1
|
Otic N, Sunwoo J, Huang Y, Martin A, Robinson MB, Zimmermann B, Carp S, Inder T, El-Dib M, Franceschini MA, Renna M. Multi-wavelength multi-distance diffuse correlation spectroscopy system for assessment of premature infants' cerebral hemodynamics. BIOMEDICAL OPTICS EXPRESS 2024; 15:1959-1975. [PMID: 38495689 PMCID: PMC10942694 DOI: 10.1364/boe.505783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 03/19/2024]
Abstract
Infants born at an extremely low gestational age (ELGA, < 29 weeks) are at an increased risk of intraventricular hemorrhage (IVH), and there is a need for standalone, safe, easy-to-use tools for monitoring cerebral hemodynamics. We have built a multi-wavelength multi-distance diffuse correlation spectroscopy device (MW-MD-DCS), which utilizes time-multiplexed, long-coherence lasers at 785, 808, and 853 nm, to simultaneously quantify the index of cerebral blood flow (CBFi) and the hemoglobin oxygen saturation (SO2). We show characterization data on liquid phantoms and demonstrate the system performance on the forearm of healthy adults, as well as clinical data obtained on two preterm infants.
Collapse
Affiliation(s)
- Nikola Otic
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
- Neurophotonics Center, Boston University, Boston, Massachusetts, USA
| | - John Sunwoo
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Yujing Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Alyssa Martin
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Mitchell B. Robinson
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | | | - Stefan Carp
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Terrie Inder
- Division of Newborn Medicine, Department of Pediatrics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mohamed El-Dib
- Division of Newborn Medicine, Department of Pediatrics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria Angela Franceschini
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Marco Renna
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
2
|
Zhou J, Li G, Meng Y, Hu F, Wang W, Chen X. Analysis of the posterior cerebral perfusion status and clinical prognostic value in chronic unilateral middle cerebral artery occlusion using SWAN combined with 3D-ASL. Medicine (Baltimore) 2023; 102:e35836. [PMID: 37960815 PMCID: PMC10637506 DOI: 10.1097/md.0000000000035836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/06/2023] [Indexed: 11/15/2023] Open
Abstract
To investigate the predictive value of T2 star-weighted angiography (SWAN) combined with 3-dimensional (3D) arterial spin labeling (3D-ASL) to assess cerebral perfusion status and clinical prognosis in chronic unilateral middle cerebral artery (MCA) M1 occlusion. This study included 55 patients diagnosed with chronic unilateral MCA M1 occlusion using 3D time-of-flight magnetic resonance angiography between January 2018 and July 2022. Based on the prominent vessel sign (PVS) shown in the SWAN sequence, the patients were divided into PVS-positive (n = 26) and PVS-negative (n = 29) groups. Cerebral blood flow (CBF) was selected in the affected regions of the frontal, parietal, and temporal lobes (regions of interest = 200 ± 20 mm2) using pseudo-color maps in the 3D-ASL sequence. Each patient was followed up for ischemic cerebrovascular disease within 12 months of diagnosis. The collected data were statistically analyzed to evaluate the predictive value of SWAN and 3D-ASL for the clinical prognosis of patients with chronic unilateral MCA M1 occlusion. Patients were divided into 2 groups based on the occurrence of an ischemic cerebrovascular event within 12 months (ischemic cerebrovascular event [acute ischemic stroke + transient ischemic attack] and non-ischemic cerebrovascular event groups, including 30 and 25 cases, respectively). The incidence of ischemic cerebrovascular events within 12 months was significantly higher in the PVS-positive group than in the PVS-negative group (92.31% vs 20.69%). Furthermore, the CBF values of the affected frontal, parietal, and temporal lobes were significantly lower in the ischemic cerebrovascular event group than in the non-ischemic cerebrovascular event group (P < .05). According to the receiver operating characteristic curve, the CBF values of the affected frontal, parietal, and temporal lobes in patients with chronic unilateral MCA M1 occlusion strongly correlated with ischemic cerebrovascular disease within 12 months. PVS-negative display and good collateral circulation were closely related to clinical prognosis in patients with chronic unilateral MCA M1 occlusion.
Collapse
Affiliation(s)
- Jianguo Zhou
- Department of Radiology, Lianyungang City Chinese Medicine Hospital, Lianyungfang, Jiangsu, China
| | - Guifen Li
- Department of Radiology, The Second People’s Hospital of Lianyungang City, Lianyungfang, Jiangsu, China
| | - Yun Meng
- Department of Radiology, Lianyungang City Chinese Medicine Hospital, Lianyungfang, Jiangsu, China
| | - Fangyun Hu
- Department of Radiology, Lianyungang City Chinese Medicine Hospital, Lianyungfang, Jiangsu, China
| | - Wei Wang
- Department of Radiology, The Peoples Hospital of Xuyi County, Huaian, Jiangsu, China
| | - Xunjun Chen
- Department of Radiology, The Peoples Hospital of Xuyi County, Huaian, Jiangsu, China
| |
Collapse
|
3
|
He Y, Ying J, Tang J, Zhou R, Qu H, Qu Y, Mu D. Neonatal Arterial Ischaemic Stroke: Advances in Pathologic Neural Death, Diagnosis, Treatment, and Prognosis. Curr Neuropharmacol 2022; 20:2248-2266. [PMID: 35193484 PMCID: PMC9890291 DOI: 10.2174/1570159x20666220222144744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/04/2022] [Accepted: 02/18/2022] [Indexed: 12/29/2022] Open
Abstract
Neonatal arterial ischaemic stroke (NAIS) is caused by focal arterial occlusion and often leads to severe neurological sequelae. Neural deaths after NAIS mainly include necrosis, apoptosis, necroptosis, autophagy, ferroptosis, and pyroptosis. These neural deaths are mainly caused by upstream stimulations, including excitotoxicity, oxidative stress, inflammation, and death receptor pathways. The current clinical approaches to managing NAIS mainly focus on supportive treatments, including seizure control and anticoagulation. In recent years, research on the pathology, early diagnosis, and potential therapeutic targets of NAIS has progressed. In this review, we summarise the latest progress of research on the pathology, diagnosis, treatment, and prognosis of NAIS and highlight newly potential diagnostic and treatment approaches.
Collapse
Affiliation(s)
- Yang He
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Junjie Ying
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Jun Tang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Ruixi Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Haibo Qu
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| |
Collapse
|
4
|
Expert consensus on the clinical practice of neonatal brain magnetic resonance imaging. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2022; 24:14-25. [PMID: 35177171 PMCID: PMC8802390 DOI: 10.7499/j.issn.1008-8830.2110018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
In recent years, magnetic resonance imaging (MRI) has been widely used in evaluating neonatal brain development, diagnosing neonatal brain injury, and predicting neurodevelopmental prognosis. Based on current research evidence and clinical experience in China and overseas, the Neonatologist Society of Chinese Medical Doctor Association has developed a consensus on the indications and standardized clinical process of neonatal brain MRI. The consensus has the following main points. (1) Brain MRI should be performed for neonates suspected of hypoxic-ischemic encephalopathy, intracranial infection, stroke and unexplained convulsions; brain MRI is not considered a routine in the management of preterm infants, but it should be performed for further evaluation when cranial ultrasound finds evidence of brain injury; as for extremely preterm or extremely low birth weight infants without abnormal ultrasound findings, it is recommended that they should undergo MRI examination at term equivalent age once. (2) Neonates should undergo MRI examination in a non-sedated state if possible. (3) During MRI examination, vital signs should be closely monitored to ensure safety; the necessity of MRI examination should be strictly evaluated for critically ill neonates, and magnetic resonance compatible incubator and ventilator can be used. (4) At present, 1.5 T or 3.0 T equipment can be used for neonatal brain MRI examination, and the special coil for the neonatal head should be used to improve signal-to-noise ratio; routine neonatal brain MRI sequences should at least include axial T1 weighted image (T1WI), axial T2 weighted imaging (T2WI), diffusion-weighted imaging, and sagittal T1WI or T2WI. (5) It is recommended to use a structured and graded reporting system, and reports by at least two reviewers and multi-center collaboration are recommended to increase the reliability of the report.
Collapse
|
5
|
Wang DJJ, Le Bihan D, Krishnamurthy R, Smith M, Ho ML. Noncontrast Pediatric Brain Perfusion: Arterial Spin Labeling and Intravoxel Incoherent Motion. Magn Reson Imaging Clin N Am 2021; 29:493-513. [PMID: 34717841 DOI: 10.1016/j.mric.2021.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Noncontrast magnetic resonance imaging techniques for measuring brain perfusion include arterial spin labeling (ASL) and intravoxel incoherent motion (IVIM). These techniques provide noninvasive and repeatable assessment of cerebral blood flow or cerebral blood volume without the need for intravenous contrast. This article discusses the technical aspects of ASL and IVIM with a focus on normal physiologic variations, technical parameters, and artifacts. Multiple pediatric clinical applications are presented, including tumors, stroke, vasculopathy, vascular malformations, epilepsy, migraine, trauma, and inflammation.
Collapse
Affiliation(s)
- Danny J J Wang
- USC Institute for Neuroimaging and Informatics, SHN, 2025 Zonal Avenue, Health Sciences Campus, Los Angeles, CA 90033, USA
| | - Denis Le Bihan
- NeuroSpin, Centre d'études de Saclay, Bâtiment 145, Gif-sur-Yvette 91191, France
| | - Ram Krishnamurthy
- Department of Radiology, Nationwide Children's Hospital, 700 Children's Drive - ED4, Columbus, OH 43205, USA
| | - Mark Smith
- Department of Radiology, Nationwide Children's Hospital, 700 Children's Drive - ED4, Columbus, OH 43205, USA
| | - Mai-Lan Ho
- Department of Radiology, Nationwide Children's Hospital, 700 Children's Drive - ED4, Columbus, OH 43205, USA.
| |
Collapse
|
6
|
Abstract
The cerebral microcirculation undergoes dynamic changes in parallel with the development of neurons, glia, and their energy metabolism throughout gestation and postnatally. Cerebral blood flow (CBF), oxygen consumption, and glucose consumption are as low as 20% of adult levels in humans born prematurely but eventually exceed adult levels at ages 3 to 11 years, which coincide with the period of continued brain growth, synapse formation, synapse pruning, and myelination. Neurovascular coupling to sensory activation is present but attenuated at birth. By 2 postnatal months, the increase in CBF often is disproportionately smaller than the increase in oxygen consumption, in contrast to the relative hyperemia seen in adults. Vascular smooth muscle myogenic tone increases in parallel with developmental increases in arterial pressure. CBF autoregulatory response to increased arterial pressure is intact at birth but has a more limited range with arterial hypotension. Hypoxia-induced vasodilation in preterm fetal sheep with low oxygen consumption does not sustain cerebral oxygen transport, but the response becomes better developed for sustaining oxygen transport by term. Nitric oxide tonically inhibits vasomotor tone, and glutamate receptor activation can evoke its release in lambs and piglets. In piglets, astrocyte-derived carbon monoxide plays a central role in vasodilation evoked by glutamate, ADP, and seizures, and prostanoids play a large role in endothelial-dependent and hypercapnic vasodilation. Overall, homeostatic mechanisms of CBF regulation in response to arterial pressure, neuronal activity, carbon dioxide, and oxygenation are present at birth but continue to develop postnatally as neurovascular signaling pathways are dynamically altered and integrated. © 2021 American Physiological Society. Compr Physiol 11:1-62, 2021.
Collapse
|
7
|
Jiang D, Koehler RC, Liu X, Kulikowicz E, Lee JK, Lu H, Liu P. Quantitative validation of MRI mapping of cerebral venous oxygenation with direct blood sampling: A graded-O 2 study in piglets. Magn Reson Med 2021; 86:1445-1453. [PMID: 33755253 PMCID: PMC8184598 DOI: 10.1002/mrm.28786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/12/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE To validate two neonatal cerebral venous oxygenation (Yv ) MRI techniques, T2 relaxation under phase contrast (TRUPC) and accelerated TRUPC (aTRUPC) MRI, with oxygenation measured with direct blood sampling. METHODS In vivo experiments were performed on seven healthy newborn piglets. For each piglet, a catheter was placed in the superior sagittal sinus to obtain venous blood samples for blood gas oximetry measurement as a gold standard. During the MRI experiment, three to five venous oxygenation levels were achieved in each piglet by varying inhaled O2 content and breathing rate. Under each condition, Yv values of the superior sagittal sinus measured by TRUPC, aTRUPC, and blood gas oximetry were obtained. The Yv quantification in TRUPC and aTRUPC used a standard bovine blood calibration model. The aTRUPC scan was repeated twice to assess its reproducibility. Agreements among TRUPC Yv , aTRUPC Yv , and blood gas oximetry were evaluated by intraclass correlation coefficient (ICC) and paired Student's t-test. RESULTS The mean hematocrit was 23.6 ± 6.5% among the piglets. Across all measurements, Yv values were 51.9 ± 21.3%, 54.1 ± 18.8%, and 53.7 ± 19.2% for blood gas oximetry, TRUPC and aTRUPC, respectively, showing no significant difference between any two methods (P > .3). There were good correlations between TRUPC and blood gas Yv (ICC = 0.801; P < .0001), between aTRUPC and blood gas Yv (ICC = 0.809; P < .0001), and between aTRUPC and TRUPC Yv (ICC = 0.887; P < .0001). The coefficient of variation of aTRUPC Yv was 8.1 ± 9.9%. CONCLUSION The values of Yv measured by TRUPC and aTRUPC were in good agreement with blood gas oximetry. These findings suggest that TRUPC and aTRUPC can provide accurate quantifications of Yv in major cerebral veins.
Collapse
Affiliation(s)
- Dengrong Jiang
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Raymond C. Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xiuyun Liu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ewa Kulikowicz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jennifer K. Lee
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| | - Peiying Liu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Arterial spin labeling in neonatal magnetic resonance imaging - first experience and new observations. Pol J Radiol 2021; 86:e415-e424. [PMID: 34429788 PMCID: PMC8369819 DOI: 10.5114/pjr.2021.108165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/04/2021] [Indexed: 11/17/2022] Open
Abstract
Purpose Arterial spin labeling (ASL) is a noninvasive non-contrast technique of perfusion imaging that uses endogenous water from the blood as the perfusion tracer, with very scant data on its use in neonates. The authors present the added value of ASL in the examined babies in their own material and discuss it in the light of the existing literature. Material and methods During the first 10 months after the purchase of a new magnetic resonance imaging (MRI) scanner, 123 neonates were examined using it in an MR-compatible incubator, 117 of them had brain MRI, and in 104 ASL was incorporated in the routine protocol, which resulted in prolongation of the study time by approximately 4 minutes. 3D ASL sequence uses Pulsed Continuous Arterial Spin Labeling (PCASL; aka pseudo continuous) technique. Results The quality of the cerebral blood flow (CBF) maps was good in all cases but 2 because all the babies were sedated. Apart from the knowledge about normal perfusion patterns in the preterm and term neonatal brains, the use of ASL sequence provided important additional information in 11 cases (10.8%): increased CBF correlating with electroencephalographic seizure localization in otherwise normal MRI (n = 1), increased CBF in the cortex without clinical information about seizures and with posthaemorrhagic changes (n = 1), increased CBF in the brain stem and decreased in the upper parts of the brain (n = 2), probably reflecting the homeostatic mechanism which allows preferential perfusion of the vital structures of the brain stem, hypoperfusion (n = 1) or hypoperfusion with peripheral hyperperfusion (n = 1) in the area of stroke, hypoperfusion of the posterior areas of the brain in the presence of subarachnoid or epidural haemorrhage (n = 3), significantly increased CBF in the presumed nidus of arteriovenous malformation causing haemorrhage (n = 1), and lack of perfusion in the supratentorial compartment in a case of suspected brain death (n = 1). Conclusions Our short experience but relatively large volume of material encourages the use of ASL in routine neonatal MRI as a useful and non-time-consuming tool providing additional important clinical information in a significant percentage of cases.
Collapse
|
9
|
Liu D, Jiang D, Tekes A, Kulikowicz E, Martin LJ, Lee JK, Liu P, Qin Q. Multi-Parametric Evaluation of Cerebral Hemodynamics in Neonatal Piglets Using Non-Contrast-Enhanced Magnetic Resonance Imaging Methods. J Magn Reson Imaging 2021; 54:1053-1065. [PMID: 33955613 DOI: 10.1002/jmri.27638] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Disruption of brain oxygen delivery and consumption after hypoxic-ischemic injury contributes to neonatal mortality and neurological impairment. Measuring cerebral hemodynamic parameters, including cerebral blood flow (CBF), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO2 ), is clinically important. PURPOSE Phase-contrast (PC), velocity-selective arterial spin labeling (VSASL), and T2 -relaxation-under-phase-contrast (TRUPC) are magnetic resonance imaging (MRI) techniques that have shown promising results in assessing cerebral hemodynamics in humans. We aimed to test their feasibility in quantifying CBF, OEF, and CMRO2 in piglets. STUDY TYPE Prospective. ANIMAL MODEL Ten neonatal piglets subacutely recovered from global hypoxia-ischemia (N = 2), excitotoxic brain injury (N = 6), or sham procedure (N = 2). FIELD STRENGTH/SEQUENCE VSASL, TRUPC, and PC MRI acquired at 3.0 T. ASSESSMENT Regional CBF was measured by VSASL. Global CBF was quantified by both PC and VSASL. TRUPC assessed OEF at the superior sagittal sinus (SSS) and internal cerebral veins (ICVs). CMRO2 was calculated from global CBF and SSS-derived OEF. End-tidal carbon dioxide (EtCO2 ) levels of the piglets were also measured. Brain damage was assessed in tissue sections postmortem by counting damaged neurons. STATISTICAL TESTS Spearman correlations were performed to evaluate associations among CBF (by PC or VSASL), OEF, CMRO2 , EtCO2 , and the pathological neuron counts. Paired t-test was used to compare OEF at SSS with OEF at ICV. RESULTS Global CBF was 32.1 ± 14.9 mL/100 g/minute and 30.9 ± 8.3 mL/100 g/minute for PC and VSASL, respectively, showing a significant correlation (r = 0.82, P < 0.05). OEF was 54.9 ± 8.8% at SSS and 46.1 ± 5.6% at ICV, showing a significant difference (P < 0.05). Global CMRO2 was 79.1 ± 26.2 μmol/100 g/minute and 77.2 ± 12.2 μmol/100 g/minute using PC and VSASL-derived CBF, respectively. EtCO2 correlated positively with PC-based CBF (r = 0.81, P < 0.05) but negatively with OEF at SSS (r = -0.84, P < 0.05). Relative CBF of subcortical brain regions and OEF at ICV did not significantly correlate, respectively, with the ratios of degenerating-to-total neurons (P = 0.30, P = 0.10). DATA CONCLUSION Non-contrast MRI can quantify cerebral hemodynamic parameters in normal and brain-injured neonatal piglets. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Dapeng Liu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Dengrong Jiang
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aylin Tekes
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ewa Kulikowicz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lee J Martin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jennifer K Lee
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peiying Liu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Carlson HL, Craig BT, Hilderley AJ, Hodge J, Rajashekar D, Mouches P, Forkert ND, Kirton A. Structural and functional connectivity of motor circuits after perinatal stroke: A machine learning study. Neuroimage Clin 2020; 28:102508. [PMID: 33395997 PMCID: PMC7704459 DOI: 10.1016/j.nicl.2020.102508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/19/2020] [Accepted: 11/15/2020] [Indexed: 11/15/2022]
Abstract
Developmental neuroplasticity allows young brains to adapt via experiences early in life and also to compensate after injury. Why certain individuals are more adaptable remains underexplored. Perinatal stroke is an ideal human model of neuroplasticity with focal lesions acquired near birth in a healthy brain. Machine learning can identify complex patterns in multi-dimensional datasets. We used machine learning to identify structural and functional connectivity biomarkers most predictive of motor function. Forty-nine children with perinatal stroke and 27 controls were studied. Functional connectivity was quantified by fluctuations in blood oxygen-level dependent (BOLD) signal between regions. White matter tractography of corticospinal tracts quantified structural connectivity. Motor function was assessed using validated bimanual and unimanual tests. RELIEFF feature selection and random forest regression models identified predictors of each motor outcome using neuroimaging and demographic features. Unilateral motor outcomes were predicted with highest accuracy (8/54 features r = 0.58, 11/54 features, r = 0.34) but bimanual function required more features (51/54 features, r = 0.38). Connectivity of both hemispheres had important roles as did cortical and subcortical regions. Lesion size, age at scan, and type of stroke were predictive but not highly ranked. Machine learning regression models may represent a powerful tool in identifying neuroimaging biomarkers associated with clinical motor function in perinatal stroke and may inform personalized targets for neuromodulation.
Collapse
Affiliation(s)
- Helen L Carlson
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | - Brandon T Craig
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Alicia J Hilderley
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Jacquie Hodge
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada
| | - Deepthi Rajashekar
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Radiology, University of Calgary, Calgary, AB, Canada; Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Pauline Mouches
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Radiology, University of Calgary, Calgary, AB, Canada; Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Nils D Forkert
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Radiology, University of Calgary, Calgary, AB, Canada; Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Adam Kirton
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Radiology, University of Calgary, Calgary, AB, Canada; Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
11
|
Abstract
Abnormal brain perfusion is a key mechanism underlying neonatal brain injury. Understanding the mechanisms leading to brain perfusion changes in high-risk neonates and how these alterations may influence brain development is key to improve therapeutic strategies preventing brain injury and the neurodevelopmental outcome of these infants. To date, several studies demonstrated that Arterial Spin Labeling is a reliable tool to accurately and non-invasively analyze brain perfusion, facilitating the understanding of normal and pathological mechanisms underlying neonatal brain maturation and injury. This paper provides an overview of the normal pattern of brain perfusion on Arterial Spin Labeling in term and preterm neonates, and reviews perfusion abnormalities associated with common neonatal neurological disorders.
Collapse
Affiliation(s)
- Domenico Tortora
- Neuroradiology Unit IRCCS, Istituto Giannina Gaslini, Genoa, Italy.
| | | | - Andrea Rossi
- Neuroradiology Unit IRCCS, Istituto Giannina Gaslini, Genoa, Italy; Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.
| |
Collapse
|
12
|
Imaging Developmental and Interventional Plasticity Following Perinatal Stroke. Can J Neurol Sci 2020; 48:157-171. [DOI: 10.1017/cjn.2020.166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ABSTRACT:Perinatal stroke occurs around the time of birth and leads to lifelong neurological disabilities including hemiparetic cerebral palsy. Magnetic resonance imaging (MRI) has revolutionized our understanding of developmental neuroplasticity following early injury, quantifying volumetric, structural, functional, and metabolic compensatory changes after perinatal stroke. Such techniques can also be used to investigate how the brain responds to treatment (interventional neuroplasticity). Here, we review the current state of knowledge of how established and emerging neuroimaging modalities are informing neuroplasticity models in children with perinatal stroke. Specifically, we review structural imaging characterizing lesion characteristics and volumetrics, diffusion tensor imaging investigating white matter tracts and networks, task-based functional MRI for localizing function, resting state functional imaging for characterizing functional connectomes, and spectroscopy examining neurometabolic changes. Key challenges and exciting avenues for future investigations are also considered.
Collapse
|
13
|
Rieke JD, Matarasso AK, Yusufali MM, Ravindran A, Alcantara J, White KD, Daly JJ. Development of a combined, sequential real-time fMRI and fNIRS neurofeedback system to enhance motor learning after stroke. J Neurosci Methods 2020; 341:108719. [PMID: 32439425 DOI: 10.1016/j.jneumeth.2020.108719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND After stroke, wrist extension dyscoordination precludes functional arm/hand. We developed a more spatially precise brain signal for use in brain computer interface (BCI's) for stroke survivors. NEW METHOD Combination BCI protocol of real-time functional magnetic resonance imaging (rt-fMRI) sequentially followed by functional near infrared spectroscopy (rt-fNIRS) neurofeedback, interleaved with motor learning sessions without neural feedback. Custom Matlab and Python code was developed to provide rt-fNIRS-based feedback to the chronic stroke survivor, system user. RESULTS The user achieved a maximum of 71 % brain signal accuracy during rt-fNIRS neural training; progressive focus of brain activation across rt-fMRI neural training; increasing trend of brain signal amplitude during wrist extension across rt-fNIRS training; and clinically significant recovery of arm coordination and active wrist extension. COMPARISON WITH EXISTING METHODS Neurorehabilitation, peripherally directed, shows limited efficacy, as do EEG-based BCIs, for motor recovery of moderate/severely impaired stroke survivors. EEG-based BCIs are based on electrophysiological signal; whereas, rt-fMRI and rt-fNIRS are based on neurovascular signal. CONCLUSION The system functioned well during user testing. Methods are detailed for others' use. The system user successfully engaged rt-fMRI and rt-fNIRS neurofeedback systems, modulated brain signal during rt-fMRI and rt-fNIRS training, according to volume of brain activation and intensity of signal, respectively, and clinically significantly improved limb coordination and active wrist extension. fNIRS use in this case demonstrates a feasible/practical BCI system for further study with regard to use in chronic stroke rehab, and fMRI worked in concept, but cost and some patient-use issues make it less feasible for clinical practice.
Collapse
Affiliation(s)
- Jake D Rieke
- Brain Rehabilitation Research Center (BRRC), Malcom Randall VA Medical Center (VA), 1600 SW Archer Rd, Gainesville, FL, 32608, USA; Department of Biomedical Engineering (BME), NEB Building, University of Florida, Gainesville, FL, 32608, USA
| | - Avi K Matarasso
- Brain Rehabilitation Research Center (BRRC), Malcom Randall VA Medical Center (VA), 1600 SW Archer Rd, Gainesville, FL, 32608, USA; Dept of Chemical Engineering, NEB Building, UF, Gainesville, FL, 32608, USA
| | - M Minhal Yusufali
- Brain Rehabilitation Research Center (BRRC), Malcom Randall VA Medical Center (VA), 1600 SW Archer Rd, Gainesville, FL, 32608, USA; Department of Biomedical Engineering (BME), NEB Building, University of Florida, Gainesville, FL, 32608, USA
| | - Aniruddh Ravindran
- Brain Rehabilitation Research Center (BRRC), Malcom Randall VA Medical Center (VA), 1600 SW Archer Rd, Gainesville, FL, 32608, USA; Department of Biomedical Engineering (BME), NEB Building, University of Florida, Gainesville, FL, 32608, USA
| | - Jose Alcantara
- Brain Rehabilitation Research Center (BRRC), Malcom Randall VA Medical Center (VA), 1600 SW Archer Rd, Gainesville, FL, 32608, USA; Department of Biomedical Engineering (BME), NEB Building, University of Florida, Gainesville, FL, 32608, USA
| | - Keith D White
- Brain Rehabilitation Research Center (BRRC), Malcom Randall VA Medical Center (VA), 1600 SW Archer Rd, Gainesville, FL, 32608, USA
| | - Janis J Daly
- Brain Rehabilitation Research Center (BRRC), Malcom Randall VA Medical Center (VA), 1600 SW Archer Rd, Gainesville, FL, 32608, USA; Dept of Neurology, College of Medicine, UF, Gainesville, FL, 32608, USA.
| |
Collapse
|
14
|
Li N, Wingfield MA, Nickerson JP, Pettersson DR, Pollock JM. Anoxic Brain Injury Detection with the Normalized Diffusion to ASL Perfusion Ratio: Implications for Blood-Brain Barrier Injury and Permeability. AJNR Am J Neuroradiol 2020; 41:598-606. [PMID: 32165356 DOI: 10.3174/ajnr.a6461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/28/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Anoxic brain injury is a result of prolonged hypoxia. We sought to describe the nonquantitative arterial spin-labeling perfusion imaging patterns of anoxic brain injury, characterize the relationship of arterial spin-labeling and DWI, and evaluate the normalized diffusion-to-perfusion ratio to differentiate patients with anoxic brain injury from healthy controls. MATERIALS AND METHODS We identified all patients diagnosed with anoxic brain injuries from 2002 to 2019. Twelve ROIs were drawn on arterial spin-labeling with coordinate-matched ROIs identified on DWI. Linear regression analysis was performed to examine the relationship between arterial spin-labeling perfusion and diffusion signal. Normalized diffusion-to-perfusion maps were generated using a custom-built algorithm. RESULTS Thirty-five patients with anoxic brain injuries and 34 healthy controls were identified. Linear regression analysis demonstrated a significant positive correlation between arterial spin-labeling and DWI signal. By means of a combinatory cutoff of slope of >0 and R2 of > 0.78, linear regression using arterial spin-labeling and DWI showed a sensitivity of 0.86 (95% CI, 0.71-0.94) and specificity of 0.82 (95% CI, 0.66-0.92) for anoxic brain injuries. A normalized diffusion-to-perfusion color map demonstrated heterogeneous ratios throughout the brain in healthy controls and homogeneous ratios in patients with anoxic brain injuries. CONCLUSIONS In anoxic brain injuries, a homogeneously positive correlation between qualitative perfusion and DWI signal was identified so that areas of increased diffusion signal showed increased ASL signal. By exploiting this relationship, the normalized diffusion-to-perfusion ratio color map may be a valuable imaging biomarker for diagnosing anoxic brain injury and potentially assessing BBB integrity.
Collapse
Affiliation(s)
- N Li
- From the Department of Radiology (N.L., M.A.W., J.P.N., D.R.P., and J.M.P.), Oregon Health & Science University, Portland, Oregon
| | - M A Wingfield
- From the Department of Radiology (N.L., M.A.W., J.P.N., D.R.P., and J.M.P.), Oregon Health & Science University, Portland, Oregon
| | - J P Nickerson
- From the Department of Radiology (N.L., M.A.W., J.P.N., D.R.P., and J.M.P.), Oregon Health & Science University, Portland, Oregon
| | - D R Pettersson
- From the Department of Radiology (N.L., M.A.W., J.P.N., D.R.P., and J.M.P.), Oregon Health & Science University, Portland, Oregon
| | - J M Pollock
- From the Department of Radiology (N.L., M.A.W., J.P.N., D.R.P., and J.M.P.), Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
15
|
Wagenaar N, van den Berk DJ, Lemmers PM, van der Aa NE, Dudink J, van Bel F, Groenendaal F, de Vries LS, Benders MJ, Alderliesten T. Brain Activity and Cerebral Oxygenation After Perinatal Arterial Ischemic Stroke Are Associated With Neurodevelopment. Stroke 2019; 50:2668-2676. [PMID: 31390967 PMCID: PMC6756254 DOI: 10.1161/strokeaha.119.025346] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/15/2019] [Accepted: 06/18/2019] [Indexed: 11/17/2022]
Abstract
Background and Purpose- In infants with perinatal arterial ischemic stroke (PAIS), early prognosis of neurodevelopmental outcome is important to adequately inform parents and caretakers. Early continuous neuromonitoring after PAIS may improve early prognosis. Our aim was to study early cerebral electrical activity and oxygenation measured by amplitude-integrated electroencephalography (aEEG) and near-infrared spectroscopy in term neonates with PAIS and relate these to the development of cerebral palsy and cognitive deficit. Methods- aEEG patterns and regional cerebral oxygen saturation (rScO2) levels of both hemispheres were studied for 120 hours from the first clinical symptoms of PAIS (ie, seizures) onward. Multivariable analyses were used to investigate the association between aEEG, near-infrared spectroscopy, clinical variables, and neurodevelopmental outcome. Results- In 52 patients with PAIS (gestational age, 40.4±1.4 weeks; birth weight, 3282±479 g), median time to a continuous background pattern was longer in the ipsilesional compared with the contralesional hemisphere (13.5 versus 10.0 hours; P<0.05). rScO2 decreased over time in both hemispheres but less in the ipsilesional one, resulting in a rScO2 asymmetry ratio of 4.5% (interquartile range, -4.3% to 5.9%; P<0.05) between hemispheres from day 3 after symptoms onward. Both time to normal background pattern and asymmetry in rScO2 were negatively affected by gestational age, size of the PAIS, use of antiepileptic drugs, and mechanical ventilation. After correction for size of the PAIS on magnetic resonance imaging, a slower recovery of background pattern on ipsilesional aEEG and increased rScO2 asymmetry between hemispheres was related with an increased risk for cognitive deficit (<-1 SD) at a median of 24.0 (interquartile range, 18.4-24.4) months of age. Conclusions- Recovery of background pattern on aEEG and cerebral oxygenation are both affected by PAIS and related to neurocognitive development. Both measurements may provide valuable early prognostic information. Additionally, monitoring cerebral activity and oxygenation may be useful in identifying infants eligible for early neuroprotective interventions and to detect early effects of these interventions.
Collapse
Affiliation(s)
- Nienke Wagenaar
- From the Department of Neonatology, University Medical Center Utrecht (N.W., D.J.M.v.d.B., P.M.A.L., N.E.v.d.A., J.D., F.v.B., F.G., L.S.d.V., M.J.N.L.B., T.A.), Utrecht University, the Netherlands
- University Medical Center Utrecht Brain Center (N.W., P.M.A.L., N.E.v.d.A., J.D., F.v.B., F.G., L.S.d.V., M.J.N.L.B., T.A.), Utrecht University, the Netherlands
| | - Daphne J.M. van den Berk
- From the Department of Neonatology, University Medical Center Utrecht (N.W., D.J.M.v.d.B., P.M.A.L., N.E.v.d.A., J.D., F.v.B., F.G., L.S.d.V., M.J.N.L.B., T.A.), Utrecht University, the Netherlands
| | - Petra M.A. Lemmers
- From the Department of Neonatology, University Medical Center Utrecht (N.W., D.J.M.v.d.B., P.M.A.L., N.E.v.d.A., J.D., F.v.B., F.G., L.S.d.V., M.J.N.L.B., T.A.), Utrecht University, the Netherlands
- University Medical Center Utrecht Brain Center (N.W., P.M.A.L., N.E.v.d.A., J.D., F.v.B., F.G., L.S.d.V., M.J.N.L.B., T.A.), Utrecht University, the Netherlands
| | - Niek E. van der Aa
- From the Department of Neonatology, University Medical Center Utrecht (N.W., D.J.M.v.d.B., P.M.A.L., N.E.v.d.A., J.D., F.v.B., F.G., L.S.d.V., M.J.N.L.B., T.A.), Utrecht University, the Netherlands
- University Medical Center Utrecht Brain Center (N.W., P.M.A.L., N.E.v.d.A., J.D., F.v.B., F.G., L.S.d.V., M.J.N.L.B., T.A.), Utrecht University, the Netherlands
| | - Jeroen Dudink
- From the Department of Neonatology, University Medical Center Utrecht (N.W., D.J.M.v.d.B., P.M.A.L., N.E.v.d.A., J.D., F.v.B., F.G., L.S.d.V., M.J.N.L.B., T.A.), Utrecht University, the Netherlands
- University Medical Center Utrecht Brain Center (N.W., P.M.A.L., N.E.v.d.A., J.D., F.v.B., F.G., L.S.d.V., M.J.N.L.B., T.A.), Utrecht University, the Netherlands
| | - Frank van Bel
- From the Department of Neonatology, University Medical Center Utrecht (N.W., D.J.M.v.d.B., P.M.A.L., N.E.v.d.A., J.D., F.v.B., F.G., L.S.d.V., M.J.N.L.B., T.A.), Utrecht University, the Netherlands
- University Medical Center Utrecht Brain Center (N.W., P.M.A.L., N.E.v.d.A., J.D., F.v.B., F.G., L.S.d.V., M.J.N.L.B., T.A.), Utrecht University, the Netherlands
| | - Floris Groenendaal
- From the Department of Neonatology, University Medical Center Utrecht (N.W., D.J.M.v.d.B., P.M.A.L., N.E.v.d.A., J.D., F.v.B., F.G., L.S.d.V., M.J.N.L.B., T.A.), Utrecht University, the Netherlands
- University Medical Center Utrecht Brain Center (N.W., P.M.A.L., N.E.v.d.A., J.D., F.v.B., F.G., L.S.d.V., M.J.N.L.B., T.A.), Utrecht University, the Netherlands
| | - Linda S. de Vries
- From the Department of Neonatology, University Medical Center Utrecht (N.W., D.J.M.v.d.B., P.M.A.L., N.E.v.d.A., J.D., F.v.B., F.G., L.S.d.V., M.J.N.L.B., T.A.), Utrecht University, the Netherlands
- University Medical Center Utrecht Brain Center (N.W., P.M.A.L., N.E.v.d.A., J.D., F.v.B., F.G., L.S.d.V., M.J.N.L.B., T.A.), Utrecht University, the Netherlands
| | - Manon J.N.L. Benders
- From the Department of Neonatology, University Medical Center Utrecht (N.W., D.J.M.v.d.B., P.M.A.L., N.E.v.d.A., J.D., F.v.B., F.G., L.S.d.V., M.J.N.L.B., T.A.), Utrecht University, the Netherlands
- University Medical Center Utrecht Brain Center (N.W., P.M.A.L., N.E.v.d.A., J.D., F.v.B., F.G., L.S.d.V., M.J.N.L.B., T.A.), Utrecht University, the Netherlands
| | - Thomas Alderliesten
- From the Department of Neonatology, University Medical Center Utrecht (N.W., D.J.M.v.d.B., P.M.A.L., N.E.v.d.A., J.D., F.v.B., F.G., L.S.d.V., M.J.N.L.B., T.A.), Utrecht University, the Netherlands
- University Medical Center Utrecht Brain Center (N.W., P.M.A.L., N.E.v.d.A., J.D., F.v.B., F.G., L.S.d.V., M.J.N.L.B., T.A.), Utrecht University, the Netherlands
| |
Collapse
|
16
|
Spontaneous recanalization and hyperperfusion are relatively common at presentation in pediatric arterial ischemic stroke. Neuroradiology 2019; 61:629-632. [DOI: 10.1007/s00234-019-02213-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/04/2019] [Indexed: 11/26/2022]
|
17
|
Jiang D, Lu H, Parkinson C, Su P, Wei Z, Pan L, Tekes A, Huisman TAGM, Golden WC, Liu P. Vessel-specific quantification of neonatal cerebral venous oxygenation. Magn Reson Med 2019; 82:1129-1139. [PMID: 31066104 DOI: 10.1002/mrm.27788] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/25/2019] [Accepted: 04/08/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Noninvasive measurement of cerebral venous oxygenation (Yv ) in neonates is important in the assessment of brain oxygen extraction and consumption, and may be useful in characterizing brain development and neonatal brain diseases. This study aims to develop a rapid method for vessel-specific measurement of Yv in neonates. METHODS We developed a pulse sequence, named accelerated T2 -relaxation-under-phase-contrast (aTRUPC), which consists of velocity-encoding phase-contrast module to isolate pure blood signal, flow-insensitive T2 -preparation to quantify blood T2 , and turbo-field-echo (TFE) scheme for rapid image acquisition, which is critical for neonatal MRI. A series of studies were conducted. First, the pulse sequence was optimized in terms of TFE factor, velocity encoding (VENC), and slice thickness for best sensitivity. Second, to account for the influence of TFE acquisition on T2 quantification, simulation and experiments were conducted to establish the relationship between TFE-T2 and standard T2 . Finally, the complete aTRUPC sequence was applied on a group of healthy neonates and normative Yv values were determined. RESULTS Optimal parameters of aTRUPC in neonates were found to be a TFE factor of 15, VENC of 5 cm/s, and slice thickness of 10 mm. The TFE-T2 was on average 3.9% lower than standard T2 . These two measures were strongly correlated (R2 = 0.86); thus their difference can be accounted for by a correction equation, T2,standard = 1.2002 × T2,TFE - 10.6276. Neonatal Yv values in veins draining cortical brain and those draining central brain were 64.8 ± 2.9% and 70.2 ± 3.3%, respectively, with a significant difference (P =.02). CONCLUSION The aTRUPC MRI has the potential to provide vessel-specific quantification of cerebral Yv in neonates.
Collapse
Affiliation(s)
- Dengrong Jiang
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland
| | - Charlamaine Parkinson
- Neurosciences Intensive Care Nursery, Johns Hopkins School of Medicine, Baltimore, Maryland.,Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Pan Su
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Zhiliang Wei
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland
| | - Li Pan
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Siemens Healthineers, Baltimore, Maryland
| | - Aylin Tekes
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Neurosciences Intensive Care Nursery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Thierry A G M Huisman
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Neurosciences Intensive Care Nursery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - W Christopher Golden
- Neurosciences Intensive Care Nursery, Johns Hopkins School of Medicine, Baltimore, Maryland.,Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Peiying Liu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
18
|
Claessens NHP, Jansen NJG, Breur JMPJ, Algra SO, Stegeman R, Alderliesten T, van Loon K, de Vries LS, Haas F, Benders MJNL, Lemmers PMA. Postoperative cerebral oxygenation was not associated with new brain injury in infants with congenital heart disease. J Thorac Cardiovasc Surg 2019; 158:867-877.e1. [PMID: 30982585 DOI: 10.1016/j.jtcvs.2019.02.106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 02/10/2019] [Accepted: 02/24/2019] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate postoperative indices of cerebral oxygenation and autoregulation in infants with critical congenital heart disease in relation to new postoperative ischemic brain injury. METHODS This prospective, clinical cohort included 77 infants with transposition of the great arteries (N = 19), left ventricular outflow tract obstruction (N = 30), and single ventricle physiology (N = 28) undergoing surgery at 30 days or less of life. Postoperative near-infrared spectroscopy and physiologic monitoring were applied to extract mean arterial blood pressure, regional cerebral oxygen saturation, fractional tissue oxygen extraction, and regional cerebral oxygen saturation mean arterial blood pressure correlation coefficient (≥0.5 considered sign of impaired cerebral autoregulation). New postoperative ischemic injury was defined as moderate-severe white matter injury or focal infarction on magnetic resonance imaging. Low cardiac output syndrome was measured as lactate greater than 4 mmol/L with pH less than 7.30. RESULTS After surgery, regional cerebral oxygen saturation was decreased in all congenital heart disease groups with a notable increase in regional cerebral oxygen saturation between 6 and 12 hours after surgery, on average with a factor of 1.4 (range, 1.1-2.4). Both single ventricle physiology and postoperative low cardiac output syndrome were associated with lower regional cerebral oxygen saturation and increased time with correlation coefficient of 0.5 or greater. New postoperative ischemic injury was seen in 39 patients (53%) and equally distributed across congenital heart disease groups. Postoperative regional cerebral oxygen saturation, fractional tissue oxygen extraction, and correlation coefficient were not independently associated with new postoperative white matter injury or focal infarction (mixed-model analysis, all F > 0.12). CONCLUSIONS Postoperative indices of cerebral oxygenation and cerebral autoregulation are not independent predictors of new ischemic brain injury in infants with critical congenital heart disease. Further exploration of the complex interplay among low regional cerebral oxygen saturation, low cardiac output syndrome, and heart defect is required to identify potential biomarkers enabling early intervention for ischemic brain injury.
Collapse
Affiliation(s)
- Nathalie H P Claessens
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Pediatric Cardiology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Pediatric Intensive Care, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Nicolaas J G Jansen
- Department of Pediatric Intensive Care, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Johannes M P J Breur
- Department of Pediatric Cardiology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Selma O Algra
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Raymond Stegeman
- Department of Pediatric Cardiology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Thomas Alderliesten
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kim van Loon
- Department of Anesthesiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Linda S de Vries
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Felix Haas
- Department of Pediatric Cardiothoracic Surgery, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Manon J N L Benders
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Petra M A Lemmers
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
19
|
Yang M, Yang Z, Yuan T, Feng W, Wang P. A Systemic Review of Functional Near-Infrared Spectroscopy for Stroke: Current Application and Future Directions. Front Neurol 2019; 10:58. [PMID: 30804877 PMCID: PMC6371039 DOI: 10.3389/fneur.2019.00058] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/16/2019] [Indexed: 02/05/2023] Open
Abstract
Background: Survivors of stroke often experience significant disability and impaired quality of life. The recovery of motor or cognitive function requires long periods. Neuroimaging could measure changes in the brain and monitor recovery process in order to offer timely treatment and assess the effects of therapy. A non-invasive neuroimaging technique near-infrared spectroscopy (NIRS) with its ambulatory, portable, low-cost nature without fixation of subjects has attracted extensive attention. Methods: We conducted a comprehensive literature review in order to review the use of NIRS in stroke or post-stroke patients in July 2018. NCBI Pubmed database, EMBASE database, Cochrane Library and ScienceDirect database were searched. Results: Overall, we reviewed 66 papers. NIRS has a wide range of application, including in monitoring upper limb, lower limb recovery, motor learning, cortical function recovery, cerebral hemodynamic changes, cerebral oxygenation, as well as in therapeutic method, clinical researches, and evaluation of the risk for stroke. Conclusions: This study provides a preliminary evidence of the application of NIRS in stroke patients as a monitoring, therapeutic, and research tool. Further studies could give more emphasize on the combination of NIRS with other techniques and its utility in the prevention of stroke.
Collapse
Affiliation(s)
- Muyue Yang
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai, China.,School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Yang
- Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Tifei Yuan
- Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wuwei Feng
- Department of Neurology, Medical University of South Carolina, Charleston, SC, United States
| | - Pu Wang
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai, China
| |
Collapse
|
20
|
Abstract
Perinatal arterial ischemic stroke is a relatively common and serious neurologic disorder that can affect the fetus, the preterm, and the term-born infant. It carries significant long-term disabilities. Herein we describe the current understanding of its etiology, pathophysiology and classification, different presentations, and optimal early management. We discuss the role of different brain imaging modalities in defining the extent of lesions and the impact this has on the prediction of outcomes. In recent years there has been progress in treatments, making early diagnosis and the understanding of likely morbidities imperative. An overview is given of the range of possible outcomes and optimal approaches to follow-up and support for the child and their family in the light of present knowledge.
Collapse
|
21
|
Liu P, Qi Y, Lin Z, Guo Q, Wang X, Lu H. Assessment of cerebral blood flow in neonates and infants: A phase-contrast MRI study. Neuroimage 2019. [DOI: 10.1016/j.neuroimage.2018.03.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
22
|
Counsell SJ, Arichi T, Arulkumaran S, Rutherford MA. Fetal and neonatal neuroimaging. HANDBOOK OF CLINICAL NEUROLOGY 2019; 162:67-103. [PMID: 31324329 DOI: 10.1016/b978-0-444-64029-1.00004-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Magnetic resonance imaging (MRI) can provide detail of the soft tissues of the fetal and neonatal brain that cannot be obtained by any other imaging modality. Conventional T1 and T2 weighted sequences provide anatomic detail of the normally developing brain and can demonstrate lesions, including those associated with preterm birth, hypoxic ischemic encephalopathy, perinatal arterial stroke, infections, and congenital malformations. Specialized imaging techniques can be used to assess cerebral vasculature (magnetic resonance angiography and venography), cerebral metabolism (magnetic resonance spectroscopy), cerebral perfusion (arterial spin labeling), and function (functional MRI). A wealth of quantitative tools, most of which were originally developed for the adult brain, can be applied to study the developing brain in utero and postnatally including measures of tissue microstructure obtained from diffusion MRI, morphometric studies to measure whole brain and regional tissue volumes, and automated approaches to study cortical folding. In this chapter, we aim to describe different imaging approaches for the fetal and neonatal brain, and to discuss their use in a range of clinical applications.
Collapse
Affiliation(s)
- Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.
| | - Tomoki Arichi
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Sophie Arulkumaran
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Mary A Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|
23
|
Henzler C, Zöllner FG, Weis M, Zimmer F, Schoenberg SO, Zahn K, Schaible T, Neff KW. Cerebral Perfusion After Repair of Congenital Diaphragmatic Hernia with Common Carotid Artery Occlusion After ECMO Therapy. ACTA ACUST UNITED AC 2018; 31:557-564. [PMID: 28652420 DOI: 10.21873/invivo.11094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 01/03/2023]
Abstract
AIM To prospectively evaluate cerebral perfusion after repair of congenital diaphragmatic hernia (CDH) and right-common-carotid-artery (rCCA) occlusion after extracorporeal membrane oxygenation (ECMO) therapy. PATIENTS AND METHODS A total of 29 2-year-old-children with a history of CDH repair underwent cerebral magnetic resonance perfusion imaging. In 14 patients, the rCCA was occluded after ECMO therapy. Fifteen patients with CDH without ECMO served as controls. Regional cerebral-blood-flow (rCBF) was measured cortically and subcortically in both hemispheres and compared intra-individually and between both groups. RESULTS Patients with rCCA-occlusion showed intra-individual side differences between hemispheres, with significantly lower subcortical perfusion of the right hemisphere and reduced cortical perfusion. In one-third of patients with rCCA-occlusion, rCBF of the right-hemisphere was reduced by more than 20% when compared to the left hemisphere. Despite intra-individual side differences, mean rCBF in patients with rCCA occlusion was not reduced compared to controls. CONCLUSION Beside intra-individual side differences, overall right hemisphere perfusion is sufficient after rCCA-occlusion due to collateral blood supply.
Collapse
Affiliation(s)
- Claudia Henzler
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Frank G Zöllner
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Meike Weis
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Fabian Zimmer
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Stefan O Schoenberg
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Katrin Zahn
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Thomas Schaible
- Department of Neonatology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - K Wolfgang Neff
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
24
|
Bouyssi-Kobar M, Murnick J, Brossard-Racine M, Chang T, Mahdi E, Jacobs M, Limperopoulos C. Altered Cerebral Perfusion in Infants Born Preterm Compared with Infants Born Full Term. J Pediatr 2018; 193:54-61.e2. [PMID: 29212618 PMCID: PMC5794508 DOI: 10.1016/j.jpeds.2017.09.083] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 08/18/2017] [Accepted: 09/29/2017] [Indexed: 12/20/2022]
Abstract
OBJECTIVES To compare regional cerebral cortical blood flow (CBF) in infants born very preterm at term-equivalent age (TEA) and healthy newborns born full term and to examine the impact of clinical risk factors on CBF in the cohort born preterm. STUDY DESIGN This prospective, cross-sectional study included infants born very preterm (gestational age at birth <32 weeks; birth weight <1500 g) and healthy infants born full term. Using noninvasive 3T arterial spin labeling magnetic resonance imaging, we quantified regional CBF in the cerebral cortex: sensorimotor/auditory/visual cortex, superior medial/dorsolateral prefrontal cortex, anterior cingulate cortex (ACC)/posterior cingulate cortex, insula, and lateral posterior parietal cortex, as well as in the brainstem, and deep gray matter. Analyses were performed controlling for sex, gestational age, and age at magnetic resonance imaging. RESULTS We studied 202 infants: 98 born preterm and 104 born full term at TEA. Infants born preterm demonstrated greater global CBF (β = 9.03; P < .0001) and greater absolute regional CBF in all brain regions except the insula. Relative CBF in the insula, ACC and auditory cortex were decreased significantly in infants born preterm compared with their peers born at full term (P < .0001; P = .026; P = .036, respectively). In addition, the presence of parenchymal brain injury correlated with lower global and regional CBF (insula, ACC, sensorimotor, auditory, and visual cortices) whereas the need for cardiac vasopressor support correlated with lower regional CBF in the insula and visual cortex. CONCLUSIONS Altered regional cortical CBF in infants born very preterm at TEA may reflect early brain dysmaturation despite the absence of cerebral cortical injury. Furthermore, specific cerebral cortical areas may be vulnerable to early hemodynamic instability and parenchymal brain injury.
Collapse
Affiliation(s)
- Marine Bouyssi-Kobar
- The Developing Brain Research Laboratory, Department of Diagnostic Imaging and Radiology, Children's National Health System, Washington, DC; Institute for Biomedical Sciences, George Washington University, Washington, DC
| | - Jonathan Murnick
- The Developing Brain Research Laboratory, Department of Diagnostic Imaging and Radiology, Children's National Health System, Washington, DC
| | - Marie Brossard-Racine
- Department of Pediatrics Neurology, Montreal Children's Hospital-McGill University Health Center, Montreal, Québec, Canada
| | - Taeun Chang
- Department of Neurology, Children's National Health System, Washington, DC
| | - Eman Mahdi
- The Developing Brain Research Laboratory, Department of Diagnostic Imaging and Radiology, Children's National Health System, Washington, DC
| | - Marni Jacobs
- Department of Epidemiology and Biostatistics, Children's Research Institute, Children's National Health System, Washington, DC
| | - Catherine Limperopoulos
- The Developing Brain Research Laboratory, Department of Diagnostic Imaging and Radiology, Children's National Health System, Washington, DC.
| |
Collapse
|
25
|
Husson B, Durand C, Hertz-Pannier L. [Recommendations for imaging neonatal ischemic stroke]. Arch Pediatr 2017; 24:9S19-9S27. [PMID: 28867033 DOI: 10.1016/s0929-693x(17)30327-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Neuroimaging is critical for the diagnosis of neonatal arterial ischemic stroke (NAIS) and for prognosis estimation. The purpose of this work is to define guidelines of clinical neuroimaging for the diagnosis of NAIS, for the optimization of the imaging timing and for the assessment of the prognostic value of each imaging technique. A systematic search of electronic databases (Medline via Pubmed) for studies whose title and abstract were focused on NAIS has been conducted. One hundred and ten articles were selected and their results were analyzed by three Senior Practitioners of pediatric radiology using common methodology for guidelines elaboration within the group of experts gathered by Scientific Societies in the field. MRI with a diffu si on-weighted sequence (DWI) and T1, T2, and T2*-weighted sequences must be performed in the case of suspected NAIS (no sedation is required). In the first hours after the injury, an acute ischemic lesion is characterized by a hypersignal on the diffusion-weighted sequence, with a decrease of the apparent coefficient of diffusion (ADC). The best time to evaluate the extent of the ischemic lesion is between day 2 and day 4 after injury, when the ADC decrease reaches its nadir. In the acute phase, US may be useful as first imaging at the bedside to exclude other pathologies like large space-occupying hemorrhages, but its specific added value on NAIS diagnosis or prognosis assessment is very low. CT scan has no added value in NAIS, compared to MRI. Motor outcome is correlated with the extent of the lesion and with the presence of a definite injury of the corticospinal tract, which is well seen on the diffusion sequence at the acute stage. A secondary atrophy within the mesencephalon (cerebral peduncles) is tied in with a high risk of hemiplegia. Visual outcome is more often compromised in the case of lesions of the posterior cerebral artery territory.
Collapse
Affiliation(s)
- B Husson
- AP-HP, centre national de référence de l'AVC de l'enfant et service de radiologie pédiatrique, Hôpital Le Kremlin-Bicêtre, 78, rue du Général-Leclerc, Le Kremlin-Bicêtre, 94270 France.
| | - C Durand
- CHU de Grenoble, clinique d'imagerie pédiatrique, hôpital Couple-Enfant, quai Yermoloff, Grenoble, 38043 France
| | - L Hertz-Pannier
- UMR129, INSERM/Université Paris-Descartes, UNIACTZ/Neurospin, CEA-Saclay Bat 145, Gif-sur-Yvette, 9191 France
| |
Collapse
|
26
|
MR imaging for accurate prediction of outcome after perinatal arterial ischemic stroke: Sooner not necessarily better. Eur J Paediatr Neurol 2017; 21:666-670. [PMID: 28499876 DOI: 10.1016/j.ejpn.2017.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 01/16/2017] [Accepted: 04/04/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Involvement of the corticospinal tracts after perinatal arterial ischemic stroke (PAIS) is strongly correlated with adverse motor outcome. METHODS Two full-term infants with PAIS, with two early MRI scans available, are reported. RESULTS Diffusion weighted imaging (DWI)-MRI, performed within 24 h following onset of seizures and repeated 48 h later, clearly showed restricted diffusion within the middle cerebral artery territory on both MRIs, but clear patterns of signal intensity changes in the descending corticospinal tracts on the second MRI only. CONCLUSION Since involvement of the corticospinal tracts is essential for prediction of motor outcome, we may need to reconsider optimal timing of MR imaging for prediction of neurodevelopmental outcome after PAIS.
Collapse
|
27
|
Alderliesten T, De Vis JB, Lemmers PMA, Hendrikse J, Groenendaal F, van Bel F, Benders MJNL, Petersen ET. Brain oxygen saturation assessment in neonates using T 2-prepared blood imaging of oxygen saturation and near-infrared spectroscopy. J Cereb Blood Flow Metab 2017; 37:902-913. [PMID: 27151900 PMCID: PMC5363470 DOI: 10.1177/0271678x16647737] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Although near-infrared spectroscopy is increasingly being used to monitor cerebral oxygenation in neonates, it has a limited penetration depth. The T2-prepared Blood Imaging of Oxygen Saturation (T2-BIOS) magnetic resonance sequence provides an oxygen saturation estimate on a voxel-by-voxel basis, without needing a respiratory calibration experiment. In 15 neonates, oxygen saturation measured by T2-prepared blood imaging of oxygen saturation and near-infrared spectroscopy were compared. In addition, these measures were compared to cerebral blood flow and venous oxygen saturation in the sagittal sinus. A strong linear relation was found between the oxygen saturation measured by magnetic resonance imaging and the oxygen saturation measured by near-infrared spectroscopy ( R2 = 0.64, p < 0.001). Strong linear correlations were found between near-infrared spectroscopy oxygen saturation, and magnetic resonance imaging measures of frontal cerebral blood flow, whole brain cerebral blood flow and venous oxygen saturation in the sagittal sinus ( R2 = 0.71, 0.50, 0.65; p < 0.01). The oxygen saturation obtained by T2-prepared blood imaging of oxygen saturation correlated with venous oxygen saturation in the sagittal sinus ( R2 = 0.49, p = 0.023), but no significant correlations could be demonstrated with frontal and whole brain cerebral blood flow. These results suggest that measuring oxygen saturation by T2-prepared blood imaging of oxygen saturation is feasible, even in neonates. Strong correlations between the various methods work as a cross validation for near-infrared spectroscopy and T2-prepared blood imaging of oxygen saturation, confirming the validity of using of these techniques for determining cerebral oxygenation.
Collapse
Affiliation(s)
- Thomas Alderliesten
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- Thomas Alderliesten, Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Room KE04.123.1, PO Box 85090, 3584 AE Ut, The Netherlands.
| | - Jill B De Vis
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Petra MA Lemmers
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen Hendrikse
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Floris Groenendaal
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frank van Bel
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Manon JNL Benders
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Esben T Petersen
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| |
Collapse
|
28
|
Magnetic resonance imaging based noninvasive measurements of brain hemodynamics in neonates: a review. Pediatr Res 2016; 80:641-650. [PMID: 27434119 DOI: 10.1038/pr.2016.146] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/15/2016] [Indexed: 12/14/2022]
Abstract
Perinatal disturbances of brain hemodynamics can have a detrimental effect on the brain's parenchyma with consequently adverse neurodevelopmental outcome. Noninvasive, reliable tools to evaluate the neonate's brain hemodynamics are scarce. Advances in magnetic resonance imaging have provided new methods to noninvasively assess brain hemodynamics. More recently these methods have made their transition to the neonatal population. The aim of this review is twofold. Firstly, to describe these newly available noninvasive methods to investigate brain hemodynamics in neonates. Secondly, to discuss the results that were obtained with these techniques, identifying both potential clinical applications as well as gaps of knowledge.
Collapse
|
29
|
Hu HH, Li Z, Pokorney AL, Chia JM, Stefani N, Pipe JG, Miller JH. Assessment of cerebral blood perfusion reserve with acetazolamide using 3D spiral ASL MRI: Preliminary experience in pediatric patients. Magn Reson Imaging 2016; 35:132-140. [PMID: 27580517 DOI: 10.1016/j.mri.2016.08.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/03/2016] [Accepted: 08/20/2016] [Indexed: 01/04/2023]
Abstract
PURPOSE To demonstrate the clinical feasibility of a new non-Cartesian cylindrically-distributed spiral 3D pseudo-continuous arterial spin labeling (pCASL) magnetic resonance imaging (MRI) pulse sequence in pediatric patients in quantifying cerebral blood flow (CBF) response to an acetazolamide (ACZ) vasodilator challenge. MATERIALS AND METHODS MRI exams were performed on two 3 Tesla Philips Ingenia systems using 32 channel head coil arrays. After local institutional review board approval, the 3D spiral-based pCASL technique was added to a standard brain MRI exam and evaluated in 13 pediatric patients (average age: 11.7±6.4years, range: 1.4-22.2years). All patients were administered ACZ for clinically indicated reasons. Quantitative whole-brain CBF measurements were computed pre- and post-ACZ to assess cerebrovascular reserve. RESULTS 3D spiral pCASL data were successfully reconstructed in all 13 cases. In 11 patients, CBF increased 2.8% to 93.2% after administration of ACZ. In the two remaining patients, CBF decreased by 2.4 to 6.0% after ACZ. The group average change in CBF due to ACZ was approximately 25.0% and individual changes were statistically significant (p<0.01) in all patients using a paired t-test analysis. CBF perfusion data were diagnostically useful in supporting conventional MR angiography and clinical findings. CONCLUSION 3D cylindrically-distributed spiral pCASL MRI provides a robust approach to assess cerebral blood flow and reserve in pediatric patients.
Collapse
Affiliation(s)
- Houchun H Hu
- Department of Medical Imaging and Radiology, Phoenix Children's Hospital, Phoenix, AZ, USA.
| | - Zhiqiang Li
- Keller Center for Imaging Innovation, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Amber L Pokorney
- Department of Medical Imaging and Radiology, Phoenix Children's Hospital, Phoenix, AZ, USA
| | | | | | - James G Pipe
- Keller Center for Imaging Innovation, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Jeffrey H Miller
- Department of Medical Imaging and Radiology, Phoenix Children's Hospital, Phoenix, AZ, USA
| |
Collapse
|
30
|
Watson CG, Dehaes M, Gagoski BA, Grant PE, Rivkin MJ. Arterial Spin Labeling Perfusion Magnetic Resonance Imaging Performed in Acute Perinatal Stroke Reveals Hyperperfusion Associated With Ischemic Injury. Stroke 2016; 47:1514-9. [DOI: 10.1161/strokeaha.115.011936] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/14/2016] [Indexed: 11/16/2022]
Affiliation(s)
- Christopher G. Watson
- From the Departments of Neurology (C.G.W., M.J.R.), Psychiatry (M.J.R.), Radiology (P.E.G., M.J.R.), and Newborn Medicine (M.D., B.A.G., P.E.G.), Boston Children’s Hospital, MA; Graduate Program for Neuroscience, Boston University, MA (C.G.W.); Department of Radiology, University of Montreal, Montreal, Quebec, Canada (M.D.); and Department of Radiology, Centre Hospitalier Universitaire Saint-Justine, Montreal, Quebec, Canada (M.D.)
| | - Mathieu Dehaes
- From the Departments of Neurology (C.G.W., M.J.R.), Psychiatry (M.J.R.), Radiology (P.E.G., M.J.R.), and Newborn Medicine (M.D., B.A.G., P.E.G.), Boston Children’s Hospital, MA; Graduate Program for Neuroscience, Boston University, MA (C.G.W.); Department of Radiology, University of Montreal, Montreal, Quebec, Canada (M.D.); and Department of Radiology, Centre Hospitalier Universitaire Saint-Justine, Montreal, Quebec, Canada (M.D.)
| | - Borjan A. Gagoski
- From the Departments of Neurology (C.G.W., M.J.R.), Psychiatry (M.J.R.), Radiology (P.E.G., M.J.R.), and Newborn Medicine (M.D., B.A.G., P.E.G.), Boston Children’s Hospital, MA; Graduate Program for Neuroscience, Boston University, MA (C.G.W.); Department of Radiology, University of Montreal, Montreal, Quebec, Canada (M.D.); and Department of Radiology, Centre Hospitalier Universitaire Saint-Justine, Montreal, Quebec, Canada (M.D.)
| | - P. Ellen Grant
- From the Departments of Neurology (C.G.W., M.J.R.), Psychiatry (M.J.R.), Radiology (P.E.G., M.J.R.), and Newborn Medicine (M.D., B.A.G., P.E.G.), Boston Children’s Hospital, MA; Graduate Program for Neuroscience, Boston University, MA (C.G.W.); Department of Radiology, University of Montreal, Montreal, Quebec, Canada (M.D.); and Department of Radiology, Centre Hospitalier Universitaire Saint-Justine, Montreal, Quebec, Canada (M.D.)
| | - Michael J. Rivkin
- From the Departments of Neurology (C.G.W., M.J.R.), Psychiatry (M.J.R.), Radiology (P.E.G., M.J.R.), and Newborn Medicine (M.D., B.A.G., P.E.G.), Boston Children’s Hospital, MA; Graduate Program for Neuroscience, Boston University, MA (C.G.W.); Department of Radiology, University of Montreal, Montreal, Quebec, Canada (M.D.); and Department of Radiology, Centre Hospitalier Universitaire Saint-Justine, Montreal, Quebec, Canada (M.D.)
| |
Collapse
|
31
|
Burton VJ, Gerner G, Cristofalo E, Chung SE, Jennings JM, Parkinson C, Koehler RC, Chavez-Valdez R, Johnston MV, Northington FJ, Lee JK. A pilot cohort study of cerebral autoregulation and 2-year neurodevelopmental outcomes in neonates with hypoxic-ischemic encephalopathy who received therapeutic hypothermia. BMC Neurol 2015; 15:209. [PMID: 26486728 PMCID: PMC4618147 DOI: 10.1186/s12883-015-0464-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 10/06/2015] [Indexed: 11/17/2022] Open
Abstract
Background Neurodevelopmental disabilities persist in survivors of neonatal hypoxic-ischemic encephalopathy (HIE) despite treatment with therapeutic hypothermia. Cerebrovascular autoregulation, the mechanism that maintains cerebral perfusion during changes in blood pressure, may influence outcomes. Our objective was to describe the relationship between acute autoregulatory vasoreactivity during treatment and neurodevelopmental outcomes at 2 years of age. Methods In a pilot study of 28 neonates with HIE, we measured cerebral autoregulatory vasoreactivity with the hemoglobin volume index (HVx) during therapeutic hypothermia, rewarming, and the first 6 h of normothermia. The HVx, which is derived from near-infrared spectroscopy, was used to identify the individual optimal mean arterial blood pressure (MAPOPT) at which autoregulatory vasoreactivity is greatest. Cognitive and motor neurodevelopmental evaluations were completed in 19 children at 21–32 months of age. MAPOPT, blood pressure in relation to MAPOPT, blood pressure below gestational age + 5 (ga + 5), and regional cerebral oximetry (rSO2) were compared to the neurodevelopmental outcomes. Results Nineteen children who had HIE and were treated with therapeutic hypothermia performed in the average range on cognitive and motor evaluations at 21–32 months of age, although the mean performance was lower than that of published normative samples. Children with impairments at the 2-year evaluation had higher MAPOPT values, spent more time with blood pressure below MAPOPT, and had greater blood pressure deviation below MAPOPT during rewarming in the neonatal period than those without impairments. Greater blood pressure deviation above MAPOPT during rewarming was associated with less disability and higher cognitive scores. No association was observed between rSO2 or blood pressure below ga + 5 and neurodevelopmental outcomes. Conclusion In this pilot cohort, motor and cognitive impairments at 21–32 months of age were associated with greater blood pressure deviation below MAPOPT during rewarming following therapeutic hypothermia, but not with rSO2 or blood pressure below ga + 5. This suggests that identifying individual neonates’ MAPOPT is superior to using hemodynamic goals based on gestational age or rSO2 in the acute management of neonatal HIE. Electronic supplementary material The online version of this article (doi:10.1186/s12883-015-0464-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vera Joanna Burton
- Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD, USA. .,Neurosciences Intensive Care Nursery, Johns Hopkins School of Medicine, Baltimore, MD, USA. .,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA. .,Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Johns Hopkins School of Medicine, 801 N Broadway, Baltimore, MD, 21205, USA.
| | - Gwendolyn Gerner
- Neurosciences Intensive Care Nursery, Johns Hopkins School of Medicine, Baltimore, MD, USA. .,Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, MD, USA.
| | - Elizabeth Cristofalo
- Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD, USA. .,Neurosciences Intensive Care Nursery, Johns Hopkins School of Medicine, Baltimore, MD, USA. .,Division of Perinatal-Neonatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Shang-en Chung
- Center for Child and Community Health Research (CCHR), Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Jacky M Jennings
- Center for Child and Community Health Research (CCHR), Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Charlamaine Parkinson
- Neurosciences Intensive Care Nursery, Johns Hopkins School of Medicine, Baltimore, MD, USA. .,Division of Perinatal-Neonatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Raymond C Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Raul Chavez-Valdez
- Neurosciences Intensive Care Nursery, Johns Hopkins School of Medicine, Baltimore, MD, USA. .,Division of Perinatal-Neonatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Michael V Johnston
- Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD, USA. .,Neurosciences Intensive Care Nursery, Johns Hopkins School of Medicine, Baltimore, MD, USA. .,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA. .,Hugo Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA.
| | - Frances J Northington
- Neurosciences Intensive Care Nursery, Johns Hopkins School of Medicine, Baltimore, MD, USA. .,Division of Perinatal-Neonatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Jennifer K Lee
- Neurosciences Intensive Care Nursery, Johns Hopkins School of Medicine, Baltimore, MD, USA. .,Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
32
|
Burton VJ, Gerner G, Cristofalo E, Chung SE, Jennings JM, Parkinson C, Koehler RC, Chavez-Valdez R, Johnston MV, Northington FJ, Lee JK. A pilot cohort study of cerebral autoregulation and 2-year neurodevelopmental outcomes in neonates with hypoxic-ischemic encephalopathy who received therapeutic hypothermia. BMC Neurol 2015. [PMID: 26486728 DOI: 10.1186/s12883-015-0464-410.1186/s12883-015-0464-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND Neurodevelopmental disabilities persist in survivors of neonatal hypoxic-ischemic encephalopathy (HIE) despite treatment with therapeutic hypothermia. Cerebrovascular autoregulation, the mechanism that maintains cerebral perfusion during changes in blood pressure, may influence outcomes. Our objective was to describe the relationship between acute autoregulatory vasoreactivity during treatment and neurodevelopmental outcomes at 2 years of age. METHODS In a pilot study of 28 neonates with HIE, we measured cerebral autoregulatory vasoreactivity with the hemoglobin volume index (HVx) during therapeutic hypothermia, rewarming, and the first 6 h of normothermia. The HVx, which is derived from near-infrared spectroscopy, was used to identify the individual optimal mean arterial blood pressure (MAPOPT) at which autoregulatory vasoreactivity is greatest. Cognitive and motor neurodevelopmental evaluations were completed in 19 children at 21-32 months of age. MAPOPT, blood pressure in relation to MAPOPT, blood pressure below gestational age + 5 (ga + 5), and regional cerebral oximetry (rSO2) were compared to the neurodevelopmental outcomes. RESULTS Nineteen children who had HIE and were treated with therapeutic hypothermia performed in the average range on cognitive and motor evaluations at 21-32 months of age, although the mean performance was lower than that of published normative samples. Children with impairments at the 2-year evaluation had higher MAPOPT values, spent more time with blood pressure below MAPOPT, and had greater blood pressure deviation below MAPOPT during rewarming in the neonatal period than those without impairments. Greater blood pressure deviation above MAPOPT during rewarming was associated with less disability and higher cognitive scores. No association was observed between rSO2 or blood pressure below ga + 5 and neurodevelopmental outcomes. CONCLUSION In this pilot cohort, motor and cognitive impairments at 21-32 months of age were associated with greater blood pressure deviation below MAPOPT during rewarming following therapeutic hypothermia, but not with rSO2 or blood pressure below ga + 5. This suggests that identifying individual neonates' MAPOPT is superior to using hemodynamic goals based on gestational age or rSO2 in the acute management of neonatal HIE.
Collapse
Affiliation(s)
- Vera Joanna Burton
- Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD, USA.
- Neurosciences Intensive Care Nursery, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Johns Hopkins School of Medicine, 801 N Broadway, Baltimore, MD, 21205, USA.
| | - Gwendolyn Gerner
- Neurosciences Intensive Care Nursery, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, MD, USA.
| | - Elizabeth Cristofalo
- Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD, USA.
- Neurosciences Intensive Care Nursery, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Division of Perinatal-Neonatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Shang-en Chung
- Center for Child and Community Health Research (CCHR), Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Jacky M Jennings
- Center for Child and Community Health Research (CCHR), Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Charlamaine Parkinson
- Neurosciences Intensive Care Nursery, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Division of Perinatal-Neonatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Raymond C Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Raul Chavez-Valdez
- Neurosciences Intensive Care Nursery, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Division of Perinatal-Neonatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Michael V Johnston
- Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD, USA.
- Neurosciences Intensive Care Nursery, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Hugo Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA.
| | - Frances J Northington
- Neurosciences Intensive Care Nursery, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Division of Perinatal-Neonatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Jennifer K Lee
- Neurosciences Intensive Care Nursery, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
33
|
Burton VJ, Gerner G, Cristofalo E, Chung SE, Jennings JM, Parkinson C, Koehler RC, Chavez-Valdez R, Johnston MV, Northington FJ, Lee JK. A pilot cohort study of cerebral autoregulation and 2-year neurodevelopmental outcomes in neonates with hypoxic-ischemic encephalopathy who received therapeutic hypothermia. BMC Neurol 2015. [PMID: 26486728 DOI: 10.1186/s12883‐015‐0464‐4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neurodevelopmental disabilities persist in survivors of neonatal hypoxic-ischemic encephalopathy (HIE) despite treatment with therapeutic hypothermia. Cerebrovascular autoregulation, the mechanism that maintains cerebral perfusion during changes in blood pressure, may influence outcomes. Our objective was to describe the relationship between acute autoregulatory vasoreactivity during treatment and neurodevelopmental outcomes at 2 years of age. METHODS In a pilot study of 28 neonates with HIE, we measured cerebral autoregulatory vasoreactivity with the hemoglobin volume index (HVx) during therapeutic hypothermia, rewarming, and the first 6 h of normothermia. The HVx, which is derived from near-infrared spectroscopy, was used to identify the individual optimal mean arterial blood pressure (MAPOPT) at which autoregulatory vasoreactivity is greatest. Cognitive and motor neurodevelopmental evaluations were completed in 19 children at 21-32 months of age. MAPOPT, blood pressure in relation to MAPOPT, blood pressure below gestational age + 5 (ga + 5), and regional cerebral oximetry (rSO2) were compared to the neurodevelopmental outcomes. RESULTS Nineteen children who had HIE and were treated with therapeutic hypothermia performed in the average range on cognitive and motor evaluations at 21-32 months of age, although the mean performance was lower than that of published normative samples. Children with impairments at the 2-year evaluation had higher MAPOPT values, spent more time with blood pressure below MAPOPT, and had greater blood pressure deviation below MAPOPT during rewarming in the neonatal period than those without impairments. Greater blood pressure deviation above MAPOPT during rewarming was associated with less disability and higher cognitive scores. No association was observed between rSO2 or blood pressure below ga + 5 and neurodevelopmental outcomes. CONCLUSION In this pilot cohort, motor and cognitive impairments at 21-32 months of age were associated with greater blood pressure deviation below MAPOPT during rewarming following therapeutic hypothermia, but not with rSO2 or blood pressure below ga + 5. This suggests that identifying individual neonates' MAPOPT is superior to using hemodynamic goals based on gestational age or rSO2 in the acute management of neonatal HIE.
Collapse
Affiliation(s)
- Vera Joanna Burton
- Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD, USA. .,Neurosciences Intensive Care Nursery, Johns Hopkins School of Medicine, Baltimore, MD, USA. .,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA. .,Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Johns Hopkins School of Medicine, 801 N Broadway, Baltimore, MD, 21205, USA.
| | - Gwendolyn Gerner
- Neurosciences Intensive Care Nursery, Johns Hopkins School of Medicine, Baltimore, MD, USA. .,Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, MD, USA.
| | - Elizabeth Cristofalo
- Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD, USA. .,Neurosciences Intensive Care Nursery, Johns Hopkins School of Medicine, Baltimore, MD, USA. .,Division of Perinatal-Neonatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Shang-en Chung
- Center for Child and Community Health Research (CCHR), Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Jacky M Jennings
- Center for Child and Community Health Research (CCHR), Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Charlamaine Parkinson
- Neurosciences Intensive Care Nursery, Johns Hopkins School of Medicine, Baltimore, MD, USA. .,Division of Perinatal-Neonatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Raymond C Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Raul Chavez-Valdez
- Neurosciences Intensive Care Nursery, Johns Hopkins School of Medicine, Baltimore, MD, USA. .,Division of Perinatal-Neonatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Michael V Johnston
- Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD, USA. .,Neurosciences Intensive Care Nursery, Johns Hopkins School of Medicine, Baltimore, MD, USA. .,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA. .,Hugo Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA.
| | - Frances J Northington
- Neurosciences Intensive Care Nursery, Johns Hopkins School of Medicine, Baltimore, MD, USA. .,Division of Perinatal-Neonatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Jennifer K Lee
- Neurosciences Intensive Care Nursery, Johns Hopkins School of Medicine, Baltimore, MD, USA. .,Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
34
|
Abstract
Injury to the developing brain remains an important complication in critically ill newborns, placing them at risk for future neurodevelopment impairments. Abnormal brain perfusion is often a key mechanism underlying neonatal brain injury. A better understanding of how alternations in brain perfusion can affect normal brain development will permit the development of therapeutic strategies that prevent and/or minimize brain injury and improve the neurodevelopmental outcome of these high-risk newborns. Recently, non-invasive MR perfusion imaging of the brain has been successfully applied to the neonatal brain, which is known to be smaller and have lower brain perfusion compared to older children and adults. This article will present an overview of the potential role of non-invasive perfusion imaging by MRI to study maturation, injury, and repair in perinatal brain injury and demonstrate why this perfusion sequence is an important addition to current neonatal imaging protocols, which already include different sequences to assess the anatomy and metabolism of the neonatal brain.
Collapse
Affiliation(s)
- Pia Wintermark
- Department of Pediatrics, Montreal Children's Hospital, McGill University, 2300 rue Tupper, C-920, Montreal, Quebec, Canada H3H 1P3.
| |
Collapse
|
35
|
De Vis JB, Hendrikse J, Petersen ET, de Vries LS, van Bel F, Alderliesten T, Negro S, Groenendaal F, Benders MJNL. Arterial spin-labelling perfusion MRI and outcome in neonates with hypoxic-ischemic encephalopathy. Eur Radiol 2014. [PMID: 25097129 DOI: 10.1007/s00330‐014‐3352‐1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE Hyperperfusion may be related to outcome in neonates with hypoxic-ischemic encephalopathy (HIE). The purpose of this study was to evaluate whether arterial spin labelling (ASL) perfusion is associated with outcome in neonates with HIE and to compare the predictive value of ASL MRI to known MRI predictive markers. METHODS Twenty-eight neonates diagnosed with HIE and assessed with MR imaging (conventional MRI, diffusion-weighted MRI, MR spectroscopy [MRS], and ASL MRI) were included. Perfusion in the basal ganglia and thalami was measured. Outcome at 9 or 18 months of age was scored as either adverse (death or cerebral palsy) or favourable. RESULTS The median (range) perfusion in the basal ganglia and thalami (BGT) was 63 (28-108) ml/100 g/min in the neonates with adverse outcome and 28 (12-51) ml/100 g/min in the infants with favourable outcome (p < 0.01). The area-under-the-curve was 0.92 for ASL MRI, 0.97 for MRI score, 0.96 for Lac/NAA and 0.92 for ADC in the BGT. The combination of Lac/NAA and ASL MRI results was the best predictor of outcome (r(2) = 0.86, p < 0.001). CONCLUSION Higher ASL perfusion values in neonates with HIE are associated with a worse neurodevelopmental outcome. A combination of the MRS and ASL MRI information is the best predictor of outcome. KEY POINTS • Arterial spin labelling MRI can predict outcome in neonates with hypoxic-ischemic encephalopathy • Basal ganglia and thalami perfusion is higher in neonates with adverse outcome • Arterial spin labelling complements known MRI parameters in the prediction of outcome • The combined information of ASL and MRS measurements is the best predictor of outcome.
Collapse
Affiliation(s)
- Jill B De Vis
- Department of Radiology, University Medical Center Utrecht, HP E 01.132, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands,
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
De Vis JB, Hendrikse J, Petersen ET, de Vries LS, van Bel F, Alderliesten T, Negro S, Groenendaal F, Benders MJNL. Arterial spin-labelling perfusion MRI and outcome in neonates with hypoxic-ischemic encephalopathy. Eur Radiol 2014; 25:113-21. [DOI: 10.1007/s00330-014-3352-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/22/2014] [Accepted: 07/16/2014] [Indexed: 10/25/2022]
|
37
|
van der Aa NE, Benders MJNL, Groenendaal F, de Vries LS. Neonatal stroke: a review of the current evidence on epidemiology, pathogenesis, diagnostics and therapeutic options. Acta Paediatr 2014; 103:356-64. [PMID: 24428836 DOI: 10.1111/apa.12555] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/02/2014] [Accepted: 01/10/2014] [Indexed: 12/26/2022]
Abstract
UNLABELLED Neonatal stroke, including perinatal arterial ischaemic stroke and cerebral sinovenous thrombosis, remains a serious problem in the neonate. This article reviews the current evidence on epidemiology, pathogenesis, diagnostics and therapeutic options. CONCLUSION Although our understanding of the underlying mechanisms and possible risk factors has improved, little progress has been made towards therapeutic options. Considering the high incidence of neurological sequelae, the need for therapeutic options is high and should be the focus of future research.
Collapse
Affiliation(s)
- NE van der Aa
- Department of Neonatology; Wilhelmina Children's Hospital; University Medical Center Utrecht; Utrecht The Netherlands
| | - MJNL Benders
- Department of Neonatology; Wilhelmina Children's Hospital; University Medical Center Utrecht; Utrecht The Netherlands
| | - F Groenendaal
- Department of Neonatology; Wilhelmina Children's Hospital; University Medical Center Utrecht; Utrecht The Netherlands
| | - LS de Vries
- Department of Neonatology; Wilhelmina Children's Hospital; University Medical Center Utrecht; Utrecht The Netherlands
| |
Collapse
|
38
|
Affiliation(s)
- Greg Zaharchuk
- From the Department of Radiology, Stanford University and Stanford University Medical Center, Stanford, CA
| |
Collapse
|