1
|
Robinson JL, Roff AJ, Hammond SJ, Darby JRT, Meakin AS, Holman SL, Tai A, Moss TJM, Dimasi CG, Jesse SM, Wiese MD, Davies AN, Muhlhausler BS, Bischof RJ, Wallace MJ, Clifton VL, Morrison JL, Stark MJ, Gatford KL. Betamethasone improved near-term neonatal lamb lung maturation in experimental maternal asthma. Exp Physiol 2024; 109:1967-1979. [PMID: 39436639 PMCID: PMC11522833 DOI: 10.1113/ep091997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/09/2024] [Indexed: 10/23/2024]
Abstract
Maternal asthma is associated with increased rates of neonatal lung disease, and fetuses from asthmatic ewes have fewer surfactant-producing cells and lower surfactant-protein B gene (SFTPB) expression than controls. Antenatal betamethasone increases lung surfactant production in preterm babies, and we therefore tested this therapy in experimental maternal asthma. Ewes were sensitised to house dust mite allergen, and an asthmatic phenotype induced by fortnightly allergen lung challenges; controls received saline. Pregnant asthmatic ewes were randomised to receive antenatal saline (asthma) or 12 mg intramuscular betamethasone (asthma+beta) at 138 and 139 days of gestation (term = 150 days). Lambs were delivered by Caesarean section at 140 days of gestation and ventilated for 45 min before tissue collection. Lung function and structure were similar in control lambs (n = 16, 11 ewes) and lambs from asthma ewes (n = 14, 9 ewes). Dynamic lung compliance was higher in lambs from asthma+beta ewes (n = 12, 8 ewes) compared to those from controls (P = 0.003) or asthma ewes (P = 0.008). Lung expression of surfactant protein genes SFTPA (P = 0.048) and SFTPB (P < 0.001), but not SFTPC (P = 0.177) or SFTPD (P = 0.285), was higher in lambs from asthma+beta than those from asthma ewes. Female lambs had higher tidal volume (P = 0.007), dynamic lung compliance (P < 0.001), and SFTPA (P = 0.037) and SFTPB gene expression (P = 0.030) than males. These data suggest that betamethasone stimulates lung maturation and function of near-term neonates, even in the absence of impairment by maternal asthma.
Collapse
Affiliation(s)
- Joshua L. Robinson
- Robinson Research InstituteUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Adelaide Medical SchoolUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Andrea J. Roff
- Robinson Research InstituteUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
- School of BiomedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Sarah J. Hammond
- Robinson Research InstituteUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Jack R. T. Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Ashley S. Meakin
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Stacey L. Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Andrew Tai
- Robinson Research InstituteUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Adelaide Medical SchoolUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Respiratory and Sleep MedicineWomen's & Children's HospitalNorth AdelaideSouth AustraliaAustralia
| | - Tim J. M. Moss
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| | - Catherine G. Dimasi
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Sarah M. Jesse
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Michael D. Wiese
- Centre for Pharmaceutical Innovation, Clinical & Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Andrew N. Davies
- Biomedicine Discovery InstituteMonash UniversityFrankstonVictoriaAustralia
| | - Beverly S. Muhlhausler
- Health and BiosecurityCommonwealth Scientific and Industrial Research OrganisationAdelaideSouth AustraliaAustralia
| | - Robert J. Bischof
- Institute of Innovation, Science, and SustainabilityFederation University AustraliaBerwickVictoriaAustralia
| | - Megan J. Wallace
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
| | - Vicki L. Clifton
- Mater Medical Research InstituteUniversity of QueenslandSouth BrisbaneQueenslandAustralia
| | - Janna L. Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Michael J. Stark
- Robinson Research InstituteUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Adelaide Medical SchoolUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Department of Neonatal MedicineWomen's & Children's HospitalNorth AdelaideSouth AustraliaAustralia
| | - Kathryn L. Gatford
- Robinson Research InstituteUniversity of AdelaideAdelaideSouth AustraliaAustralia
- School of BiomedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
| |
Collapse
|
2
|
Robinson JL, Gatford KL, Clifton VL, Morrison JL, Stark MJ. The impact of maternal asthma on the fetal lung: Outcomes, mechanisms and interventions. Paediatr Respir Rev 2024; 51:38-45. [PMID: 38195368 DOI: 10.1016/j.prrv.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024]
Abstract
Maternal asthma affects up to 17% of pregnancies and is associated with adverse infant, childhood, and adult respiratory outcomes, including increased risks of neonatal respiratory distress syndrome, childhood wheeze and asthma. In addition to genetics, these poor outcomes are likely due to the mediating influence of maternal asthma on the in-utero environment, altering fetal lung and immune development and predisposing the offspring to later lung disease. Maternal asthma may impair glucocorticoid signalling in the fetus, a process critical for lung maturation, and increase fetal exposure to proinflammatory cytokines. Therefore, interventions to control maternal asthma, increase glucocorticoid signalling in the fetal lung, or Vitamin A, C, and D supplementation to improve alveologenesis and surfactant production may be beneficial for later lung function. This review highlights potential mechanisms underlying maternal asthma and offspring respiratory morbidities and describes how pregnancy interventions can promote optimal fetal lung development in babies of asthmatic mothers.
Collapse
Affiliation(s)
- Joshua L Robinson
- Robinson Research Institute, University of Adelaide, Adelaide, Australia; Adelaide Medical School, University of Adelaide, Adelaide, Australia; Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, Australia.
| | - Kathryn L Gatford
- Robinson Research Institute, University of Adelaide, Adelaide, Australia; School of Biomedicine, University of Adelaide, Adelaide, Australia
| | - Vicki L Clifton
- Mater Research Institute, University of Queensland, Brisbane, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Michael J Stark
- Robinson Research Institute, University of Adelaide, Adelaide, Australia; Adelaide Medical School, University of Adelaide, Adelaide, Australia; Department of Neonatal Medicine, Women's & Children's Hospital, Adelaide, Australia.
| |
Collapse
|
3
|
Song L, Song J, Wang Y, Wei Y, Zhao Y, Liu D. Systematic Quantitative Analysis of Fetal Dexamethasone Exposure and Fetal Lung Maturation in Pregnant Animals: Model Informed Dexamethasone Precision Dose Study. ACS Pharmacol Transl Sci 2024; 7:1770-1782. [PMID: 38898943 PMCID: PMC11184600 DOI: 10.1021/acsptsci.3c00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 06/21/2024]
Abstract
Dexamethasone (DEX) was applied in neonatal respiratory distress syndrome treatment of pregnant women. We established a pharmacokinetics (PK)/pharmacodynamics(PD)/end point model of pregnant animals based on published data and then extrapolated to simulate fetal exposure and lung maturation in pregnant women. We first established the PK/PD/end point model for DEX in pregnant sheep. We considered the competitive effect of cortisol (Cort) and DEX binding with glucocorticoid receptor and then used the indirect response model to describe disaturated-phosphatidylcholine (DSPC) dynamics. Based on that, we established a regression relationship between DSPC and fetal lung volume (V40). We then extrapolated the PD/end point model of pregnant sheep to pregnant monkeys by corrected stages of morphologic lung maturation in two species. Finally, we utilized the interspecies extrapolation strategy to simulate fetal exposure (AUC0-48h) and V40 relationship in pregnant women. The current model could well describe the maternal-fetal PK of DEX in pregnant animals. Simulated DEX AUC0-24h values of the umbilical venous to maternal plasma ratio in pregnant sheep and monkeys were 0.31 and 0.27, respectively. The simulated Cort curve and V40 in pregnant sheep closely matched the observed data within a 2-fold range. For pregnant monkeys, model-simulated V40 were well fitted with external verification data, which showed good interspecies extrapolation performance. Finally, we simulated fetal exposure-response relationship in pregnant women, which indicated that the fetal AUC0-48h of DEX should not be less than 300 and 100 ng/mL·hr at GW28 and GW34 to ensure fetal lung maturity. The current model preliminarily provided support for clinical DEX dose optimization.
Collapse
Affiliation(s)
- Ling Song
- Department
of Obstetrics and Gynecology, Peking University
Third Hospital, Beijing 100191, China
- Drug
Clinical Trial Center, Peking University
Third Hospital, Beijing 100191, China
| | - Jie Song
- Drug
Clinical Trial Center, Peking University
Third Hospital, Beijing 100191, China
| | - Ying Wang
- Department
of Obstetrics and Gynecology, Peking University
Third Hospital, Beijing 100191, China
| | - Yuan Wei
- Department
of Obstetrics and Gynecology, Peking University
Third Hospital, Beijing 100191, China
| | - Yangyu Zhao
- Department
of Obstetrics and Gynecology, Peking University
Third Hospital, Beijing 100191, China
| | - Dongyang Liu
- Drug
Clinical Trial Center, Peking University
Third Hospital, Beijing 100191, China
- Institute
of Medical Innovation and Research, Peking
University Third Hospital, Beijing 100191, China
| |
Collapse
|
4
|
Fee EL, Takahashi T, Takahashi Y, Carter SWD, Clarke MW, Milad MA, Usuda H, Ikeda H, Kumagai Y, Saito Y, Ireland DJ, Newnham JP, Saito M, Jobe AH, Kemp MW. Respiratory benefit in preterm lambs is progressively lost when the concentration of fetal plasma betamethasone is titrated below two nanograms per milliliter. Am J Physiol Lung Cell Mol Physiol 2023; 325:L628-L637. [PMID: 37697929 DOI: 10.1152/ajplung.00139.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/09/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023] Open
Abstract
Antenatal steroid therapy is the standard of care for women at imminent risk of preterm delivery. Current dosing regimens use suprapharmacological doses to achieve extended fetal steroid exposures. We aimed to determine the lowest fetal plasma betamethasone concentration sufficient to achieve functional preterm lung maturation. Ewes with single fetuses underwent surgery to install a fetal jugular catheter. Adopting a stepwise design, ewes were randomized to either a saline-only group (negative control group; n = 9) or one of four betamethasone treatment groups. Each betamethasone group fetus received a fetal intravenous infusion to target a constant plasma betamethasone level of either 1) 2 ng/mL (2 ng/mL positive control group, n = 9); 2) 1 ng/mL, (1 ng/mL group, n = 10); 3) 0.5 ng/mL (0.5 ng/mL group, n = 10); or 4) 0.25 ng/mL (0.25 ng/mL group, n = 10). Fetuses were infused for 48 h, delivered, and ventilated. The positive control group, negative control group, and mid-point 0.5 ng/mL group animals were tested first. An interim analysis informed the final betamethasone group tested. Positive control group animals had large, statistically significant improvements in respiratory function. Based on an interim analysis, the 1.0 ng/mL group was studied in favor of the 0.25 ng/mL group. Treatment efficacy was progressively lost at plasma betamethasone concentrations lower than 2 ng/mL. We demonstrated that the acute respiratory benefit conveyed by antenatal steroid exposure in the fetal sheep is progressively lost when constant fetal plasma betamethasone concentrations are reduced below a targeted value of 2 ng/mL.NEW & NOTEWORTHY Lung maturation benefits in preterm lambs were progressively lost when fetal plasma betamethasone concentrations fell below 2 ng/mL. The effective floor threshold for a robust, lung-maturing exposure likely lies between 1 and 2 ng betamethasone per milliliter of plasma. Hypothalamic pituitary adrenal axis signaling and immunocyte populations remained materially disrupted at subtherapeutic steroid concentrations. These data demonstrate the potential to improve antenatal steroid therapy using reduced dose regimens informed by glucocorticoid pharmacokinetics and pharmacodynamics.
Collapse
Affiliation(s)
- Erin L Fee
- Division of Obstetrics and Gynaecology, Medical School, The University of Western Australia, Perth, Western Australia, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Tsukasa Takahashi
- Division of Obstetrics and Gynaecology, Medical School, The University of Western Australia, Perth, Western Australia, Australia
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Yuki Takahashi
- Division of Obstetrics and Gynaecology, Medical School, The University of Western Australia, Perth, Western Australia, Australia
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Sean W D Carter
- Division of Obstetrics and Gynaecology, Medical School, The University of Western Australia, Perth, Western Australia, Australia
| | - Michael W Clarke
- Metabolomics Australia, Centre for Microscopy, Characterization and Analysis, The University of Western Australia, Perth, Western Australia, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Mark A Milad
- Milad Pharmaceutical Consulting LLC, Plymouth, Michigan, United States
| | - Haruo Usuda
- Division of Obstetrics and Gynaecology, Medical School, The University of Western Australia, Perth, Western Australia, Australia
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Hideyuki Ikeda
- Division of Obstetrics and Gynaecology, Medical School, The University of Western Australia, Perth, Western Australia, Australia
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Yusaku Kumagai
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Yuya Saito
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Demelza J Ireland
- Division of Obstetrics and Gynaecology, Medical School, The University of Western Australia, Perth, Western Australia, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - John P Newnham
- Division of Obstetrics and Gynaecology, Medical School, The University of Western Australia, Perth, Western Australia, Australia
| | - Masatoshi Saito
- Division of Obstetrics and Gynaecology, Medical School, The University of Western Australia, Perth, Western Australia, Australia
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Alan H Jobe
- Division of Obstetrics and Gynaecology, Medical School, The University of Western Australia, Perth, Western Australia, Australia
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, Ohio, United States
| | - Matthew W Kemp
- Division of Obstetrics and Gynaecology, Medical School, The University of Western Australia, Perth, Western Australia, Australia
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
- School of Veterinary Medicine, Murdoch University, Perth, Western Australia, Australia
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
5
|
Garrud TAC, Teulings NEWD, Niu Y, Skeffington KL, Beck C, Itani N, Conlon FG, Botting KJ, Nicholas LM, Tong W, Derks JB, Ozanne SE, Giussani DA. Molecular mechanisms underlying adverse effects of dexamethasone and betamethasone in the developing cardiovascular system. FASEB J 2023; 37:e22887. [PMID: 37132324 PMCID: PMC10946807 DOI: 10.1096/fj.202200676rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 05/04/2023]
Abstract
Antenatal glucocorticoids accelerate fetal lung maturation and reduce mortality in preterm babies but can trigger adverse effects on the cardiovascular system. The mechanisms underlying off-target effects of the synthetic glucocorticoids mostly used, Dexamethasone (Dex) and Betamethasone (Beta), are unknown. We investigated effects of Dex and Beta on cardiovascular structure and function, and underlying molecular mechanism using the chicken embryo, an established model system to isolate effects of therapy on the developing heart and vasculature, independent of effects on the mother or placenta. Fertilized eggs were treated with Dex (0.1 mg kg-1 ), Beta (0.1 mg kg-1 ), or water vehicle (Control) on embryonic day 14 (E14, term = 21 days). At E19, biometry, cardiovascular function, stereological, and molecular analyses were determined. Both glucocorticoids promoted growth restriction, with Beta being more severe. Beta compared with Dex induced greater cardiac diastolic dysfunction and also impaired systolic function. While Dex triggered cardiomyocyte hypertrophy, Beta promoted a decrease in cardiomyocyte number. Molecular changes of Dex on the developing heart included oxidative stress, activation of p38, and cleaved caspase 3. In contrast, impaired GR downregulation, activation of p53, p16, and MKK3 coupled with CDK2 transcriptional repression linked the effects of Beta on cardiomyocyte senescence. Beta but not Dex impaired NO-dependent relaxation of peripheral resistance arteries. Beta diminished contractile responses to potassium and phenylephrine, but Dex enhanced peripheral constrictor reactivity to endothelin-1. We conclude that Dex and Beta have direct differential detrimental effects on the developing cardiovascular system.
Collapse
Affiliation(s)
- Tessa A. C. Garrud
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Noor E. W. D. Teulings
- Institute of Metabolic Science‐Metabolic Research Laboratories, MRC Metabolic Diseases UnitUniversity of Cambridge, Addenbrooke's HospitalCambridgeUK
| | - Youguo Niu
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Katie L. Skeffington
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Christian Beck
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Nozomi Itani
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Fiona G. Conlon
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Kimberley J. Botting
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Lisa M. Nicholas
- Institute of Metabolic Science‐Metabolic Research Laboratories, MRC Metabolic Diseases UnitUniversity of Cambridge, Addenbrooke's HospitalCambridgeUK
| | - Wen Tong
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Jan B. Derks
- Department of Perinatal MedicineUniversity Medical CentreUtrechtNetherlands
| | - Susan E. Ozanne
- Institute of Metabolic Science‐Metabolic Research Laboratories, MRC Metabolic Diseases UnitUniversity of Cambridge, Addenbrooke's HospitalCambridgeUK
- BHF Cardiovascular Centre for Research ExcellenceUniversity of CambridgeCambridgeUK
- Strategic Research Initiative in ReproductionUniversity of CambridgeCambridgeUK
- Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUK
| | - Dino A. Giussani
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
- BHF Cardiovascular Centre for Research ExcellenceUniversity of CambridgeCambridgeUK
- Strategic Research Initiative in ReproductionUniversity of CambridgeCambridgeUK
- Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUK
| |
Collapse
|
6
|
Zafran N, Massalha M, Suleiman A, Massalha R, Mahagna L, Weiner SA, Romano S, Shalev E, Salim R. Association between betamethasone levels and respiratory distress syndrome in preterm births: A prospective cohort study. Clin Transl Sci 2022; 15:2528-2537. [PMID: 35923139 PMCID: PMC9579395 DOI: 10.1111/cts.13382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 01/25/2023] Open
Abstract
The recommended fixed dosage of betamethasone for pregnancies at risk of preterm birth was determined in the 1970s, regardless of gestational age (GA), number of fetuses, and maternal weight. We aimed to examine the association between maternal and neonatal betamethasone serum levels and neonatal respiratory distress syndrome (RDS) and to examine whether levels correlate with maternal weight, GA, or number of fetuses. A prospective study was conducted at a single academic medical center between August 2016 and February 2019. Women received betamethasone and delivered between 28+0 and 34+6 weeks were included. Maternal serum levels (MSLs), and neonatal serum levels (NSLs) of betamethasone at delivery were analyzed using Corticosteroid enzyme-linked immunosorbent assay kit. RDS was diagnosed according to clinical and radiographic findings. We assumed that the sensitivity of NSLs to detect RDS is 95%; hence, 150 neonates were needed (power 80%, alpha 0.05). Overall, 124 women were included; including 96 (77.4%) singletons, 26 (21.0%) twins, and 2 (1.6%) triplets, corresponding to 154 neonates. RDS was diagnosed in 35 neonates (22.7%). After adjusting for GA, time elapsed from the last dose, and number of doses, NSLs were associated with RDS (relative risk: 0.97, 95% confidence interval: 0.94-0.99, p = 0.011). A level of 6.00 ng/ml predicted RDS with a sensitivity of 80.0% and specificity of 64.7%. Adjusted MSLs were not associated with RDS. Both maternal and neonatal serum levels were not associated with the number of fetuses and maternal weight. In conclusion, NSLs are associated with RDS whereas MSLs are not.
Collapse
Affiliation(s)
- Noah Zafran
- Department of Obstetrics and GynecologyEmek Medical CenterAfulaIsrael,The Ruth and Bruce Rappaport Faculty of Medicine, TechnionHaifaIsrael
| | - Manal Massalha
- Department of Obstetrics and GynecologyEmek Medical CenterAfulaIsrael
| | - Abeer Suleiman
- Department of Obstetrics and GynecologyEmek Medical CenterAfulaIsrael
| | | | - Lila Mahagna
- Endocrinology LaboratoryEmek Medical CenterAfulaIsrael
| | | | - Shabtai Romano
- Department of Obstetrics and GynecologyEmek Medical CenterAfulaIsrael,The Ruth and Bruce Rappaport Faculty of Medicine, TechnionHaifaIsrael
| | - Eliezer Shalev
- Department of Obstetrics and GynecologyEmek Medical CenterAfulaIsrael,The Ruth and Bruce Rappaport Faculty of Medicine, TechnionHaifaIsrael
| | - Raed Salim
- Department of Obstetrics and GynecologyEmek Medical CenterAfulaIsrael,The Ruth and Bruce Rappaport Faculty of Medicine, TechnionHaifaIsrael
| |
Collapse
|
7
|
Takahashi T, Fee EL, Takahashi Y, Saito M, Yaegashi N, Usuda H, Furfaro L, Carter S, Schmidt AF, Newnham JP, Jobe AH, Kemp MW. Betamethasone phosphate reduces the efficacy of antenatal steroid therapy and is associated with lower birthweights when administered to pregnant sheep in combination with betamethasone acetate. Am J Obstet Gynecol 2022; 226:564.e1-564.e14. [PMID: 34626553 DOI: 10.1016/j.ajog.2021.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Antenatal corticosteroid therapy is a standard of care for women at imminent risk of preterm labor. However, the optimal (maximum benefit and minimal risk of side effects) antenatal corticosteroid dosing strategy remains unclear. Although conveying overall benefit when given to the right patient at the right time, antenatal corticosteroid treatment efficacy is highly variable and is not risk-free. Building on earlier findings, we hypothesized that when administered in combination with slow-release betamethasone acetate, betamethasone phosphate and the high maternal-fetal betamethasone concentrations it generates are redundant for fetal lung maturation. OBJECTIVE Using an established sheep model of prematurity and postnatal ventilation of the preterm lamb, we aimed to compare the pharmacodynamic effects of low-dosage treatment with betamethasone acetate only against a standard dosage of betamethasone phosphate and betamethasone acetate as recommended by the American College of Obstetricians and Gynecologists for women at risk of imminent preterm delivery between 24 0/7 and 35 6/7 weeks' gestation. STUDY DESIGN Ewes carrying a single fetus at 122±1 days' gestation (term=150 days) were randomized to receive either (1) maternal intramuscular injections of sterile saline (the saline negative control group, n=12), (2) 2 maternal intramuscular injections of 0.25 mg/kg betamethasone phosphate+betamethasone acetate administered at 24-hour dosing intervals (the betamethasone phosphate+betamethasone acetate group, n=12); or (3) 2 maternal intramuscular injections of 0.125 mg/kg betamethasone acetate administered at 24-hour dosing intervals (the betamethasone acetate group, n=11). The fetuses were surgically delivered 48 hours after treatment initiation and ventilated for 30 minutes to determine functional lung maturation. The fetuses were euthanized after ventilation, and the lungs were collected for analysis using quantitative polymerase chain reaction and Western blot assays. Fetal plasma adrenocorticotropic hormone levels were measured in the cord blood samples taken at delivery. RESULTS Preterm lambs were defined as either antenatal corticosteroid treatment responders or nonresponders using an arbitrary cutoff, being a PaCO2 level at 30 minutes of ventilation being more extreme than 2 standard deviations from the mean value of the normally distributed saline control group values. Compared with the animals in the saline control group, the animals in the antenatal corticosteroid treatment groups showed significantly improved lung physiological responses (blood gas and ventilation data) and had a biochemical signature (messenger RNA and surfactant protein assays) consistent with functional maturation. However, the betamethasone acetate group had a significantly higher treatment response rate than the betamethasone phosphate+betamethasone acetate group. These physiological results were strongly correlated to the amount of surfactant protein A. Birthweight was lower in the betamethasone phosphate+betamethasone acetate group and the fetal hypothalamic-pituitary-adrenal axis was suppressed to a greater extent in the betamethasone phosphate+betamethasone acetate group. CONCLUSION Low-dosage antenatal corticosteroid therapy solely employing betamethasone acetate was sufficient for fetal lung maturation. The elevated maternal-fetal betamethasone concentrations associated with the coadministration of betamethasone phosphate did not in addition improve lung maturation but were associated with greater fetal hypothalamic-pituitary-adrenal axis suppression, a lower antenatal corticosteroid treatment response rate, and lower birthweight-outcomes not desirable in a clinical setting. These data warranted a clinical investigation of sustained low-dosage antenatal corticosteroid treatments that avoid high maternal-fetal betamethasone exposures.
Collapse
Affiliation(s)
- Tsukasa Takahashi
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia; Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan.
| | - Erin L Fee
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
| | - Yuki Takahashi
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia; Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Masatoshi Saito
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia; Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Nobuo Yaegashi
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Haruo Usuda
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia; Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Lucy Furfaro
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
| | - Sean Carter
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
| | - Augusto F Schmidt
- Perinatal Research, Department of Pediatrics, Cincinnati Children's Hospital Medical Centre, University of Cincinnati, Cincinnati, OH; Miller School of Medicine, University of Miami, Miami, FL
| | - John P Newnham
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
| | - Alan H Jobe
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia; Perinatal Research, Department of Pediatrics, Cincinnati Children's Hospital Medical Centre, University of Cincinnati, Cincinnati, OH
| | - Matthew W Kemp
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia; Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan; School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia; Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
8
|
Musk GC, Kershaw H, Kemp MW. Oxygen delivery by mask improves the PaO 2 of pregnant ewes during short term anaesthesia for caesarean delivery of preterm lambs. Vet Anim Sci 2021; 12:100177. [PMID: 34007951 PMCID: PMC8111316 DOI: 10.1016/j.vas.2021.100177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 04/14/2021] [Indexed: 11/29/2022] Open
Abstract
Pregnant sheep are a common model for research focused on the preterm foetus. In some studies prompt caesarean delivery of the foetus is performed and maternal anaesthesia is managed to facilitate rapid delivery. As a result oxygen may not be provided to the ewe during anaesthesia. A simple and effective approach is to provide oxygen by facemask.
The aim of this study was to determine if oxygen supplementation improved the PaO2 of pregnant ewes during short anaesthesia, when compared to a previous study where oxygen was not provided (Musk and Kemp, 2018). Twenty-six pregnant Merino cross ewes at 121–123 days of gestation were anaesthetised with intravenous midazolam and ketamine for subarachnoid administration of 60 mg of lignocaine and caesarean delivery of the preterm lamb. 100% oxygen was administered to the ewe by a face mask. Arterial blood samples were collected from the ewe immediately after delivery of the foetus. The ewes weighed 60.7 ± 5.5 kg and received 0.51 (0.47–0.58) mg/kg of midazolam and 10.3 (9.4–11.6) mg/kg of ketamine intravenously. The PaO2 of ewes receiving oxygen by face mask was higher than previously reported [92.6 ± 44.0 mmHg compared to 45.2 ± 11.8 mmHg (Musk and Kemp, 2018) (p = 0.0007)]. Oxygen delivery by mask improved the PaO2 of pregnant ewes during short term anaesthesia.
Collapse
Affiliation(s)
- Gabrielle C Musk
- Animal Care Services, University of Western Australia, Australia
| | - Helen Kershaw
- Animal Care Services, University of Western Australia, Australia
| | - Matthew W Kemp
- Division of Obstetrics and Gynaecology, University of Western Australia, Australia
| |
Collapse
|
9
|
|
10
|
Jobe AH, Kemp M, Schmidt A, Takahashi T, Newnham J, Milad M. Antenatal corticosteroids: a reappraisal of the drug formulation and dose. Pediatr Res 2021; 89:318-325. [PMID: 33177675 PMCID: PMC7892336 DOI: 10.1038/s41390-020-01249-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/30/2020] [Accepted: 10/06/2020] [Indexed: 12/22/2022]
Abstract
We review the history of antenatal corticosteroid therapy (ACS) and present recent experimental data to demonstrate that this, one of the pillars of perinatal care, has been inadequately evaluated to minimize fetal exposure to these powerful medications. There have been concerns since 1972 that fetal exposures to ACS convey risk. However, this developmental modulator, with its multiple widespread biologic effects, has not been evaluated for drug choice, dose, or duration of treatment, despite over 30 randomized trials. The treatment used in the United States is two intramuscular doses of a mixture of 6 mg betamethasone phosphate (Beta P) and 6 mg betamethasone acetate (Beta Ac). To optimize outcomes with ACS, the goal should be to minimize fetal drug exposure. We have determined that the minimum exposure needed for fetal lung maturation in sheep, monkeys, and humans (based on published cord blood corticosteroid concentrations) is about 1 ng/ml for a 48-h continuous exposure, far lower than the concentration reached by the current dosing. Because the slowly released Beta Ac results in prolonged fetal exposure, a drug containing Beta Ac is not ideal for ACS use. IMPACT: Using sheep and monkey models, we have defined the minimum corticosteroid exposure for a fetal lung maturation. These results should generate new clinical trials of antenatal corticosteroids (ACS) at much lower fetal exposures to ACS, possibly given orally, with fewer risks for the fetus.
Collapse
Affiliation(s)
- Alan H. Jobe
- grid.1012.20000 0004 1936 7910Division of Obstetrics and Gynecology, The University of Western Australia, Perth, WA Australia ,grid.24827.3b0000 0001 2179 9593Perinatal Institute, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH USA
| | - Matthew Kemp
- grid.1012.20000 0004 1936 7910Division of Obstetrics and Gynecology, The University of Western Australia, Perth, WA Australia ,grid.412757.20000 0004 0641 778XCentre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan ,grid.1025.60000 0004 0436 6763School of Veterinary and Life Sciences, Murdoch University, Perth, WA Australia
| | - Augusto Schmidt
- grid.26790.3a0000 0004 1936 8606Division of Neonatology, Department of Pediatrics, University of Miami, Miami, FL USA
| | - Tsukasa Takahashi
- grid.1012.20000 0004 1936 7910Division of Obstetrics and Gynecology, The University of Western Australia, Perth, WA Australia ,grid.412757.20000 0004 0641 778XCentre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - John Newnham
- grid.1012.20000 0004 1936 7910Division of Obstetrics and Gynecology, The University of Western Australia, Perth, WA Australia
| | - Mark Milad
- Milad Pharmaceutical Consulting, Plymouth, MI USA
| |
Collapse
|
11
|
Variability in the efficacy of a standardized antenatal steroid treatment was independent of maternal or fetal plasma drug levels: evidence from a sheep model of pregnancy. Am J Obstet Gynecol 2020; 223:921.e1-921.e10. [PMID: 32445634 DOI: 10.1016/j.ajog.2020.05.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/05/2020] [Accepted: 05/14/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND Administration of antenatal steroids is standard of care for women assessed to be at imminent risk of preterm delivery. There is a marked variation in antenatal steroid dosing strategy, selection for treatment criteria, and agent choice worldwide. This, combined with very limited optimization of antenatal steroid use per se, means that treatment efficacy is highly variable, and the rate of respiratory distress syndrome is decreased to perhaps as low as 40%. In some cases, antenatal steroid use is associated with limited benefit and potential harm. OBJECTIVE We hypothesized that individual differences in maternofetal steroid exposure would contribute to observed variability in antenatal steroid treatment efficacy. Using a chronically catheterized sheep model of pregnancy, we aimed to explore the relationship between maternofetal steroid exposure and antenatal steroid treatment efficacy as determined by functional lung maturation in preterm lambs undergoing ventilation. STUDY DESIGN Ewes carrying a single fetus underwent surgery to catheterize a fetal and maternal jugular vein at 119 days' gestation. Animals recovered for 24 hours before being randomized to either (1) a single maternal intramuscular injection of 2 mL saline (negative control group, n=10) or (2) a single maternal intramuscular injection of 0.25 mg/kg betamethasone phosphate plus acetate (antenatal steroid group, n=20). Serial maternal and fetal plasma samples were collected from each animal after 48 hours before fetuses were delivered and ventilated for 30 minutes. Total and free plasma betamethasone concentration was measured by mass spectrometry. Fetal lung tissue was collected for analysis using quantitative polymerase chain reaction. RESULTS One animal from the control group and one animal from the antenatal steroid group did not complete their treatment protocol and were removed from analyses. Animals in the antenatal steroid group were divided into a responder subgroup (n=12/19) and a nonresponder subgroup (n=7/19) using a cutoff of partial pressure of arterial CO2 at 30-minute ventilation within 2 standard deviations of the mean value from saline-treated negative control group animals. Although antenatal steroid improved fetal lung maturation in the undivided antenatal steroid group and in the responder subgroup both physiologically (blood gas- and ventilation-related data) and biochemically (messenger ribonucleic acid expression related to fetal lung maturation), these values did not improve relative to saline-treated control group animals in the antenatal steroid nonresponder subgroup. No differences in betamethasone distribution, clearance, or protein binding were identified between the antenatal steroid responder and nonresponder subgroups. CONCLUSION This study correlated individual maternofetal steroid exposures with preterm lung maturation as determined by pulmonary ventilation. Herein, approximately 40% of preterm lambs exposed to antenatal steroids had lung maturation that was not significantly different to saline-treated control group animals. These nonresponsive animals received maternal and fetal betamethasone exposures identical to animals that had a significant improvement in functional lung maturation. These data suggest that the efficacy of antenatal steroid therapy is not solely determined by maternofetal drug levels and that individual fetal or maternal factors may play a role in determining treatment outcomes in response to glucocorticoid signaling.
Collapse
|
12
|
Hrabalkova L, Takahashi T, Kemp MW, Stock SJ. Antenatal Corticosteroids for Fetal Lung Maturity - Too Much of a Good Thing? Curr Pharm Des 2020; 25:593-600. [PMID: 30914016 DOI: 10.2174/1381612825666190326143814] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/22/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Between 5-15% of babies are born prematurely worldwide, with preterm birth defined as delivery before 37 completed weeks of pregnancy (term is at 40 weeks of gestation). Women at risk of preterm birth receive antenatal corticosteroids as part of standard care to accelerate fetal lung maturation and thus improve neonatal outcomes in the event of delivery. As a consequence of this treatment, the entire fetal organ system is exposed to the administered corticosteroids. The implications of this exposure, particularly the long-term impacts on offspring health, are poorly understood. AIMS This review will consider the origins of antenatal corticosteroid treatment and variations in current clinical practices surrounding the treatment. The limitations in the evidence base supporting the use of antenatal corticosteroids and the evidence of potential harm to offspring are also summarised. RESULTS Little has been done to optimise the dose and formulation of antenatal corticosteroid treatment since the first clinical trial in 1972. International guidelines for the use of the treatment lack clarity regarding the recommended type of corticosteroid and the gestational window of treatment administration. Furthermore, clinical trials cited in the most recent Cochrane Review have limitations which should be taken into account when considering the use of antenatal corticosteroids in clinical practice. Lastly, there is limited evidence regarding the long-term effects on the different fetal organ systems exposed in utero, particularly when the timing of corticosteroid administration is sub-optimal. CONCLUSION Further investigations are urgently needed to determine the most safe and effective treatment regimen for antenatal corticosteroids, particularly regarding the type of corticosteroid and optimal gestational window of administration. A clear consensus on the use of this common treatment could maximise the benefits and minimise potential harms to offspring.
Collapse
Affiliation(s)
- Lenka Hrabalkova
- Tommy's Centre for Maternal and Fetal Health at the MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Matthew W Kemp
- Tohoku University Hospital, Sendai, Miyagi, Japan.,Division of Obstetrics and Gynaecology, University of Western Australia, Perth, Australia
| | - Sarah J Stock
- Tommy's Centre for Maternal and Fetal Health at the MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom.,Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
13
|
Kemp MW, Saito M, Schmidt AF, Usuda H, Watanabe S, Sato S, Hanita T, Kumagai Y, Takahashi T, Musk GC, Furfaro L, Stinson L, Fee EL, Eddershaw PJ, Payne MS, Smallwood K, Bridges J, Newnham JP, Jobe AH. The duration of fetal antenatal steroid exposure determines the durability of preterm ovine lung maturation. Am J Obstet Gynecol 2020; 222:183.e1-183.e9. [PMID: 31494126 DOI: 10.1016/j.ajog.2019.08.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/14/2019] [Accepted: 08/23/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND Antenatal corticosteroids (ACS) are the standard of care for maturing the fetal lung and improving outcomes for preterm infants. Antenatal corticosteroid dosing remains nonoptimized, and there is little understanding of how different treatment-to-delivery intervals may affect treatment efficacy. The durability of a lung maturational response is important because the majority of women treated with antenatal corticosteroids do not deliver within the widely accepted 1- to 7-day window of treatment efficacy. OBJECTIVE We used a sheep model to test the duration of fetal exposures for efficacy at delivery intervals from 1 to 10 days. MATERIALS AND METHODS For infusion studies, ewes with single fetuses were randomized to receive an intravenous bolus and maintenance infusion of betamethasone phosphate to target 1-4 ng/mL fetal plasma betamethasone for 36 hours, with delivery at 2, 4 ,or 7 days posttreatment or sterile saline solution as control. Animals receiving the clinical treatment were randomised to receive either a single injection of 0.25 mg/kg with a 1:1 mixture of betamethasone phosphate + betamethasone acetate with delivery at either 1 or 7 days posttreatment, or 2 treatments of 0.25 mg/kg betamethasone phosphate + betamethasone acetate spaced at 24 hours (giving ∼48 hours of fetal steroid exposure) with delivery at 2, 5, 7, or 10 days posttreatment. Negative control animals were treated with saline solution. All lambs were delivered at 121 ± 3 days gestational age and ventilated for 30 minutes to assess lung function. RESULTS Preterm lambs delivered at 1 or 2 days post-antenatal corticosteroid treatment had significant improvements in lung maturation for both intravenous and single-dose intramuscular treatments. After 2 days, the efficacy of 36-hour betamethasone phosphate infusions was lost. The single dose of 1:1 betamethasone phosphate + betamethasone acetate also was ineffective at 7 days. In contrast, animals treated with 2 doses had significant improvements in lung maturation at 2, 5, and 7 days, with treatment efficacy reduced by 10 days. CONCLUSION In preterm lambs, the durability of antenatal corticosteroids treatment depends on the duration of fetal exposure and is independent of the intravenous or intramuscular maternal route of administration. For acute 24- to 48-hour posttreatment deliveries, a 24-hour fetal antenatal corticosteroids exposure was sufficient for lung maturation. A fetal exposure duration of at least 48 hours was necessary to maintain long-term treatment durability. A single-dose ACS treatment should be sufficient for women delivering within <48 hours of antenatal corticosteroids treatment.
Collapse
Affiliation(s)
- Matthew W Kemp
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia; Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan; School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia.
| | - Masatoshi Saito
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia; Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | | | - Haruo Usuda
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
| | - Shimpei Watanabe
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Shinichi Sato
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Takushi Hanita
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Yusaku Kumagai
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Tsukasa Takahashi
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Gabrielle C Musk
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
| | - Lucy Furfaro
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
| | - Lisa Stinson
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
| | - Erin L Fee
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
| | | | - Matthew S Payne
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
| | - Kiara Smallwood
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
| | - James Bridges
- Cincinnati Children's Hospital Medical Centre, Cincinnati, OH
| | - John P Newnham
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
| | - Alan H Jobe
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia; Cincinnati Children's Hospital Medical Centre, Cincinnati, OH
| |
Collapse
|
14
|
Perna-Barrull D, Gieras A, Rodriguez-Fernandez S, Tolosa E, Vives-Pi M. Immune System Remodelling by Prenatal Betamethasone: Effects on β-Cells and Type 1 Diabetes. Front Endocrinol (Lausanne) 2020; 11:540. [PMID: 32849311 PMCID: PMC7431597 DOI: 10.3389/fendo.2020.00540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/03/2020] [Indexed: 01/11/2023] Open
Abstract
Type 1 diabetes (T1D) is a multifactorial disease of unknown aetiology. Studies focusing on environment-related prenatal changes, which might have an influence on the development of T1D, are still missing. Drugs, such as betamethasone, are used during this critical period without exploring possible effects later in life. Betamethasone can interact with the development and function of the two main players in T1D, the immune system and the pancreatic β-cells. Short-term or persistent changes in any of these two players may influence the initiation of the autoimmune reaction against β-cells. In this review, we focus on the ability of betamethasone to induce alterations in the immune system, impairing the recognition of autoantigens. At the same time, betamethasone affects β-cell gene expression and apoptosis rate, reducing the danger signals that will attract unwanted attention from the immune system. These effects may synergise to hinder the autoimmune attack. In this review, we compile scattered evidence to provide a better understanding of the basic relationship between betamethasone and T1D, laying the foundation for future studies on human cohorts that will help to fully grasp the role of betamethasone in the development of T1D.
Collapse
Affiliation(s)
- David Perna-Barrull
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Anna Gieras
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Silvia Rodriguez-Fernandez
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Eva Tolosa
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marta Vives-Pi
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
- *Correspondence: Marta Vives-Pi
| |
Collapse
|
15
|
Kumagai Y, Kemp MW, Yaegashi N, Saito M. Contemporary Challenges and Developments: Antenatal Corticosteroid Therapy. CURRENT OBSTETRICS AND GYNECOLOGY REPORTS 2019. [DOI: 10.1007/s13669-019-00270-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Dosing and formulation of antenatal corticosteroids for fetal lung maturation and gene expression in rhesus macaques. Sci Rep 2019; 9:9039. [PMID: 31227752 PMCID: PMC6588577 DOI: 10.1038/s41598-019-45171-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/15/2019] [Indexed: 02/07/2023] Open
Abstract
Antenatal corticosteroids (ANS) are the major intervention to decrease respiratory distress syndrome and mortality from premature birth and are standard of care. The use of ANS is expanding to include new indications and gestational ages, although the recommended dosing was never optimized. The most widely used treatment is two intramuscular doses of a 1:1 mixture of betamethasone-phosphate (Beta-P) and betamethasone-acetate (Beta-Ac) - the clinical drug. We tested in a primate model the efficacy of the slow release Beta-Ac alone for enhancing fetal lung maturation and to reduce fetal corticosteroid exposure and potential toxic effects. Pregnant rhesus macaques at 127 days of gestation (80% of term) were treated with either the clinical drug (0.25 mg/kg) or Beta-Ac (0.125 mg/kg). Beta-Ac alone increased lung compliance and surfactant concentration in the fetal lung equivalently to the clinical drug. By transcriptome analyses the early suppression of genes associated with immune responses and developmental pathways were less affected by Beta-Ac than the clinical drug. Promoter and regulatory analysis prediction identified differentially expressed genes targeted by the glucocorticoid receptor in the lung. At 5 days the clinical drug suppressed genes associated with neuronal development and differentiation in the fetal hippocampus compared to control, while low dose Beta-Ac alone did not. A low dose ANS treatment with Beta-Ac should be assessed for efficacy in human trials.
Collapse
|
17
|
Abstract
Treatment with antenatal corticosteroids (ACS) is standard of care for women at risk of preterm birth between 24 and 34 weeks' gestation. ACS are increasingly used for other indications, including threated or indicated late preterm birth, elective cesarean, and in at-risk pregnancies for periviable gestations. However, the various drugs and doses being used worldwide have not been rigorously evaluated to optimize clinical responses and to minimize potential risks. Translational research in animal models indicate that a constant, low concentration fetal exposure to ACS is sufficient for lung maturation, resulting in lower fetal exposures. Clinical trials to develop dosing strategies with inexpensive and widely available drugs could promote greater use in low resource environments.
Collapse
Affiliation(s)
- Matthew W Kemp
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia; Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan; School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia.
| | - Augusto F Schmidt
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue
- MLC 7029, Cincinnati, OH, 45229, USA.
| | - Alan H Jobe
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia; Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue
- MLC 7029, Cincinnati, OH, 45229, USA.
| |
Collapse
|
18
|
Smolich JJ, Kenna KR, Mynard JP. Antenatal betamethasone augments early rise in pulmonary perfusion at birth in preterm lambs: role of ductal shunting and right ventricular outflow distribution. Am J Physiol Regul Integr Comp Physiol 2019; 316:R716-R724. [PMID: 30840485 DOI: 10.1152/ajpregu.00318.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The glucocorticosteroid betamethasone is routinely administered via maternal intramuscular injection to enhance fetal lung maturation before anticipated preterm birth. Although antenatal betamethasone increases fetal pulmonary arterial (PA) blood flow, whether this agent alters the contribution of 1) right ventricular (RV) output or 2) left-to-right shunting across the ductus arteriosus to rises in PA blood flow after preterm birth is unknown. To address this question, anesthetized control (n = 7) and betamethasone-treated (n = 7) preterm fetal lambs (gestation 127 ± 1 days, means ± SD) were instrumented with aortic, pulmonary, and left atrial catheters as well as ductus arteriosus and left PA flow probes to calculate RV output, with hemodynamics measured for 30 min after cord clamping and mechanical ventilation. Mean PA blood flow was higher in betamethasone-treated than in control lambs over the initial 10 min after birth (P < 0.05). This higher PA flow was accompanied by 1) a greater pulmonary vascular conductance (P ≤ 0.025), 2) a larger proportion of RV output passing to lungs (P ≤ 0.01), despite a fall in this output, and 3) earlier reversal and a greater magnitude (P ≤ 0.025) of net ductal shunting, due to the combination of higher left-to-right (P ≤ 0.025) and lesser right-to-left phasic shunting (P ≤ 0.025). These results suggest that antenatal betamethasone augments the initial rise in PA blood flow after birth in preterm lambs, with this augmented rise supported by the combination of 1) a greater redistribution of RV output toward the lungs and 2) a faster and larger reversal in net ductal shunting underpinned not only by greater left-to-right, but also by lesser right-to-left phasic shunting.
Collapse
Affiliation(s)
- Joseph J Smolich
- Heart Research, Murdoch Children's Research Institute , Parkville, Victoria , Australia.,Department of Paediatrics, University of Melbourne , Melbourne , Australia
| | - Kelly R Kenna
- Heart Research, Murdoch Children's Research Institute , Parkville, Victoria , Australia
| | - Jonathan P Mynard
- Heart Research, Murdoch Children's Research Institute , Parkville, Victoria , Australia.,Department of Paediatrics, University of Melbourne , Melbourne , Australia.,Department of Biomedical Engineering, University of Melbourne , Melbourne , Australia.,Department of Cardiology, Royal Children's Hospital , Parkville, Victoria , Australia
| |
Collapse
|
19
|
Kemp MW, Jobe AH, Usuda H, Nathanielsz PW, Li C, Kuo A, Huber HF, Clarke GD, Saito M, Newnham JP, Stock SJ. Efficacy and safety of antenatal steroids. Am J Physiol Regul Integr Comp Physiol 2018; 315:R825-R839. [PMID: 29641233 DOI: 10.1152/ajpregu.00193.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Antenatal steroids (ANS) are among the most important and widely utilized interventions to improve outcomes for preterm infants. A significant body of evidence demonstrates improved outcomes in preterm infants (24-34 wk) delivered between 1 and 7 days after the administration of a single course of ANS. Moreover, ANS have the advantage of being widely available, low cost, and easily administered via maternal intramuscular injection. The use of ANS to mature the fetal lung is, however, not without contention. Their use in pregnancy is not FDA approved, and treatment doses and regimens remain largely unoptimized. Their mode of use varies considerably between countries, and there are lingering concerns regarding the safety of exposing the fetus to high doses of exogenous steroids. A significant proportion of women deliver outside the 1- to 7-day therapeutic window after ANS treatment, and this delay may be associated with an increased risk of adverse outcomes for both mother and baby. Today, animal-based studies are one means by which key questions of dosing and safety relating to ANS may be resolved, allowing for further refinement(s) of this important therapy. Complementary approaches using nonhuman primates, sheep, and rodents have provided invaluable advances to our understanding of how exogenous steroid exposure impacts fetal development. Focusing on these three major model groups, this review highlights the role of three key animal models (sheep, nonhuman primates, rodents) in the development of antenatal steroid therapy, and provides an up-to-date synthesis of current efforts to refine this therapy in an era of personalised medicine.
Collapse
Affiliation(s)
- Matthew W Kemp
- Division of Obstetrics and Gynaecology, University of Western Australia , Perth , Australia
- Tohoku University Hospital, Sendai, Miyagi , Japan
| | - Alan H Jobe
- Division of Obstetrics and Gynaecology, University of Western Australia , Perth , Australia
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Centre , Cincinnati, Ohio
| | - Haruo Usuda
- Division of Obstetrics and Gynaecology, University of Western Australia , Perth , Australia
- Tohoku University Hospital, Sendai, Miyagi , Japan
| | | | - Cun Li
- Department of Animal Science, University of Wyoming , Laramie, Wyoming
| | - Anderson Kuo
- Department of Radiology, University of Texas Health Science Center San Antonio , San Antonio, Texas
| | - Hillary F Huber
- Department of Animal Science, University of Wyoming , Laramie, Wyoming
| | - Geoffrey D Clarke
- Department of Radiology, University of Texas Health Science Center San Antonio , San Antonio, Texas
| | - Masatoshi Saito
- Division of Obstetrics and Gynaecology, University of Western Australia , Perth , Australia
- Tohoku University Hospital, Sendai, Miyagi , Japan
| | - John P Newnham
- Division of Obstetrics and Gynaecology, University of Western Australia , Perth , Australia
| | - Sarah J Stock
- Division of Obstetrics and Gynaecology, University of Western Australia , Perth , Australia
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
20
|
The efficacy of antenatal steroid therapy is dependent on the duration of low-concentration fetal exposure: evidence from a sheep model of pregnancy. Am J Obstet Gynecol 2018; 219:301.e1-301.e16. [PMID: 29758177 DOI: 10.1016/j.ajog.2018.05.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/20/2018] [Accepted: 05/03/2018] [Indexed: 11/27/2022]
Abstract
BACKGROUND Antenatal corticosteroids are among the most important and widely used interventions to improve outcomes for preterm infants. Antenatal corticosteroid dosing regimens remain unoptimized and without maternal weight-adjusted dosing. We, and others, have hypothesized that, once a low concentration of maternofetal steroid exposure is achieved and maintained, the duration of the steroid exposure determines treatment efficacy. Using a sheep model of pregnancy, we tested the relationship among steroid dose, duration of exposure, and treatment efficacy. OBJECTIVE The study was conducted to investigate the relative importance of duration and magnitude of fetal corticosteroid exposure to mature the preterm fetal ovine lung. STUDY DESIGN Ewes with single fetuses at 120 days gestation received an intravenous bolus (loading dose) followed by a maintenance infusion of betamethasone phosphate to target 12-hour fetal plasma betamethasone concentrations of (1) 20 ng/mL, (2) 10 ng/mL, or (3) 2 ng/mL. In a subsequent experiment, fetal plasma betamethasone concentrations were targeted at 2 ng/mL for 26 hours. Negative control animals received sterile saline solution. Positive control animals received 2 intramuscular injections of 0.25 mg/kg Celestone Chronodose (betamethasone phosphate + betamethasone acetate) spaced at 24 hours. Preterm lambs were delivered surgically and ventilated 48 hours after treatment commenced. Maternal and fetal plasma betamethasone concentrations were confirmed by mass spectrometry in a parallel study of chronically catheterized, corticosteroid-treated ewes and fetuses. RESULTS The loading and maintenance doses were achieved and maintained the desired fetal plasma betamethasone concentrations of approximately 20, 10, and 2 ng/mL for 12 hours. Compared with the 12-hour infusion-treated animals, lambs from the positive control (2 intramuscular doses of 0.25 mg/kg Celestone Chronodose) group had the greatest functional lung maturation (compliance, gas exchange, arterial pH) and molecular evidence of maturation (glucocorticoid receptor signaling activation), despite having maximum fetal plasma betamethasone concentrations 2.5 times lower than animals in the 20 ng/mL betamethasone infusion group. Lambs from the 12-hour 2-ng/mL betamethasone infusion group had little functional lung maturation. In contrast, lambs from the 26-hour 2-ng/mL betamethasone infusion group had functional lung maturation equivalent to lambs from the positive control group. CONCLUSION In preterm lambs that were exposed to antenatal corticosteroids, high maternofetal plasma betamethasone concentrations did not correlate with improved lung maturation. The largest and most consistent improvements in lung maturation were in animals that were exposed to either the clinical course of Celestone Chronodose or a low-dose betamethasone phosphate infusion to achieve a fetal plasma betamethasone concentration of approximately 2 ng/mL for 26 hours. The duration of low-concentration maternofetal steroid exposure, not total dose or peak drug exposure, is a key determinant for antenatal corticosteroids efficacy. These findings underscore the need to develop an optimized steroid dosing regimen that may improve both the efficacy and safety of antenatal corticosteroids therapy.
Collapse
|
21
|
Jobe AH, Goldenberg RL. Antenatal corticosteroids: an assessment of anticipated benefits and potential risks. Am J Obstet Gynecol 2018; 219:62-74. [PMID: 29630886 DOI: 10.1016/j.ajog.2018.04.007] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/30/2018] [Accepted: 04/02/2018] [Indexed: 12/20/2022]
Abstract
Antenatal corticosteroids are standard of care for pregnancies at risk of preterm delivery between 24-34 weeks' gestational age. Recent trials demonstrate modest benefits from antenatal corticosteroids for late preterm and elective cesarean deliveries, and antenatal corticosteroids for periviable deliveries should be considered with family discussion. However, many women with threatened preterm deliveries receive antenatal corticosteroids but do not deliver until >34 weeks or at term. The net effect is that a substantial fraction of the delivery population will be exposed to antenatal corticosteroids. There are gaps in accurate assessments of benefits of antenatal corticosteroids because the randomized controlled trials were performed prior to about 1990 in pregnancies generally >28 weeks. The care practices for the mother and infant survival were different than today. The randomized controlled trial data also do not strongly support the optimal interval from antenatal corticosteroid treatment to delivery of 1-7 days. Epidemiology-based studies using large cohorts with >85% of at-risk pregnancies treated with antenatal corticosteroids probably overestimate the benefits of antenatal corticosteroids. Although most of the prematurity-associated mortality is in low-resource environments, the efficacy and safety of antenatal corticosteroids in those environments remain to be evaluated. The short-term benefits of antenatal corticosteroids for high-risk pregnancies in high-resource environments certainly justify antenatal corticosteroids as few risks have been identified over many years. However, cardiovascular and metabolic abnormalities have been identified in large animal models and cohorts of children exposed to antenatal corticosteroids that are consistent with fetal programming for adult diseases. These late effects of antenatal corticosteroids suggest caution for the expanded use of antenatal corticosteroids beyond at-risk pregnancies at 24-34 weeks. A way forward is to develop noninvasive fetal assessments to identify pregnancies across a wider gestational age that could benefit from antenatal corticosteroids.
Collapse
|
22
|
Rittenschober-Böhm J, Rodger J, Jobe AH, Kallapur SG, Doherty DA, Kramer BW, Payne MS, Archer M, Rittenschober C, Newnham JP, Miura Y, Berger A, Matthews SG, Kemp MW. Antenatal Corticosteroid Exposure Disrupts Myelination in the Auditory Nerve of Preterm Sheep. Neonatology 2018; 114:62-68. [PMID: 29669335 DOI: 10.1159/000487914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/22/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Antenatal corticosteroids (ACS) improve preterm neonatal outcomes. However, uncertainty remains regarding the safety of ACS exposure for the developing fetus, particularly its neurosensory development. OBJECTIVES We investigated the effect of single and multiple ACS exposures on auditory nerve development in an ovine model of pregnancy. METHODS Ewes with a single fetus (gestational age [GA] 100 days) received an intramuscular injection of 150 mg medroxyprogesterone-acetate, followed by intramuscular (i) betamethasone (0.5 mg/kg) on days 104, 111, and 118 GA; (ii) betamethasone on day 104 and saline on days 111 and 118 GA; or (iii) saline on days 104, 111, and 118 GA, with delivery on day 125 GA. Transmission electron microscope images of lamb auditory nerve preparations were digitally analyzed to determine auditory nerve morphology and myelination. RESULTS Relative to the control, mean auditory nerve myelin area was significantly increased in the multiple-treatment group (p < 0.001), but not in the single-treatment group. Increased myelin thickness was significantly changed only in a subgroup analysis for those axons with myelin thickness greater than the median value (p < 0.001). Morphological assessments showed that the increased myelin area was due to an increased likelihood of decompacted areas (p = 0.005; OR = 2.14, 95% CI 1.26-3.63; 31.6 vs. 18.2% in controls) and irregular myelin deposition (p = 0.001; OR = 5.91, 95% CI 2.16-16.19; 49.0 vs. 16.8% in controls) in the myelin sheath. CONCLUSIONS In preterm sheep, ACS exposure increased auditory nerve myelin area, potentially due to disruption of normal myelin deposition.
Collapse
Affiliation(s)
- Judith Rittenschober-Böhm
- Division of Obstetrics and Gynaecology, UWA, Perth, Washington, Australia
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Jennifer Rodger
- Experimental and Regenerative Neurosciences, School of Biological Sciences, UWA, Perth, Washington, Australia
| | - Alan H Jobe
- Division of Pulmonary Biology, Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, Ohio, USA
| | - Suhas G Kallapur
- Division of Pulmonary Biology, Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, Ohio, USA
| | - Dorota A Doherty
- Division of Obstetrics and Gynaecology, UWA, Perth, Washington, Australia
| | - Boris W Kramer
- Department of Pediatrics, Maastricht University, Maastricht, the Netherlands
| | - Matthew S Payne
- Division of Obstetrics and Gynaecology, UWA, Perth, Washington, Australia
| | - Michael Archer
- Experimental and Regenerative Neurosciences, School of Biological Sciences, UWA, Perth, Washington, Australia
| | | | - John P Newnham
- Division of Obstetrics and Gynaecology, UWA, Perth, Washington, Australia
| | - Yuichiro Miura
- Division of Obstetrics and Gynaecology, UWA, Perth, Washington, Australia
| | - Angelika Berger
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Stephen G Matthews
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Matthew W Kemp
- Division of Obstetrics and Gynaecology, UWA, Perth, Washington, Australia
| |
Collapse
|
23
|
Musk GC, Kemp MW. Pregnant sheep develop hypoxaemia during short-term anaesthesia for caesarean delivery. Lab Anim 2018; 52:497-503. [PMID: 29558860 DOI: 10.1177/0023677218764024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Short-term anaesthesia of the pregnant ewe may be required for caesarean delivery of a preterm foetus within a research protocol. The aim of this study was to evaluate and compare the acid-base and haematological status of the ewe and foetus at the time of surgical delivery by collecting maternal and foetal arterial blood samples. Fifteen date-mated singleton-pregnant merino cross ewes at 122.0 (±0.5) days of gestation were anaesthetised with a combination of midazolam (0.5 mg/kg) and ketamine (10 mg/kg) by intravenous injection. A subarachnoid injection of lidocaine (60 mg) was given to desensitise the caudal abdomen. Supplemental oxygen was not provided, and an endotracheal tube was not placed in the ewe's trachea. The development of maternal respiratory acidosis (hypercapnia) and hypoxaemia was anticipated. Samples of arterial blood for blood gas analyses were collected simultaneously from the radial artery of the ewe and the umbilical artery of the foetus immediately after delivery. The results from the maternal blood samples were within the normal range for pH, partial pressure of carbon dioxide in arterial blood (PaCO2), base excess, glucose, lactate, haematocrit and haemoglobin concentration. The maternal partial pressure of oxygen in arterial blood (PaO2) revealed hypoxaemia: 45.2 (41.1-53.4) mmHg. Foetal arterial blood gas analysis revealed hypoxaemia (15.0 ± 3.1 mmHg) and hypoglycaemia (0.1 (0.1-1.1) mmol/L). The benefit of providing supplemental oxygen and/or placing an endotracheal tube must be carefully weighed against the benefit of saving time when prompt delivery of the foetus is planned. In this study the pregnant ewe developed severe hypoxaemia, and this abnormality may have contributed to a low foetal PaO2.
Collapse
Affiliation(s)
- Gabrielle C Musk
- 1 Animal Care Services, University of Western Australia, Australia.,2 Division of Obstetrics and Gynaecology, University of Western Australia, Australia
| | - Matthew W Kemp
- 2 Division of Obstetrics and Gynaecology, University of Western Australia, Australia
| |
Collapse
|
24
|
Visconti K, Senthamaraikannan P, Kemp MW, Saito M, Kramer BW, Newnham JP, Jobe AH, Kallapur SG. Extremely preterm fetal sheep lung responses to antenatal steroids and inflammation. Am J Obstet Gynecol 2018; 218:349.e1-349.e10. [PMID: 29274832 DOI: 10.1016/j.ajog.2017.12.207] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 11/27/2017] [Accepted: 12/14/2017] [Indexed: 11/25/2022]
Abstract
BACKGROUND The efficacy of antenatal steroids for fetal lung maturation in the periviable period is not fully understood. OBJECTIVE We sought to determine the lung maturational effects of antenatal steroids and inflammation in early gestation sheep fetuses, similar to the periviable period in human beings. STUDY DESIGN Date-mated ewes with singleton fetuses were randomly assigned to 1 of 4 treatment groups (n = 8/group): (1) maternal intramuscular injection of betamethasone; (2) intraamniotic lipopolysaccharide; (3) betamethasone + lipopolysaccharide; and (4) intraamniotic + intramuscular saline (controls). Fetuses were delivered surgically 48 hours later at 94 days' gestation (63% term gestation) for comprehensive evaluations of lung maturation, and lung and systemic inflammation. RESULTS Relative to controls, first, betamethasone increased the fetal lung air space to mesenchymal area ratio by 47% but did not increase the messenger RNAs for the surfactant proteins-B and -C that are important for surfactant function or increase the expression of pro-surfactant protein-C in the alveolar type II cells. Second, betamethasone increased expression of 1 of the 4 genes in surfactant lipid synthetic pathways. Third, betamethasone increased genes involved in epithelium sodium channel transport, but not sodium-potassium adenosine triphosphatase or Aquaporin 5. Fourth, lipopolysaccharide increased proinflammatory genes in the lung but did not effectively recruit activated inflammatory cells. Last, betamethasone incompletely suppressed lipopolysaccharide-induced lung inflammation. In the liver, betamethasone when given alone increased the expression of serum amyloid A3 and C-reactive protein messenger RNAs. CONCLUSION Compared the more mature 125-day gestation sheep, antenatal steroids do not induce pulmonary surfactants during the periviable period, indicating a different response.
Collapse
|
25
|
Low-dose betamethasone-acetate for fetal lung maturation in preterm sheep. Am J Obstet Gynecol 2018; 218:132.e1-132.e9. [PMID: 29138038 PMCID: PMC5759749 DOI: 10.1016/j.ajog.2017.11.560] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/20/2017] [Accepted: 11/07/2017] [Indexed: 11/23/2022]
Abstract
BACKGROUND Antenatal steroids are standard of care for women who are at risk of preterm delivery; however, antenatal steroid dosing and formulation have not been evaluated adequately. The standard clinical 2-dose treatment with betamethasone-acetate+betamethasone-phosphate is more effective than 2 doses of betamethasone-phosphate for the induction of lung maturation in preterm fetal sheep. We hypothesized that the slowly released betamethasone-acetate component induces similar lung maturation to betamethasone-phosphate+betamethasone-acetate with decreased dose and fetal exposure. OBJECTIVE The purpose of this study was to investigate pharmacokinetics and fetal lung maturation of antenatal betamethasone-acetate in preterm fetal sheep. STUDY DESIGN Groups of 10 singleton-pregnant ewes received 1 or 2 intramuscular doses 24 hours apart of 0.25 mg/kg/dose of betamethasone-phosphate+betamethasone-acetate (the standard of care dose) or 1 intramuscular dose of 0.5 mg/kg, 0.25 mg/kg, or 0.125 mg/kg of betamethasone-acetate. Fetuses were delivered 48 hours after the first injection at 122 days of gestation (80% of term) and ventilated for 30 minutes, with ventilator settings, compliance, vital signs, and blood gas measurements recorded every 10 minutes. After ventilation, we measured static lung pressure-volume curves and sampled the lungs for messenger RNA measurements. Other groups of pregnant ewes and fetuses were catheterized and treated with intramuscular injections of betamethasone-phosphate 0.125 mg/kg, betamethasone-acetate 0.125 mg/kg, or betamethasone-acetate 0.5 mg/kg. Maternal and fetal betamethasone concentrations in plasma were measured for 24 hours. RESULTS All betamethasone-treated groups had increased messenger RNA expression of surfactant proteins A, B, and C, ATP-binding cassette subfamily A member 3, and aquaporin-5 compared with control animals. Treatment with 1 dose of intramuscular betamethasone-acetate 0.125mg/kg improved dynamic and static lung compliance, gas exchange, and ventilation efficiency similarly to the standard treatment of 2 doses of 0.25 m/kg of betamethasone-acetate+betamethasone-phosphate. Betamethasone-acetate 0.125 mg/kg resulted in lower maternal and fetal peak plasma concentrations and decreased fetal exposure to betamethasone compared with betamethasone-phosphate 0.125 mg/kg. CONCLUSION A single dose of betamethasone-acetate results in similar fetal lung maturation as the 2-dose clinical formulation of betamethasone-phosphate+betamethasone-acetate with decreased fetal exposure to betamethasone. A lower dose of betamethasone-acetate may be an effective alternative to induce fetal lung maturation with less risk to the fetus.
Collapse
|
26
|
Schiffner R, Rodríguez-González GL, Rakers F, Nistor M, Nathanielsz PW, Daneva T, Schwab M, Lehmann T, Schmidt M. Effects of Late Gestational Fetal Exposure to Dexamethasone Administration on the Postnatal Hypothalamus-Pituitary-Adrenal Axis Response to Hypoglycemia in Pigs. Int J Mol Sci 2017; 18:ijms18112241. [PMID: 29077038 PMCID: PMC5713211 DOI: 10.3390/ijms18112241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 10/19/2017] [Accepted: 10/21/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Prenatal glucocorticoid administration alters the activity of the fetal hypothalamic-pituitary-adrenocortical axis (HPAA), and correspondingly the adenocorticotropic hormone (ACTH) and cortisol levels after birth. The dosages required for these effects are critically discussed. Activation of the HPAA is related to metabolic syndrome and diabetes mellitus. Hypoglycemia is the classic side effect of antidiabetic treatment. We hypothesized that a low dosage of dexamethasone in late pregnancy alters the HPAA response to hypoglycemia in pigs. METHODS 12 pregnant sows were randomly assigned to two groups which received either a low-dose intramuscular injection (99th and 100th day of gestation) of dexamethasone (0.06 μg/kg body weight) or vehicle. Three months after birth, 18 dexamethasone-treated anaesthetized offspring and 12 control offspring underwent a 75 min hypoglycemic clamp (blood glucose below 4 mmol/L) procedure. Heart rate (HR), blood pressure, ACTH and cortisol levels and body weight (at birth and after three months) were recorded. RESULTS Dexamethasone-treated animals exhibited significantly elevated ACTH (139.9 ± 12.7 pg/mL) and cortisol (483.1 ± 30.3 nmol/L) levels during hypoglycemia as compared to the control group (41.7 ± 6.5 pg/mL and 257.9 ± 26.7 nmol/L, respectively), as well as an elevated HR (205.5 ± 5.7 bpm) and blood pressure (systolic: 128.6 ± 1.5, diastolic: 85.7 ± 0.7 mmHg) response as compared to the control group (153.2 ± 4.5 bpm; systolic: 118.6 ± 1.6, diastolic: 79.5 ± 1.4 mmHg, respectively; p < 0.001). CONCLUSIONS Low-dose prenatal administration of dexamethasone not only exerts effects on the HPAA (ACTH and cortisol concentration) and vital parameters (HR and diastolic blood pressure) under baseline conditions, but also on ACTH, HR and systolic blood pressure during hypoglycemia.
Collapse
Affiliation(s)
- René Schiffner
- Department of Neurology, Jena University Hospital-Friedrich Schiller University, 07747 Jena, Germany.
- Orthopaedic Department, Jena University Hospital-Friedrich Schiller University, 07747 Jena, Germany.
| | | | - Florian Rakers
- Department of Neurology, Jena University Hospital-Friedrich Schiller University, 07747 Jena, Germany.
| | - Marius Nistor
- Department of Neurology, Jena University Hospital-Friedrich Schiller University, 07747 Jena, Germany.
| | - Peter W Nathanielsz
- Department of Animal Science, University of Wyoming, Laramie, 82071 WY, USA.
| | - Teodora Daneva
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| | - Matthias Schwab
- Department of Neurology, Jena University Hospital-Friedrich Schiller University, 07747 Jena, Germany.
| | - Thomas Lehmann
- Institute of Medical Statistics, Computer Sciences and Documentation Science, Jena University Hospital-Friedrich Schiller University, 07743 Jena, Germany.
| | - Martin Schmidt
- Institute for Biochemistry II, Jena University Hospital-Friedrich Schiller University, 07743 Jena, Germany.
| |
Collapse
|