1
|
Neuen SM, Ophelders DR, Widowski H, Hütten MC, Brokken T, van Gorp C, Nikkels PG, Severens-Rijvers CA, Sthijns MM, van Blitterswijk CA, Troost FJ, LaPointe VL, Jolani S, Seiler C, Pillow JJ, Delhaas T, Reynaert NL, Wolfs TG. Multipotent adult progenitor cells prevent functional impairment and improve development in inflammation driven detriment of preterm ovine lungs. Regen Ther 2024; 27:207-217. [PMID: 38576851 PMCID: PMC10990734 DOI: 10.1016/j.reth.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/01/2024] [Accepted: 03/15/2024] [Indexed: 04/06/2024] Open
Abstract
Background Perinatal inflammation increases the risk for bronchopulmonary dysplasia in preterm neonates, but the underlying pathophysiological mechanisms remain largely unknown. Given their anti-inflammatory and regenerative capacity, multipotent adult progenitor cells (MAPC) are a promising cell-based therapy to prevent and/or treat the negative pulmonary consequences of perinatal inflammation in the preterm neonate. Therefore, the pathophysiology underlying adverse preterm lung outcomes following perinatal inflammation and pulmonary benefits of MAPC treatment at the interface of prenatal inflammatory and postnatal ventilation exposures were elucidated. Methods Instrumented ovine fetuses were exposed to intra-amniotic lipopolysaccharide (LPS 5 mg) at 125 days gestation to induce adverse systemic and peripheral organ outcomes. MAPC (10 × 106 cells) or saline were administered intravenously two days post LPS exposure. Fetuses were delivered preterm five days post MAPC treatment and either killed humanely immediately or mechanically ventilated for 72 h. Results Antenatal LPS exposure resulted in inflammation and decreased alveolar maturation in the preterm lung. Additionally, LPS-exposed ventilated lambs showed continued pulmonary inflammation and cell junction loss accompanied by pulmonary edema, ultimately resulting in higher oxygen demand. MAPC therapy modulated lung inflammation, prevented loss of epithelial and endothelial barriers and improved lung maturation in utero. These MAPC-driven improvements remained evident postnatally, and prevented concomitant pulmonary edema and functional loss. Conclusion In conclusion, prenatal inflammation sensitizes the underdeveloped preterm lung to subsequent postnatal inflammation, resulting in injury, disturbed development and functional impairment. MAPC therapy partially prevents these changes and is therefore a promising approach for preterm infants to prevent adverse pulmonary outcomes.
Collapse
Affiliation(s)
- Sophie M.L. Neuen
- Department of Pediatrics, Maastricht University Medical Center, MosaKids Children's Hospital, Maastricht, the Netherlands
- GROW Research Institute for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
| | - Daan R.M.G. Ophelders
- Department of Pediatrics, Maastricht University Medical Center, MosaKids Children's Hospital, Maastricht, the Netherlands
- GROW Research Institute for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
| | - Helene Widowski
- Department of Pediatrics, Maastricht University Medical Center, MosaKids Children's Hospital, Maastricht, the Netherlands
- GROW Research Institute for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
- Department of BioMedical Engineering, Maastricht University, Maastricht, the Netherlands
| | - Matthias C. Hütten
- Department of Pediatrics, Maastricht University Medical Center, MosaKids Children's Hospital, Maastricht, the Netherlands
- GROW Research Institute for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
| | - Tim Brokken
- Department of Pediatrics, Maastricht University Medical Center, MosaKids Children's Hospital, Maastricht, the Netherlands
- GROW Research Institute for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
| | - Charlotte van Gorp
- Department of Pediatrics, Maastricht University Medical Center, MosaKids Children's Hospital, Maastricht, the Netherlands
- GROW Research Institute for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
| | - Peter G.J. Nikkels
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Carmen A.H. Severens-Rijvers
- GROW Research Institute for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
- Department of Pathology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Mireille M.J.P.E. Sthijns
- Food Innovation and Health, Department of Human Biology, Maastricht University, Venlo, the Netherlands
- NUTRIM Institute of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, the Netherlands
| | | | - Freddy J. Troost
- Food Innovation and Health, Department of Human Biology, Maastricht University, Venlo, the Netherlands
| | - Vanessa L.S. LaPointe
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, the Netherlands
| | - Shahab Jolani
- Department of Methodology and Statistics, School CAPHRI, Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Christof Seiler
- Department of Advanced Computing Sciences, Maastricht University, Maastricht, the Netherlands
- Mathematics Centre Maastricht, Maastricht University, the Netherlands
| | - J. Jane Pillow
- School of Human Sciences, University of Western Australia, Perth, WA, Australia
| | - Tammo Delhaas
- Department of BioMedical Engineering, Maastricht University, Maastricht, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Niki L. Reynaert
- NUTRIM Institute of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
- Department of Respiratory Medicine, Maastricht University, Maastricht, the Netherlands
| | - Tim G.A.M. Wolfs
- Department of Pediatrics, Maastricht University Medical Center, MosaKids Children's Hospital, Maastricht, the Netherlands
- GROW Research Institute for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
2
|
Sanker V, Kundu M, El Kassem S, El Nouiri A, Emara M, Maaz ZA, Nazir A, Bekele BK, Uwishema O. Posttraumatic hydrocephalus: Recent advances and new therapeutic strategies. Health Sci Rep 2023; 6:e1713. [PMID: 38028696 PMCID: PMC10652704 DOI: 10.1002/hsr2.1713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
Background Hydrocephalus or ventriculomegaly is a condition brought on by an overabundance of cerebrospinal fluid (CSF) in the ventricular system. The major contributor to posttraumatic hydrocephalus (PTH) is traumatic brain injuries (TBIs), especially in individuals with occupations set in industrial settings. A variety of criteria have been employed for the diagnosis of PTH, including the combination of neurological symptoms like nerve deficits and headache, as well as an initial improvement followed by a worsened relapse of altered consciousness and neurological deterioration, which is detected by computed tomography-brain imaging that reveals gradual ventriculomegaly. Aim In this article, we discuss and summarize briefly the current understandings and advancements in the management of PTH. Methods The available literature for this review was searched on various bibliographic databases using an individually verified, prespecified approach. The level of evidence of the included studies was considered as per the Centre for Evidence-Based Medicine recommendations. Results The commonly practiced current treatment modality involves shunting CSF but is often associated with complications and recurrence. The lack of a definitive management strategy for PTH warrants the utilization of novel and innovative modalities such as stem cell transplantations and antioxidative stress therapies. Conclusion One of the worst complications of a TBI is PTH, which has a high morbidity and mortality rate. Even though there hasn't been a successful method in stopping PTH from happening, hemorrhage-derived blood, and its metabolic by-products, like iron, hemoglobin, free radicals, thrombin, and red blood cells, may be potential targets for PTH hindrance and management. Also, using stem cell transplantations in animal models and antioxidative stress therapies in future studies can lower PTH occurrence and improve its outcome. Moreover, the integration of clinical trials and theoretical knowledge should be encouraged in future research projects to establish effective and updated management guidelines for PTH.
Collapse
Affiliation(s)
- Vivek Sanker
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
- Society of Brain Mapping and TherapeuticsLos AngelesCaliforniaUSA
| | - Mrinmoy Kundu
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
- Institute of Medical Sciences and SUM HospitalBhubaneswarIndia
| | - Sarah El Kassem
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
- Faculty of MedicineBeirut Arab UniversityBeirutLebanon
| | - Ahmad El Nouiri
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
- Faculty of MedicineBeirut Arab UniversityBeirutLebanon
| | - Mohamed Emara
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
- College of MedicineUniversity of SharjahSharjahUnited Arab Emirates
| | - Zeina Al Maaz
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
- Faculty of MedicineBeirut Arab UniversityBeirutLebanon
| | - Abubakar Nazir
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
| | - Bezawit Kassahun Bekele
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
- School of MedicineAddis Ababa UniversityAddis AbabaEthiopia
- Milken Institute of Public HealthGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Olivier Uwishema
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
- Department of medicineClinton Global Initiative UniversityNew YorkNew YorkUSA
- Faculty of MedicineKaradeniz Technical UniversityTrabzonTurkey
| |
Collapse
|
3
|
Mižíková I, Thébaud B. Perinatal origins of bronchopulmonary dysplasia-deciphering normal and impaired lung development cell by cell. Mol Cell Pediatr 2023; 10:4. [PMID: 37072570 PMCID: PMC10113423 DOI: 10.1186/s40348-023-00158-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/26/2023] [Indexed: 04/20/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a multifactorial disease occurring as a consequence of premature birth, as well as antenatal and postnatal injury to the developing lung. BPD morbidity and severity depend on a complex interplay between prenatal and postnatal inflammation, mechanical ventilation, and oxygen therapy as well as associated prematurity-related complications. These initial hits result in ill-explored aberrant immune and reparative response, activation of pro-fibrotic and anti-angiogenic factors, which further perpetuate the injury. Histologically, the disease presents primarily by impaired lung development and an arrest in lung microvascular maturation. Consequently, BPD leads to respiratory complications beyond the neonatal period and may result in premature aging of the lung. While the numerous prenatal and postnatal stimuli contributing to BPD pathogenesis are relatively well known, the specific cell populations driving the injury, as well as underlying mechanisms are still not well understood. Recently, an effort to gain a more detailed insight into the cellular composition of the developing lung and its progenitor populations has unfold. Here, we provide an overview of the current knowledge regarding perinatal origin of BPD and discuss underlying mechanisms, as well as novel approaches to study the perturbed lung development.
Collapse
Affiliation(s)
- I Mižíková
- Experimental Pulmonology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| | - B Thébaud
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO), CHEO Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
4
|
Tung S, Delavogia E, Fernandez-Gonzalez A, Mitsialis SA, Kourembanas S. Harnessing the therapeutic potential of the stem cell secretome in neonatal diseases. Semin Perinatol 2023; 47:151730. [PMID: 36990921 PMCID: PMC10133192 DOI: 10.1016/j.semperi.2023.151730] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Preterm birth and intrapartum related complications account for a substantial amount of mortality and morbidity in the neonatal period despite significant advancements in neonatal-perinatal care. Currently, there is a noticeable lack of curative or preventative therapies available for any of the most common complications of prematurity including bronchopulmonary dysplasia, necrotizing enterocolitis, intraventricular hemorrhage, periventricular leukomalacia and retinopathy of prematurity or hypoxic-ischemic encephalopathy, the main cause of perinatal brain injury in term infants. Mesenchymal stem/stromal cell-derived therapy has been an active area of investigation for the past decade and has demonstrated encouraging results in multiple experimental models of neonatal disease. It is now widely acknowledged that mesenchymal stem/stromal cells exert their therapeutic effects via their secretome, with the principal vector identified as extracellular vesicles. This review will focus on summarizing the current literature and investigations on mesenchymal stem/stromal cell-derived extracellular vesicles as a treatment for neonatal diseases and examine the considerations to their application in the clinical setting.
Collapse
Affiliation(s)
- Stephanie Tung
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Eleni Delavogia
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States; Department of Pediatrics, Massachusetts General Hospital for Children, Boston, MA, United States
| | - Angeles Fernandez-Gonzalez
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - S Alex Mitsialis
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Stella Kourembanas
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
5
|
Damianos A, Sammour I. Barriers in translating stem cell therapies for neonatal diseases. Semin Perinatol 2023; 47:151731. [PMID: 36990922 DOI: 10.1016/j.semperi.2023.151731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Over the last 20 years, stem cells of varying origin and their associated secretome have been investigated as a therapeutic option for a myriad of neonatal models of disease, with very promising results. Despite the devastating nature of some of these disorders, translation of the preclinical evidence to the bedside has been slow. In this review, we explore the existing clinical evidence for stem cell therapies in neonates, highlight the barriers faced by researchers and suggest potential solutions to move the field forward.
Collapse
Affiliation(s)
- Andreas Damianos
- Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, Ohio
| | - Ibrahim Sammour
- Riley Hospital for Children, Indiana University, Indianapolis, USA.
| |
Collapse
|
6
|
Sharma M, Bellio MA, Benny M, Kulandavelu S, Chen P, Janjindamai C, Han C, Chang L, Sterling S, Williams K, Damianos A, Batlahally S, Kelly K, Aguilar-Caballero D, Zambrano R, Chen S, Huang J, Wu S, Hare JM, Schmidt A, Khan A, Young K. Mesenchymal Stem Cell-derived Extracellular Vesicles Prevent Experimental Bronchopulmonary Dysplasia Complicated By Pulmonary Hypertension. Stem Cells Transl Med 2022; 11:828-840. [PMID: 35758326 PMCID: PMC9397655 DOI: 10.1093/stcltm/szac041] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 04/18/2022] [Indexed: 11/12/2022] Open
Abstract
Mesenchymal stem cell (MSC) extracellular vesicles (EVs) have beneficial effects in preclinical bronchopulmonary dysplasia and pulmonary hypertension (BPD-PH) models. The optimal source, dosing, route, and duration of effects are however unknown. The objectives of this study were to (a) compare the efficacy of GMP-grade EVs obtained from Wharton’s Jelly MSCs (WJ-MSCs) and bone marrow (BM-MSCs), (b) determine the optimal dosing and route of administration, (c) evaluate its long-term effects, and (d) determine how MSC EVs alter the lung transcriptome. Newborn rats exposed to normoxia or hyperoxia (85% O2) from postnatal day (P)1-P14 were given (a) intra-tracheal (IT) BM or WJ-MSC EVs or placebo, (b) varying doses of IT WJ-MSC EVs, or (c) IT or intravenous (IV) WJ-MSC EVs on P3. Rats were evaluated at P14 or 3 months. Early administration of IT BM-MSC or WJ-MSC EVs had similar beneficial effects on lung structure and PH in hyperoxia-exposed rats. WJ-MSC EVs however had superior effects on cardiac remodeling. Low, medium, and high dose WJ-MSC EVs had similar cardiopulmonary regenerative effects. IT and IV WJ-MSC EVs similarly improved vascular density and reduced PH in hyperoxic rats. Gene-set enrichment analysis of transcripts differentially expressed in WJ-MSC EV-treated rats showed that induced transcripts were associated with angiogenesis. Long-term studies demonstrated that a single early MSC EV dose has pulmonary vascular protective effects 3 months after administration. Together, our findings have significant translational implications as it provides critical insight into the optimal source, dosing, route, mechanisms of action, and duration of effects of MSC-EVs for BPD-PH.
Collapse
Affiliation(s)
- Mayank Sharma
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michael A Bellio
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Merline Benny
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shathiyah Kulandavelu
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Pingping Chen
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Chawisa Janjindamai
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Chenxu Han
- Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Liming Chang
- Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shanique Sterling
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kevin Williams
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andreas Damianos
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sunil Batlahally
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kaitlyn Kelly
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Daniela Aguilar-Caballero
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ronald Zambrano
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shaoyi Chen
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jian Huang
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shu Wu
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Augusto Schmidt
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Aisha Khan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Karen Young
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA.,Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
7
|
Omar SA, Abdul-Hafez A, Ibrahim S, Pillai N, Abdulmageed M, Thiruvenkataramani RP, Mohamed T, Madhukar BV, Uhal BD. Stem-Cell Therapy for Bronchopulmonary Dysplasia (BPD) in Newborns. Cells 2022; 11:cells11081275. [PMID: 35455954 PMCID: PMC9025385 DOI: 10.3390/cells11081275] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Premature newborns are at a higher risk for the development of respiratory distress syndrome (RDS), acute lung injury (ALI) associated with lung inflammation, disruption of alveolar structure, impaired alveolar growth, lung fibrosis, impaired lung angiogenesis, and development of bronchopulmonary dysplasia (BPD) with severe long-term developmental adverse effects. The current therapy for BPD is limited to supportive care including high-oxygen therapy and pharmacotherapy. Recognizing more feasible treatment options to improve lung health and reduce complications associated with BPD is essential for improving the overall quality of life of premature infants. There is a reduction in the resident stem cells in lungs of premature infants with BPD, which strongly suggests a critical role of stem cells in BPD pathogenesis; this warrants the exploration of the potential therapeutic use of stem-cell therapy. Stem-cell-based therapies have shown promise for the treatment of many pathological conditions including acute lung injury and BPD. Mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles (EVs) including exosomes are promising and effective therapeutic modalities for the treatment of BPD. Treatment with MSCs and EVs may help to reduce lung inflammation, improve pulmonary architecture, attenuate pulmonary fibrosis, and increase the survival rate.
Collapse
Affiliation(s)
- Said A. Omar
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (S.I.); (N.P.); (M.A.); (R.P.T.); (T.M.); (B.V.M.)
- Regional Neonatal Intensive Care Unit, Sparrow Health System, Lansing, MI 48912, USA
- Correspondence: ; Tel.: +1-517-364-2948
| | - Amal Abdul-Hafez
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (S.I.); (N.P.); (M.A.); (R.P.T.); (T.M.); (B.V.M.)
| | - Sherif Ibrahim
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (S.I.); (N.P.); (M.A.); (R.P.T.); (T.M.); (B.V.M.)
| | - Natasha Pillai
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (S.I.); (N.P.); (M.A.); (R.P.T.); (T.M.); (B.V.M.)
| | - Mohammed Abdulmageed
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (S.I.); (N.P.); (M.A.); (R.P.T.); (T.M.); (B.V.M.)
- Regional Neonatal Intensive Care Unit, Sparrow Health System, Lansing, MI 48912, USA
| | - Ranga Prasanth Thiruvenkataramani
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (S.I.); (N.P.); (M.A.); (R.P.T.); (T.M.); (B.V.M.)
- Regional Neonatal Intensive Care Unit, Sparrow Health System, Lansing, MI 48912, USA
| | - Tarek Mohamed
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (S.I.); (N.P.); (M.A.); (R.P.T.); (T.M.); (B.V.M.)
- Regional Neonatal Intensive Care Unit, Sparrow Health System, Lansing, MI 48912, USA
| | - Burra V. Madhukar
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (S.I.); (N.P.); (M.A.); (R.P.T.); (T.M.); (B.V.M.)
| | - Bruce D. Uhal
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
8
|
Sakaria RP, Dhanireddy R. Pharmacotherapy in Bronchopulmonary Dysplasia: What Is the Evidence? Front Pediatr 2022; 10:820259. [PMID: 35356441 PMCID: PMC8959440 DOI: 10.3389/fped.2022.820259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
Bronchopulmonary Dysplasia (BPD) is a multifactorial disease affecting over 35% of extremely preterm infants born each year. Despite the advances made in understanding the pathogenesis of this disease over the last five decades, BPD remains one of the major causes of morbidity and mortality in this population, and the incidence of the disease increases with decreasing gestational age. As inflammation is one of the key drivers in the pathogenesis, it has been targeted by majority of pharmacological and non-pharmacological methods to prevent BPD. Most extremely premature infants receive a myriad of medications during their stay in the neonatal intensive care unit in an effort to prevent or manage BPD, with corticosteroids, caffeine, and diuretics being the most commonly used medications. However, there is no consensus regarding their use and benefits in this population. This review summarizes the available literature regarding these medications and aims to provide neonatologists and neonatal providers with evidence-based recommendations.
Collapse
Affiliation(s)
- Rishika P. Sakaria
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Ramasubbareddy Dhanireddy
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Obstetrics and Gynecology, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
9
|
Mižíková I, Lesage F, Cyr-Depauw C, Cook DP, Hurskainen M, Hänninen SM, Vadivel A, Bardin P, Zhong S, Carpén O, Vanderhyden BC, Thébaud B. Single-Cell RNA Sequencing-Based Characterization of Resident Lung Mesenchymal Stromal Cells in Bronchopulmonary Dysplasia. Stem Cells 2022; 40:479-492. [PMID: 35445270 PMCID: PMC9199848 DOI: 10.1093/stmcls/sxab023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/09/2021] [Indexed: 01/26/2023]
Abstract
Late lung development is a period of alveolar and microvascular formation, which is pivotal in ensuring sufficient and effective gas exchange. Defects in late lung development manifest in premature infants as a chronic lung disease named bronchopulmonary dysplasia (BPD). Numerous studies demonstrated the therapeutic properties of exogenous bone marrow and umbilical cord-derived mesenchymal stromal cells (MSCs) in experimental BPD. However, very little is known regarding the regenerative capacity of resident lung MSCs (L-MSCs) during normal development and in BPD. In this study we aimed to characterize the L-MSC population in homeostasis and upon injury. We used single-cell RNA sequencing (scRNA-seq) to profile in situ Ly6a+ L-MSCs in the lungs of normal and O2-exposed neonatal mice (a well-established model to mimic BPD) at 3 developmental timepoints (postnatal days 3, 7, and 14). Hyperoxia exposure increased the number and altered the expression profile of L-MSCs, particularly by increasing the expression of multiple pro-inflammatory, pro-fibrotic, and anti-angiogenic genes. In order to identify potential changes induced in the L-MSCs transcriptome by storage and culture, we profiled 15 000 Ly6a+ L-MSCs after in vitro culture. We observed great differences in expression profiles of in situ and cultured L-MSCs, particularly those derived from healthy lungs. Additionally, we have identified the location of Ly6a+/Col14a1+ L-MSCs in the developing lung and propose Serpinf1 as a novel, culture-stable marker of L-MSCs. Finally, cell communication analysis suggests inflammatory signals from immune and endothelial cells as main drivers of hyperoxia-induced changes in L-MSCs transcriptome.
Collapse
Affiliation(s)
- Ivana Mižíková
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Flore Lesage
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Chanele Cyr-Depauw
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - David P Cook
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada,Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Maria Hurskainen
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada,Division of Pediatric Cardiology, New Children’s Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland,Pediatric Research Center, New Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Satu M Hänninen
- Precision Cancer Pathology, Department of Pathology and Research Program in Systems Oncology, University of Helsinki and HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Arul Vadivel
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Pauline Bardin
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Shumei Zhong
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Olli Carpén
- Precision Cancer Pathology, Department of Pathology and Research Program in Systems Oncology, University of Helsinki and HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Barbara C Vanderhyden
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada,Department of Obstetrics and Gynecology, University of Ottawa/The Ottawa Hospital, Ottawa, ON, Canada
| | - Bernard Thébaud
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada,Department of Pediatrics, Children’s Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, University of Ottawa, Ottawa, ON, Canada,Corresponding author: Bernard Thébaud, Ottawa Hospital Research Institute, 501 Smyth Box 511, Ottawa, ON K1H 8L6.
| |
Collapse
|
10
|
Benny M, Courchia B, Shrager S, Sharma M, Chen P, Duara J, Valasaki K, Bellio MA, Damianos A, Huang J, Zambrano R, Schmidt A, Wu S, Velazquez OC, Hare JM, Khan A, Young KC. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:189-199. [PMID: 35298658 PMCID: PMC8929420 DOI: 10.1093/stcltm/szab011] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/17/2021] [Indexed: 11/13/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a life-threatening condition in preterm infants with few effective therapies. Mesenchymal stem or stromal cells (MSCs) are a promising therapeutic strategy for BPD. The ideal MSC source for BPD prevention is however unknown. The objective of this study was to compare the regenerative effects of MSC obtained from bone marrow (BM) and umbilical cord tissue (UCT) in an experimental BPD model. In vitro, UCT-MSC demonstrated greater proliferation and expression of anti-inflammatory cytokines as compared to BM-MSC. Lung epithelial cells incubated with UCT-MSC conditioned media (CM) had better-wound healing following scratch injury. UCT-MSC CM and BM-MSC CM had similar pro-angiogenic effects on hyperoxia-exposed pulmonary microvascular endothelial cells. In vivo, newborn rats exposed to normoxia or hyperoxia (85% O2) from postnatal day (P) 1 to 21 were given intra-tracheal (IT) BM or UCT-MSC (1 × 106 cells/50 μL), or placebo (PL) on P3. Hyperoxia PL-treated rats had marked alveolar simplification, reduced lung vascular density, pulmonary vascular remodeling, and lung inflammation. In contrast, administration of both BM-MSC and UCT-MSC significantly improved alveolar structure, lung angiogenesis, pulmonary vascular remodeling, and lung inflammation. UCT-MSC hyperoxia-exposed rats however had greater improvement in some morphometric measures of alveolarization and less lung macrophage infiltration as compared to the BM-MSC-treated group. Together, these findings suggest that BM-MSC and UCT-MSC have significant lung regenerative effects in experimental BPD but UCT-MSC suppresses lung macrophage infiltration and promotes lung epithelial cell healing to a greater degree.
Collapse
Affiliation(s)
- Merline Benny
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Benjamin Courchia
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sebastian Shrager
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mayank Sharma
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Pingping Chen
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joanne Duara
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Krystalenia Valasaki
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michael A Bellio
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andreas Damianos
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jian Huang
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ronald Zambrano
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Augusto Schmidt
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shu Wu
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Omaida C Velazquez
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joshua M Hare
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Aisha Khan
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Karen C Young
- Corresponding author: Karen C. Young, MD, Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, 1580 NW 10th Avenue, RM-345, Miami, FL 33136, USA. Tel: 305-243-4531;
| |
Collapse
|
11
|
Wickramasinghe LC, van Wijngaarden P, Tsantikos E, Hibbs ML. The immunological link between neonatal lung and eye disease. Clin Transl Immunology 2021; 10:e1322. [PMID: 34466225 PMCID: PMC8387470 DOI: 10.1002/cti2.1322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/02/2021] [Accepted: 07/13/2021] [Indexed: 01/02/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) and retinopathy of prematurity (ROP) are two neonatal diseases of major clinical importance, arising in large part as a consequence of supplemental oxygen therapy used to promote the survival of preterm infants. The presence of coincident inflammation in the lungs and eyes of neonates receiving oxygen therapy indicates that a dysregulated immune response serves as a potential common pathogenic factor for both diseases. This review examines the current state of knowledge of immunological dysregulation in BPD and ROP, identifying similarities in the cellular subsets and inflammatory cytokines that are found in the alveoli and retina during the active phase of these diseases, indicating possible mechanistic overlap. In addition, we highlight gaps in the understanding of whether these responses emerge independently in the lung and retina as a consequence of oxygen exposure or arise because of inflammatory spill-over from the lung. As BPD and ROP are anatomically distinct, they are often considered discreet disease entities and are therefore treated separately. We propose that an improved understanding of the relationship between BPD and ROP is key to the identification of novel therapeutic targets to treat or prevent both conditions simultaneously.
Collapse
Affiliation(s)
- Lakshanie C Wickramasinghe
- Leukocyte Signalling LaboratoryDepartment of Immunology and PathologyCentral Clinical SchoolMonash UniversityMelbourneVICAustralia
| | - Peter van Wijngaarden
- OphthalmologyDepartment of SurgeryUniversity of MelbourneMelbourneVICAustralia
- Centre for Eye Research AustraliaRoyal Victorian Eye and Ear HospitalEast MelbourneVICAustralia
| | - Evelyn Tsantikos
- Leukocyte Signalling LaboratoryDepartment of Immunology and PathologyCentral Clinical SchoolMonash UniversityMelbourneVICAustralia
| | - Margaret L Hibbs
- Leukocyte Signalling LaboratoryDepartment of Immunology and PathologyCentral Clinical SchoolMonash UniversityMelbourneVICAustralia
| |
Collapse
|
12
|
Tong Y, Zuo J, Yue D. Application Prospects of Mesenchymal Stem Cell Therapy for Bronchopulmonary Dysplasia and the Challenges Encountered. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9983664. [PMID: 33997051 PMCID: PMC8110410 DOI: 10.1155/2021/9983664] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 01/01/2023]
Abstract
Bronchopulmonary dysplasia (BPD) is a common chronic lung disease in premature babies, especially affecting those with very low or extremely low birth weights. Survivors experience adverse lung and neurological defects including cognitive dysfunction. This impacts the prognosis of children with BPD and may result in developmental delays. The currently available options for the treatment of BPD are limited owing to low efficacy or several side effects; therefore, there is a lack of effective treatments for BPD. The treatment for BPD must help in the repair of damaged lung tissue and promote further growth of the lung tissue. In recent years, the emergence of stem cell therapy, especially mesenchymal stem cell (MSC) therapy, has improved the treatment of BPD to a great extent. This article briefly reviews the advantages, research progress, and challenges faced with the use of MSCs in the treatment of BPD. Stem cell therapy is beneficial as it repairs damaged tissues by reducing inflammation, fibrosis, and by acting against oxidative stress damage. Experimental trials have also proven that MSCs provide a promising avenue for BPD treatment. However, there are challenges such as the possibility of MSCs contributing to tumorous growths, the presence of heterogeneous cell populations resulting in variable efficacy, and the ethical considerations regarding the use of this treatment in humans. Therefore, more research must be conducted to determine whether MSC therapy can be approved as a treatment option for BPD.
Collapse
Affiliation(s)
- Yajie Tong
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004 Liaoning, China
| | - Jingye Zuo
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004 Liaoning, China
| | - Dongmei Yue
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004 Liaoning, China
| |
Collapse
|
13
|
Chou HC, Chang CH, Chen CH, Lin W, Chen CM. Consecutive daily administration of intratracheal surfactant and human umbilical cord-derived mesenchymal stem cells attenuates hyperoxia-induced lung injury in neonatal rats. Stem Cell Res Ther 2021; 12:258. [PMID: 33933128 PMCID: PMC8088571 DOI: 10.1186/s13287-021-02335-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/14/2021] [Indexed: 01/27/2023] Open
Abstract
Background Surfactant therapy is a standard of care for preterm infants with respiratory distress and reduces the incidence of death and bronchopulmonary dysplasia in these patients. Our previous study found that mesenchymal stem cells (MSCs) attenuated hyperoxia-induced lung injury and the combination therapy of surfactant and human umbilical cord-derived MSCs (hUC-MSCs) did not have additive effects on hyperoxia-induced lung injury in neonatal rats. The aim is to evaluate the effects of 2 consecutive days of intratracheal administration of surfactant and hUC-MSCs on hyperoxia-induced lung injury. Methods Neonatal Sprague Dawley rats were reared in either room air (RA) or hyperoxia (85% O2) from postnatal days 1 to 14. On postnatal day 4, the rats received intratracheal injections of either 20 μL of normal saline (NS) or 20 μL of surfactant. On postnatal day 5, the rats reared in RA received intratracheal NS, and the rats reared in O2 received intratracheal NS or hUC-MSCs (3 × 104 or 3 × 105 cells). Six study groups were examined: RA + NS + NS, RA + surfactant + NS, O2 + NS + NS, O2 + surfactant + NS, O2 + surfactant + hUC-MSCs (3 × 104 cells), and O2 + surfactant + hUC-MSCs (3 × 105 cells). The lungs were excised for histological, western blot, and cytokine analyses. Results The rats reared in hyperoxia and treated with NS yielded significantly higher mean linear intercepts (MLIs) and interleukin (IL)-1β and IL-6 levels and significantly lower vascular endothelial growth factors (VEGFs), platelet-derived growth factor protein expression, and vascular density than did those reared in RA and treated with NS or surfactant. The lowered MLIs and cytokines and the increased VEGF expression and vascular density indicated that the surfactant and surfactant + hUC-MSCs (3 × 104 cells) treatment attenuated hyperoxia-induced lung injury. The surfactant + hUC-MSCs (3 × 105 cells) group exhibited a significantly lower MLI and significantly higher VEGF expression and vascular density than the surfactant + hUC-MSCs (3 × 104 cells) group did. Conclusions Consecutive daily administration of intratracheal surfactant and hUC-MSCs can be an effective regimen for treating hyperoxia-induced lung injury in neonates.
Collapse
Affiliation(s)
- Hsiu-Chu Chou
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chien-Hsiang Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | | | - Willie Lin
- Meridigen Biotech Co., Ltd., Taipei, Taiwan
| | - Chung-Ming Chen
- Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan. .,Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
14
|
Ahn SY, Chang YS, Lee MH, Sung SI, Lee BS, Kim KS, Kim AR, Park WS. Stem cells for bronchopulmonary dysplasia in preterm infants: A randomized controlled phase II trial. Stem Cells Transl Med 2021; 10:1129-1137. [PMID: 33876883 PMCID: PMC8284779 DOI: 10.1002/sctm.20-0330] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/05/2021] [Accepted: 02/23/2021] [Indexed: 12/23/2022] Open
Abstract
We previously demonstrated the safety and feasibility of mesenchymal stem cell (MSC) transplantation for bronchopulmonary dysplasia (BPD) in preterm infants in a phase I clinical trial. We thus investigated the therapeutic efficacy of MSCs for BPD in premature infants. A phase II double-blind, randomized, placebo-controlled clinical trial was conducted on preterm infants at 23 to 28 gestational weeks (GW) receiving mechanical ventilator support with respiratory deterioration between postnatal days 5 and 14. Infants were stratified by 23 to 24 GW and 25 to 28 GW and randomly allocated (1:1) to receive stem cells (1 × 107 cells/kg, n = 33) or placebo (n = 33). Although the inflammatory cytokines in the tracheal aspirate fluid were significantly reduced with MSCs, the primary outcome of death or severe/moderate BPD in the control group (18/33, 55%) was not significantly improved with MSC transplantation (17/33, 52%). In the subgroup analysis, the secondary outcome of severe BPD was significantly improved from 53% (8/15) to 19% (3/16) with MSC transplantation in the 23 to 24 GW group but not in the 25 to 28 GW subgroup. In summary, although MSC transplantation might be safe and feasible, this small study was underpowered to detect its therapeutic efficacy in preterm infants at 23 to 28 GW. Accordingly, we are now conducting an additional larger and controlled phase II clinical trial focusing on infants at 23 to 24 GW (NCT03392467). ClinicalTrials.gov identifier: NCT01828957.
Collapse
Affiliation(s)
- So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center and Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center and Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Myung Hee Lee
- Statistics and Data Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea
| | - Se In Sung
- Department of Pediatrics, Samsung Medical Center and Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Byong Sop Lee
- Department of Pediatrics, Asan Medical Center, University of Ulsan, Seoul, South Korea
| | - Ki Soo Kim
- Department of Pediatrics, Asan Medical Center, University of Ulsan, Seoul, South Korea
| | - Ai-Rhan Kim
- Department of Pediatrics, Asan Medical Center, University of Ulsan, Seoul, South Korea
| | - Won Soon Park
- Department of Pediatrics, Samsung Medical Center and Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
15
|
Porzionato A, Zaramella P, Dedja A, Guidolin D, Bonadies L, Macchi V, Pozzobon M, Jurga M, Perilongo G, De Caro R, Baraldi E, Muraca M. Intratracheal administration of mesenchymal stem cell-derived extracellular vesicles reduces lung injuries in a chronic rat model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2021; 320:L688-L704. [PMID: 33502939 DOI: 10.1152/ajplung.00148.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Early therapeutic effect of intratracheally (IT)-administered extracellular vesicles secreted by mesenchymal stem cells (MSC-EVs) has been demonstrated in a rat model of bronchopulmonary dysplasia (BPD) involving hyperoxia exposure in the first 2 postnatal weeks. The aim of this study was to evaluate the protective effects of IT-administered MSC-EVs in the long term. EVs were produced from MSCs following GMP standards. At birth, rats were distributed in three groups: (a) animals raised in ambient air for 6 weeks (n = 10); and animals exposed to 60% hyperoxia for 2 weeks and to room air for additional 4 weeks and treated with (b) IT-administered saline solution (n = 10), or (c) MSC-EVs (n = 10) on postnatal days 3, 7, 10, and 21. Hyperoxia exposure produced significant decreases in total number of alveoli, total surface area of alveolar air spaces, and proliferation index, together with increases in mean alveolar volume, mean linear intercept and fibrosis percentage; all these morphometric changes were prevented by MSC-EVs treatment. The medial thickness index for <100 µm vessels was higher for hyperoxia-exposed/sham-treated than for normoxia-exposed rats; MSC-EV treatment significantly reduced this index. There were no significant differences in interstitial/alveolar and perivascular F4/8-positive and CD86-positive macrophages. Conversely, hyperoxia exposure reduced CD163-positive macrophages both in interstitial/alveolar and perivascular populations and MSC-EV prevented these hyperoxia-induced reductions. These findings further support that IT-administered EVs could be an effective approach to prevent/treat BPD, ameliorating the impaired alveolarization and pulmonary artery remodeling also in a long-term model. M2 macrophage polarization could play a role through anti-inflammatory and proliferative mechanisms.
Collapse
Affiliation(s)
- Andrea Porzionato
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
| | - Patrizia Zaramella
- Neonatal Intensive Care Unit, Department of Women's and Children's Health, University of Padova, Padua, Italy
| | - Arben Dedja
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, Padua, Italy
| | - Diego Guidolin
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
| | - Luca Bonadies
- Neonatal Intensive Care Unit, Department of Women's and Children's Health, University of Padova, Padua, Italy
| | - Veronica Macchi
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
| | - Michela Pozzobon
- Institute of Pediatric Research, Padua, Italy.,Stem Cell and Regenerative Medicine Laboratory, Department of Women's and Children's Health, University of Padova, Padua, Italy
| | - Marcin Jurga
- The Cell Factory BVBA (Esperite NV), Niel, Belgium
| | - Giorgio Perilongo
- Institute of Pediatric Research, Padua, Italy.,Pediatric Clinic, Department of Women's and Children's Health, University of Padova, Padua, Italy
| | - Raffaele De Caro
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
| | - Eugenio Baraldi
- Neonatal Intensive Care Unit, Department of Women's and Children's Health, University of Padova, Padua, Italy.,Institute of Pediatric Research, Padua, Italy
| | - Maurizio Muraca
- Institute of Pediatric Research, Padua, Italy.,Stem Cell and Regenerative Medicine Laboratory, Department of Women's and Children's Health, University of Padova, Padua, Italy
| |
Collapse
|
16
|
MSC Based Therapies to Prevent or Treat BPD-A Narrative Review on Advances and Ongoing Challenges. Int J Mol Sci 2021; 22:ijms22031138. [PMID: 33498887 PMCID: PMC7865378 DOI: 10.3390/ijms22031138] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/15/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) remains one of the most devastating consequences of preterm birth resulting in life-long restrictions in lung function. Distorted lung development is caused by its inflammatory response which is mainly provoked by mechanical ventilation, oxygen toxicity and bacterial infections. Dysfunction of resident lung mesenchymal stem cells (MSC) represents one key hallmark that drives BPD pathology. Despite all progress in the understanding of pathomechanisms, therapeutics to prevent or treat BPD are to date restricted to a few drugs. The limited therapeutic efficacy of established drugs can be explained by the fact that they fail to concurrently tackle the broad spectrum of disease driving mechanisms and by the huge overlap between distorted signal pathways of lung development and inflammation. The great enthusiasm about MSC based therapies as novel therapeutic for BPD arises from the capacity to inhibit inflammation while simultaneously promoting lung development and repair. Preclinical studies, mainly performed in rodents, raise hopes that there will be finally a broadly acting, efficient therapy at hand to prevent or treat BPD. Our narrative review gives a comprehensive overview on preclinical achievements, results from first early phase clinical studies and challenges to a successful translation into the clinical setting.
Collapse
|
17
|
Uçkan-Çetinkaya D, Haider KH. Induced Pluripotent Stem Cells in Pediatric Research and Clinical Translation. Stem Cells 2021. [DOI: 10.1007/978-3-030-77052-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Obendorf J, Fabian C, Thome UH, Laube M. Paracrine stimulation of perinatal lung functional and structural maturation by mesenchymal stem cells. Stem Cell Res Ther 2020; 11:525. [PMID: 33298180 PMCID: PMC7724458 DOI: 10.1186/s13287-020-02028-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) were shown to harbor therapeutic potential in models of respiratory diseases, such as bronchopulmonary dysplasia (BPD), the most common sequel of preterm birth. In these studies, cells or animals were challenged with hyperoxia or other injury-inducing agents. However, little is known about the effect of MSCs on immature fetal lungs and whether MSCs are able to improve lung maturity, which may alleviate lung developmental arrest in BPD. Methods We aimed to determine if the conditioned medium (CM) of MSCs stimulates functional and structural lung maturation. As a measure of functional maturation, Na+ transport in primary fetal distal lung epithelial cells (FDLE) was studied in Ussing chambers. Na+ transporter and surfactant protein mRNA expression was determined by qRT-PCR. Structural maturation was assessed by microscopy in fetal rat lung explants. Results MSC-CM strongly increased the activity of the epithelial Na+ channel (ENaC) and the Na,K-ATPase as well as their mRNA expression. Branching and growth of fetal lung explants and surfactant protein mRNA expression were enhanced by MSC-CM. Epithelial integrity and metabolic activity of FDLE cells were not influenced by MSC-CM. Since MSC’s actions are mainly attributed to paracrine signaling, prominent lung growth factors were blocked. None of the tested growth factors (VEGF, BMP, PDGF, EGF, TGF-β, FGF, HGF) contributed to the MSC-induced increase of Na+ transport. In contrast, inhibition of PI3-K/AKT and Rac1 signaling reduced MSC-CM efficacy, suggesting an involvement of these pathways in the MSC-CM-induced Na+ transport. Conclusion The results demonstrate that MSC-CM strongly stimulated functional and structural maturation of the fetal lungs. These effects were at least partially mediated by the PI3-K/AKT and Rac1 signaling pathway. Thus, MSCs not only repair a deleterious tissue environment, but also target lung cellular immaturity itself.
Collapse
Affiliation(s)
- Janine Obendorf
- Center for Pediatric Research Leipzig, Department of Pediatrics, Division of Neonatology, University of Leipzig, Liebigstrasse 19, 04103, Leipzig, Germany
| | - Claire Fabian
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstrasse 1, 04103, Leipzig, Germany
| | - Ulrich H Thome
- Center for Pediatric Research Leipzig, Department of Pediatrics, Division of Neonatology, University of Leipzig, Liebigstrasse 19, 04103, Leipzig, Germany
| | - Mandy Laube
- Center for Pediatric Research Leipzig, Department of Pediatrics, Division of Neonatology, University of Leipzig, Liebigstrasse 19, 04103, Leipzig, Germany.
| |
Collapse
|
19
|
Human placenta-derived mesenchymal stem cells attenuate established hyperoxia-induced lung injury in newborn rats. Pediatr Neonatol 2020; 61:498-505. [PMID: 32564932 DOI: 10.1016/j.pedneo.2020.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/06/2020] [Accepted: 05/26/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Hyperoxia increases Sonic hedgehog (Shh) expression in neonatal rat lungs. The effect of mesenchymal stem cells (MSCs) on the hedgehog signaling pathway in hyperoxia-induced lung injury is unknown. This study evaluated whether MSCs could inhibit hedgehog signaling and improve established hyperoxia-induced lung injury in newborn rats. METHODS Newborn rats were assigned to room air (RA) or hyperoxia (85% O2) groups from postnatal day 4-15, and some received intravenous injection of human MSCs (9 × 105 cells) in 90 μL of normal saline (NS) through the tail vein on postnatal day 15. We obtained four study groups as follows: RA + NS, RA + MSCs, O2 + NS, and O2 + MSCs. Pups from each group were sacrificed on postnatal days 15 and 29, and lungs were removed for histological and Western blot analyses. RESULTS Neonatal hyperoxia on postnatal days 4-15 reduced the body weight, increased the mean linear intercept, and decreased the vascular density of the rats, and these effects were associated with increased Shh and Smoothened (Smo) expression and decreased Patched expression. By contrast, the MSC-treated hyperoxic pups exhibited improved alveolarization, increased vascularization, and decreased Shh and Smo expression on postnatal day 29. CONCLUSION Human MSC treatment reversed established hyperoxia-induced lung injury in newborn rats, probably through suppression of the hedgehog pathway.
Collapse
|
20
|
Bonadies L, Zaramella P, Porzionato A, Perilongo G, Muraca M, Baraldi E. Present and Future of Bronchopulmonary Dysplasia. J Clin Med 2020; 9:jcm9051539. [PMID: 32443685 PMCID: PMC7290764 DOI: 10.3390/jcm9051539] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/04/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common respiratory disorder among infants born extremely preterm. The pathogenesis of BPD involves multiple prenatal and postnatal mechanisms affecting the development of a very immature lung. Their combined effects alter the lung's morphogenesis, disrupt capillary gas exchange in the alveoli, and lead to the pathological and clinical features of BPD. The disorder is ultimately the result of an aberrant repair response to antenatal and postnatal injuries to the developing lungs. Neonatology has made huge advances in dealing with conditions related to prematurity, but efforts to prevent and treat BPD have so far been only partially effective. Seeing that BPD appears to have a role in the early origin of chronic obstructive pulmonary disease, its prevention is pivotal also in long-term respiratory outcome of these patients. There is currently some evidence to support the use of antenatal glucocorticoids, surfactant therapy, protective noninvasive ventilation, targeted saturations, early caffeine treatment, vitamin A, and fluid restriction, but none of the existing strategies have had any significant impact in reducing the burden of BPD. New areas of research are raising novel therapeutic prospects, however. For instance, early topical (intratracheal or nebulized) steroids seem promising: they might help to limit BPD development without the side effects of systemic steroids. Evidence in favor of stem cell therapy has emerged from several preclinical trials, and from a couple of studies in humans. Mesenchymal stromal/stem cells (MSCs) have revealed a reparatory capability, preventing the progression of BPD in animal models. Administering MSC-conditioned media containing extracellular vesicles (EVs) have also demonstrated a preventive action, without the potential risks associated with unwanted engraftment or the adverse effects of administering cells. In this paper, we explore these emerging treatments and take a look at the revolutionary changes in BPD and neonatology on the horizon.
Collapse
Affiliation(s)
- Luca Bonadies
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (L.B.); (P.Z.)
| | - Patrizia Zaramella
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (L.B.); (P.Z.)
| | - Andrea Porzionato
- Human Anatomy Section, Department of Neurosciences, University of Padova, 35128 Padova, Italy;
| | - Giorgio Perilongo
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy;
| | - Maurizio Muraca
- Institute of Pediatric Research “Città della Speranza”, Stem Cell and Regenerative Medicine Laboratory, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy;
| | - Eugenio Baraldi
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (L.B.); (P.Z.)
- Correspondence: ; Tel.: +39-049-821-3560; Fax: +39-049-821-3502
| |
Collapse
|
21
|
Mesenchymal stem/stromal cells stably transduced with an inhibitor of CC chemokine ligand 2 ameliorate bronchopulmonary dysplasia and pulmonary hypertension. Cytotherapy 2020; 22:180-192. [PMID: 32139242 DOI: 10.1016/j.jcyt.2020.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/20/2022]
Abstract
Perinatal bronchopulmonary dysplasia (BPD) is defined as lung injury in preterm infants caused by various factors, resulting in serious respiratory dysfunction and high mortality. The administration of mesenchymal stem/stromal cells (MSCs) to treat/prevent BPD has proven to have certain therapeutic effects. However, MSCs can only weakly regulate macrophage function, which is strongly involved in the development of BPD. 7ND-MSCs are MSCs transfected with 7ND, a truncated version of CC chemokine ligand 2 (CCL2) that promotes macrophage activation, using a lentiviral vector. In the present study, we show in a BPD rat model that 7ND-MSC administration, but not MSCs alone, ameliorated the impaired alveolarization evaluated by volume density and surface area in the lung tissue, as well as pulmonary artery remodeling and pulmonary hypertension induced by BPD. In addition, 7ND-MSCs, but not MSCs alone, reduced M1 macrophages and the messenger RNA expressions of interleukin-6 and CCL2 in the lung tissue. Thus, the present study showed the treatment effect of 7ND-MSCs in a BPD rat model, which was more effective than that of MSCs alone.
Collapse
|
22
|
Augustine S, Cheng W, Avey MT, Chan ML, Lingappa SMC, Hutton B, Thébaud B. Are all stem cells equal? Systematic review, evidence map, and meta-analyses of preclinical stem cell-based therapies for bronchopulmonary dysplasia. Stem Cells Transl Med 2020; 9:158-168. [PMID: 31746123 PMCID: PMC6988768 DOI: 10.1002/sctm.19-0193] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/10/2019] [Indexed: 12/25/2022] Open
Abstract
Regenerative stem cell-based therapies for bronchopulmonary dysplasia (BPD), the most common preterm birth complication, demonstrate promise in animals. Failure to objectively appraise available preclinical data and identify knowledge gaps could jeopardize clinical translation. We performed a systematic review and network meta-analysis (NMA) of preclinical studies testing cell-based therapies in experimental neonatal lung injury. Fifty-three studies assessing 15 different cell-based therapies were identified: 35 studied the effects of mesenchymal stromal cells (MSCs) almost exclusively in hyperoxic rodent models of BPD. Exploratory NMAs, for select outcomes, suggest that MSCs are the most effective therapy. Although a broad range of promising cell-based therapies has been assessed, few head-to-head comparisons and unclear risk of bias exists. Successful clinical translation of cell-based therapies demands robust preclinical experimental design with appropriately blinded, randomized, and statistically powered studies, based on biological plausibility for a given cell product, in standardized models and endpoints with transparent reporting.
Collapse
Affiliation(s)
- Sajit Augustine
- Division of NeonatologyWindsor Regional HospitalWindsorOntarioCanada
- Department of Pediatrics, Schulich Medicine & DentistryWestern UniversityLondonOntarioCanada
| | - Wei Cheng
- Ottawa Hospital Research InstituteOttawaOntarioCanada
| | | | - Monica L. Chan
- Department of NeonatologyChildren's Hospital of Eastern OntarioOttawaOntarioCanada
| | | | - Brian Hutton
- Ottawa Hospital Research InstituteOttawaOntarioCanada
- School of Epidemiology, Public Health and Preventive Medicine, Faculty of Medicine, University of OttawaOttawaOntarioCanada
| | - Bernard Thébaud
- Ottawa Hospital Research InstituteOttawaOntarioCanada
- Department of NeonatologyChildren's Hospital of Eastern OntarioOttawaOntarioCanada
- Department of PediatricsChildren's Hospital of Eastern Ontario Research Institute, University of OttawaOttawaOntarioCanada
| |
Collapse
|
23
|
El-Saie A, Shivanna B. Novel Strategies to Reduce Pulmonary Hypertension in Infants With Bronchopulmonary Dysplasia. Front Pediatr 2020; 8:201. [PMID: 32457857 PMCID: PMC7225259 DOI: 10.3389/fped.2020.00201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/02/2020] [Indexed: 01/10/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a developmental lung disorder of preterm infants primarily caused by the failure of host defense mechanisms to prevent tissue injury and facilitate repair. This disorder is the most common complication of premature birth, and its incidence remains unchanged over the past few decades. Additionally, BPD increases long-term cardiopulmonary and neurodevelopmental morbidities of preterm infants. Pulmonary hypertension (PH) is a common morbidity of BPD. Importantly, the presence of PH increases both the short- and long-term morbidities and mortality in BPD infants. Further, there are no curative therapies for this complex disease. Besides providing an overview of the pathogenesis and diagnosis of PH associated with BPD, we have attempted to comprehensively review and summarize the current literature on the interventions to prevent and/or mitigate BPD and PH in preclinical studies. Our goal was to provide insight into the therapies that have a high translational potential to meaningfully manage BPD patients with PH.
Collapse
Affiliation(s)
- Ahmed El-Saie
- Department of Pediatrics, Section of Neonatology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Binoy Shivanna
- Department of Pediatrics, Section of Neonatology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| |
Collapse
|
24
|
Kindermann A, Binder L, Baier J, Gündel B, Simm A, Haase R, Bartling B. Severe but not moderate hyperoxia of newborn mice causes an emphysematous lung phenotype in adulthood without persisting oxidative stress and inflammation. BMC Pulm Med 2019; 19:245. [PMID: 31842840 PMCID: PMC6915952 DOI: 10.1186/s12890-019-0993-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 11/14/2019] [Indexed: 12/25/2022] Open
Abstract
Background Preterm newborns typically require supplemental oxygen but hyperoxic conditions also damage the premature lung. Oxygen-induced lung damages are mainly studied in newborn mouse models using oxygen concentrations above 75% and looking at short-term effects. Therefore, we aimed at the investigation of long-term effects and their dependency on different oxygen concentrations. Methods Newborn mice were exposed to moderate vs. severe hyperoxic air conditions (50 vs. 75% O2) for 14 days followed by a longer period of normoxic conditions. Lung-related parameters were collected at an age of 60 or 120 days. Results Severe hyperoxia caused lower alveolar density, enlargement of parenchymal air spaces and fragmented elastic fibers as well as higher lung compliance with peak airflow limitations and higher sensitivity to ventilation-mediated damages in later life. However, these long-term lung structural and functional changes did not restrict the voluntary physical activity. Also, they were not accompanied by ongoing inflammatory processes, increased formation of reactive oxygen species (ROS) or altered expressions of antioxidant enzymes (superoxide dismutases, catalase) and lung elasticity-relevant proteins (elastin, pro-surfactant proteins) in adulthood. In contrast to severe hyperoxia, moderate hyperoxia was less lung damaging but also not free of long-term effects (higher lung compliance without peak airflow limitations, increased ROS formation). Conclusions Severe but not moderate neonatal hyperoxia causes emphysematous lungs without persisting oxidative stress and inflammation in adulthood. As the existing fragmentation of the elastic fibers seems to play a pivotal role, it indicates the usefulness of elastin-protecting compounds in the reduction of long-term oxygen-related lung damages.
Collapse
Affiliation(s)
- Anke Kindermann
- Department of Cardiac Surgery, Middle German Heart Center, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
| | - Leonore Binder
- Department of Cardiac Surgery, Middle German Heart Center, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
| | - Jan Baier
- Department of Neonatology and Pediatric Intensive Care, Clinic for Child and Adolescent Medicine, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Beate Gündel
- Department of Cardiac Surgery, Middle German Heart Center, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
| | - Andreas Simm
- Department of Cardiac Surgery, Middle German Heart Center, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
| | - Roland Haase
- Department of Neonatology and Pediatric Intensive Care, Clinic for Child and Adolescent Medicine, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Babett Bartling
- Department of Cardiac Surgery, Middle German Heart Center, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany.
| |
Collapse
|
25
|
Liu A, Zhang X, He H, Zhou L, Naito Y, Sugita S, Lee JW. Therapeutic potential of mesenchymal stem/stromal cell-derived secretome and vesicles for lung injury and disease. Expert Opin Biol Ther 2019; 20:125-140. [PMID: 31701782 DOI: 10.1080/14712598.2020.1689954] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: The acute respiratory distress syndrome (ARDS) is a devastating clinical condition common in patients with respiratory failure. Based largely on numerous preclinical studies and recent Phase I/II clinical trials, administration of stem cells, specifically mesenchymal stem or stromal cells (MSC), as a therapeutic for acute lung injury (ALI) holds great promise. However, concern for the use of stem cells, specifically the risk of iatrogenic tumor formation, remains unresolved. Accumulating evidence now suggest that stem cell-derived conditioned medium (CM) and/or extracellular vesicles (EV) might constitute compelling alternatives.Areas covered: The current review focuses on the preclinical studies testing MSC CM and/or EV as treatment for ALI and other inflammatory lung diseases.Expert opinion: Clinical application of MSC or their secreted CM may be limited by the cost of growing enough cells, the logistic of MSC storage, and the lack of standardization of what constitutes MSC CM. However, the clinical application of MSC EV remains promising, primarily due to the ability of EV to maintain the functional phenotype of the parent cell as a therapeutic. However, utilization of MSC EV will also require large-scale production, the cost of which may be prohibitive unless the potency of the EV can be increased.
Collapse
Affiliation(s)
- Airan Liu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiwen Zhang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hongli He
- Departments of Anesthesiology and Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Li Zhou
- Departments of Anesthesiology and Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Yoshifumi Naito
- Departments of Anesthesiology and Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Shinji Sugita
- Departments of Anesthesiology and Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Jae-Woo Lee
- Departments of Anesthesiology and Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| |
Collapse
|
26
|
Guerra K, Bryan C, Dapaah-Siakwan F, Sammour I, Drummond S, Zambrano R, Chen P, Huang J, Sharma M, Shrager S, Benny M, Wu S, Young KC. Intra-tracheal administration of a naked plasmid expressing stromal derived factor-1 improves lung structure in rodents with experimental bronchopulmonary dysplasia. Respir Res 2019; 20:255. [PMID: 31718614 PMCID: PMC6852969 DOI: 10.1186/s12931-019-1224-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 10/29/2019] [Indexed: 12/15/2022] Open
Abstract
Background Bronchopulmonary dysplasia (BPD) is characterized by alveolar simplification and disordered angiogenesis. Stromal derived factor-1 (SDF-1) is a chemokine which modulates cell migration, proliferation, and angiogenesis. Here we tested the hypothesis that intra-tracheal (IT) administration of a naked plasmid DNA expressing SDF-1 would attenuate neonatal hyperoxia-induced lung injury in an experimental model of BPD, by promoting angiogenesis. Design/methods Newborn Sprague-Dawley rat pups (n = 18–20/group) exposed to room air (RA) or hyperoxia (85% O2) from postnatal day (P) 1 to 14 were randomly assigned to receive IT a naked plasmid expressing SDF-1, JVS-100 (Juventas Therapeutics, Cleveland, Ohio) or placebo (PL) on P3. Lung alveolarization, angiogenesis, inflammation, vascular remodeling and pulmonary hypertension (PH) were assessed on P14. PH was determined by measuring right ventricular systolic pressure (RVSP) and the weight ratio of the right to left ventricle + septum (RV/LV + S). Capillary tube formation in SDF-1 treated hyperoxia-exposed human pulmonary microvascular endothelial cells (HPMEC) was determined by matrigel assay. Data is expressed as mean ± SD and analyzed by two-way ANOVA. Results Exposure of neonatal pups to 14 days of hyperoxia decreased lung SDF-1 gene expression. Moreover, whilst hyperoxia exposure inhibited capillary tube formation in HPMEC, SDF-1 treatment increased tube length and branching in HPMEC. PL-treated hyperoxia-exposed pups had decreased alveolarization and lung vascular density. This was accompanied by an increase in RVSP, RV/LV + S, pulmonary vascular remodeling and inflammation. In contrast, IT JVS-100 improved lung structure, reduced inflammation, PH and vascular remodeling. Conclusions Intratracheal administration of a naked plasmid expressing SDF-1 improves alveolar and vascular structure in an experimental model of BPD. These findings suggest that therapies which modulate lung SDF-1 expression may have beneficial effects in preterm infants with BPD.
Collapse
Affiliation(s)
- Kasonya Guerra
- Department of Pediatrics, University of Miami Miller School of Medicine, 1580 NW 10th Avenue RM-344, Miami, FL, 33136, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, 1580 NW 10th Avenue RM-344, Miami, FL, 33136, USA
| | - Carleene Bryan
- Department of Pediatrics, University of Miami Miller School of Medicine, 1580 NW 10th Avenue RM-344, Miami, FL, 33136, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, 1580 NW 10th Avenue RM-344, Miami, FL, 33136, USA
| | - Frederick Dapaah-Siakwan
- Department of Pediatrics, University of Miami Miller School of Medicine, 1580 NW 10th Avenue RM-344, Miami, FL, 33136, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, 1580 NW 10th Avenue RM-344, Miami, FL, 33136, USA
| | - Ibrahim Sammour
- Department of Pediatrics, University of Miami Miller School of Medicine, 1580 NW 10th Avenue RM-344, Miami, FL, 33136, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, 1580 NW 10th Avenue RM-344, Miami, FL, 33136, USA
| | - Shelly Drummond
- Department of Pediatrics, University of Miami Miller School of Medicine, 1580 NW 10th Avenue RM-344, Miami, FL, 33136, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, 1580 NW 10th Avenue RM-344, Miami, FL, 33136, USA
| | - Ronald Zambrano
- Department of Pediatrics, University of Miami Miller School of Medicine, 1580 NW 10th Avenue RM-344, Miami, FL, 33136, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, 1580 NW 10th Avenue RM-344, Miami, FL, 33136, USA
| | - Pingping Chen
- Department of Pediatrics, University of Miami Miller School of Medicine, 1580 NW 10th Avenue RM-344, Miami, FL, 33136, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, 1580 NW 10th Avenue RM-344, Miami, FL, 33136, USA
| | - Jian Huang
- Department of Pediatrics, University of Miami Miller School of Medicine, 1580 NW 10th Avenue RM-344, Miami, FL, 33136, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, 1580 NW 10th Avenue RM-344, Miami, FL, 33136, USA
| | - Mayank Sharma
- Department of Pediatrics, University of Miami Miller School of Medicine, 1580 NW 10th Avenue RM-344, Miami, FL, 33136, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, 1580 NW 10th Avenue RM-344, Miami, FL, 33136, USA
| | - Sebastian Shrager
- Department of Pediatrics, University of Miami Miller School of Medicine, 1580 NW 10th Avenue RM-344, Miami, FL, 33136, USA
| | - Merline Benny
- Department of Pediatrics, University of Miami Miller School of Medicine, 1580 NW 10th Avenue RM-344, Miami, FL, 33136, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, 1580 NW 10th Avenue RM-344, Miami, FL, 33136, USA
| | - Shu Wu
- Department of Pediatrics, University of Miami Miller School of Medicine, 1580 NW 10th Avenue RM-344, Miami, FL, 33136, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, 1580 NW 10th Avenue RM-344, Miami, FL, 33136, USA
| | - Karen C Young
- Department of Pediatrics, University of Miami Miller School of Medicine, 1580 NW 10th Avenue RM-344, Miami, FL, 33136, USA. .,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, 1580 NW 10th Avenue RM-344, Miami, FL, 33136, USA. .,The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, 1580 NW 10th Avenue RM-344, Miami, FL, 33136, USA.
| |
Collapse
|
27
|
Emukah C, Dittmar E, Naqvi R, Martinez J, Corral A, Moreira A, Moreira A. Mesenchymal stromal cell conditioned media for lung disease: a systematic review and meta-analysis of preclinical studies. Respir Res 2019; 20:239. [PMID: 31666086 PMCID: PMC6822429 DOI: 10.1186/s12931-019-1212-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Inflammation plays an important role in the pathogenesis of many lung diseases. Preclinical studies suggest that mesenchymal stromal cell (MSC) conditioned media (CdM) can attenuate inflammation. Our aim was threefold: (1) summarize the existing animal literature evaluating CdM as a therapeutic agent for pediatric/adult lung disease, (2) quantify the effects of CdM on inflammation, and (3) compare inflammatory effects of CdM to MSCs. METHODS Adhering to the Systematic Review Protocol for Animal Intervention Studies, a systematic search of English articles was performed in five databases. Meta-analysis and meta-regression were performed to generate random effect size using standardized mean difference (SMD). RESULTS A total of 10 studies met inclusion. Lung diseases included bronchopulmonary dysplasia, asthma, pulmonary hypertension, and acute respiratory distress syndrome. CdM decreased inflammatory cells (1.02 SMD, 95% CI 0.86, 1.18) and cytokines (0.71 SMD, 95% CI 0.59, 0.84). The strongest effect for inflammatory cells was in bronchopulmonary dysplasia (3.74 SMD, 95% CI 3.13, 4.36) while pulmonary hypertension had the greatest reduction in inflammatory cytokine expression (1.44 SMD, 95% CI 1.18, 1.71). Overall, CdM and MSCs had similar anti-inflammatory effects. CONCLUSIONS In this meta-analysis of animal models recapitulating lung disease, CdM improved inflammation and had an effect size comparable to MSCs. While these findings are encouraging, the risk of bias and heterogeneity limited the strength of our findings.
Collapse
Affiliation(s)
- Chimobi Emukah
- Department of Pediatrics, Division of Neonatology, University of Texas Health-San Antonio, San Antonio, Texas, 78229-3900, USA
| | - Evan Dittmar
- Department of Pediatrics, Division of Neonatology, University of Texas Health-San Antonio, San Antonio, Texas, 78229-3900, USA
| | - Rija Naqvi
- Department of Pediatrics, Division of Neonatology, University of Texas Health-San Antonio, San Antonio, Texas, 78229-3900, USA
| | - John Martinez
- Department of Pediatrics, Division of Neonatology, University of Texas Health-San Antonio, San Antonio, Texas, 78229-3900, USA
| | - Alexis Corral
- Department of Pediatrics, Division of Neonatology, University of Texas Health-San Antonio, San Antonio, Texas, 78229-3900, USA
| | - Axel Moreira
- Department of Pediatrics, Texas Children's Hospital, Houston, Texas, USA
| | - Alvaro Moreira
- Department of Pediatrics, Division of Neonatology, University of Texas Health-San Antonio, San Antonio, Texas, 78229-3900, USA.
| |
Collapse
|
28
|
Powell SB, Silvestri JM. Safety of Intratracheal Administration of Human Umbilical Cord Blood Derived Mesenchymal Stromal Cells in Extremely Low Birth Weight Preterm Infants. J Pediatr 2019; 210:209-213.e2. [PMID: 30992220 DOI: 10.1016/j.jpeds.2019.02.029] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/24/2019] [Accepted: 02/15/2019] [Indexed: 02/07/2023]
Abstract
In a phase 1 dose-escalation trial at 2 dosing levels, we assessed the safety of intratracheal administration of a single-dose of human umbilical cord blood-derived mesenchymal stromal cells in 12 extremely low birth weight infants <28 weeks of gestation and <1000 g at birth at 5-14 days of life. The treatment was well tolerated and appears to be safe and feasible, and warrants a larger randomized-controlled blinded study. TRIAL REGISTRATION: ClinicalTrials.gov: NCT02381366.
Collapse
Affiliation(s)
- Steven B Powell
- Department of Pediatrics, Rush University Children's Hospital, Chicago, IL.
| | - Jean M Silvestri
- Department of Pediatrics, Rush University Children's Hospital, Chicago, IL
| |
Collapse
|
29
|
Yue Y, Luo Z, Liao Z, Zhang L, Liu S, Wang M, Zhao F, Cao C, Ding Y, Yue S. Excessive activation of NMDA receptor inhibits the protective effect of endogenous bone marrow mesenchymal stem cells on promoting alveolarization in bronchopulmonary dysplasia. Am J Physiol Cell Physiol 2019; 316:C815-C827. [PMID: 30917030 DOI: 10.1152/ajpcell.00392.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We studied the role of bone marrow mesenchymal stem cells (MSCs) in our established model of bronchopulmonary dysplasia (BPD) induced by intrauterine hypoxia in the rat. First, we found that intrauterine hypoxia can reduce the number of MSCs in lungs and bone marrow of rat neonates, whereas the administration of granulocyte colony-stimulating factor or busulfan to either motivate or inhibit bone marrow MSCs to lungs altered lung development. Next, in vivo experiments, we confirmed that intrauterine hypoxia also impaired bone marrow MSC proliferation and decreased cell cycling activity. In vitro, by using the cultured bone marrow MSCs, the proliferation and the cell cycling activity of MSCs were also reduced when N-methyl-d-aspartic acid (NMDA) was used as an NMDA receptor (NMDAR) agonist. When MK-801 or memantine as NMDAR antagonists in vitro or in vivo was used, the reduction of cell cycling activity and proliferation were partially reversed. Furthermore, we found that intrauterine hypoxia could enhance the concentration of glutamate, an amino acid that can activate NMDAR, in the bone marrow of neonates. Finally, we confirmed that the increased concentration of TNF-ɑ in the bone marrow of neonatal rats after intrauterine hypoxia induced the release of glutamate and reduced the cell cycling activity of MSCs, and the latter could be partially reversed by MK-801. In summary, intrauterine hypoxia could decrease the number of bone marrow MSCs that could affect lung development and lung function through excessive activation of NMDAR that is partially caused by TNF-ɑ.
Collapse
Affiliation(s)
- Yinyan Yue
- Department of Pediatrics, Xiangya Hospital, Central South University , Changsha , China
| | - Ziqiang Luo
- Department of Physiology, School of Basic Medicine, Central South University , Changsha , China
| | - Zhengchang Liao
- Department of Pediatrics, Xiangya Hospital, Central South University , Changsha , China
| | - Liming Zhang
- Department of Anesthesiology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Shuai Liu
- Department of Pulmonary and Critical Care Medicine, Xiangya Hospital, Central South University , Changsha , China
| | - Mingjie Wang
- Department of Pediatrics, Xiangya Hospital, Central South University , Changsha , China
| | - Feiyan Zhao
- Department of Physiology, School of Basic Medicine, Central South University , Changsha , China
| | - Chuanding Cao
- Department of Pediatrics, Xiangya Hospital, Central South University , Changsha , China
| | - Ying Ding
- Department of Pediatrics, Xiangya Hospital, Central South University , Changsha , China
| | - Shaojie Yue
- Department of Pediatrics, Xiangya Hospital, Central South University , Changsha , China
| |
Collapse
|
30
|
Preventing bronchopulmonary dysplasia: new tools for an old challenge. Pediatr Res 2019; 85:432-441. [PMID: 30464331 DOI: 10.1038/s41390-018-0228-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 09/12/2018] [Accepted: 09/25/2018] [Indexed: 12/12/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is the most prevalent chronic lung disease in infants and presents as a consequence of preterm birth. Due to the lack of effective preventive and treatment strategies, BPD currently represents a major therapeutic challenge that requires continued research efforts at the basic, translational, and clinical levels. However, not all very low birth weight premature babies develop BPD, which suggests that in addition to known gestational age and intrauterine and extrauterine risk factors, other unknown factors must be involved in this disease's development. One of the main goals in BPD research is the early prediction of very low birth weight infants who are at risk of developing BPD in order to initiate the adequate preventive strategies. Other benefits of determining the risk of BPD include providing prognostic information and stratifying infants for clinical trial enrollment. In this article, we describe new opportunities to address BPD's complex pathophysiology by identifying prognostic biomarkers and develop novel, complex in vitro human lung models in order to develop effective therapies. These therapies for protecting the immature lung from injury can be developed by taking advantage of recent scientific progress in -omics, 3D organoids, and regenerative medicine.
Collapse
|
31
|
Systemic Transplantation of Mesenchymal Stem Cells Modulates Endothelial Cell Adhesion Molecules Induced by Ovalbumin in Rat Model of Asthma. Inflammation 2019; 41:2236-2245. [PMID: 30088169 DOI: 10.1007/s10753-018-0866-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Achieving the optimal clinical outcome of mesenchymal stem cells (MSCs) is particularly dependent on fundamental understanding of therapeutic mechanisms. The current study was focused on the possible mechanisms by which rat bone marrow-derived mesenchymal stem cells (rBMMSCs) and/or conditioned media (CM) display broad immunomodulatory properties for ameliorating of asthma-related pathological changes. Male rats were divided equally into four experimental groups (n = 6): healthy rats received 50 μl PBS intravenously (group C), sensitized rats received 50 μl PBS intravenously (group OVA), sensitized rats received 50 μl CM intravenously (group OVA + CM), and sensitized rats received 50 μl PBS intravenously containing 2 × 106 rBMMSCs (group OVA + MSCs). After 2 weeks, the expression of interleukin (IL)-5, IL-12 and INF-γ, ICAM-1, and VCAM-1; pathological injuries; and the homing of MSCs into the lung tissues were assessed. Our results showed that systemic delivery of rBMMSCs, but not CM, returned the expression of IL-5, IL-12 and INF-γ, ICAM-1, and VCAM-1 and pathological injuries in the lung tissues of asthmatic groups to the near level of control group (p < 0.001 to p < 0.05). Moreover, rBMMSCs had potential to successfully recall to asthmatic niche in cell-administrated rats. However, no regulatory function was observed by MSC-CM. Collectively, our data notified the potency of MSCs in ameliorating OVA-mediated airway inflammation in a rat model of asthma presumably by regulating endothelial expression of leukocyte-selective cell adhesion molecules in lung tissue.
Collapse
|
32
|
Loering S, Cameron GJM, Starkey MR, Hansbro PM. Lung development and emerging roles for type 2 immunity. J Pathol 2019; 247:686-696. [PMID: 30506724 DOI: 10.1002/path.5211] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/06/2018] [Accepted: 11/26/2018] [Indexed: 12/12/2022]
Abstract
Lung development is a complex process mediated through the interaction of multiple cell types, factors and mediators. In mice, it starts as early as embryonic day 9 and continues into early adulthood. The process can be separated into five different developmental stages: embryonic, pseudoglandular, canalicular, saccular, and alveolar. Whilst lung bud formation and branching morphogenesis have been studied extensively, the mechanisms of alveolarisation are incompletely understood. Aberrant lung development can lead to deleterious consequences for respiratory health such as bronchopulmonary dysplasia (BPD), a disease primarily affecting preterm neonates, which is characterised by increased pulmonary inflammation and disturbed alveolarisation. While the deleterious effects of type 1-mediated inflammatory responses on lung development have been well established, the role of type 2 responses in postnatal lung development remains poorly understood. Recent studies indicate that type 2-associated immune cells, such as group 2 innate lymphoid cells and alveolar macrophages, are increased in number during postnatal alveolarisation. Here, we present the current state of understanding of the postnatal stages of lung development and the key cell types and mediators known to be involved. We also provide an overview of how stem cells are involved in lung development and regeneration, and the negative influences of respiratory infections. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Svenja Loering
- Priority Research Center's GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Guy J M Cameron
- Priority Research Center's GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Malcolm R Starkey
- Priority Research Center's GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Philip M Hansbro
- Priority Research Center's GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,Center for Inflammation, Centenary Institute and The School of Life Sciences, University of Technology, Sydney, New South Wales, Australia
| |
Collapse
|
33
|
Porzionato A, Zaramella P, Dedja A, Guidolin D, Van Wemmel K, Macchi V, Jurga M, Perilongo G, De Caro R, Baraldi E, Muraca M. Intratracheal administration of clinical-grade mesenchymal stem cell-derived extracellular vesicles reduces lung injury in a rat model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2019; 316:L6-L19. [DOI: 10.1152/ajplung.00109.2018] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) prevent the onset of bronchopulmonary dysplasia (BPD) in animal models, an effect that seems to be mediated by their secreted extracellular vesicles (EVs). The aim of this study was to compare the protective effects of intratracheally (IT) administered MSCs versus MSC-EVs in a hyperoxia-induced rat model of BPD. At birth, rats were distributed as follows: animals raised in ambient air for 2 wk ( n = 10), and animals exposed to 60% oxygen for 2 wk and treated with IT-administered physiological solution ( n = 10), MSCs ( n = 10), or MSC-EVs ( n = 10) on postnatal days 3, 7, and 10. The sham-treated hyperoxia-exposed animals showed reductions in total surface area of alveolar air spaces, and total number of alveoli ( Nalv), and an increased mean alveolar volume (Valv). EVs prompted a significant increase in Nalv ( P < 0.01) and a significant decrease in Valv ( P < 0.05) compared with sham-treated animals, whereas MSCs only significantly improved Nalv ( P < 0.05). Small pulmonary vessels of the sham-treated hyperoxia-exposed rats also showed an increase in medial thickness, which only EVs succeeded in preventing significantly ( P < 0.05). In conclusion, both EVs and MSCs reduce hyperoxia-induced damage, with EVs obtaining better results in terms of alveolarization and lung vascularization parameters. This suggests that IT-administered EVs could be an effective approach to BPD treatment.
Collapse
Affiliation(s)
- Andrea Porzionato
- Human Anatomy Section, Department of Neurosciences, University of Padova, Padua, Italy
| | - Patrizia Zaramella
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, University of Padova, Padua, Italy
| | - Arben Dedja
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padua, Italy
| | - Diego Guidolin
- Human Anatomy Section, Department of Neurosciences, University of Padova, Padua, Italy
| | | | - Veronica Macchi
- Human Anatomy Section, Department of Neurosciences, University of Padova, Padua, Italy
| | - Marcin Jurga
- The Cell Factory BVBA (Esperite NV), Niel, Belgium
| | - Giorgio Perilongo
- Pediatric Clinic, Department of Women’s and Children’s Health, University of Padova, Padua, Italy
- Institute of Pediatric Research, “Città della Speranza,” Padua, Italy
| | - Raffaele De Caro
- Human Anatomy Section, Department of Neurosciences, University of Padova, Padua, Italy
| | - Eugenio Baraldi
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, University of Padova, Padua, Italy
- Institute of Pediatric Research, “Città della Speranza,” Padua, Italy
| | - Maurizio Muraca
- Institute of Pediatric Research, “Città della Speranza,” Padua, Italy
- Stem Cell and Regenerative Medicine Laboratory, Department of Women’s and Children’s Health, University of Padova, Padua, Italy
| |
Collapse
|
34
|
Ahn SY, Chang YS, Sung SI, Park WS. Mesenchymal Stem Cells for Severe Intraventricular Hemorrhage in Preterm Infants: Phase I Dose-Escalation Clinical Trial. Stem Cells Transl Med 2018; 7:847-856. [PMID: 30133179 PMCID: PMC6265626 DOI: 10.1002/sctm.17-0219] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 06/24/2018] [Indexed: 12/15/2022] Open
Abstract
We previously demonstrated that transplanting mesenchymal stem cells (MSCs) improved recovery from brain injury induced by severe intraventricular hemorrhage (IVH) in newborn rats. To assess the safety and feasibility of MSCs in preterm infants with severe IVH, we performed a phase I dose-escalation clinical trial. The first three patients received a low dose of MSCs (5 × 106 cells/kg), and the next six received a high dose (1 × 107 cells/kg). We assessed adverse outcomes, including mortality and the progress of posthemorrhagic hydrocephalus. Intraventricular transplantation of MSCs was performed in nine premature infants with mean gestational age of 26.1 ± 0.7 weeks and birth weight of 808 ± 85 g at 11.6 ± 0.9 postnatal days. Treatment with MSCs was well tolerated, and no patients showed serious adverse effects or dose-limiting toxicities attributable to MSC transplantation. There was no mortality in IVH patients receiving MSCs. Infants who underwent shunt surgery showed a higher level of interleukin (IL)-6 in cerebrospinal fluid (CSF) obtained before MSC transplantation in comparison with infants who did not receive a shunt. Levels of IL-6 and tumor necrosis factor-α in initially obtained CSF correlated significantly with baseline ventricular index. Intraventricular transplantation of allogeneic human UCB-derived MSCs into preterm infants with severe IVH is safe and feasible, and warrants a larger, and controlled, phase II study. Stem Cells Translational Medicine 2018;7:847-856.
Collapse
Affiliation(s)
- So Yoon Ahn
- Department of Pediatrics, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulSouth Korea
- Stem Cell and Regenerative Medicine InstituteSamsung Medical CenterSeoulSouth Korea
- Department of Health Sciences and TechnologySAIHST, Sungkyunkwan UniversitySeoulSouth Korea
| | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulSouth Korea
- Stem Cell and Regenerative Medicine InstituteSamsung Medical CenterSeoulSouth Korea
- Department of Health Sciences and TechnologySAIHST, Sungkyunkwan UniversitySeoulSouth Korea
| | - Se In Sung
- Department of Pediatrics, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulSouth Korea
| | - Won Soon Park
- Department of Pediatrics, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulSouth Korea
- Stem Cell and Regenerative Medicine InstituteSamsung Medical CenterSeoulSouth Korea
- Department of Health Sciences and TechnologySAIHST, Sungkyunkwan UniversitySeoulSouth Korea
| |
Collapse
|
35
|
Rahbarghazi R, Keyhanmanesh R, Aslani MR, Hassanpour M, Ahmadi M. Bone marrow mesenchymal stem cells and condition media diminish inflammatory adhesion molecules of pulmonary endothelial cells in an ovalbumin-induced asthmatic rat model. Microvasc Res 2018; 121:63-70. [PMID: 30343002 DOI: 10.1016/j.mvr.2018.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Although excitements related to stem cell therapeutic outcomes have been highlighted enormously in asthma, the vast majority of works were conducted by researchers in animal models. Elucidating the mechanisms underlying the therapeutic effects of MSCs in asthmatic rats will provide a rational basis for assuring maximal safety of future clinical application of stem cells. In the current study, we sought to investigate the possible paracrine mechanism by which direct injection of MSCs and/or CM attenuate efficiently Th2-mediated inflammation in asthmatic lung tissues with the focus on ICAM-1 and VCAM-1 expression. METHODS Male rats were divided into four experimental groups (n = 6); healthy rats received PBS intratracheally (group C), sensitized rats received PBS intratracheally (group S), sensitized rats received CM intratracheally (group S + CM), and sensitized rats received PBS intratracheally containing 2 × 106 rBMMSCs (group S + MSCs). Two weeks post-transplantation, the expression of interleukin (IL)-5, -12 and INF-γ, ICAM-1 and VCAM-1 were assessed along with pathological injuries and the homing of MSCs into the lung tissues. RESULTS Our results showed CM, and notably rBMMSCs, returned the expression of IL-5, IL-12, INF-γ, ICAM-1, and VCAM-1 (p < 0.001 to p < 0.05) to the normal levels. Based on data, pathological injuries in pulmonary specimens of asthmatic rats were significantly attenuated (p < 0.001 to p < 0.05). Moreover, rBMMSCs had potential to successfully home to an asthmatic niche in cell-administrated rats. CONCLUSIONS Our data noted the potency of CM and especially MSCs in ameliorating pathological changes via intra-tracheal route presumably by targeting ICAM-1 and VCAM-1 in lung tissues in rat asthma model.
Collapse
Affiliation(s)
- Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Keyhanmanesh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Aslani
- Ardabil Imam Khomeini Educational and Clinical Hospital, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Mehdi Hassanpour
- Stem Cell And Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Ahmadi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
36
|
Safety of Autologous Cord Blood Cells for Preterms: A Descriptive Study. Stem Cells Int 2018; 2018:5268057. [PMID: 30186329 PMCID: PMC6114055 DOI: 10.1155/2018/5268057] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/26/2018] [Accepted: 07/19/2018] [Indexed: 12/18/2022] Open
Abstract
Background Preterm birth complications are one of the leading causes of death among children under 5 years of age. Despite advances in medical care, many survivors face a lifetime of disability, including mental and physical retardation, and chronic lung disease. More recently, both allogenic and autogenic cord blood cells have been applied in the treatment of neonatal conditions such as hypoxic-ischemic encephalopathy (HIE) and bronchopulmonary dysplasia (BPD). Objective To assess the safety of autologous, volume- and red blood cell- (RBC-) reduced, noncryopreserved umbilical cord blood (UCB) cell infusion to preterm infants. Method This study was a phase I, open-label, single-arm, single-center trial to evaluate the safety of autologous, volume- and RBC-reduced, noncryopreserved UCB cell (5 × 107cells/kg) infusion for preterm infants <37 weeks gestational age. UCB cell characteristics, pre- and postinfusion vital signs, and laboratory investigations were recorded. Clinical data including mortality rates and preterm complications were recorded. Results After processing, (22.67 ± 4.05) ml UCB cells in volume, (2.67 ± 2.00) × 108 cells in number, with (22.67 ± 4.05) × 106 CD34+, (3.72 ± 3.25) × 105 colony forming cells (CFU-GM), and (99.7 ± 0.17%) vitality were infused to 15 preterm infants within 8 hours after birth. No adverse effects were noticed during treatment. All fifteen patients who received UCB infusion survived. The duration of hospitalization ranged from 4 to 65 (30 ± 23.6) days. Regarding preterm complications, no BPD, necrotizing enterocolitis (NEC), retinopathy of prematurity (ROP) was observed. There were 1/15 (7%) infant with intraventricular hemorrhage (IVH), 5/15 (33.3%) infants with ventilation-associated pneumonia, and 10/15 (66.67%) with anemia, respectively. Conclusions Collection, preparation, and infusion of fresh autologous UCB cells to preterm infants is feasible and safe. Adequately powered randomized controlled studies are needed.
Collapse
|
37
|
Collins JJP, Lithopoulos MA, Dos Santos CC, Issa N, Möbius MA, Ito C, Zhong S, Vadivel A, Thébaud B. Impaired Angiogenic Supportive Capacity and Altered Gene Expression Profile of Resident CD146 + Mesenchymal Stromal Cells Isolated from Hyperoxia-Injured Neonatal Rat Lungs. Stem Cells Dev 2018; 27:1109-1124. [PMID: 29957134 DOI: 10.1089/scd.2017.0145] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD), the most common complication of extreme preterm birth, can be caused by oxygen-related lung injury and is characterized by impaired alveolar and vascular development. Mesenchymal stromal cells (MSCs) have lung protective effects. Conversely, BPD is associated with increased MSCs in tracheal aspirates. We hypothesized that endogenous lung (L-)MSCs are perturbed in a well-established oxygen-induced rat model mimicking BPD features. Rat pups were exposed to 21% or 95% oxygen from birth to postnatal day 10. On day 12, CD146+ L-MSCs were isolated and characterized according to the International Society for Cellular Therapy criteria. Epithelial and vascular repair potential were tested by scratch assay and endothelial network formation, respectively, immune function by mixed lymphocyte reaction assay. Microarray analysis was performed using the Affymetrix GeneChip and gene set enrichment analysis software. CD146+ L-MSCs isolated from rat pups exposed to hyperoxia had decreased CD73 expression and inhibited lung endothelial network formation. CD146+ L-MSCs indiscriminately promoted epithelial wound healing and limited T cell proliferation. Expression of potent antiangiogenic genes of the axonal guidance cue and CDC42 pathways was increased after in vivo hyperoxia, whereas genes of the anti-inflammatory Janus kinase (JAK)/signal transducer and activator of transcription (STAT) and lung/vascular growth-promoting fibroblast growth factor (FGF) pathways were decreased. In conclusion, in vivo hyperoxia exposure alters the proangiogenic effects and FGF expression of L-MSCs. In addition, decreased CD73 and JAK/STAT expression suggests decreased immune function. L-MSC function may be perturbed and contribute to BPD pathogenesis. These findings may lead to improvements in manufacturing exogenous MSCs with superior repair capabilities.
Collapse
Affiliation(s)
- Jennifer J P Collins
- 1 Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute , Ottawa, Canada .,2 Department of Cellular and Molecular Medicine, University of Ottawa , Ottawa, Canada
| | - Marissa A Lithopoulos
- 1 Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute , Ottawa, Canada .,2 Department of Cellular and Molecular Medicine, University of Ottawa , Ottawa, Canada
| | - Claudia C Dos Santos
- 3 Keenan Research Centre for Biomedical Science of St. Michael's Hospital , Toronto, Canada .,4 Interdepartmental Division of Critical Care Medicine, University of Toronto , Toronto, Canada
| | - Nahla Issa
- 1 Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute , Ottawa, Canada .,2 Department of Cellular and Molecular Medicine, University of Ottawa , Ottawa, Canada
| | - Marius A Möbius
- 1 Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute , Ottawa, Canada .,5 Department of Neonatology and Pediatric Critical Care Medicine, Medical Faculty and University Hospital Carl Gustav Carus , Technische Universität Dresden, Dresden, Germany .,6 DFG Research Center and Cluster of Excellence for Regenerative Therapies (CRTD) , Technische Universität Dresden, Dresden, Germany
| | - Caryn Ito
- 1 Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute , Ottawa, Canada .,2 Department of Cellular and Molecular Medicine, University of Ottawa , Ottawa, Canada
| | - Shumei Zhong
- 1 Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute , Ottawa, Canada
| | - Arul Vadivel
- 1 Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute , Ottawa, Canada
| | - Bernard Thébaud
- 1 Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute , Ottawa, Canada .,2 Department of Cellular and Molecular Medicine, University of Ottawa , Ottawa, Canada .,7 Children's Hospital of Eastern Ontario Research Institute , Ottawa, Canada
| |
Collapse
|
38
|
The Potentials and Caveats of Mesenchymal Stromal Cell-Based Therapies in the Preterm Infant. Stem Cells Int 2018; 2018:9652897. [PMID: 29765429 PMCID: PMC5911321 DOI: 10.1155/2018/9652897] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 03/04/2018] [Indexed: 02/06/2023] Open
Abstract
Preponderance of proinflammatory signals is a characteristic feature of all acute and resulting long-term morbidities of the preterm infant. The proinflammatory actions are best characterized for bronchopulmonary dysplasia (BPD) which is the chronic lung disease of the preterm infant with lifelong restrictions of pulmonary function and severe consequences for psychomotor development and quality of life. Besides BPD, the immature brain, eye, and gut are also exposed to inflammatory injuries provoked by infection, mechanical ventilation, and oxygen toxicity. Despite the tremendous progress in the understanding of disease pathologies, therapeutic interventions with proven efficiency remain restricted to a few drug therapies with restricted therapeutic benefit, partially considerable side effects, and missing option of applicability to the inflamed brain. The therapeutic potential of mesenchymal stromal cells (MSCs)—also known as mesenchymal stem cells—has attracted much attention during the recent years due to their anti-inflammatory activities and their secretion of growth and development-promoting factors. Based on a molecular understanding, this review summarizes the positive actions of exogenous umbilical cord-derived MSCs on the immature lung and brain and the therapeutic potential of reprogramming resident MSCs. The pathomechanistic understanding of MSC actions from the animal model is complemented by the promising results from the first phase I clinical trials testing allogenic MSC transplantation from umbilical cord blood. Despite all the enthusiasm towards this new therapeutic option, the caveats and outstanding issues have to be critically evaluated before a broad introduction of MSC-based therapies.
Collapse
|
39
|
Thioredoxin-1 Protects Bone Marrow-Derived Mesenchymal Stromal Cells from Hyperoxia-Induced Injury In Vitro. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1023025. [PMID: 29599892 PMCID: PMC5828533 DOI: 10.1155/2018/1023025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/18/2017] [Accepted: 11/12/2017] [Indexed: 12/12/2022]
Abstract
Background The poor survival rate of mesenchymal stromal cells (MSC) transplanted into recipient lungs greatly limits their therapeutic efficacy for diseases like bronchopulmonary dysplasia (BPD). The aim of this study is to evaluate the effect of thioredoxin-1 (Trx-1) overexpression on improving the potential for bone marrow-derived mesenchymal stromal cells (BMSCs) to confer resistance against hyperoxia-induced cell injury. Methods 80% O2 was used to imitate the microenvironment surrounding-transplanted cells in the hyperoxia-induced lung injury in vitro. BMSC proliferation and apoptotic rates and the levels of reactive oxygen species (ROS) were measured. The effects of Trx-1 overexpression on the level of antioxidants and growth factors were investigated. We also investigated the activation of apoptosis-regulating kinase-1 (ASK1) and p38 mitogen-activated protein kinases (MAPK). Result Trx-1 overexpression significantly reduced hyperoxia-induced BMSC apoptosis and increased cell proliferation. We demonstrated that Trx-1 overexpression upregulated the levels of superoxide dismutase and glutathione peroxidase as well as downregulated the production of ROS. Furthermore, we illustrated that Trx-1 protected BMSCs against hyperoxic injury via decreasing the ASK1/P38 MAPK activation rate. Conclusion These results demonstrate that Trx-1 overexpression improved the ability of BMSCs to counteract hyperoxia-induced injury, thus increasing their potential to treat hyperoxia-induced lung diseases such as BPD.
Collapse
|
40
|
An Official American Thoracic Society Workshop Report 2015. Stem Cells and Cell Therapies in Lung Biology and Diseases. Ann Am Thorac Soc 2018; 13:S259-78. [PMID: 27509163 DOI: 10.1513/annalsats.201606-466st] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The University of Vermont College of Medicine, in collaboration with the NHLBI, Alpha-1 Foundation, American Thoracic Society, Cystic Fibrosis Foundation, European Respiratory Society, International Society for Cellular Therapy, and the Pulmonary Fibrosis Foundation, convened a workshop, "Stem Cells and Cell Therapies in Lung Biology and Lung Diseases," held July 27 to 30, 2015, at the University of Vermont. The conference objectives were to review the current understanding of the role of stem and progenitor cells in lung repair after injury and to review the current status of cell therapy and ex vivo bioengineering approaches for lung diseases. These are all rapidly expanding areas of study that both provide further insight into and challenge traditional views of mechanisms of lung repair after injury and pathogenesis of several lung diseases. The goals of the conference were to summarize the current state of the field, discuss and debate current controversies, and identify future research directions and opportunities for both basic and translational research in cell-based therapies for lung diseases. This 10th anniversary conference was a follow up to five previous biennial conferences held at the University of Vermont in 2005, 2007, 2009, 2011, and 2013. Each of those conferences, also sponsored by the National Institutes of Health, American Thoracic Society, and respiratory disease foundations, has been important in helping guide research and funding priorities. The major conference recommendations are summarized at the end of the report and highlight both the significant progress and major challenges in these rapidly progressing fields.
Collapse
|
41
|
Ee MT, Thébaud B. The Therapeutic Potential of Stem Cells for Bronchopulmonary Dysplasia: "It's About Time" or "Not so Fast" ? Curr Pediatr Rev 2018; 14:227-238. [PMID: 30205800 PMCID: PMC6416190 DOI: 10.2174/1573396314666180911100503] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/09/2018] [Accepted: 09/10/2018] [Indexed: 12/23/2022]
Abstract
OBJECTIVE While the survival of extremely premature infants has improved over the past decades, the rate of complications - especially for bronchopulmonary dysplasia (BPD) - remains unacceptably high. Over the past 50 years, no safe therapy has had a substantial impact on the incidence and severity of BPD. METHODS This may stem from the multifactorial disease pathogenesis and the increasing lung immaturity. Mesenchymal Stromal Cells (MSCs) display pleiotropic effects and show promising results in neonatal rodents in preventing or rescuing lung injury without adverse effects. Early phase clinical trials are now underway to determine the safety and efficacy of this therapy in extremely premature infants. RESULTS AND CONCLUSION This review summarizes our current knowledge about MSCs, their mechanism of action and the results of preclinical studies that provide the rationale for early phase clinical trials and discuss remaining gaps in our knowledge.
Collapse
Affiliation(s)
- Mong Tieng Ee
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, Ottawa, ON, Canada
| | - Bernard Thébaud
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, Ottawa, ON, Canada.,Sinclair Centre for Regenerative Medicine, Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
42
|
Molecular Mechanisms Responsible for Anti-inflammatory and Immunosuppressive Effects of Mesenchymal Stem Cell-Derived Factors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1084:187-206. [PMID: 31175638 DOI: 10.1007/5584_2018_306] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) are self-renewable cells capable for multilineage differentiation and immunomodulation. MSCs are able to differentiate into all cell types of mesodermal origin and, due to their plasticity, may generate cells of neuroectodermal or endodermal origin in vitro. In addition to the enormous differentiation potential, MSCs efficiently modulate innate and adaptive immune response and, accordingly, were used in large number of experimental and clinical trials as new therapeutic agents in regenerative medicine. Although MSC-based therapy was efficient in the treatment of many inflammatory and degenerative diseases, unwanted differentiation of engrafted MSCs represents important safety concern. MSC-based beneficial effects are mostly relied on the effects of MSC-derived immunomodulatory, pro-angiogenic, and trophic factors which attenuate detrimental immune response and inflammation, reduce ischemic injuries, and promote tissue repair and regeneration. Accordingly, MSC-conditioned medium (MSC-CM), which contains MSC-derived factors, has the potential to serve as a cell-free, safe therapeutic agent for the treatment of inflammatory diseases. Herein, we summarized current knowledge regarding identification, isolation, ontogeny, and functional characteristics of MSCs and described molecular mechanisms responsible for MSC-CM-mediated anti-inflammatory and immunosuppressive effects in the therapy of inflammatory lung, liver, and kidney diseases and ischemic brain injury.
Collapse
|
43
|
Hou C, Peng D, Gao L, Tian D, Dai J, Luo Z, Liu E, Chen H, Zou L, Fu Z. Human umbilical cord-derived mesenchymal stem cells protect from hyperoxic lung injury by ameliorating aberrant elastin remodeling in the lung of O 2-exposed newborn rat. Biochem Biophys Res Commun 2017; 495:1972-1979. [PMID: 29242152 DOI: 10.1016/j.bbrc.2017.12.055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 12/10/2017] [Indexed: 01/08/2023]
Abstract
The incidence and mortality rates of bronchopulmonary dysplasia (BPD) remain very high. Therefore, novel therapies are imminently needed to improve the outcome of this disease. Human umbilical cord-derived mesenchymal stem cells (UC-MSCs) show promising therapeutic effects on oxygen-induced model of BPD. In our experiment, UC-MSCs were intratracheally delivered into the newborn rats exposed to hyperoxia, a well-established BPD model. This study demonstrated that UC-MSCs reduce elastin expression stimulated by 90% O2 in human lung fibroblasts-a (HLF-a), and inhibit HLF-a transdifferentiation into myofibroblasts. In addition, the therapeutic effects of UC-MSCs in neonatal rats with BPD, UC-MSCs could inhibit lung elastase activity and reduce aberrant elastin expression and deposition in the lung of BPD rats. Overall, this study suggested that UC-MSCs could ameliorate aberrant elastin expression in the lung of hyperoxia-induced BPD model which may be associated with suppressing increased TGFβ1 activation.
Collapse
Affiliation(s)
- Chen Hou
- Pediatrics Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Chongqing Key Laboratory of Pediatrics, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
| | - Danyi Peng
- Pediatrics Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Chongqing Key Laboratory of Pediatrics, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
| | - Li Gao
- Pediatrics Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Department of Otorhinolaryngology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
| | - Daiyin Tian
- Pediatrics Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Jihong Dai
- Pediatrics Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Zhengxiu Luo
- Pediatrics Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Enmei Liu
- Pediatrics Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Hong Chen
- Pediatrics Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Chongqing Key Laboratory of Pediatrics, China; Department of Pediatrics, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Lin Zou
- Pediatrics Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Center for Clinical Molecular Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China.
| | - Zhou Fu
- Pediatrics Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China.
| |
Collapse
|
44
|
Augustine S, Avey MT, Harrison B, Locke T, Ghannad M, Moher D, Thébaud B. Mesenchymal Stromal Cell Therapy in Bronchopulmonary Dysplasia: Systematic Review and Meta-Analysis of Preclinical Studies. Stem Cells Transl Med 2017; 6:2079-2093. [PMID: 29045045 PMCID: PMC5702524 DOI: 10.1002/sctm.17-0126] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 08/25/2017] [Indexed: 01/22/2023] Open
Abstract
Extreme prematurity is the leading cause of death among children under 5 years of age. Currently, there is no treatment for bronchopulmonary dysplasia (BPD), the most common complication of extreme prematurity. Experimental studies in animal models of BPD suggest that mesenchymal stromal cells (MSCs) are lung protective. To date, no systematic review and meta-analysis has evaluated the preclinical evidence of this promising therapy. Our protocol was registered with Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimental Studies prior to searching MEDLINE (1946 to June 1, 2015), Embase (1947 to 2015 Week 22), Pubmed, Web of Science, and conference proceedings (1990 to present) for controlled comparative studies of neonatal animal models that received MSCs or cell free MSC-derived conditioned media (MSC-CM). Lung alveolarization was the primary outcome. We used random effects models for data analysis and followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses reporting guidelines. We screened 990 citations; 25 met inclusion criteria. All used hyperoxia-exposed neonatal rodents to model BPD. MSCs significantly improved alveolarization (Standardized mean difference of -1.330, 95% confidence interval [CI -1.724, -0.94, I2 69%]), irrespective of timing of treatment, source, dose, or route of administration. MSCs also significantly ameliorated pulmonary hypertension, lung inflammation, fibrosis, angiogenesis, and apoptosis. Similarly, MSC-CM significantly improved alveolarization, angiogenesis, and pulmonary artery remodeling. MSCs, tested exclusively in hyperoxic rodent models of BPD, show significant therapeutic benefit. Unclear risk of bias and incomplete reporting in the primary studies highlights nonadherence to reporting standards. Overall, safety and efficacy in other species/large animal models may provide useful information for guiding the design of clinical trials. Stem Cells Translational Medicine 2017;6:2079-2093.
Collapse
Affiliation(s)
- Sajit Augustine
- Division of Neonatology, Department of PediatricsChildren's Hospital of Eastern OntarioOttawaOntarioCanada
| | - Marc T. Avey
- Clinical Epidemiology Program, The Ottawa Hospital Research InstituteOttawaOntarioCanada
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Tiffany Locke
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mona Ghannad
- Clinical Epidemiology Program, The Ottawa Hospital Research InstituteOttawaOntarioCanada
| | - David Moher
- Clinical Epidemiology Program, The Ottawa Hospital Research InstituteOttawaOntarioCanada
- School of Epidemiology, Public Health and Preventive Medicine, Faculty of Medicine, University of OttawaOttawaOntarioCanada
| | - Bernard Thébaud
- Division of Neonatology, Department of PediatricsChildren's Hospital of Eastern OntarioOttawaOntarioCanada
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Hospital Research Institute, Sinclair Centre for Regenerative MedicineOttawaOntarioCanada
- Children's Hospital of Eastern Ontario Research InstituteOttawaOntarioCanada
| |
Collapse
|
45
|
Cruz FF, Rocco PRM. Stem-cell extracellular vesicles and lung repair. Stem Cell Investig 2017; 4:78. [PMID: 29057250 DOI: 10.21037/sci.2017.09.02] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/30/2017] [Indexed: 12/12/2022]
Abstract
Four out of the ten leading causes of morbidity and mortality worldwide are lung diseases. Despite advances in comprehending the pathophysiological mechanisms involved in these disorders, for several respiratory diseases, there is still no effective treatment able to stop their natural history or reverse the morphological and functional damage they cause. In this context, recent research has supported a potential role of cell therapy for lung diseases and critical illness. The anti-inflammatory, antifibrotic, and microbicidal effects of stem cells are mainly attributed to their secretome, which contains proteins, lipids, microRNAs, and mRNAs. These are secreted in the conditioned medium and are also present in extracellular vesicles (EVs). This review will provide a detailed discussion of the role of EVs produced by mesenchymal stromal cells in preclinical experimental models of pulmonary disorders and critical illness, as well as in ongoing clinical trials.
Collapse
Affiliation(s)
- Fernanda F Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, and National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, and National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
46
|
Mueller M, Kramer BW. Stem cells and Bronchopulmonary Dysplasia - The five questions: Which cells, when, in which dose, to which patients via which route? Paediatr Respir Rev 2017; 24:54-59. [PMID: 28162941 DOI: 10.1016/j.prrv.2016.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/06/2016] [Indexed: 12/14/2022]
Abstract
Preterm birth is the leading cause of death in newborns and children. Despite advances in perinatology, immature infants continue to face serious risks such chronic respiratory impairment from bronchopulmonary dysplasia (BPD). Current treatment options are insufficient and novel approaches are desperately needed. In recent years stem cells have emerged as potential candidates to treat BPD with mesenchymal stem/stromal cells (MSCs) being particularly promising. MSCs originate from several stem cell niches including bone marrow, skin, or adipose, umbilical cord, and placental tissues. Although the first MSCs clinical trials in BPD are ongoing, multiple questions remain open. In this review, we discuss the question of the optimal cell source (live cells or cell products), route and timing of the transplantation. Furthermore, we discuss MSCs possible capacities including migration, homing, pro-angiogenesis, anti-inflammatory, and tissue-regenerative potential as well.
Collapse
Affiliation(s)
- Martin Mueller
- Department of Obstetrics and Gynecology, University Hospital Bern, Bern, Switzerland; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA; Department of Clinical Research, University of Bern, Bern, Switzerland.
| | - Boris W Kramer
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands; School of Oncology and Developmental Biology (GROW), Maastricht, The Netherlands.
| |
Collapse
|
47
|
Chen CM, Chou HC, Lin W, Tseng C. Surfactant effects on the viability and function of human mesenchymal stem cells: in vitro and in vivo assessment. Stem Cell Res Ther 2017; 8:180. [PMID: 28774314 PMCID: PMC5543543 DOI: 10.1186/s13287-017-0634-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/15/2017] [Accepted: 07/17/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Surfactant therapy has become the standard of care for preterm infants with respiratory distress syndrome. Preclinical studies have reported the therapeutic benefits of mesenchymal stem cells (MSCs) in experimental bronchopulmonary dysplasia. This study investigated the effects of a surfactant on the in vitro viability and in vivo function of human MSCs. METHODS The viability, phenotype, and mitochondrial membrane potential (MMP) of MSCs were assessed through flow cytometry. The in vivo function was assessed after intratracheal injection of human MSCs (1 × 105 cells) diluted in 30 μl of normal saline (NS), 10 μl of a surfactant diluted in 20 μl of NS, and 10 μl of a surfactant and MSCs (1 × 105 cells) diluted in 20 μl of NS in newborn rats on postnatal day 5. The pups were reared in room air (RA) or an oxygen-enriched atmosphere (85% O2) from postnatal days 1 to 14; eight study groups were examined: RA + NS, RA + MSCs, RA + surfactant, RA + surfactant + MSCs, O2 + NS, O2 + MSCs, O2 + surfactant, and O2 + surfactant + MSCs. The lungs were excised for histological and cytokine analysis on postnatal day 14. RESULTS Compared with the controls, surfactant-treated MSCs showed significantly reduced viability and MMP after exposure to 1:1 and 1:2 of surfactant:MSCs for 15 and 60 minutes. All human MSC samples exhibited similar percentages of CD markers, regardless of surfactant exposure. The rats reared in hyperoxia and treated with NS exhibited a significantly higher mean linear intercept (MLI) than did those reared in RA and treated with NS, MSCs, surfactant, or surfactant + MSCs. Treatment with MSCs, surfactant, or surfactant + MSCs significantly reduced the hyperoxia-induced increase in MLI. The O2 + surfactant + MSCs group exhibited a significantly higher MLI than did the O2 + MSCs group. Furthermore, treatment with MSCs and MSCs + surfactant significantly reduced the hyperoxia-induced increase in apoptotic cells. CONCLUSIONS Combination therapy involving a surfactant and MSCs does not exert additive effects on lung development in hyperoxia-induced lung injury.
Collapse
Affiliation(s)
- Chung-Ming Chen
- Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan. .,Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Hsiu-Chu Chou
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Willie Lin
- Meridigen Biotech Co., Ltd., Taipei, Taiwan
| | | |
Collapse
|
48
|
Deepak J, Eduardo B. Prevention of bronchopulmonary dysplasia: current strategies. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:841-851. [PMID: 28774356 PMCID: PMC7390045 DOI: 10.7499/j.issn.1008-8830.2017.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/28/2017] [Indexed: 06/07/2023]
Abstract
Bronchopulmonary dysplasia (BPD) is one of the few diseases affecting premature infants that have continued to evolve since its first description about half a century ago. The current form of BPD, a more benign and protracted respiratory failure in extremely preterm infants, is in contrast to the original presentation of severe respiratory failure with high mortality in larger premature infants. This new BPD is end result of complex interplay of various antenatal and postnatal factors causing lung injury and subsequent abnormal repair leading to altered alveolar and vascular development. The change in clinical and pathologic picture of BPD over time has resulted in new challenges in developing strategies for its prevention and management. While some of these strategies like Vitamin A supplementation, caffeine and volume targeted ventilation have stood the test of time, others like postnatal steroids are being reexamined with great interest in last few years. It is quite clear that BPD is unlikely to be eliminated unless some miraculous strategy cures prematurity. The future of BPD prevention will probably be a combination of antenatal and postnatal strategies acting on multiple pathways to minimize lung injury and abnormal repair as well as promote normal alveolar and vascular development.
Collapse
Affiliation(s)
- Jain Deepak
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | - Bancalari Eduardo
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| |
Collapse
|
49
|
Stromal derived factor-1 mediates the lung regenerative effects of mesenchymal stem cells in a rodent model of bronchopulmonary dysplasia. Respir Res 2017; 18:137. [PMID: 28701189 PMCID: PMC5506612 DOI: 10.1186/s12931-017-0620-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/03/2017] [Indexed: 02/08/2023] Open
Abstract
Background Mesenchymal stem cells (MSCs) attenuate lung injury in experimental models of bronchopulmonary dysplasia (BPD). Stromal derived factor-1 (SDF-1), a chemokine secreted by MSCs, modulates angiogenesis and stem cell recruitment. Here we tested the hypothesis that SDF-1 mediates MSC protective effects in experimental BPD by modulating angiogenesis. Methods SDF-1 was knocked down in MSCs using lentiviral vectors carrying anti-SDF-1 short hairpin RNA (MSC-SDF KD). Non-silencing short hairpin RNA was used as control (MSC-NS control). Newborn rats exposed to normoxia or hyperoxia (FiO2 = 0.85) for 3 weeks, were randomly assigned to receive a single intra-tracheal injection (IT) of MSC-NS control or MSC-SDF KD (1 × 106 cells/50 μl) or placebo on postnatal day 7. The degree of alveolarization, lung angiogenesis, inflammation, and pulmonary hypertension (PH) were assessed at postnatal day 21. Results Administration of IT MSC-NS control improved lung alveolarization, angiogenesis and inflammation, and attenuated PH in newborn rats with hyperoxia-induced lung injury (HILI). In contrast, knockdown of SDF-1 in MSCs significantly reduced their beneficial effects on alveolarization, angiogenesis, inflammation and PH. Conclusions The therapeutic benefits of MSCs in neonatal HILI are in part mediated by SDF-1, through anti-inflammatory and angiogenesis promoting mechanisms. Therapies directly targeting this chemokine may provide a novel strategy for the treatment of BPD.
Collapse
|
50
|
Ahn SY, Chang YS, Kim JH, Sung SI, Park WS. Two-Year Follow-Up Outcomes of Premature Infants Enrolled in the Phase I Trial of Mesenchymal Stem Cells Transplantation for Bronchopulmonary Dysplasia. J Pediatr 2017; 185:49-54.e2. [PMID: 28341525 DOI: 10.1016/j.jpeds.2017.02.061] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/30/2016] [Accepted: 02/22/2017] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To determine the long-term safety and outcomes of mesenchymal stem cells (MSCs) for bronchopulmonary dysplasia in premature infants enrolled in a previous phase I clinical trial up to 2 years of corrected age (CA). STUDY DESIGN We assessed serious adverse events, somatic growth, and respiratory and neurodevelopmental outcomes at visit 1 (4-6 months of CA), visit 2 (8-12 months of CA), and visit 3 (18-24 months of CA) in a prospective longitudinal follow-up study up to 2 years' CA of infants who received MSCs (MSC group). We compared these data with those from a historical case-matched comparison group. RESULTS One of 9 infants in the MSC group died of Enterobacter cloacae sepsis at 6 months of CA, the remaining 8 infants survived without any transplantation-related adverse outcomes, including tumorigenicity. No infant in the MSC group was discharged with home supplemental oxygen compared with 22% in the comparison group. The average rehospitalization rate in the MSC group was 1.4/patient because of respiratory infections during 2 years of follow-up. The mean body weight of the MSC group at visit 3 was significantly higher compared with that of the comparison group. No infant in the MSC group was diagnosed with cerebral palsy, blindness, or developmental delay; in the comparison group, 1 infant was diagnosed with cerebral palsy and 1 with developmental delay. CONCLUSIONS Intratracheal transplantation of MSCs in preterm infants appears to be safe, with no adverse respiratory, growth, and neurodevelopmental effects at 2 years' CA. TRIAL REGISTRATION ClinicalTrials.gov: NCT01632475.
Collapse
Affiliation(s)
- So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea; Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Ji Hye Kim
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Republic of Korea
| | - Se In Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Won Soon Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea; Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea.
| |
Collapse
|