1
|
Xu J, Ye Z, Chen C, Zhang X, Han K, Wu X, Li Z, Jiang J, Yan X, Cai J, Zhao J. Abaloparatide Improves Rotator Cuff Healing Via Anabolic Effects on Bone Remodeling in a Chronic Rotator Cuff Tear Model of Rat With Osteoporosis: A Comparison With Denosumab: Response. Am J Sports Med 2023; 51:NP3-NP4. [PMID: 36468703 DOI: 10.1177/03635465221139116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
2
|
Raman Spectroscopic Investigation of Osteoclastic Activity under the Influence of Bisphosphonate. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The bone resorption inhibitor bisphosphonate (BP) is used to prevent fractures in patients with osteoporosis and bone metastases caused by cancer. However, BP induces apoptosis of osteoclasts and excessively suppresses bone turnover, so that side effects such as jawbone necrosis have become a problem. In the super-aging society that Japan is facing, it is expected that jawbone necrosis (Medication-related osteonecrosis of the jaw: MRONJ) will increase as the number of osteoporosis patients increases. There are many unclear points about the pathophysiology of jawbone necrosis, and there have been attempts to clarify it. Most of the research on osteoclasts so far has comprised destructive and invasive analyses, such as TRAP staining and PCR by culturing osteoclasts on a plastic plate, which is the original physiological function of osteoclasts. “Bone resorption” cannot be analyzed in real time. In this study, Raman spectroscopy is used to show the state of bone resorption of osteoclasts cultured on ivory sections or octacalcium phosphate plates noninvasively and without the need for colorimetric assays. This makes it possible to clarify the effect of BP on osteoclast metabolism in an environment closer to that of a living body. If this method is established, then we aim to elucidate the pathophysiology of bone pathologies and medical treatments that directly affect osteoclasts, such as medication-related osteonecrosis, and establish a diagnostic method.
Collapse
|
3
|
Abstract
Notch (Notch1 through 4) are transmembrane receptors that determine cell differentiation and function, and are activated following interactions with ligands of the Jagged and Delta-like families. Notch has been established as a signaling pathway that plays a critical role in the differentiation and function of cells of the osteoblast and osteoclast lineages as well as in skeletal development and bone remodeling. Pathogenic variants of Notch receptors and their ligands are associated with a variety of genetic disorders presenting with significant craniofacial and skeletal manifestations. Lateral Meningocele Syndrome (LMS) is a rare genetic disorder characterized by neurological manifestations, meningoceles, skeletal developmental abnormalities and bone loss. LMS is associated with NOTCH3 gain-of-function pathogenic variants. Experimental mouse models of LMS revealed that the bone loss is secondary to increased osteoclastogenesis due to enhanced expression of receptor activator of nuclear factor kappa B ligand by cells of the osteoblast lineage. There are no effective therapies for LMS. Antisense oligonucleotides targeting Notch3 and antibodies that prevent the activation of NOTCH3 are being tested in preclinical models of the disease. In conclusion, LMS is a serious genetic disorder associated with NOTCH3 pathogenic variants. Novel experimental models have offered insight on mechanisms responsible and ways to correct the disease.
Collapse
Affiliation(s)
- Ernesto Canalis
- Department of Orthopaedic Surgery and Medicine, UConn Musculoskeletal Institute, UConn Health, Farmington, CT, United States
| |
Collapse
|
4
|
Kram V, Jani P, Kilts TM, Li L, Chu EY, Young MF. OPG-Fc treatment partially rescues low bone mass phenotype in mature Bgn/Fmod deficient mice but is deleterious to the young mouse skeleton. J Struct Biol 2020; 212:107627. [PMID: 32950603 DOI: 10.1016/j.jsb.2020.107627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 01/12/2023]
Abstract
Biglycan (Bgn) and Fibromodulin (Fmod) are small leucine rich proteoglycans (SLRPs) which are abundant in the extra-cellular matrix (ECM) of mineralized tissues. We have previously generated a Bgn/Fmod double knock-out (DKO) mouse model and found it has a 3-fold increase in osteoclastogenesis compared with Wild type (WT) controls, resulting in a markedly low bone mass (LBM) phenotype. To try and rescue/repair the LBM phenotype of Bgn/Fmod DKO mice by suppressing osteoclast formation and activity, 3- and 26-week-old Bgn/Fmod DKO mice and age/gender matched WT controls were treated with OPG-Fc for 6 weeks after which bone parameters were evaluated using DEXA, micro-computed tomography (μCT) and serum biomarkers analyses. In the appendicular skeleton, OPG-Fc treatment improved some morphometric and geometric parameters in both the trabecular and cortical compartments in Bgn/Fmod DKO female and male mice, especially in the repair module. For many of the skeletal parameters analyzed, the Bgn/Fmod DKO mice were more responsive to the treatment than their WT controls. In addition, we found that OPG-Fc treatment was not able to prevent or ameliorate the formation of ectopic ossification, which are common lesions seen in aged joints and are one of the phenotypical hallmarks of our Bgn/Fmod DKO model. Analysis of skull bones, specifically the occipital bone, showed the treatment recovered some parameters of LBM phenotype in the craniofacial skeleton, more so in the younger rescue module. Using OPG-Fc as treatment alleviated, yet did not completely restore, the severe osteopenia and mineralized tissue structural abnormalities that Bgn/Fmod DKO mice suffer from.
Collapse
Affiliation(s)
- Vardit Kram
- Molecular Biology of Bones and Teeth Section, National Institutes of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, United States
| | - Priyam Jani
- Molecular Biology of Bones and Teeth Section, National Institutes of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, United States
| | - Tina M Kilts
- Molecular Biology of Bones and Teeth Section, National Institutes of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, United States
| | - Li Li
- Molecular Biology of Bones and Teeth Section, National Institutes of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, United States
| | - Emily Y Chu
- Laboratory of Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, United States
| | - Marian F Young
- Molecular Biology of Bones and Teeth Section, National Institutes of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, United States.
| |
Collapse
|
5
|
Fayolle C, Labrune M, Berteau JP. Raman spectroscopy investigation shows that mineral maturity is greater in CD-1 than in C57BL/6 mice distal femurs after sexual maturity. Connect Tissue Res 2020; 61:409-419. [PMID: 30922120 DOI: 10.1080/03008207.2019.1601184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose/Aim of the study mice are the most often used pre-clinical lab models for studying the pathologies of bone mineralization. However, recent evidence suggests that two of the most often used mice strains (C57BL/6J and CD-1) might show differences in the bone mineralization process. This study sought to investigate the main compositional properties of bone tissue between nonpathological C57BL/6J and CD-1 murine knee joints. Materials and Methods : to this end, medial and lateral condylar subchondral bones and the adjacent diaphyseal cortical bone of 13 murine femurs (n = 7 C57BL/6J and n = 6 CD-1 at eight weeks old, just after sexual maturation) were analyzed with ex vivo Raman spectroscopy. Results : regardless of the bone tissue analyzed, our results showed that CD-1 laboratory mice present a more mature mineral phase than C57BL/6J laboratory mice, but present no difference in maturity of the collagen phase. For both strains, the subchondral bone of the medial condylar and cortical bone from the diaphysis have similar compositional properties, and CD-1 presents less variation than C57BL/6J. Furthermore, we depict a novel parametric relationship between the crystallinity and carbonate-to-amide-I ratio that might help in deciphering the mineral maturation process that occurs during bone's mineralization. Conclusions : Our results suggest that the timing of bone maturation might be different between non-pathological C57BL/6J and CD-1 murine knee femurs.
Collapse
Affiliation(s)
- Clémence Fayolle
- Department of Physical Therapy, City University of New York, College of Staten Island , New York, NY, USA.,Department of Biomedical Engineering, Compiegne, Sorbonne University, Universite Technologique de Compiegne , France
| | - Mélody Labrune
- Department of Physical Therapy, City University of New York, College of Staten Island , New York, NY, USA.,Department of Biomedical Engineering, Compiegne, Sorbonne University, Universite Technologique de Compiegne , France
| | - Jean-Philippe Berteau
- Department of Physical Therapy, City University of New York, College of Staten Island , New York, NY, USA.,New York Center for Biomedical Engineering, City University of New York, City College , New York, NY, USA.,Nanoscience Initiatives, Advanced Science Research Center, City University of New York, City College , New York, NY, USA
| |
Collapse
|
6
|
Gama A, Vargas-Franco JW, Sánchez Mesa DC, Restrepo Bedoya E, Amiaud J, Babajko S, Berdal A, Acevedo AC, Heymann D, Lézot F, Castaneda B. Origins of Alterations to Rankl Null Mutant Mouse Dental Root Development. Int J Mol Sci 2020; 21:ijms21062201. [PMID: 32209985 PMCID: PMC7139335 DOI: 10.3390/ijms21062201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 02/07/2023] Open
Abstract
The purpose of the present study was to assess the early stages of development of mouse first molar roots in the osteopetrotic context of RANKL invalidation in order to demonstrate that the radicular phenotype observed resulted not only from defective osteoclasts, but also from loss of cell-to-cell communication among dental, periodontium and alveolar bone cells involving RANKL signaling. Two experimental models were used in this study: Rankl mutants with permanent RANKL invalidation, and C57BL/6J mice injected during the first postnatal week with a RANKL neutralizing antibody corresponding to a transient RANKL invalidation. The dento-alveolar complex was systematically analyzed using micro-CT, and histological and immunohistochemical approaches. These experiments showed that the root elongation alterations observed in the Rankl-/- mice were associated with reduced proliferation of the RANK-expressing HERS cells with a significant decrease in proliferating cell nuclear antigen (PCNA) expression and a significant increase in P21 expression. The phenotypic comparison of the adult first molar root at 35 days between permanent and transitory invalidations of RANKL made it possible to demonstrate that alterations in dental root development have at least two origins, one intrinsic and linked to proliferation/differentiation perturbations in dental-root-forming cells, the other extrinsic and corresponding to disturbances of bone cell differentiation/function.
Collapse
Affiliation(s)
- Andrea Gama
- Centre de Recherche des Cordeliers, INSERM UMR-1138, Sorbonne Université, Université de Paris, Laboratoire de Physiopathologie Orale Moléculaire, F-75006 Paris, France; (A.G.); (D.C.S.M.); (E.R.B.); (S.B.); (A.B.)
- Odontologic Center of District Federal Military Police, Brasília 70297-400, Brazil
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasília, Brasília 70910-900, Brazil;
| | - Jorge William Vargas-Franco
- INSERM, UMR-1238, Equipe 1, Faculté de Médecine, Université de Nantes, F-44035 Nantes, France; (J.W.V.-F.); (J.A.); (F.L.)
- Department of Basic Studies, Faculty of Odontology, University of Antioquia, Medellin A.A1226, Colombia
| | - Diana Carolina Sánchez Mesa
- Centre de Recherche des Cordeliers, INSERM UMR-1138, Sorbonne Université, Université de Paris, Laboratoire de Physiopathologie Orale Moléculaire, F-75006 Paris, France; (A.G.); (D.C.S.M.); (E.R.B.); (S.B.); (A.B.)
- Department of Orthodontics, Faculty of Odontology, University of Antioquia, Medellin A.A1226, Colombia
| | - Elizabeth Restrepo Bedoya
- Centre de Recherche des Cordeliers, INSERM UMR-1138, Sorbonne Université, Université de Paris, Laboratoire de Physiopathologie Orale Moléculaire, F-75006 Paris, France; (A.G.); (D.C.S.M.); (E.R.B.); (S.B.); (A.B.)
- Department of Orthodontics, Faculty of Odontology, University of Antioquia, Medellin A.A1226, Colombia
| | - Jérome Amiaud
- INSERM, UMR-1238, Equipe 1, Faculté de Médecine, Université de Nantes, F-44035 Nantes, France; (J.W.V.-F.); (J.A.); (F.L.)
| | - Sylvie Babajko
- Centre de Recherche des Cordeliers, INSERM UMR-1138, Sorbonne Université, Université de Paris, Laboratoire de Physiopathologie Orale Moléculaire, F-75006 Paris, France; (A.G.); (D.C.S.M.); (E.R.B.); (S.B.); (A.B.)
| | - Ariane Berdal
- Centre de Recherche des Cordeliers, INSERM UMR-1138, Sorbonne Université, Université de Paris, Laboratoire de Physiopathologie Orale Moléculaire, F-75006 Paris, France; (A.G.); (D.C.S.M.); (E.R.B.); (S.B.); (A.B.)
| | - Ana Carolina Acevedo
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasília, Brasília 70910-900, Brazil;
- Oral Center for Inherited Diseases, Hospital of University of Brasilia, University of Brasília, Brasília 70910-900, Brazil
| | - Dominique Heymann
- INSERM, LEA Sarcoma Research Unit, University of Sheffield, Department of Oncology and Human Metabolism, Medical School, Sheffield S10 2RX, UK;
- INSERM, UMR-1232, LabCT, CRCNA, Université de Nantes, Université d’Angers, Institut de Cancérologie de l’Ouest, site René Gauducheau, F-44805 Saint-Herblain, France
| | - Frédéric Lézot
- INSERM, UMR-1238, Equipe 1, Faculté de Médecine, Université de Nantes, F-44035 Nantes, France; (J.W.V.-F.); (J.A.); (F.L.)
| | - Beatriz Castaneda
- Service d’Odontologie-Stomatologie, Hôpital Pitié-Salpêtrière, AP-HP, F-75013 Paris, France
- Correspondence: ; Tel.: +33-142-178-416
| |
Collapse
|
7
|
Brunetti G, D'Amato G, Chiarito M, Tullo A, Colaianni G, Colucci S, Grano M, Faienza MF. An update on the role of RANKL-RANK/osteoprotegerin and WNT-ß-catenin signaling pathways in pediatric diseases. World J Pediatr 2019; 15:4-11. [PMID: 30343446 DOI: 10.1007/s12519-018-0198-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/04/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Bone remodeling is a lifelong process due to the balanced activity of osteoclasts (OCs), the bone-reabsorbing cells, and osteoblasts (OBs), and the bone-forming cells. This equilibrium is regulated by numerous cytokines, but it has been largely demonstrated that the RANK/RANKL/osteoprotegerin and Wnt/β-catenin pathways play a key role in the control of osteoclastogenesis and osteoblastogenesis, respectively. The pro-osteoblastogenic activity of the Wnt/β-catenin can be inhibited by sclerostin and Dickkopf-1 (DKK-1). RANKL, sclerostin and DKKs-1 are often up-regulated in bone diseases, and they are the target of new monoclonal antibodies. DATA SOURCES The authors performed a systematic literature search in PubMed and EMBASE to June 2018, reviewed and selected articles, based on pre-determined selection criteria. RESULTS We re-evaluated the role of RANKL, osteoprotegerin, sclerostin and DKK-1 in altered bone remodeling associated with some inherited and acquired pediatric diseases, such as type 1 diabetes mellitus (T1DM), alkaptonuria (AKU), hemophilia A, osteogenesis imperfecta (OI), 21-hydroxylase deficiency (21OH-D) and Prader-Willi syndrome (PWS). To do so, we considered recent clinical studies done on pediatric patients in which the roles of RANKL-RANK/osteoprotegerin and WNT-ß-catenin signaling pathways have been investigated, and for which innovative therapies for the treatment of osteopenia/osteoporosis are being developed. CONCLUSIONS The case studies taken into account for this review demonstrated that quite frequently both bone reabsorbing and bone deposition are impaired in pediatric diseases. Furthermore, for some of them, bone damage began in childhood but only manifested with age. The use of denosumab could represent a valid alternative therapeutic approach to improve bone health in children, although further studies need to be carried out.
Collapse
Affiliation(s)
- Giacomina Brunetti
- Section of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University "A. Moro" of Bari, Piazza G. Cesare 11, 70124, Bari, Italy
| | | | - Mariangela Chiarito
- Pediatric Section, Department of Biomedical Sciences and Human Oncology, University "A. Moro" of Bari, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Apollonia Tullo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies-IBIOM, CNR, 70126, Bari, Italy
| | - Graziana Colaianni
- Department of Emergency and Organ Transplantation, University "A. Moro" of Bari, Bari, Italy
| | - Silvia Colucci
- Section of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University "A. Moro" of Bari, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Maria Grano
- Department of Emergency and Organ Transplantation, University "A. Moro" of Bari, Bari, Italy
| | - Maria Felicia Faienza
- Pediatric Section, Department of Biomedical Sciences and Human Oncology, University "A. Moro" of Bari, Piazza G. Cesare 11, 70124, Bari, Italy.
| |
Collapse
|
8
|
Abstract
We begin this chapter by describing normal characteristics of several pertinent connective tissue components, and some of the basic changes they undergo with ageing. These alterations are not necessarily tied to any specific disease or disorders, but rather an essential part of the normal ageing process. The general features of age-induced changes, such as skin wrinkles, in selected organs with high content of connective or soft tissues are discussed in the next part of the chapter. This is followed by a section dealing with age-related changes in specific diseases that fall into at least two categories. The first category encompasses common diseases with high prevalence among mostly ageing populations where both genetic and environmental factors play roles. They include but may not be limited to atherosclerosis and coronary heart disease, type II diabetes, osteopenia and osteoporosis, osteoarthritis, tendon dysfunction and injury, age-related disorders of spine and joints. Disorders where genetics plays the primary role in pathogenesis and progression include certain types of progeria, such as Werner syndrome and Hutchinson-Gilford progeria belong to the second category discussed in this chapter. These disorders are characterized by accelerated signs and symptoms of ageing. Other hereditary diseases or syndromes that arise from mutations of genes encoding for components of connective tissue and are less common than diseases included in the first group will be discussed briefly as well, though they may not be directly associated with ageing, but their connective tissue undergoes some changes compatible with ageing. Marfan and Ehlers-Danlos syndromes are primary examples of such disorders. We will probe the role of specific components of connective tissue and extracellular matrix if not in each of the diseases, then at least in the main representatives of these disorders.
Collapse
Affiliation(s)
- Carolyn Ann Sarbacher
- Department of Pathology, College of Veterinary Medicine, The University of Georgia and AU/UGA Medical Partnership, Athens, GA, USA
| | - Jaroslava T Halper
- Department of Pathology, College of Veterinary Medicine, The University of Georgia and AU/UGA Medical Partnership, Athens, GA, USA.
| |
Collapse
|
9
|
Sone E, Noshiro D, Ikebuchi Y, Nakagawa M, Khan M, Tamura Y, Ikeda M, Oki M, Murali R, Fujimori T, Yoda T, Honma M, Suzuki H, Ando T, Aoki K. The induction of RANKL molecule clustering could stimulate early osteoblast differentiation. Biochem Biophys Res Commun 2018; 509:435-440. [PMID: 30594398 DOI: 10.1016/j.bbrc.2018.12.093] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 12/13/2018] [Indexed: 11/26/2022]
Abstract
We recently found that the membrane-bound receptor activator of NF-κB ligand (RANKL) on osteoblasts works as a receptor to stimulate osteoblast differentiation, however, the reason why the RANKL-binding molecules stimulate osteoblast differentiation has not been well clarified. Since the induction of cell-surface receptor clustering is known to lead to cell activation, we hypothesized that the induction of membrane-RANKL clustering on osteoblasts might stimulate osteoblast differentiation. Immunoblotting showed that the amount of RANKL on the membrane was increased by the RANKL-binding peptide OP3-4, but not by osteoprotegerin (OPG), the other RANKL-binding molecule, in Gfp-Rankl-transfected ST2 cells. Observation under a high-speed atomic force microscope (HS-AFM) revealed that RANKL molecules have the ability to form clusters. The induction of membrane-RANKL-OPG-Fc complex clustering by the addition of IgM in Gfp-Rankl-transfected ST2 cells could enhance the expression of early markers of osteoblast differentiation to the same extent as OP3-4, while OPG-Fc alone could not. These results suggest that the clustering-formation of membrane-RANKL on osteoblasts could stimulate early osteoblast differentiation.
Collapse
Affiliation(s)
- Eri Sone
- Department of Oral Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan; Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Daisuke Noshiro
- Nano Life Science Institute (WPI NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Yuki Ikebuchi
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Mami Nakagawa
- Division of Embryology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Masud Khan
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Yukihiko Tamura
- Department of Bio-Matrix (Pharmacology), Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Masaomi Ikeda
- Department of Oral Prosthetic Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Meiko Oki
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Ramachandran Murali
- Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Tetsuya Yoda
- Department of Oral Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Masashi Honma
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hiroshi Suzuki
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Toshio Ando
- Nano Life Science Institute (WPI NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Kazuhiro Aoki
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.
| |
Collapse
|
10
|
Boulanger Piette A, Hamoudi D, Marcadet L, Morin F, Argaw A, Ward L, Frenette J. Targeting the Muscle-Bone Unit: Filling Two Needs with One Deed in the Treatment of Duchenne Muscular Dystrophy. Curr Osteoporos Rep 2018; 16:541-553. [PMID: 30225627 DOI: 10.1007/s11914-018-0468-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW In Duchenne muscular dystrophy (DMD), the progressive skeletal and cardiac muscle dysfunction and degeneration is accompanied by low bone mineral density and bone fragility. Glucocorticoids, which remain the standard of care for patients with DMD, increase the risk of developing osteoporosis. The scope of this review emphasizes the mutual cohesion and common signaling pathways between bone and skeletal muscle in DMD. RECENT FINDINGS The muscle-bone interactions involve bone-derived osteokines, muscle-derived myokines, and dual-origin cytokines that trigger common signaling pathways leading to fibrosis, inflammation, or protein synthesis/degradation. In particular, the triad RANK/RANKL/OPG including receptor activator of NF-kB (RANK), its ligand (RANKL), along with osteoprotegerin (OPG), regulates bone matrix modeling and remodeling pathways and contributes to muscle pathophysiology in DMD. This review discusses the importance of the muscle-bone unit in DMD and covers recent research aimed at determining the muscle-bone interactions that may eventually lead to the development of multifunctional and effective drugs for treating muscle and bone disorders regardless of the underlying genetic mutations in DMD.
Collapse
Affiliation(s)
- Antoine Boulanger Piette
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC, G1V 4G2, Canada
| | - Dounia Hamoudi
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC, G1V 4G2, Canada
| | - Laetitia Marcadet
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC, G1V 4G2, Canada
| | - Françoise Morin
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC, G1V 4G2, Canada
| | - Anteneh Argaw
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC, G1V 4G2, Canada
| | - Leanne Ward
- Division of Endocrinology and Metabolism, Children's Hospital of Eastern Ontario (CHEO), University of Ottawa, Ottawa, ON, K1H 8L1, Canada
| | - Jérôme Frenette
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC, G1V 4G2, Canada.
- Département de Réadaptation, Faculté de Médecine, Université Laval, Quebec City, QC, G1V 0A6, Canada.
| |
Collapse
|
11
|
Boskey AL, Imbert L. Bone quality changes associated with aging and disease: a review. Ann N Y Acad Sci 2018; 1410:93-106. [PMID: 29265417 DOI: 10.1111/nyas.13572] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/11/2017] [Accepted: 11/13/2017] [Indexed: 12/11/2022]
Abstract
Bone quality encompasses all the characteristics of bone that, in addition to density, contribute to its resistance to fracture. In this review, we consider changes in architecture, porosity, and composition, including collagen structure, mineral composition, and crystal size. These factors all are known to vary with tissue and animal ages, and health status. Bone morphology and presence of microcracks, which also contribute to bone quality, will not be discussed in this review. Correlations with mechanical performance for collagen cross-linking, crystallinity, and carbonate content are contrasted with mineral content. Age-dependent changes in humans and rodents are discussed in relation to rodent models of disease. Examples are osteoporosis, osteomalacia, osteogenesis imperfecta (OI), and osteopetrosis in both humans and animal models. Each of these conditions, along with aging, is associated with increased fracture risk for distinct reasons.
Collapse
Affiliation(s)
- Adele L Boskey
- Mineralized Tissue Laboratory, Hospital for Special Surgery, New York, New York.,Department of Biochemistry, Weill Cornell Medical College, New York, New York
| | - Laurianne Imbert
- Mineralized Tissue Laboratory, Hospital for Special Surgery, New York, New York
| |
Collapse
|
12
|
Bioprinting and Organ-on-Chip Applications Towards Personalized Medicine for Bone Diseases. Stem Cell Rev Rep 2017; 13:407-417. [DOI: 10.1007/s12015-017-9741-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Raggio CL, Pleshko N, Boskey AL. The Effect of Stontium Ranelate on Fracture Reduction in Osteogenesis Imperfecta is Comparable to Recent Bisphosphonate Data. J Bone Miner Res 2016; 31:2065. [PMID: 27541299 DOI: 10.1002/jbmr.2976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 08/17/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Cathleen L Raggio
- Department of Pediatric Orthopedics, Hospital for Special Surgery, New York, NY, USA
| | - Nancy Pleshko
- Department of Bioengineering, Temple University, Philadelphia, PA, USA
| | - Adele L Boskey
- Musculoskeletal Integrity Program, Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
14
|
Brunetti G, Papadia F, Tummolo A, Fischetto R, Nicastro F, Piacente L, Ventura A, Mori G, Oranger A, Gigante I, Colucci S, Ciccarelli M, Grano M, Cavallo L, Delvecchio M, Faienza MF. Impaired bone remodeling in children with osteogenesis imperfecta treated and untreated with bisphosphonates: the role of DKK1, RANKL, and TNF-α. Osteoporos Int 2016; 27:2355-2365. [PMID: 26856585 DOI: 10.1007/s00198-016-3501-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/20/2016] [Indexed: 12/23/2022]
Abstract
UNLABELLED In this study, we investigated the bone cell activity in patients with osteogenesis imperfecta (OI) treated and untreated with neridronate. We demonstrated the key role of Dickkopf-1 (DKK1), receptor activator of nuclear factor-κB ligand (RANKL), and tumor necrosis factor alpha (TNF-α) in regulating bone cell of untreated and treated OI subjects. These cytokines could represent new pharmacological targets for OI. INTRODUCTION Bisphosphonates are widely used in the treatment of children with osteogenesis imperfecta (OI) with the objective of reducing the risk of fractures. Although bisphosphonates increase bone mineral density in OI subjects, the effects on fracture incidence are conflicting. The aim of this study was to investigate the mechanisms underlying bone cell activity in subjects with mild untreated forms of OI and in a group of subjects with severe OI treated with cycles of intravenous neridronate. METHODS Sclerostin, DKK1, TNF-α, RANKL, osteoprotegerin (OPG), and bone turnover markers were quantified in serum of 18 OI patients (12 females, mean age 8.86 ± 3.90), 8 of which were receiving cyclic intravenous neridronate, and 21 sex- and age-matched controls. The effects on osteoblastogenesis and OPG expression of media conditioned by the serum of OI patients and anti-DKK1 neutralizing antibody were evaluated. Osteoclastogenesis was assessed in cultures from patients and controls. RESULTS DKK1 and RANKL levels were significantly increased both in untreated and in treated OI subjects with respect to controls. The serum from patients with high DKK1 levels inhibited both osteoblast differentiation and OPG expression in vitro. High RANKL and low OPG messenger RNA (mRNA) levels were found in lymphomonocytes from patients. High amounts of TNF-α were expressed by monocytes, and an elevated percentage of circulating CD11b-CD51/CD61+ osteoclast precursors was observed in patients. CONCLUSIONS Our study demonstrated the key role of DKK1, RANKL, and TNF-α in regulating bone cell activity of subjects with OI untreated and treated with bisphosphonates. These cytokines could represent new pharmacological targets for OI patients.
Collapse
Affiliation(s)
- G Brunetti
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Section of Human Anatomy and Histology, University "A. Moro" of Bari, Piazza Giulio Cesare, 11, 70124, Bari, Italy.
| | - F Papadia
- Department of Metabolic Diseases, Clinical Genetics and Diabetology, Giovanni XXIII Children's Hospital, Bari, Italy
| | - A Tummolo
- Department of Metabolic Diseases, Clinical Genetics and Diabetology, Giovanni XXIII Children's Hospital, Bari, Italy
| | - R Fischetto
- Department of Metabolic Diseases, Clinical Genetics and Diabetology, Giovanni XXIII Children's Hospital, Bari, Italy
| | - F Nicastro
- Department of Metabolic Diseases, Clinical Genetics and Diabetology, Giovanni XXIII Children's Hospital, Bari, Italy
| | - L Piacente
- Department of Biomedical Sciences and Human Oncology, Pediatric Section, University "A. Moro" of Bari, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - A Ventura
- Department of Biomedical Sciences and Human Oncology, Pediatric Section, University "A. Moro" of Bari, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - G Mori
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - A Oranger
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Section of Human Anatomy and Histology, University "A. Moro" of Bari, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - I Gigante
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Section of Human Anatomy and Histology, University "A. Moro" of Bari, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - S Colucci
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Section of Human Anatomy and Histology, University "A. Moro" of Bari, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - M Ciccarelli
- Department of Biomedical Sciences and Human Oncology, Pediatric Section, University "A. Moro" of Bari, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - M Grano
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Section of Human Anatomy and Histology, University "A. Moro" of Bari, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - L Cavallo
- Department of Biomedical Sciences and Human Oncology, Pediatric Section, University "A. Moro" of Bari, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - M Delvecchio
- Department of Biomedical Sciences and Human Oncology, Pediatric Section, University "A. Moro" of Bari, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - M F Faienza
- Department of Biomedical Sciences and Human Oncology, Pediatric Section, University "A. Moro" of Bari, Piazza G. Cesare, 11, 70124, Bari, Italy.
| |
Collapse
|
15
|
Dufresne SS, Boulanger-Piette A, Bossé S, Frenette J. Physiological role of receptor activator nuclear factor-kB (RANK) in denervation-induced muscle atrophy and dysfunction. ACTA ACUST UNITED AC 2016; 3:e13231-e13236. [PMID: 27547781 PMCID: PMC4991940 DOI: 10.14800/rci.1323] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The bone remodeling and homeostasis are mainly controlled by the receptor-activator of nuclear factor kB (RANK), its ligand RANKL, and the soluble decoy receptor osteoprotegerin (OPG) pathway. While there is a strong association between osteoporosis and skeletal muscle dysfunction, the functional relevance of a particular biological pathway that synchronously regulates bone and skeletal muscle physiopathology remains elusive. Our recent article published in the American Journal of Physiology (Cell Physiology) showed that RANK is also expressed in fully differentiated C2C12 myotubes and skeletal muscles. We used the Cre-Lox approach to inactivate muscle RANK (RANKmko) and showed that RANK deletion preserves the force of denervated fast-twitch EDL muscles. However, RANK deletion had no positive impact on slow-twitch Sol muscles. In addition, denervating RANKmko EDL muscles induced an increase in the total calcium concentration ([CaT]), which was associated with a surprising decrease in SERCA activity. Interestingly, the levels of STIM-1, which mediates Ca2+ influx following the depletion of SR Ca2+ stores, were markedly higher in denervated RANKmko EDL muscles. We speculated that extracellular Ca2+ influx mediated by STIM-1 may be important for the increase in [CaT] and the gain of force in denervated RANKmko EDL muscles. Overall, these findings showed for the first time that the RANKL/RANK interaction plays a role in denervation-induced muscle atrophy and dysfunction.
Collapse
Affiliation(s)
- Sébastien S Dufresne
- Centre Hospitalier Universitaire de Québec-Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CRCHUL), Université Laval, Quebec City, Quebec, G1V 4G2, Canada
| | - Antoine Boulanger-Piette
- Centre Hospitalier Universitaire de Québec-Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CRCHUL), Université Laval, Quebec City, Quebec, G1V 4G2, Canada
| | - Sabrina Bossé
- Centre Hospitalier Universitaire de Québec-Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CRCHUL), Université Laval, Quebec City, Quebec, G1V 4G2, Canada
| | - Jérôme Frenette
- Centre Hospitalier Universitaire de Québec-Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CRCHUL), Université Laval, Quebec City, Quebec, G1V 4G2, Canada; Département de Réadaptation, Faculté de Médecine, Université Laval, Quebec City, Quebec, G1V 4G2, Canada
| |
Collapse
|
16
|
Fernández-González FJ, Cañigral A, López-Caballo JL, Brizuela A, Cobo T, de Carlos F, Suazo I, Pérez-González Y, Vega JA. Recombinant osteoprotegerin effects during orthodontic movement in a rat model. Eur J Orthod 2015; 38:379-85. [PMID: 26293288 DOI: 10.1093/ejo/cjv056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND AND OBJECTIVES Anchorage is one of the most challenging sides in orthodontics. The use of biological modulators that inhibit osteoclasts could be a solution to address these problems and provide new adjunctive approaches. The aim of this study was to assess the effectiveness of recombinant osteoprotegerin fusion protein (OPG-Fc) in orthodontic anchorage. MATERIALS AND METHODS Two groups of male Sprague-Dawley rats were utilized. The animals in the experimental group received twice-weekly injections with high dose of OPG-Fc (5.0mg/kg) in mesial and distal mucosa of the first molars, and those in the control group received no drugs. Right first maxillary molars were mesialized using a calibrated nickel-titanium spring connected to an anterior mini-screw. Tooth movement was measured by two blinded observers using scanned and magnified stone casts. Receptor activator of nuclear factor κB (RANK), run-related transcription factor 2 (Runx2), type I collagen, vimentin, matrix metalloproteinases 2 and 9, S100 protein and the putative mechanoproteins acid-sensing ion channel (ASIC2) and transient receptor potential vainilloid 4 (TRPV4) were evaluated using immunohistochemistry. RESULTS OPG-Fc group showed an important decreased in mesial molar movement with only 52%, 31%, and 22% of the total mesial molar movement compared with control group at Days 7, 14, and 21, respectively (P < 0.001). RANK ligand and Runx2 positive cells were severely reduced after OPG-Fc treatment. Periodontal ligament architecture, cell arrangement, and immunohistochemical patter for vimentin, type I collagen and the mechanoproteins TRPV4 and ASIC2 were altered by tooth movement and all these parameters altered by the applied treatment. CONCLUSIONS OPG-Fc effectively inhibits osteoclastogenesis resulting in improved bone quantity and orthodontic anchorage. Based on present results, OPG-Fc could have clinical utility in preventing undesired tooth movements.
Collapse
Affiliation(s)
| | - Aránzazu Cañigral
- *Department of Orthodontics and Dentofacial Orthopedics, University of Oviedo, Oviedo, Spain
| | - José L López-Caballo
- *Department of Orthodontics and Dentofacial Orthopedics, University of Oviedo, Oviedo, Spain
| | - Aritza Brizuela
- **Department of Oral Implantology, School of Medicine and Dentistry, University of the Basque Country, Leioa, Spain
| | - Teresa Cobo
- *Department of Orthodontics and Dentofacial Orthopedics, University of Oviedo, Oviedo, Spain
| | - Félix de Carlos
- *Department of Orthodontics and Dentofacial Orthopedics, University of Oviedo, Oviedo, Spain
| | - Iván Suazo
- ***Director de Postgrado e investigacion, Universidad Autónoma de Chile, Chile
| | | | - Jose A Vega
- *****Department of Morphology and Cell Biology, Facultad de Medicina, University of Oviedo, Oviedo, Spain and ******Facultad Ciencias de la Salud, Universidad Autónoma de Chile, Chile
| |
Collapse
|
17
|
Are Changes in Composition in Response to Treatment of a Mouse Model of Osteogenesis Imperfecta Sex-dependent? Clin Orthop Relat Res 2015; 473:2587-98. [PMID: 25903941 PMCID: PMC4488219 DOI: 10.1007/s11999-015-4268-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Osteogenesis imperfecta (OI) is a genetic disease characterized by skeletal fragility and deformity. There is extensive debate regarding treatment options in adults with OI. Antiresorptive treatment reduces the number of fractures in growing oim/oim mice, an animal model that reproducibly mimics the moderate-to-severe form of OI in humans. Effects of long-term treatments with antiresorptive agents, considered for treatment of older patients with OI with similar presentation (moderate-to-severe OI) are, to date, unknown. QUESTIONS/PURPOSES Fourier transform infrared (FTIR) imaging, which produces a map of the spatial variation in chemical composition in thin sections of bone, was used to address the following questions: (1) do oim/oim mice show a sex dependence in compositional properties at 6.5 months of age; (2) is there a sex-dependent response to treatment with antiresorptive agents used in the treatment of OI in humans; and (3) are any compositional parameters in oim/oim mice corrected to wild-type (WT) values after treatment? METHODS FTIR imaging data were collected from femurs from four to five mice per sex per genotype per treatment. Treatments were 24 weeks of saline, alendronate, or RANK-Fc; and 12 weeks of saline+12 weeks RANK-Fc and 12 weeks of alendronate+RANK-Fc. FTIR imaging compositional parameters measured in cortical and cancellous bones were mineral-to-matrix ratio, carbonate-to-mineral ratio, crystal size/perfection, acid phosphate substitution, collagen maturity, and their respective distributions (heterogeneities). Because of the small sample size, nonparametric statistics (Mann-Whitney U- and Kruskal-Wallis tests with Bonferroni correction) were used to compare saline-treated male and female mice of different genotypes and treatment effects by sex and genotype, respectively. Statistical significance was defined as p<0.05. RESULTS At 6.5 months, saline-treated male cortical oim/oim bone had increased mineral-to-matrix ratio (p=0.016), increased acid phosphate substitution (p=0.032), and decreased carbonate-to-mineral ratio (p=0.016) relative to WT. Cancellous bone in male oim/oim also had increased mineral-to-matrix ratio (p=0.016) relative to male WT. Female oim/oim mouse bone composition for all cortical and cancellous bone parameters was comparable to WT (p>0.05). Only the female WT mice showed a response of mean compositional properties to treatment, increasing mineral-to-matrix after RANK-Fc treatment in cancellous bone (p=0.036) compared with saline-treated mice. Male oim/oim increased mineral-to-matrix cortical and cancellous bone heterogeneity in response to all long-term treatments except for saline+RANK-Fc (p<0.04); female oim/oim cortical mineral-to-matrix bone heterogeneity increased with ALN+RANK-Fc and all treatments increased cancellous female oim/oim bone acid phosphate substitution heterogeneity (p<0.04). CONCLUSIONS Both oim/oim and WT mice, which demonstrate sex-dependent differences in composition with saline treatment, showed few responses to long-term treatment with antiresorptive agents. Female WT mice appeared to be more responsive; male oim/oim mice showed more changes in compositional heterogeneity. Changes in bone composition caused by these agents may contribute to improved bone quality in oim/oim mice, because the treatments are known to reduce fracture incidence. CLINICAL RELEVANCE The optimal drug therapy for long-term treatment of patients with moderate-to-severe OI is unknown. Based on bone compositional changes in mice, antiresorptive treatments are useful for continued treatment in OI. There is a reported sexual dimorphism in fracture incidence in adults with OI, but to date, no one has reported differences in response to pharmaceutical intervention. This study suggests that such an investigation is warranted.
Collapse
|
18
|
Lézot F, Chesneau J, Navet B, Gobin B, Amiaud J, Choi Y, Yagita H, Castaneda B, Berdal A, Mueller CG, Rédini F, Heymann D. Skeletal consequences of RANKL-blocking antibody (IK22-5) injections during growth: mouse strain disparities and synergic effect with zoledronic acid. Bone 2015; 73:51-9. [PMID: 25532478 DOI: 10.1016/j.bone.2014.12.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/06/2014] [Accepted: 12/13/2014] [Indexed: 10/24/2022]
Abstract
High doses of bone resorption inhibitors are currently under evaluation in pediatric oncology. Previous works have evidenced transient arrest in long bone and skull bone growth and tooth eruption blockage when mice were treated with zoledronic acid (ZOL). The question of potential similar effects with a RANKL-blocking antibody (IK22.5) was raised. Sensitivity disparities in these inhibitors between mouse strains and synergic effects of zoledronic acid and a RANKL-blocking antibody were subsidiary questions. In order to answer these questions, newborn C57BL/6J and CD1 mice were injected every two or three days (4 injections in total so 7 or 10 days of treatment length) with high doses of a RANKL-blocking antibody. The consequences on the tibia, craniofacial bones and teeth were analyzed by μCT and histology at the end of the treatment and one, two and three months later. The results obtained showed that RANKL-blocking antibody injections induced a transient arrest of tibia and skull bone growth and an irreversible blockage of tooth eruption in C57BL/6J mice. In CD1 mice, tooth eruption defects were also present but only at much higher doses. Similar mouse strain differences were obtained with zoledronic acid. Finally, a synergic effect of the two inhibitors was evidenced. In conclusion as previously observed for bisphosphonates (ZOL), a RANKL-blocking antibody induced a transient arrest in long bone and skull bone growth and a blockage of tooth eruption with however disparities between mouse strains with regard to this last effect. A synergic effect of both bone resorption inhibitors was also demonstrated.
Collapse
Affiliation(s)
- Frédéric Lézot
- INSERM, UMR-957, Equipe Ligue Nationale Contre le Cancer 2012, Nantes F-44035, France; Université de Nantes, Faculté de Médecine, Laboratoire de physiopathologie de la résorption osseuse et thérapie des tumeurs osseuses primitives, Nantes F-44035, France.
| | - Julie Chesneau
- INSERM, UMR-957, Equipe Ligue Nationale Contre le Cancer 2012, Nantes F-44035, France; Université de Nantes, Faculté de Médecine, Laboratoire de physiopathologie de la résorption osseuse et thérapie des tumeurs osseuses primitives, Nantes F-44035, France
| | - Benjamin Navet
- INSERM, UMR-957, Equipe Ligue Nationale Contre le Cancer 2012, Nantes F-44035, France; Université de Nantes, Faculté de Médecine, Laboratoire de physiopathologie de la résorption osseuse et thérapie des tumeurs osseuses primitives, Nantes F-44035, France
| | - Bérengère Gobin
- INSERM, UMR-957, Equipe Ligue Nationale Contre le Cancer 2012, Nantes F-44035, France; Université de Nantes, Faculté de Médecine, Laboratoire de physiopathologie de la résorption osseuse et thérapie des tumeurs osseuses primitives, Nantes F-44035, France
| | - Jérome Amiaud
- INSERM, UMR-957, Equipe Ligue Nationale Contre le Cancer 2012, Nantes F-44035, France; Université de Nantes, Faculté de Médecine, Laboratoire de physiopathologie de la résorption osseuse et thérapie des tumeurs osseuses primitives, Nantes F-44035, France
| | - YongWon Choi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, USA
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Beatriz Castaneda
- INSERM, UMR-1138, Equipe 5, Centre de Recherche des Cordeliers, Paris F-75006 France; Department of Basic Studies, Faculty of Odontology, University of Antioquia, Medellin AA 1226, Colombia
| | - Ariane Berdal
- INSERM, UMR-1138, Equipe 5, Centre de Recherche des Cordeliers, Paris F-75006 France
| | - Christopher G Mueller
- CNRS, UPR-9021, Institut de Biologie Moléculaire et Cellulaire (IBMC), Laboratoire Immunologie et Chimie Thérapeutiques, Université de Strasbourg, Strasbourg F-67084, France
| | - Françoise Rédini
- INSERM, UMR-957, Equipe Ligue Nationale Contre le Cancer 2012, Nantes F-44035, France; Université de Nantes, Faculté de Médecine, Laboratoire de physiopathologie de la résorption osseuse et thérapie des tumeurs osseuses primitives, Nantes F-44035, France
| | - Dominique Heymann
- INSERM, UMR-957, Equipe Ligue Nationale Contre le Cancer 2012, Nantes F-44035, France; Université de Nantes, Faculté de Médecine, Laboratoire de physiopathologie de la résorption osseuse et thérapie des tumeurs osseuses primitives, Nantes F-44035, France
| |
Collapse
|
19
|
Dufresne SS, Dumont NA, Bouchard P, Lavergne É, Penninger JM, Frenette J. Osteoprotegerin protects against muscular dystrophy. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:920-6. [PMID: 25708645 DOI: 10.1016/j.ajpath.2015.01.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/10/2015] [Accepted: 01/15/2015] [Indexed: 01/18/2023]
Abstract
Receptor-activator of NF-κB, its ligand RANKL, and the soluble decoy receptor osteoprotegerin are the key regulators of osteoclast differentiation and bone remodeling. Although there is a strong association between osteoporosis and skeletal muscle atrophy/dysfunction, the functional relevance of a particular biological pathway that synchronously regulates bone and skeletal muscle physiopathology still is elusive. Here, we show that muscle cells can produce and secrete osteoprotegerin and pharmacologic treatment of dystrophic mdx mice with recombinant osteoprotegerin muscles. (Recombinant osteoprotegerin-Fc mitigates the loss of muscle force in a dose-dependent manner and preserves muscle integrity, particularly in fast-twitch extensor digitorum longus.) Our data identify osteoprotegerin as a novel protector of muscle integrity, and it potentially represents a new therapeutic avenue for both muscular diseases and osteoporosis.
Collapse
Affiliation(s)
- Sébastien S Dufresne
- CHU (CHUL) Research Center of Quebec, Université Laval, Quebec City, Quebec, Canada
| | - Nicolas A Dumont
- CHU (CHUL) Research Center of Quebec, Université Laval, Quebec City, Quebec, Canada
| | - Patrice Bouchard
- CHU (CHUL) Research Center of Quebec, Université Laval, Quebec City, Quebec, Canada
| | - Éliane Lavergne
- CHU (CHUL) Research Center of Quebec, Université Laval, Quebec City, Quebec, Canada
| | - Josef M Penninger
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, Vienna, Austria
| | - Jérôme Frenette
- CHU (CHUL) Research Center of Quebec, Université Laval, Quebec City, Quebec, Canada; Department of Rehabilitation, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada.
| |
Collapse
|
20
|
Aghaloo TL, Cheong S, Bezouglaia O, Kostenuik P, Atti E, Dry SM, Pirih FQ, Tetradis S. RANKL inhibitors induce osteonecrosis of the jaw in mice with periapical disease. J Bone Miner Res 2014; 29:843-54. [PMID: 24115073 PMCID: PMC4476544 DOI: 10.1002/jbmr.2097] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 08/24/2013] [Accepted: 09/05/2013] [Indexed: 12/20/2022]
Abstract
Antiresorptive medications are essential in treating diseases of pathologic osteoclastic bone resorption, including bone cancer and osteoporosis. Bisphosphonates (BPs) are the most commonly used antiresorptives in clinical practice. Although inhibition of bone resorption is important in regulating unwanted malignant and metabolic osteolysis, BP treatment is associated with potential side effects, including osteonecrosis of the jaws (ONJ). Recently, non-BP antiresorptive medications targeting osteoclastic function and differentiation, such as denosumab, have entered the clinical arena. Denosumab treatment results in a similar rate of ONJ as BPs. Animal models of ONJ, using high-dose BP treatment in combination with tooth extraction or dental disease, provide valuable tools and insight in exploring ONJ pathophysiology. However, the ability of other antiresorptives to induce ONJ-like lesions in animal models has not been explored. Such studies would be beneficial in providing support for the role of osteoclast inhibition in ONJ pathogenesis versus a direct BP effect on oral tissues. Here, we tested the ability of the receptor activator of NF-κB ligand (RANKL) inhibitors RANK-Fc (composed of the extracellular domain of RANK fused to the fragment crystallizable [Fc] portion of immunoglobulin G [IgG]) and OPG-Fc (composed of the RANKL-binding domains of osteoprotegerin [OPG] linked to the Fc portion of IgG) to induce ONJ in mice in the presence of periapical disease, but in the absence of dental extractions. We demonstrate radiographic evidence of ONJ in RANK-Fc-treated and OPG-Fc-treated mice, including inhibition of bone loss, increased bone density, lamina dura thickening, and periosteal bone deposition. These findings closely resembled the radiographic appearance of an ONJ patient on denosumab treatment. Histologic examination revealed that RANK-Fc treatment and OPG-Fc treatment resulted in absence of osteoclasts, periosteal bone formation, empty osteocytic lacunae, osteonecrosis, and bone exposure. In conclusion, we have successfully induced ONJ in mice with periapical disease, using potent osteoclast inhibitors other than BPs. Our findings, coupled with ONJ animal models using high-dose BPs, suggest that osteoclast inhibition is pivotal to the pathogenesis of ONJ.
Collapse
Affiliation(s)
- Tara L Aghaloo
- Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|