1
|
Kelchtermans J, March ME, Hakonarson H, McGrath-Morrow SA. Phenotype wide association study links bronchopulmonary dysplasia with eosinophilia in children. Sci Rep 2024; 14:21391. [PMID: 39271728 PMCID: PMC11399246 DOI: 10.1038/s41598-024-72348-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common complication of preterm birth. Despite this, genetic drivers of BPD are poorly understood. The objective of this study is to better understand the impact of single nucleotide polymorphisms (SNPs) previously associated with BPD by examining associations with other phenotypes. We drew pediatric subjects from the biorepository at the Center for Applied Genomics to identify associations between these SNPs and 2,146 imputed phenotypes. Methylation data, external cohorts, and in silico validation methods were used to corroborate significant associations. We identified 60 SNPs that were previously associated with BPD. We found a significant association between rs3771150 and rs3771171 and mean eosinophil percentage in a European cohort of 6,999 patients and replicated this in external cohorts. Both SNPs were also associated with asthma, COPD and FEV1/FVC ratio. These SNPs displayed associations with methylation probes and were functionally linked to ST2 (IL1RL1) levels in blood and lung tissue. Our findings support a genetic justification for the epidemiological link between BPD and asthma. Given the well-established link between ST2 and type 2 inflammation in asthma, these findings provide a rationale for future studies exploring the role of type 2 inflammation in the pathogenesis of BPD.
Collapse
Affiliation(s)
- Jelte Kelchtermans
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- The Center of Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Division of Pulmonary and Sleep Medicine, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Abramson Building, Philadelphia, PA, 19104, USA.
| | - Michael E March
- The Center of Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hakon Hakonarson
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Center of Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Pulmonary and Sleep Medicine, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Abramson Building, Philadelphia, PA, 19104, USA
| | - Sharon A McGrath-Morrow
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Pulmonary and Sleep Medicine, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Abramson Building, Philadelphia, PA, 19104, USA
| |
Collapse
|
2
|
Dennery PA, Yao H. Emerging role of cellular senescence in normal lung development and perinatal lung injury. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:10-16. [PMID: 38567372 PMCID: PMC10987039 DOI: 10.1016/j.pccm.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Cellular senescence is a status of irreversible growth arrest, which can be triggered by the p53/p21cip1 and p16INK4/Rb pathways via intrinsic and external factors. Senescent cells are typically enlarged and flattened, and characterized by numerous molecular features. The latter consists of increased surfaceome, increased residual lysosomal activity at pH 6.0 (manifested by increased activity of senescence-associated beta-galactosidase [SA-β-gal]), senescence-associated mitochondrial dysfunction, cytoplasmic chromatin fragment, nuclear lamin b1 exclusion, telomere-associated foci, and the senescence-associated secretory phenotype. These features vary depending on the stressor leading to senescence and the type of senescence. Cellular senescence plays pivotal roles in organismal aging and in the pathogenesis of aging-related diseases. Interestingly, senescence can also both promote and inhibit wound healing processes. We recently report that senescence as a programmed process contributes to normal lung development. Lung senescence is also observed in Down Syndrome, as well as in premature infants with bronchopulmonary dysplasia and in a hyperoxia-induced rodent model of this disease. Furthermore, this senescence results in neonatal lung injury. In this review, we briefly discuss the molecular features of senescence. We then focus on the emerging role of senescence in normal lung development and in the pathogenesis of bronchopulmonary dysplasia as well as putative signaling pathways driving senescence. Finally, we discuss potential therapeutic approaches targeting senescent cells to prevent perinatal lung diseases.
Collapse
Affiliation(s)
- Phyllis A. Dennery
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
- Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Hongwei Yao
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| |
Collapse
|
3
|
Green EA, Garrick SP, Peterson B, Berger PJ, Galinsky R, Hunt RW, Cho SX, Bourke JE, Nold MF, Nold-Petry CA. The Role of the Interleukin-1 Family in Complications of Prematurity. Int J Mol Sci 2023; 24:2795. [PMID: 36769133 PMCID: PMC9918069 DOI: 10.3390/ijms24032795] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 02/05/2023] Open
Abstract
Preterm birth is a major contributor to neonatal morbidity and mortality. Complications of prematurity such as bronchopulmonary dysplasia (BPD, affecting the lung), pulmonary hypertension associated with BPD (BPD-PH, heart), white matter injury (WMI, brain), retinopathy of prematurity (ROP, eyes), necrotizing enterocolitis (NEC, gut) and sepsis are among the major causes of long-term morbidity in infants born prematurely. Though the origins are multifactorial, inflammation and in particular the imbalance of pro- and anti-inflammatory mediators is now recognized as a key driver of the pathophysiology underlying these illnesses. Here, we review the involvement of the interleukin (IL)-1 family in perinatal inflammation and its clinical implications, with a focus on the potential of these cytokines as therapeutic targets for the development of safe and effective treatments for early life inflammatory diseases.
Collapse
Affiliation(s)
- Elys A. Green
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
- Monash Newborn, Monash Children’s Hospital, Melbourne, VIC 3168, Australia
| | - Steven P. Garrick
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
| | - Briana Peterson
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
| | - Philip J. Berger
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
| | - Robert Galinsky
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC 3168, Australia
| | - Rod W. Hunt
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
- Monash Newborn, Monash Children’s Hospital, Melbourne, VIC 3168, Australia
| | - Steven X. Cho
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
| | - Jane E. Bourke
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3168, Australia
| | - Marcel F. Nold
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
- Monash Newborn, Monash Children’s Hospital, Melbourne, VIC 3168, Australia
| | - Claudia A. Nold-Petry
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
| |
Collapse
|
4
|
Huang L, Guo N, Cheng M, Wang J, Chen F, Shi Y. The value of plasma insulin-like growth factor 1 and interleukin-18 in the diagnosis of bronchopulmonary dysplasia in premature infants. Front Pediatr 2022; 10:1013537. [PMID: 36304530 PMCID: PMC9592911 DOI: 10.3389/fped.2022.1013537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To explore the diagnostic value of IGF-1 and IL-18 in premature infants with BPD. METHODS Through a prospective observational study, the serum samples of infants in the BPD group and the non-BPD group were collected at different targeted time points, and the serum IGF-1 and IL-18 concentrations were dynamically monitored by ELISA. The Student t-test and one-way analysis of variance were adopted to analyze data, and the receiver operating characteristic (ROC) curve was used to test the diagnostic value. RESULT A total of 90 VLBW premature infants admitted to NICU between January 2020 and 2021 were finally included. Compared with the non-BPD group, infants diagnosed with BPD had a significantly lower serum concentration of IGF-1 (P < 0.05) but a higher level of IL-18 (P < 0.05) on days 1, 7, 14, and 28 after birth. With the ROC curve analysis, the serum concentration IGF-1 on day 14 and IL-18 on day 28 reported high sensitivity and specificity to predict the risk of BPD (IGF-1: sensitivity: 89.29%, specificity: 77.78%, AUC: 0.8710; IL-18: sensitivity: 53.57%, specificity: 83.33%, AUC: 0.7887). And more substantial predictive power was found in combined analysis of IGF-1 and serum IL-18 on day 14: the sensitivity was 91.07% and the specificity was 83.33%, with the AUC of 0.9142. CONCLUSION IGF-1 and IL-18 might be closely involved in the occurrence and development of BPD. The serum concentration of IGF-1 combined with IL-18 could be potentially sensitive markers for the early diagnosis and severity of BPD.
Collapse
Affiliation(s)
- Lie Huang
- Department of Neonatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Ning Guo
- Department of Neonatology, The First People's Hospital of Yinchuan, Ningxia Medical University, Yinchuan, China
| | - Meile Cheng
- Department of Neonatology, The First People's Hospital of Yinchuan, Ningxia Medical University, Yinchuan, China
| | - Jianhui Wang
- Department of Neonatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Feifan Chen
- Department of Neonatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yuan Shi
- Department of Neonatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
5
|
Wickramasinghe LC, van Wijngaarden P, Tsantikos E, Hibbs ML. The immunological link between neonatal lung and eye disease. Clin Transl Immunology 2021; 10:e1322. [PMID: 34466225 PMCID: PMC8387470 DOI: 10.1002/cti2.1322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/02/2021] [Accepted: 07/13/2021] [Indexed: 01/02/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) and retinopathy of prematurity (ROP) are two neonatal diseases of major clinical importance, arising in large part as a consequence of supplemental oxygen therapy used to promote the survival of preterm infants. The presence of coincident inflammation in the lungs and eyes of neonates receiving oxygen therapy indicates that a dysregulated immune response serves as a potential common pathogenic factor for both diseases. This review examines the current state of knowledge of immunological dysregulation in BPD and ROP, identifying similarities in the cellular subsets and inflammatory cytokines that are found in the alveoli and retina during the active phase of these diseases, indicating possible mechanistic overlap. In addition, we highlight gaps in the understanding of whether these responses emerge independently in the lung and retina as a consequence of oxygen exposure or arise because of inflammatory spill-over from the lung. As BPD and ROP are anatomically distinct, they are often considered discreet disease entities and are therefore treated separately. We propose that an improved understanding of the relationship between BPD and ROP is key to the identification of novel therapeutic targets to treat or prevent both conditions simultaneously.
Collapse
Affiliation(s)
- Lakshanie C Wickramasinghe
- Leukocyte Signalling LaboratoryDepartment of Immunology and PathologyCentral Clinical SchoolMonash UniversityMelbourneVICAustralia
| | - Peter van Wijngaarden
- OphthalmologyDepartment of SurgeryUniversity of MelbourneMelbourneVICAustralia
- Centre for Eye Research AustraliaRoyal Victorian Eye and Ear HospitalEast MelbourneVICAustralia
| | - Evelyn Tsantikos
- Leukocyte Signalling LaboratoryDepartment of Immunology and PathologyCentral Clinical SchoolMonash UniversityMelbourneVICAustralia
| | - Margaret L Hibbs
- Leukocyte Signalling LaboratoryDepartment of Immunology and PathologyCentral Clinical SchoolMonash UniversityMelbourneVICAustralia
| |
Collapse
|
6
|
Go H, Ohto H, Nollet KE, Sato K, Ichikawa H, Kume Y, Kanai Y, Maeda H, Kashiwabara N, Ogasawara K, Sato M, Hashimoto K, Hosoya M. Red cell distribution width as a predictor for bronchopulmonary dysplasia in premature infants. Sci Rep 2021; 11:7221. [PMID: 33790386 PMCID: PMC8012706 DOI: 10.1038/s41598-021-86752-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/19/2021] [Indexed: 01/21/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common morbidity complicating preterm birth. Red blood cell distribution width (RDW), a measure of the variation of red blood cell size, could reflect oxidative stress and chronic inflammation in many diseases such as cardiovascular, pulmonary, and other diseases. The objectives of the present study were to evaluate perinatal factors affecting RDW and to validate whether RDW could be a potential biomarker for BPD. A total of 176 preterm infants born at < 30 weeks were included in this study. They were categorized into BPD (n = 85) and non-BPD (n = 91) infants. RDW at birth and 14 days and 28 days of life (DOL 14, DOL 28) were measured. Clinical data were obtained from all subjects at Fukushima Medical University (Fukushima, Japan). The mean RDW at birth, DOL 14 and DOL 28 were 16.1%, 18.6%, 20.1%, respectively. Small for gestational age (SGA), chorioamnionitis (CAM), hypertensive disorders of pregnancy (HDP), gestational age and birth weight were significantly associated with RDW at birth. SGA, BPD and red blood cell (RBC) transfusion before DOL 14 were associated with RDW at DOL 14. BPD and RBC transfusion before DOL 14 were associated with RDW at DOL 28. Compared with non-BPD infants, mean RDW at DOL 14 (21.1% vs. 17.6%, P < 0.001) and DOL 28 (22.2% vs. 18.2%, P < 0.001) were significantly higher in BPD infants. Multivariate analysis revealed that RDW at DOL 28 was significantly higher in BPD infants (P = 0.001, odds ratio 1.63; 95% CI 1.22–2.19). Receiver operating characteristic analysis for RDW at DOL 28 in infants with and without BPD yielded an area under the curve of 0.87 (95% CI 0.78–0.91, P < 0.001). RDW at DOL 28 with mild BPD (18.1% vs. 21.3%, P < 0.001), moderate BPD (18.1% vs. 21.2%, P < 0.001), and severe BPD (18.1% vs. 24.0%, P < 0.001) were significantly higher than those with non-BPD, respectively. Furthermore, there are significant differences of RDW at DOL 28 among mild, moderate, and severe BPD. In summary, we conclude that RDW at DOL 28 could serve as a biomarker for predicting BPD and its severity. The mechanism by which RDW at DOL 28 is associated with the pathogenesis of BPD needs further elucidation.
Collapse
Affiliation(s)
- Hayato Go
- Department of Pediatrics, Fukushima Medical University School of Medicine, Hikarigaoka 1, Fukushima, Japan.
| | | | - Kenneth E Nollet
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kenichi Sato
- Department of Pediatrics, Fukushima Medical University School of Medicine, Hikarigaoka 1, Fukushima, Japan
| | - Hirotaka Ichikawa
- Department of Pediatrics, Fukushima Medical University School of Medicine, Hikarigaoka 1, Fukushima, Japan
| | - Yohei Kume
- Department of Pediatrics, Fukushima Medical University School of Medicine, Hikarigaoka 1, Fukushima, Japan
| | - Yuji Kanai
- Department of Pediatrics, Fukushima Medical University School of Medicine, Hikarigaoka 1, Fukushima, Japan
| | - Hajime Maeda
- Department of Pediatrics, Fukushima Medical University School of Medicine, Hikarigaoka 1, Fukushima, Japan
| | - Nozomi Kashiwabara
- Department of Pediatrics, Fukushima Medical University School of Medicine, Hikarigaoka 1, Fukushima, Japan
| | - Kei Ogasawara
- Department of Pediatrics, Fukushima Medical University School of Medicine, Hikarigaoka 1, Fukushima, Japan
| | - Maki Sato
- Department of Pediatrics, Fukushima Medical University School of Medicine, Hikarigaoka 1, Fukushima, Japan
| | - Koichi Hashimoto
- Department of Pediatrics, Fukushima Medical University School of Medicine, Hikarigaoka 1, Fukushima, Japan
| | - Mitsuaki Hosoya
- Department of Pediatrics, Fukushima Medical University School of Medicine, Hikarigaoka 1, Fukushima, Japan
| |
Collapse
|
7
|
Tissue-Resident Type 2 Innate Lymphoid Cells Arrest Alveolarization in Bronchopulmonary Dysplasia. J Immunol Res 2020; 2020:8050186. [PMID: 33178840 PMCID: PMC7648679 DOI: 10.1155/2020/8050186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/09/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a severe complication of the respiratory system associated with preterm birth. Type 2 innate lymphoid cells (ILC2s) play a major role in tissue homeostasis, inflammation, and wound healing. However, the role in BPD remains unclear. The present study showed that ILC2s, interleukin-4 (IL-4), IL-13, and anti-inflammatory (M2) macrophages increased significantly in BPD mice as compared to the control mice. Administration with recombinant mouse IL-33 amplified the above phenomena and aggravated the alveolar structural disorder and functional injury in mice subjected to BPD, and the opposite was true with anti-ST2 antibody. In addition, the depletion of ILC2s in BPD mice with anti-CD90.2 antibody substantially abolished the destructive effect on BPD. In the treatment of BPD with dexamethasone, the number of ILC2s and M2 macrophages and levels of IL-4 and IL-13 decreased with remission as compared to the control group. This study identified a major destructive role of the ILC2s in BPD that could be attenuated as a therapeutic strategy.
Collapse
|
8
|
Jin R, Xu J, Gao Q, Mao X, Yin J, Lu K, Guo Y, Zhang M, Cheng R. IL-33-induced neutrophil extracellular traps degrade fibronectin in a murine model of bronchopulmonary dysplasia. Cell Death Discov 2020; 6:33. [PMID: 32377396 PMCID: PMC7198621 DOI: 10.1038/s41420-020-0267-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/06/2020] [Accepted: 04/16/2020] [Indexed: 12/30/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the leading cause of chronic lung disease in preterm neonates. Extracellular matrix (ECM) abnormalities reshape lung development, contributing to BPD progression. In the present study, we first discovered that the ECM component fibronectin was reduced in the pulmonary tissues of model mice with BPD induced by lipopolysaccharide (LPS) and hyper-oxygen. Meanwhile, interleukin-33 (IL-33) and other inflammatory cytokines were elevated in BPD lung tissues. LPS stimulated the production of IL-33 in alveolar epithelial cells via myeloid differentiation factor 88 (MyD88), protein 38 (p38), and nuclear factor-kappa B (NF-κB) protein 65 (p65). Following the knockout of either IL-33 or its receptor suppression of tumorigenicity 2 (ST2) in mice, BPD disease severity was improved, accompanied by elevated fibronectin. ST2 neutralization antibody also relieved BPD progression and restored the expression of fibronectin. IL-33 induced the formation of neutrophil extracellular traps (NETs), which degraded fibronectin in alveolar epithelial cells. Moreover, DNase-mediated degradation of NETs was protective against BPD. Finally, a fibronectin inhibitor directly decreased fibronectin and caused BPD-like disease in the mouse model. Our findings may shed light on the roles of IL-33-induced NETs and reduced fibronectin in the pathogenesis of BPD.
Collapse
Affiliation(s)
- Rui Jin
- Department of Neonatal Medical Center, Children’s Hospital of Nanjing Medical University, 210008 Nanjing, China
| | - Junjie Xu
- Department of Neonatal Medical Center, Children’s Hospital of Nanjing Medical University, 210008 Nanjing, China
| | - Qianqian Gao
- Department of Neonatal Medical Center, Children’s Hospital of Nanjing Medical University, 210008 Nanjing, China
| | - Xiaonan Mao
- Department of Neonatal Medical Center, Children’s Hospital of Nanjing Medical University, 210008 Nanjing, China
| | - Jiao Yin
- Department of Neonatal Medical Center, Children’s Hospital of Nanjing Medical University, 210008 Nanjing, China
| | - Keyu Lu
- Department of Neonatal Medical Center, Children’s Hospital of Nanjing Medical University, 210008 Nanjing, China
| | - Yan Guo
- Department of Neonatal Medical Center, Children’s Hospital of Nanjing Medical University, 210008 Nanjing, China
| | - Mingshun Zhang
- NHC Key Laboratory of Antibody Technique, Department of Immunology, Nanjing Medical University, 211166 Nanjing, China
| | - Rui Cheng
- Department of Neonatal Medical Center, Children’s Hospital of Nanjing Medical University, 210008 Nanjing, China
| |
Collapse
|
9
|
Shores DR, Everett AD. Children as Biomarker Orphans: Progress in the Field of Pediatric Biomarkers. J Pediatr 2018; 193:14-20.e31. [PMID: 29031860 PMCID: PMC5794519 DOI: 10.1016/j.jpeds.2017.08.077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/04/2017] [Accepted: 08/30/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Darla R Shores
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD.
| | - Allen D Everett
- Division of Cardiology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
10
|
Desmedt S, Desmedt V, Delanghe JR, Speeckaert R, Speeckaert MM. The intriguing role of soluble urokinase receptor in inflammatory diseases. Crit Rev Clin Lab Sci 2017; 54:117-133. [DOI: 10.1080/10408363.2016.1269310] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | | | - J. R. Delanghe
- Department of Clinical Chemistry, Ghent University Hospital, Gent, Belgium
| | - R. Speeckaert
- Department of Clinical Chemistry, Ghent University Hospital, Gent, Belgium
| | | |
Collapse
|
11
|
Abstract
Acute respiratory distress syndrome (ARDS) is common among mechanically ventilated children and accompanies up to 30% of all pediatric intensive care unit deaths. Though ARDS diagnosis is based on clinical criteria, biological markers of acute lung damage have been extensively studied in adults and children. Biomarkers of inflammation, alveolar epithelial and capillary endothelial disruption, disordered coagulation, and associated derangements measured in the circulation and other body fluids, such as bronchoalveolar lavage, have improved our understanding of pathobiology of ARDS. The biochemical signature of ARDS has been increasingly well described in adult populations, and this has led to the identification of molecular phenotypes to augment clinical classifications. However, there is a paucity of data from pediatric ARDS (pARDS) patients. Biomarkers and molecular phenotypes have the potential to identify patients at high risk of poor outcomes, and perhaps inform the development of targeted therapies for specific groups of patients. Additionally, because of the lower incidence of and mortality from ARDS in pediatric patients relative to adults and lack of robust clinical predictors of outcome, there is an ongoing interest in biological markers as surrogate outcome measures. The recent definition of pARDS provides additional impetus for the measurement of established and novel biomarkers in future pediatric studies in order to further characterize this disease process. This chapter will review the currently available literature and discuss potential future directions for investigation into biomarkers in ARDS among children.
Collapse
Affiliation(s)
- Benjamin E. Orwoll
- Department of Pediatrics, Division of Critical Care, University of California San Francisco, San Francisco, CA, USA
| | - Anil Sapru
- Department of Pediatrics, Division of Critical Care, University of California San Francisco, San Francisco, CA, USA
- Department of Pediatrics, Division of Critical Care, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
12
|
Rivera L, Siddaiah R, Oji-Mmuo C, Silveyra GR, Silveyra P. Biomarkers for Bronchopulmonary Dysplasia in the Preterm Infant. Front Pediatr 2016; 4:33. [PMID: 27065351 PMCID: PMC4814627 DOI: 10.3389/fped.2016.00033] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/22/2016] [Indexed: 12/20/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic inflammatory lung disease of very-low-birth-weight (VLBW) preterm infants, associated with arrested lung development and a need for supplemental oxygen. Over the past few decades, the incidence of BPD has significantly raised as a result of improved survival of VLBW infants requiring mechanical ventilation. While early disease detection is critical to prevent chronic lung remodeling and complications later in life, BPD is often difficult to diagnose and prevent due to the lack of good biomarkers for identification of infants at risk, and overlapping symptoms with other diseases, such as pulmonary hypertension (PH). Due to the current lack of effective treatment available for BPD and PH, research is currently focused on primary prevention strategies, and identification of biomarkers for early diagnosis, that could also represent potential therapeutic targets. In addition, novel histopathological, biochemical, and molecular factors have been identified in the lung tissue and in biological fluids of BPD and PH patients that could associate with the disease phenotype. In this review, we provide an overview of biomarkers for pediatric BPD and PH that have been identified in clinical studies using various biological fluids. We also present a brief summary of the information available on current strategies and guidelines to prevent and diagnose BPD and PH, as well as their pathophysiology, risk factors, and experimental therapies currently available.
Collapse
Affiliation(s)
- Lidys Rivera
- Department of Pediatrics, The Pennsylvania State University College of Medicine , Hershey, PA , USA
| | - Roopa Siddaiah
- Department of Pediatrics, The Pennsylvania State University College of Medicine , Hershey, PA , USA
| | - Christiana Oji-Mmuo
- Department of Pediatrics, The Pennsylvania State University College of Medicine , Hershey, PA , USA
| | - Gabriela R Silveyra
- Department of Pediatrics, The Pennsylvania State University College of Medicine , Hershey, PA , USA
| | - Patricia Silveyra
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
13
|
Distribution of soluble suppression of tumorigenicity 2 (sST2), N-terminal pro-brain natriuretic peptide (NT-proBNP), high sensitive troponin I and high-sensitive troponin T in umbilical cord blood. Clin Chem Lab Med 2016. [DOI: 10.1515/cclm-2016-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractBackground:Soluble suppression of tumorigenicity 2 (sST2), N-terminal pro-brain natriuretic peptide (NT-proBNP), high sensitive troponin I (hs-TnI), and high sensitive troponin T (hs-TnT) are representative cardiac biomarkers. The reference intervals (RIs) of these biomarkers have been rarely investigated in umbilical cord blood (UCB). We explored the distribution of these cardiac markers and established their RIs in UCB.Methods:In a total of 293 UCB specimens, sST2, NT-proBNP, hs-TnI, and hs-TnT concentrations were analyzed according to the gestational age, presence of premature membrane rupture (PROM), presence of gestational diabetes mellitus (GDM), and Apgar score at 1 min. Their RIs were defined in 133 UCB specimens from healthy, full-term neonates, using non-parametric percentile methods according to the Clinical and Laboratory Standards Institute guideline (EP28-A3C).Results:The concentrations of four cardiac markers in UCB were different between full-term neonates and pre-term neonates. The concentrations of NT-proBNP and hs-TnI differed according to the presence or absence of PROM. Their concentrations did not differ regardless of the presence of GDM. The concentrations of sST2 and NT-proBNP differed according to the Apgar score at 1 min. The 97.5th percentile upper reference limits were: sST2, 59.9 ng/mL; NT pro-BNP, 1415.3 pg/mL; hs-TnI, 27.8 pg/mL; and hs-TnT, 86.5 pg/mL.Conclusions:The distribution of sST2, NT pro-BNP, hs-TnI, and hs-TnT in UCB together with their RIs would provide fundamental data for future researches and clinical practice.
Collapse
|
14
|
Abstract
Suppression of tumorigenicity 2 (ST2, also known as interleukin [IL]-1 receptor-like-1) is an IL-1 receptor family member with transmembrane (ST2L) and soluble isoforms (sST2). ST2L is a membrane-bound receptor, and IL-33 is the functional ligand for ST2L. sST2, a soluble truncated form of ST2L, is secreted into the circulation and functions as a "decoy" receptor for IL-33, inhibiting IL-33/ST2L signaling. Blood concentrations of sST2 are increased in inflammatory diseases and heart disease and are considered a valuable prognostic marker in both conditions. In multiple clinical trials, sST2 has emerged as a clinically useful prognostic biomarker in patients with cardiac diseases. Interestingly, sST2 even provides prognostic information in low-risk community-based populations. In this review, we will discuss analytical considerations of measuring circulating sST2 including pre-analytical issues, such as in vitro stability of sST2, biological variation of sST2, and postanalytical issues, such as reference ranges and comparisons to diseased cohorts.
Collapse
|
15
|
Wrotek A, Jackowska T. The role of the soluble urokinase plasminogen activator (suPAR) in children with pneumonia. Respir Physiol Neurobiol 2015; 209:120-3. [PMID: 25602915 DOI: 10.1016/j.resp.2014.12.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 12/18/2014] [Accepted: 12/28/2014] [Indexed: 01/01/2023]
Abstract
Although pneumonia is one of the most important health problems in children, there is still no widely accepted disease severity score, the data on the correlation between the conventional inflammatory markers or chest X-ray and the disease severity remain disputable, and thus, there is an urgent need for a new pneumonia biomarker. The soluble urokinase plasminogen activator (suPAR) is a soluble form of the urokinase plasminogen activator that plays an important role in the innate host defense in the pulmonary tissue. suPAR levels have been associated with a general activation of the immune system rather than with a particular etiological factor. suPAR has a high prognostic value in critically ill patients, especially with sepsis, but there is a growing number of studies focusing on suPAR in respiratory diseases. The aim of this review is to summarize the knowledge on the role of the suPAR/uPAR in lung pathology and its possible use in pneumonia in children.
Collapse
Affiliation(s)
- A Wrotek
- Department of Pediatrics, Medical Center of Postgraduate Education, 99-103 Marymoncka St., 01-813 Warsaw, Poland
| | - T Jackowska
- Department of Pediatrics, Medical Center of Postgraduate Education, 99-103 Marymoncka St., 01-813 Warsaw, Poland; Department of Pediatrics, Bielanski Hospital, Warsaw, Poland.
| |
Collapse
|
16
|
Dieplinger B, Mueller T. Soluble ST2 in heart failure. Clin Chim Acta 2014; 443:57-70. [PMID: 25269091 DOI: 10.1016/j.cca.2014.09.021] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 08/27/2014] [Accepted: 09/16/2014] [Indexed: 12/12/2022]
Abstract
In addition to routine clinical laboratory tests (including natriuretic peptides and cardiac troponins), other biomarkers are gaining attention for their utility in heart failure (HF) management. Among them, soluble ST2 (sST2) a novel biomarker integrating inflammation, fibrosis, and cardiac stress has been included in the 2013 ACCF/AHA guideline for additive risk stratification of patients with acute and chronic HF. sST2 is an interleukin-1 (IL-1) receptor family member, is secreted into the circulation and functions as a "decoy" receptor for IL-33, inhibiting IL-33/ST2 signaling. Blood concentrations of sST2 are increased in various diseases such as inflammatory diseases and heart diseases and are considered a valuable prognostic marker in both conditions. sST2 lacks disease specificity and, therefore, is not a valuable marker for the diagnosis of HF. In acute and chronic HF, however, sST2 is strongly associated with measures of HF severity and poor outcome. Several studies in patients with HF indicate that serial measurement of sST2 has prognostic value and could have a potential role in future biomarker-directed therapy. In this review, the role of sST2 as a HF biomarker will be discussed, specifically addressing analytical considerations of measuring sST2 as well as the clinical applications of measurement of sST2 for the diagnosis, prognosis and monitoring of acute and chronic HF.
Collapse
Affiliation(s)
- Benjamin Dieplinger
- Department of Laboratory Medicine, Konventhospital Barmherzige Brueder, Linz, Austria.
| | - Thomas Mueller
- Department of Laboratory Medicine, Konventhospital Barmherzige Brueder, Linz, Austria
| |
Collapse
|