Zare A, Pascual-Jose B, De la Flor S, Ribes-Greus A, Montané X, Reina JA, Giamberini M. Membranes for Cation Transport Based on Dendronized Poly(epichlorohydrin-co-ethylene oxide). Part 1: The Effect of Dendron Amount and Column Orientation on Copolymer Mobility. Polymers (Basel) 2021; 13:polym13203532. [PMID: 34685291 PMCID: PMC8540024 DOI: 10.3390/polym13203532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
Dendronized polyethers give rise to columnar LC structures which can successfully act as cation transport materials. Therefore, we prepared two different materials, based on Poly(epichlorohydrin-co-ethylene oxide) (PECH-co-EO) grafted with methyl 3,4,5-tris[4-(n-dodecan-1-yloxy)benzyloxy] benzoate, containing 20% or 40% modified units, respectively. The obtained polymers were characterized by differential scanning calorimetry (DSC), X-ray diffraction and optical microscopy between crossed polars (POM) and compared to the unmodified PECH-co-EO. In order to reach efficient transport properties, homeotropically oriented membranes were prepared by a fine-tuned thermal annealing treatment and were subsequently investigated by dynamic mechanical thermal analysis (DMTA) and dielectric thermal analysis (DETA). We found that the presence of the dendrons induces a main chain partial crystallization of the polyether chain and coherently increases the polymer Tg. This effect is more evident in the oriented membranes. As for copolymer orientation upon annealing, the cooling rate and the annealing temperature were the most crucial factors. DMTA and DETA confirmed that grafting with the dendron strongly hinders copolymer motions, but did not show great differences between unoriented and oriented membranes, regardless of the amount of dendrons.
Collapse
Affiliation(s)
- Alireza Zare
- Department of Chemical Engineering, Universitat Rovira i Virgili (URV), Av. Països Catalans, 26, 43007 Tarragona, Spain;
| | - Borja Pascual-Jose
- Institute of Technology of Materials (ITM), Universitat Politècnica de València (UPV), Camí de Vera, s/n, 46022 València, Spain; (B.P.-J.); (A.R.-G.)
| | - Silvia De la Flor
- Department of Mechanical Engineering, Universitat Rovira i Virgili (URV), Av. Països Catalans, 26, 43007 Tarragona, Spain;
| | - Amparo Ribes-Greus
- Institute of Technology of Materials (ITM), Universitat Politècnica de València (UPV), Camí de Vera, s/n, 46022 València, Spain; (B.P.-J.); (A.R.-G.)
| | - Xavier Montané
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili (URV), C/Marcel.lí Domingo s/n, 43007 Tarragona, Spain;
- Correspondence: (X.M.); (M.G.)
| | - José Antonio Reina
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili (URV), C/Marcel.lí Domingo s/n, 43007 Tarragona, Spain;
| | - Marta Giamberini
- Department of Chemical Engineering, Universitat Rovira i Virgili (URV), Av. Països Catalans, 26, 43007 Tarragona, Spain;
- Correspondence: (X.M.); (M.G.)
| |
Collapse
|
23
|
Kameta N, Kogiso M. Self-Assembly of a Pyridine-Based Amphiphile Complexed with Regioisomeric Dihydroxy Naphthalenes into Supramolecular Nanotubes with Different Inner Diameters. Chemistry 2021; 27:12566-12573. [PMID: 34296478 DOI: 10.1002/chem.202101354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Indexed: 02/02/2023]
Abstract
A pyridine-based amphiphile complexed with 1,5-, 1,6-, 2,6-, or 2,7-dihydroxy naphthalene self-assembled in water to form nanotubes with inner diameters of 46, 38, 24, 18, and 11 nm in which the naphthalene molecules formed J-type aggregates. In contrast, the amphiphile complexed with 1,2-, 1,3-, 1,4-, 1,7-, 1,8-, or 2,3-dihydroxy naphthalene formed nanofibers in which the naphthalene molecules formed H-type aggregates. The inner diameter of the nanotubes strongly depended on the regioisomeric dihydroxy naphthalene. UV-vis, fluorescence, infrared spectroscopy, X-ray diffraction analysis, and differential scanning calorimetry showed that nanotubes with smaller inner diameters had weaker intermolecular hydrogen bonds between the tilted amphiphiles complexed with the naphthalene molecules within the membrane walls and showed larger Stokes shifts in the excimer fluorescence of the naphthalene moiety. These findings should be useful not only for fine-tuning the inner diameters of supramolecular nanotubes but also for controlling the aggregation states of functional aromatic molecules to generate nanostructures with useful optical and electronic properties in water.
Collapse
Affiliation(s)
- Naohiro Kameta
- Nanomaterials Research Institute, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Masaki Kogiso
- Interdisciplinary Research Center for Catalytic Chemistry, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| |
Collapse
|
24
|
Makiura R, Niwa A, Eimura H, Uchida J, Kato T. Air/Water Interfacial Monolayer Assembly of Peptide-Conjugated Liquid-Crystalline Molecules. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210166] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rie Makiura
- Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Anna Niwa
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroki Eimura
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Junya Uchida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takashi Kato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
25
|
Structural Diversity of Hydrogen-Bonded 4-Aryl-3,5-Dimethylpyrazoles for Supramolecular Materials. MATERIALS 2021; 14:ma14164550. [PMID: 34443074 PMCID: PMC8399114 DOI: 10.3390/ma14164550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 12/25/2022]
Abstract
The 1H-pyrazoles have high versatility and ability to form hydrogen-bonded supramolecular materials. In this study, the thermal stability, fluorescence, and H-bonding ability of the studied 3,5-dimethyl-4-(4-X-phenyl)-1H-pyrazoles showed large differences depending on the terminal substituent. Supramolecular structures were analyzed using X-ray diffraction and Hirshfeld surface calculations. Compounds were found to arrange in different hydrogen-bonded structures, depending on the substitution at the para position of the phenyl ring (X = OCH3, NO2, NH2). The methoxy-substituted compounds arranged in dimers through methanol bridges, the nitro-substituted compound formed supramolecular polymers or catemers, and the amino-substituted compound gave rise to a new structure based on a 2D hydrogen-bonded network.
Collapse
|
26
|
Synthesis and characterization of chemically fueled supramolecular materials driven by carbodiimide-based fuels. Nat Protoc 2021; 16:3901-3932. [PMID: 34194049 DOI: 10.1038/s41596-021-00563-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/26/2021] [Indexed: 02/06/2023]
Abstract
Many supramolecular materials in biological systems are driven to a nonequilibrium state by the irreversible consumption of high-energy molecules such as ATP or GTP. As a result, they exhibit unique dynamic properties such as a tunable lifetime, adaptivity or the ability to self-heal. In contrast, synthetic counterparts that exist in or close to equilibrium are controlled by thermodynamic parameters and therefore lack these dynamic properties. To mimic biological materials more closely, synthetic self-assembling systems have been developed that are driven out of equilibrium by chemical reactions. This protocol describes the synthesis and characterization of such an assembly, which is driven by carbodiimide fuels. Depending on the amount of chemical fuel added to the material, its lifetime can be tuned. In the first step, the protocol details the synthesis and purification of the peptide-based precursors for the fuel-driven assemblies by solid-phase peptide synthesis. Then, we explain how to analyze the kinetic response of the precursors to a carbodiimide-based chemical fuel by HPLC and kinetic models. Finally, we detail how to study the emerging assembly's macro- and microscopic properties by time-lapse photography, UV-visible spectroscopy, shear rheology, confocal laser scanning microscopy and electron microscopy. The procedure is described using the example of a colloid-forming precursor Fmoc-E-OH and a fiber-forming precursor Fmoc-AAD-OH to emphasize the differences in characterization depending on the type of assembly. The characterization of a precursor's transient assembly can be done within 5 d. The synthesis and purification of a peptide precursor requires 2 d of work.
Collapse
|
27
|
Milchev A, Egorov SA, Midya J, Binder K, Nikoubashman A. Blends of Semiflexible Polymers: Interplay of Nematic Order and Phase Separation. Polymers (Basel) 2021; 13:2270. [PMID: 34301028 PMCID: PMC8309418 DOI: 10.3390/polym13142270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 11/23/2022] Open
Abstract
Mixtures of semiflexible polymers with a mismatch in either their persistence lengths or their contour lengths are studied by Density Functional Theory and Molecular Dynamics simulation. Considering lyotropic solutions under good solvent conditions, the mole fraction and pressure is systematically varied for several cases of bending stiffness κ (the normalized persistence length) and chain length N. For binary mixtures with different chain length (i.e., NA=16, NB=32 or 64) but the same stiffness, isotropic-nematic phase coexistence is studied. For mixtures with the same chain length (N=32) and large stiffness disparity (κB/κA=4.9 to 8), both isotropic-nematic and nematic-nematic unmixing occur. It is found that the phase diagrams may exhibit a triple point or a nematic-nematic critical point, and that coexisting phases differ appreciably in their monomer densities. The properties of the two types of chains (nematic order parameters, chain radii, etc.) in the various phases are studied in detail, and predictions on the (anisotropic) critical behavior near the critical point of nematic-nematic unmixing are made.
Collapse
Affiliation(s)
- Andrey Milchev
- Institute for Physical Chemistry, Bulgarian Academia of Sciences, 1113 Sofia, Bulgaria;
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany; (S.A.E.); (J.M.); (K.B.)
| | - Sergei A. Egorov
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany; (S.A.E.); (J.M.); (K.B.)
- Department of Chemistry, University of Virginia, Charlottesville, VA 22901, USA
| | - Jiarul Midya
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany; (S.A.E.); (J.M.); (K.B.)
- Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation and Institute of Complex Systems, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Kurt Binder
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany; (S.A.E.); (J.M.); (K.B.)
| | - Arash Nikoubashman
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany; (S.A.E.); (J.M.); (K.B.)
| |
Collapse
|
28
|
Environmentally Stable Chiral-Nematic Liquid-Crystal Elastomers with Mechano-Optical Properties. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11115037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chiral-nematic liquid crystal (N* LC) elastomers exhibit mechano-optical responsive behavior. However, practical sensor applications have been limited by the intrinsic sensitivity of N* LC elastomers to environmental conditions, such as temperature. Although densely cross-linked LC network polymers exhibit high thermal stability, they are not proper for the mechanical sensor due to high glass transition temperatures and low flexibility. To overcome these issues, we focused on enhancing thermal stability by introducing noncovalent cross-linking sites via intermolecular interactions between LC molecules bonded to the polymer network. N* LC elastomers with a cyanobiphenyl derivative as a side-chain mesogen exhibited mechano-optical responsive behavior, with a hypsochromic shift of the reflection peak wavelength under an applied tensile strain and quick shape and color recovery owing to high elasticity. Notably, the N* LC elastomers showed high resistance to harsh environments, including high temperatures and various solvents. Interactions, such as π–π stacking and dipole–dipole interactions, between the cyanobiphenyl units can act as weak cross-links, thus improving the thermal stability of the LC phase without affecting the mechano-optical response. Thus, these N* LC elastomers have great potential for the realization of practical mechano-optical sensors.
Collapse
|
29
|
Hamaguchi K, Ichikawa R, Kajiyama S, Torii S, Hayashi Y, Kumaki J, Katayama H, Kato T. Gemini Thermotropic Smectic Liquid Crystals for Two-Dimensional Nanostructured Water-Treatment Membranes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20598-20605. [PMID: 33836127 DOI: 10.1021/acsami.0c20524] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We have developed a two-dimensional (2D) liquid-crystalline (LC) nanostructured water-treatment membrane showing high virus rejection ability (over 99.99997% for bacteriophage Qβ) and improved water permeation. Polymerizable gemini amphiphiles have been designed and synthesized. They have H-shaped gemini-type structures of thermotropic smectic liquid crystals composed of cationic imidazolium moieties. One of the gemini amphiphiles shows a smectic A phase with an interdigitated bilayer structure. A cross-linked self-standing 2D nanostructured polymer film has been obtained by in situ photopolymerization of the gemini amphiphile in the smectic phase. The length of linkers in gemini amphiphiles affects the formation of LC phases. The 2D nanostructured membrane also showed selective salt rejection.
Collapse
Affiliation(s)
- Kazuma Hamaguchi
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Rino Ichikawa
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Satoshi Kajiyama
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shotaro Torii
- Department of Urban Engineering, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yusuke Hayashi
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Jiro Kumaki
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Hiroyuki Katayama
- Department of Urban Engineering, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takashi Kato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
30
|
Pei J, Wei W, Li B, Huang J, Chen XF. Composition-dependent phase transformation in side-chain liquid crystalline copolymers with mesogenic groups at different substituent positions. SOFT MATTER 2021; 17:4594-4603. [PMID: 33949604 DOI: 10.1039/d1sm00161b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Copolymerization is an effective approach to tailor the thermal and structural properties of liquid crystalline polymer materials, which is essential for various applications. In this work, two series of polynorbornene copolymers, A-r-B and A-r-C, with the biphenyl mesogenic side group at different substituent positions were synthesized via ring-opening metathesis polymerization in various compositions. The corresponding homopolymers A and C are liquid crystalline polymers, exhibiting an oblique columnar structure (Colob/p2) and lamellar structure, respectively, while homopolymer B is amorphous. The composition-dependent phase behaviors of copolymers were systematically studied with the combination of SAXS, GISAXS, AFM, DSC and POM techniques. With increasing molar content of A (xA), the self-organzied structure of copolymer A-r-B follows the sequence from amorphous to lamellar, undulated lamellar, and Colob/p2 structures, and that of A-r-C follows the sequence of lamellar, undulated lamellar, and Colob/p2 structures. Then, copolymers with undulated lamellar or Colob/p2 structures tend to enter lamellar phase first at higher temperature and then change to the isotropic state during heating. The composition-induced transition from lamellar to supramolecular columnar organization is somewhat reminiscent of block copolymers and other soft matter systems that can form ordered structures. Furthermore, the subsitituent number and position of rigid mesogenic units in the side chain can further modify the morphologies of self-organized phases.
Collapse
Affiliation(s)
- Jiwei Pei
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Wenjing Wei
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Bian Li
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Jundan Huang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Xiao-Fang Chen
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| |
Collapse
|
31
|
Barcelona-Cazanave L, Trejo-Carbajal N, Rodríguez-González RJ, Larios-López L, Felix-Serrano I, Mata-Padilla JM, Navarro-Rodríguez D. Synthesis and thermotropic liquid-crystalline properties of a hexyloxy-substituted pyridyl-ethynylene-azobenzene and its halogen-bonded complex with tetrafluoroiodophenyl decanoate. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2021.109739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Eimura H, Niwa A, Uchida J, Kato T. Self-Assembly of Peptide-Containing Mesogens: Thermotropic Liquid-Crystalline Properties and Macroscopic Alignment of Amphiphilic Bioconjugates. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210051] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hiroki Eimura
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Anna Niwa
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Junya Uchida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takashi Kato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
33
|
Uchida J, Yoshio M, Kato T. Self-healing and shape memory functions exhibited by supramolecular liquid-crystalline networks formed by combination of hydrogen bonding interactions and coordination bonding. Chem Sci 2021; 12:6091-6098. [PMID: 33996005 PMCID: PMC8098694 DOI: 10.1039/d0sc06676a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/22/2021] [Indexed: 12/15/2022] Open
Abstract
We here report a new approach to develop self-healing shape memory supramolecular liquid-crystalline (LC) networks through self-assembly of molecular building blocks via combination of hydrogen bonding and coordination bonding. We have designed and synthesized supramolecular LC polymers and networks based on the complexation of a forklike mesogenic ligand with Ag+ ions and carboxylic acids. Unidirectionally aligned fibers and free-standing films forming layered LC nanostructures have been obtained for the supramolecular LC networks. We have found that hybrid supramolecular LC networks formed through metal-ligand interactions and hydrogen bonding exhibit both self-healing properties and shape memory functions, while hydrogen-bonded LC networks only show self-healing properties. The combination of hydrogen bonds and metal-ligand interactions allows the tuning of intermolecular interactions and self-assembled structures, leading to the formation of the dynamic supramolecular LC materials. The new material design presented here has potential for the development of smart LC materials and functional LC membranes with tunable responsiveness.
Collapse
Affiliation(s)
- Junya Uchida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Masafumi Yoshio
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Takashi Kato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo Hongo Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
34
|
Zhao W, de Haan LT, Broer DJ, Zhang Y, Lv P, Zhou G. Photopolymerization-enforced stratification in liquid crystal materials. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
35
|
Kato T, Gupta M, Yamaguchi D, Gan KP, Nakayama M. Supramolecular Association and Nanostructure Formation of Liquid Crystals and Polymers for New Functional Materials. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200304] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Takashi Kato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Monika Gupta
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Daisuke Yamaguchi
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kian Ping Gan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masanari Nakayama
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
36
|
He E, Tu K, Cheng J, Lu H, Zhang L, Cheng Z, Zhu X. Multimesophase transitions of main-chain liquid crystalline copolymers with strictly alternating fluorocarbon chains. Polym Chem 2021. [DOI: 10.1039/d0py01644f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Main-chain liquid crystalline perfluoroalkyl-containing alternating copolymers present rare reversible phase transitions from a hexagonal columnar phase to a rectangular columnar phase and finally to a smectic phase with the temperature increasing.
Collapse
Affiliation(s)
- Enjie He
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Kai Tu
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Jiannan Cheng
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Huanjun Lu
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Lifen Zhang
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Zhenping Cheng
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Xiulin Zhu
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| |
Collapse
|
37
|
Milchev A, Egorov SA, Midya J, Binder K, Nikoubashman A. Entropic Unmixing in Nematic Blends of Semiflexible Polymers. ACS Macro Lett 2020; 9:1779-1784. [PMID: 35653682 DOI: 10.1021/acsmacrolett.0c00668] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Binary mixtures of semiflexible polymers with the same chain length, but different persistence lengths, separate into two coexisting different nematic phases when the osmotic pressure of the lyotropic solution is varied. Molecular Dynamics simulations and Density Functional Theory predict phase diagrams either with a triple point, where the isotropic phase coexists with two nematic phases or a critical point of unmixing within the nematic mixture. The difference in locally preferred bond angles between the constituents drives this unmixing without any attractive interactions between monomers.
Collapse
Affiliation(s)
- Andrey Milchev
- Institute for Physical Chemistry, Bulgarian Academia of Sciences, 1113 Sofia, Bulgaria
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - Sergei A. Egorov
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, United States
| | - Jiarul Midya
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - Kurt Binder
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - Arash Nikoubashman
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| |
Collapse
|
38
|
Audia B, Bugakov MA, Boiko NI, Pagliusi P, Cipparrone G, Shibaev VP. Photopatterning of Azobenzene‐Containing Liquid Crystalline Triblock Copolymers: Light‐Induced Anisotropy and Photostabilization. Macromol Rapid Commun 2020; 41:e2000384. [DOI: 10.1002/marc.202000384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/13/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Biagio Audia
- Department of Physics University of Calabria Ponte P. Bucci, Cubo 33B Rende CS 87036 Italy
| | - Miron A. Bugakov
- Faculty of Chemistry Lomonosov Moscow State University Leninskie Gory‐1 Moscow 119991 Russia
| | - Natalia I. Boiko
- Faculty of Chemistry Lomonosov Moscow State University Leninskie Gory‐1 Moscow 119991 Russia
| | - Pasquale Pagliusi
- Department of Physics University of Calabria Ponte P. Bucci, Cubo 33B Rende CS 87036 Italy
- CNR‐Nanotec UOS Cosenza Ponte P. Bucci, Cubo 33B Rende CS 87036 Italy
| | - Gabriella Cipparrone
- Department of Physics University of Calabria Ponte P. Bucci, Cubo 33B Rende CS 87036 Italy
| | - Valery P. Shibaev
- Faculty of Chemistry Lomonosov Moscow State University Leninskie Gory‐1 Moscow 119991 Russia
| |
Collapse
|
39
|
Wang L, Urbas AM, Li Q. Nature-Inspired Emerging Chiral Liquid Crystal Nanostructures: From Molecular Self-Assembly to DNA Mesophase and Nanocolloids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1801335. [PMID: 30160812 DOI: 10.1002/adma.201801335] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/17/2018] [Indexed: 05/22/2023]
Abstract
Liquid crystals (LCs) are omnipresent in living matter, whose chirality is an elegant and distinct feature in certain plant tissues, the cuticles of crabs, beetles, arthropods, and beyond. Taking inspiration from nature, researchers have recently devoted extensive efforts toward developing chiral liquid crystalline materials with self-organized nanostructures and exploring their potential applications in diverse fields ranging from dynamic photonics to energy and safety issues. In this review, an account on the state of the art of emerging chiral liquid crystalline nanostructured materials and their technological applications is provided. First, an overview on the significance of chiral liquid crystalline architectures in various living systems is given. Then, the recent significant progress in different chiral liquid crystalline systems including thermotropic LCs (cholesteric LCs, cubic blue phases, achiral bent-core LCs, etc.) and lyotropic LCs (DNA LCs, nanocellulose LCs, and graphene oxide LCs) is showcased. The review concludes with a perspective on the future scope, opportunities, and challenges in these truly advanced functional soft materials and their promising applications.
Collapse
Affiliation(s)
- Ling Wang
- Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA
| | - Augustine M Urbas
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH, 45433, USA
| | - Quan Li
- Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
40
|
Deberdeev TR, Akhmetshina AI, Karimova LK, Ignat’eva EK, Deberdeev RY, Berlin AA. Heat-Resistant Polymer Materials Based on Liquid Crystal Compounds. POLYMER SCIENCE SERIES C 2020. [DOI: 10.1134/s1811238220020034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Xu F, Pfeifer L, Stuart MCA, Leung FKC, Feringa BL. Multi-modal control over the assembly of a molecular motor bola-amphiphile in water. Chem Commun (Camb) 2020; 56:7451-7454. [PMID: 32495777 DOI: 10.1039/d0cc02177f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We report multi-modal-control over the assembly behaviour of a first-generation molecular motor bola-amphiphile in water by light, pH and the choice of counter-ions. These findings open up opportunities for the development of materials that reconfigurate enabling complex functions in response to different stimuli.
Collapse
Affiliation(s)
- Fan Xu
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
42
|
Suzuki Y, Sakamoto T, Yoshio M, Kato T. Development of functional nanoporous membranes based on photocleavable columnar liquid crystals – Selective adsorption of ionic dyes. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109859] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
43
|
Sinawang G, Osaki M, Takashima Y, Yamaguchi H, Harada A. Biofunctional hydrogels based on host–guest interactions. Polym J 2020. [DOI: 10.1038/s41428-020-0352-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
44
|
Syrbu SA, Fedorov MS, Giricheva NI, Novikov VV, Filippov IA, Kiselev MR. Supramolecular complexes based on 4-n-alkoxycinnamic acids and pyridine derivatives: Mesomorphic properties and prospects of applying to tribosystems. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
45
|
Gruschwitz FV, Klein T, Catrouillet S, Brendel JC. Supramolecular polymer bottlebrushes. Chem Commun (Camb) 2020; 56:5079-5110. [PMID: 32347854 DOI: 10.1039/d0cc01202e] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The field of supramolecular chemistry has long been known to generate complex materials of different sizes and shapes via the self-assembly of single or multiple low molar mass building blocks. Matching the complexity found in natural assemblies, however, remains a long-term challenge considering its precision in organizing large macromolecules into well-defined nanostructures. Nevertheless, the increasing understanding of supramolecular chemistry has paved the way to several attempts in arranging synthetic macromolecules into larger ordered structures based on non-covalent forces. This review is a first attempt to summarize the developments in this field, which focus mainly on the formation of one-dimensional, linear, cylindrical aggregates in solution with pendant polymer chains - therefore coined supramolecular polymer bottlebrushes in accordance with their covalent equivalents. Distinguishing by the different supramolecular driving forces, we first describe systems based on π-π interactions, which comprise, among others, the well-known perylene motif, but also the early attempts using cyclophanes. However, the majority of reported supramolecular polymer bottlebrushes are formed by hydrogen bonds as they can for example be found in linear and cyclic peptides, as well as so called sticker molecules containing multiple urea groups. Besides this overview on the reported motifs and their impact on the resulting morphology of the polymer nanostructures, we finally highlight the potential benefits of such non-covalent interactions and refer to promising future directions of this still mostly unrecognized field of supramolecular research.
Collapse
Affiliation(s)
- Franka V Gruschwitz
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
| | | | | | | |
Collapse
|
46
|
Sinawang G, Osaki M, Takashima Y, Yamaguchi H, Harada A. Supramolecular self-healing materials from non-covalent cross-linking host-guest interactions. Chem Commun (Camb) 2020; 56:4381-4395. [PMID: 32249859 DOI: 10.1039/d0cc00672f] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The introduction of non-covalent bonds is effective for achieving self-healing properties because they can be controlled reversibly. One approach to introduce these bonds into supramolecular materials is use of host-guest interactions. This feature article summarizes the development of supramolecular materials constructed by non-covalent cross-linking through several approaches, such as host-guest interactions between host polymers and guest polymers, 1 : 2-type host-guest interactions, and host-guest interactions from the polymerization of host-guest inclusion complexes. Host-guest interactions show self-healing functions while also enabling stimuli-responsiveness (redox, pH, and temperature). The self-healing function of supramolecular materials is achieved by stress dispersion arising from host-guest interactions when stress is applied. Reversible bonds based on host-guest interactions have tremendous potential to expand the variety of functional materials.
Collapse
Affiliation(s)
- Garry Sinawang
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
| | | | | | | | | |
Collapse
|
47
|
Seki A, Uemura S, Funahashi M. Self-assembled structures of bent-shaped π-conjugated compounds: effect of siloxane groups for nano-segregation. CrystEngComm 2020. [DOI: 10.1039/d0ce01325k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The tuning of nanostructures is successfully achieved by introduction of siloxane unit to bithiophene-modified bent-shaped skeleton.
Collapse
Affiliation(s)
- Atsushi Seki
- Program in Advanced Materials Science
- Faculty of Engineering and Design
- Kagawa University
- Takamatsu
- Japan
| | - Shinobu Uemura
- Program in Advanced Materials Science
- Faculty of Engineering and Design
- Kagawa University
- Takamatsu
- Japan
| | - Masahiro Funahashi
- Program in Advanced Materials Science
- Faculty of Engineering and Design
- Kagawa University
- Takamatsu
- Japan
| |
Collapse
|
48
|
Rastogi P, Njuguna J, Kandasubramanian B. Exploration of elastomeric and polymeric liquid crystals with photothermal actuation: A review. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109287] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
Gao S, Liu Y, Jiang J, Ji Q, Fu Y, Zhao L, Li C, Ye F. Physicochemical properties and fungicidal activity of inclusion complexes of fungicide chlorothalonil with β-cyclodextrin and hydroxypropyl-β-cyclodextrin. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111513] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
A liquid-crystalline semiconducting polymer based on thienylene–vinylene–thienylene: Enhanced hole mobilities by mesomorphic molecular ordering and thermoplastic shape-deformable characteristics. Polym J 2019. [DOI: 10.1038/s41428-019-0282-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|