1
|
Loaiza RA, Farías MA, Andrade CA, Ramírez MA, Rodriguez-Guilarte L, Muñóz JT, González PA, Bueno SM, Kalergis AM. Immunomodulatory markers and therapies for the management of infant respiratory syncytial virus infection. Expert Rev Anti Infect Ther 2024; 22:631-645. [PMID: 39269198 DOI: 10.1080/14787210.2024.2403147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/16/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
INTRODUCTION The human respiratory syncytial virus (hRSV) is one of childhood diseases' most common respiratory pathogens and is associated with lower respiratory tract infections. The peak in disease that this virus can elicit during outbreaks is often a significant burden for healthcare systems worldwide. Despite theapproval of treatments against hRSV, this pathogen remains one the most common causative agent of infant mortality around the world. AREAS COVERED This review focuses on the key prognostic and immunomodulatory biomarkers associated with hRSV infection, as well as prophylactic monoclonal antibodies and vaccines. The goal is to catalyze a paradigm shift within the scientific community toward the discovery of novel targets to predict the clinical outcome of infected patients, as well as the development of novel antiviral agents targeting hRSV. The most pertinent research on this topic was systematically searched and analyzed using PubMed ISI Thomson Scientific databases. EXPERT OPINION Despite advances in approved therapies against hRSV, it is crucial to continue researching to develop new therapies and to find specific biomarkers to predict the severity of infection. Along these lines, the use of multi-omics data, artificial intelligence and natural-derived compounds with antiviral activity could be evaluated to fight hRSV and develop methods for rapid diagnosis of severity.
Collapse
Affiliation(s)
- Ricardo A Loaiza
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mónica A Farías
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina A Andrade
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mario A Ramírez
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Linmar Rodriguez-Guilarte
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José T Muñóz
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
2
|
Tran TT, Phung TTB, Tran DM, Bui HT, Nguyen PTT, Vu TT, Ngo NTP, Nguyen MT, Nguyen AH, Nguyen ATV. Efficient symptomatic treatment and viral load reduction for children with influenza virus infection by nasal-spraying Bacillus spore probiotics. Sci Rep 2023; 13:14789. [PMID: 37684332 PMCID: PMC10491672 DOI: 10.1038/s41598-023-41763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Influenza virus is a main cause of acute respiratory tract infections (ARTIs) in children. This is the first double-blind, randomized, and controlled clinical trial examining the efficacy of nasal-spraying probiotic LiveSpo Navax, which contains 5 billion of Bacillus subtilis and B. clausii spores in 5 mL, in supporting treatment of influenza viral infection in pediatric patients. We found that the nasal-spraying Bacillus spores significantly shortened the recovery period and overall treatment by 2 days and increased treatment effectiveness by 58% in resolving all ARTIs' symptoms. At day 2, the concentrations of influenza virus and co-infected bacteria were reduced by 417 and 1152 folds. Additionally, the levels of pro-inflammatory cytokines IL-8, TNF-α, and IL-6 in nasopharyngeal samples were reduced by 1.1, 3.7, and 53.9 folds, respectively. Compared to the standard control group, treatment regimen with LiveSpo Navax demonstrated significantly greater effectiveness, resulting in 26-fold reduction in viral load, 65-fold reduction in bacterial concentration, and 1.1-9.5-fold decrease in cytokine levels. Overall, nasal-spraying Bacillus spores can support the symptomatic treatment of influenza virus-induced ARTIs quickly, efficiently and could be used as a cost-effective supportive treatment for respiratory viral infection in general.Clinical trial registration no: NCT05378022 on 17/05/2022.
Collapse
Affiliation(s)
- Tu Thanh Tran
- International Center, Vietnam National Children's Hospital, No. 18/879 La Thanh, Dong Da, Hanoi, Vietnam
| | - Thuy Thi Bich Phung
- Department of Molecular Biology for Infectious Diseases, Vietnam National Children's Hospital, No. 18/879 La Thanh, Dong Da, Hanoi, Vietnam
| | - Dien Minh Tran
- Department of Surgical Intensive Care Unit, Vietnam National Children's Hospital, No. 18/879 La Thanh, Dong Da, Hanoi, Vietnam
| | - Huyen Thi Bui
- Key Laboratory of Enzyme and Protein Technology, VNU University of Sciences, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
- Spobiotic Research Center, ANABIO R&D Ltd. Company, No. 22, Lot 7, 8 Van Khe Urban, La Khe, Ha Dong, Hanoi, Vietnam
| | - Phuc Thanh Thi Nguyen
- International Center, Vietnam National Children's Hospital, No. 18/879 La Thanh, Dong Da, Hanoi, Vietnam
| | - Tam Thi Vu
- International Center, Vietnam National Children's Hospital, No. 18/879 La Thanh, Dong Da, Hanoi, Vietnam
| | - Nga Thi Phuong Ngo
- International Center, Vietnam National Children's Hospital, No. 18/879 La Thanh, Dong Da, Hanoi, Vietnam
| | - Mai Thi Nguyen
- International Center, Vietnam National Children's Hospital, No. 18/879 La Thanh, Dong Da, Hanoi, Vietnam
| | - Anh Hoa Nguyen
- Spobiotic Research Center, ANABIO R&D Ltd. Company, No. 22, Lot 7, 8 Van Khe Urban, La Khe, Ha Dong, Hanoi, Vietnam.
- LiveSpo Pharma Ltd. Company, N03T5, Ngoai Giao Doan Urban, Bac Tu Liem, Hanoi, Vietnam.
| | - Anh Thi Van Nguyen
- Spobiotic Research Center, ANABIO R&D Ltd. Company, No. 22, Lot 7, 8 Van Khe Urban, La Khe, Ha Dong, Hanoi, Vietnam.
| |
Collapse
|
3
|
Bertrand PJ, Vázquez Y, Beckhaus AA, González LA, Contreras AM, Ferrés M, Padilla O, Riedel CA, Kalergis AM, Bueno SM. Identification of biomarkers for disease severity in nasopharyngeal secretions of infants with upper or lower respiratory tract viral infections. Clin Exp Immunol 2022; 210:68-78. [PMID: 36036806 PMCID: PMC9585550 DOI: 10.1093/cei/uxac083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/08/2022] [Accepted: 08/24/2022] [Indexed: 01/25/2023] Open
Abstract
Lower respiratory tract infections (LRTIs) produced by viruses are the most frequent cause of morbidity and mortality in children younger than 5 years of age. The immune response triggered by viral infection can induce a strong inflammation in the airways and cytokines could be considered as biomarkers for disease severity as these molecules modulate the inflammatory response that defines the outcome of patients. Aiming to predict the severity of disease during respiratory tract infections, we conducted a 1-year follow-up observational study in infants who presented upper or lower respiratory tract infections caused by seasonal respiratory viruses. At the time of enrollment, nasopharyngeal swabs (NPS) were obtained from infants to measure mRNA expression and protein levels of IL-3, IL-8, IL-33, and thymic stromal lymphopoietin. While all cytokines significantly increased their protein levels in infants with upper and lower respiratory tract infections as compared to control infants, IL-33 and IL-8 showed a significant increase in respiratory syncytial virus (RSV)-infected patients with LRTI as compared to patients with upper respiratory tract infection. We also found higher viral loads of RSV-positive samples with a greater IL-8 response at the beginning of the symptoms. Data obtained in this study suggest that both IL-8 and IL-33 could be used as biomarkers for clinical severity for infants suffering from LRTIs caused by the RSV.
Collapse
Affiliation(s)
- Pablo J Bertrand
- Departamento de Enfermedades Respiratorias Pediátricas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Yaneisi Vázquez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrea A Beckhaus
- Departamento de Enfermedades Respiratorias Pediátricas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Liliana A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ana María Contreras
- Laboratorio de Infectología y Virología Molecular, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcela Ferrés
- Laboratorio de Infectología y Virología Molecular, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Oslando Padilla
- Departamento de Salud Pública, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
4
|
Nasal-spraying Bacillus spores as an effective symptomatic treatment for children with acute respiratory syncytial virus infection. Sci Rep 2022; 12:12402. [PMID: 35858943 PMCID: PMC9297280 DOI: 10.1038/s41598-022-16136-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 07/05/2022] [Indexed: 01/30/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a leading cause of Acute Respiratory Tract Infections (ARTIs) in young children. However, there is currently no vaccine or treatment available for children. Here, we demonstrated that nasal-spraying probiotics containing 5 billion of Bacillus spores (LiveSpo Navax) is an effective symptomatic treatment in a 6-day randomized controlled clinical study for RSV-infected children (n = 40–46/group). Navax treatment resulted in 1-day faster recovery-time and 10–50% better efficacy in relieving ARTI symptoms. At day 3, RSV load and level of pro-inflammatory cytokines in nasopharyngeal samples was reduced by 630 folds and 2.7–12.7 folds respectively. This showed 53-fold and 1.8–3.6-fold more effective than those in the control-standard of care-group. In summary, nasal-spraying Bacillus spores can rapidly and effectively relieve symptoms of RSV-induced ARTIs while exhibit strong impacts in reducing viral load and inflammation. Our nasal-spraying probiotics may provide a basis for simple-to-use, low-cost, and effective treatment against viral infection in general.
Collapse
|
5
|
Gálvez NMS, Bohmwald K, Pacheco GA, Andrade CA, Carreño LJ, Kalergis AM. Type I Natural Killer T Cells as Key Regulators of the Immune Response to Infectious Diseases. Clin Microbiol Rev 2021; 34:e00232-20. [PMID: 33361143 PMCID: PMC7950362 DOI: 10.1128/cmr.00232-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The immune system must work in an orchestrated way to achieve an optimal response upon detection of antigens. The cells comprising the immune response are traditionally divided into two major subsets, innate and adaptive, with particular characteristics for each type. Type I natural killer T (iNKT) cells are defined as innate-like T cells sharing features with both traditional adaptive and innate cells, such as the expression of an invariant T cell receptor (TCR) and several NK receptors. The invariant TCR in iNKT cells interacts with CD1d, a major histocompatibility complex class I (MHC-I)-like molecule. CD1d can bind and present antigens of lipid nature and induce the activation of iNKT cells, leading to the secretion of various cytokines, such as gamma interferon (IFN-γ) and interleukin 4 (IL-4). These cytokines will aid in the activation of other immune cells following stimulation of iNKT cells. Several molecules with the capacity to bind to CD1d have been discovered, including α-galactosylceramide. Likewise, several molecules have been synthesized that are capable of polarizing iNKT cells into different profiles, either pro- or anti-inflammatory. This versatility allows NKT cells to either aid or impair the clearance of pathogens or to even control or increase the symptoms associated with pathogenic infections. Such diverse contributions of NKT cells to infectious diseases are supported by several publications showing either a beneficial or detrimental role of these cells during diseases. In this article, we discuss current data relative to iNKT cells and their features, with an emphasis on their driving role in diseases produced by pathogenic agents in an organ-oriented fashion.
Collapse
Affiliation(s)
- Nicolás M S Gálvez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gaspar A Pacheco
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina A Andrade
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Leandro J Carreño
- Millennium Institute on Immunology and Immunotherapy, Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
6
|
Gassen RB, Fazolo T, Nascimento de Freitas D, Borges TJ, Lima K, Antunes GL, Maito F, Bueno Mendes DA, Báfica A, Rodrigues LC, Stein R, Duarte de Souza AP, Bonorino C. IL-21 treatment recovers follicular helper T cells and neutralizing antibody production in respiratory syncytial virus infection. Immunol Cell Biol 2020; 99:309-322. [PMID: 33068449 DOI: 10.1111/imcb.12418] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/31/2020] [Accepted: 10/14/2020] [Indexed: 01/13/2023]
Abstract
Respiratory syncytial virus (RSV) is the major cause of lower respiratory tract infections in children under 1 year. RSV vaccines are currently unavailable, and children suffering from multiple reinfections by the same viral strain fail to develop protective responses. Although RSV-specific antibodies can be detected upon infection, these have limited neutralizing capacity. Follicular helper T (Tfh) cells are specialized in providing signals to B cells and help the production and affinity maturation of antibodies, mainly via interleukin (IL) 21 secretion. In this study, we evaluated whether RSV could inhibit Tfh responses. We observed that Tfh cells fail to upregulate IL-21 production upon RSV infection. In the lungs, RSV infection downregulated the expression of IL-21/interleukin-21 receptor (IL-21R) in Tfh cells and upregulated programmed death-ligand 1 (PD-L1) expression in dendritic cells (DCs) and B cells. PD-L1 blockade during infection recovered IL-21R expression in Tfh cells and increased the secretion of IL-21 in a DC-dependent manner. IL-21 treatment decreased RSV viral load and lung inflammation, inducing the formation of tertiary lymphoid organs in the lung. It also decreased regulatory follicular T cells, and increased Tfh cells, B cells, antibody avidity and neutralization capacity, leading to an overall improved anti-RSV humoral response in infected mice. Passive immunization with purified immunoglobulin G from IL-21-treated RSV-infected mice protected against RSV infection. Our results unveil a pathway by which RSV affects Tfh cells by increasing PD-L1 expression on antigen-presenting cells, highlighting the importance of an IL-21-PD-L1 axis for the generation of protective responses to RSV infection.
Collapse
Affiliation(s)
- Rodrigo Benedetti Gassen
- Laboratório de Imunologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratório de Imunologia Clínica e Experimental, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Renal Division, Schuster Family Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tiago Fazolo
- Laboratório de Imunologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratório de Imunologia Clínica e Experimental, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Deise Nascimento de Freitas
- Laboratório de Imunologia Clínica e Experimental, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Thiago J Borges
- Renal Division, Schuster Family Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Karina Lima
- Laboratório de Imunologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratório de Imunoterapia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Géssica L Antunes
- Laboratório de Imunologia Clínica e Experimental, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fábio Maito
- Laboratório de Histologia, Faculdade de Odontologia, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Daniel Ag Bueno Mendes
- Laboratório de Imunobiologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - André Báfica
- Laboratório de Imunobiologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Luiz Carlos Rodrigues
- Laboratório de Imunovirologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Renato Stein
- Infant Center, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ana Paula Duarte de Souza
- Laboratório de Imunologia Clínica e Experimental, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Cristina Bonorino
- Laboratório de Imunoterapia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.,Department of Surgery, School of Medicine, University of California at San Diego, La Jolla, CA, USA
| |
Collapse
|
7
|
Smallcombe CC, Harford TJ, Linfield DT, Lechuga S, Bokun V, Piedimonte G, Rezaee F. Titanium dioxide nanoparticles exaggerate respiratory syncytial virus-induced airway epithelial barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 2020; 319:L481-L496. [PMID: 32640839 PMCID: PMC7518063 DOI: 10.1152/ajplung.00104.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/30/2020] [Accepted: 07/08/2020] [Indexed: 12/24/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in children worldwide. While most develop a mild, self-limiting illness, some develop severe acute lower respiratory infection and persistent airway disease. Exposure to ambient particulate matter has been linked to asthma, bronchitis, and viral infection in multiple epidemiological studies. We hypothesized that coexposure to nanoparticles worsens RSV-induced airway epithelial barrier dysfunction. Bronchial epithelial cells were incubated with titanium dioxide nanoparticles (TiO2-NP) or a combination of TiO2-NP and RSV. Structure and function of epithelial cell barrier were analyzed. Viral titer and the role of reactive oxygen species (ROS) generation were evaluated. In vivo, mice were intranasally incubated with TiO2-NP, RSV, or a combination. Lungs and bronchoalveolar lavage (BAL) fluid were harvested for analysis of airway inflammation and apical junctional complex (AJC) disruption. RSV-induced AJC disruption was amplified by TiO2-NP. Nanoparticle exposure increased viral infection in epithelial cells. TiO2-NP induced generation of ROS, and pretreatment with antioxidant, N-acetylcysteine, reversed said barrier dysfunction. In vivo, RSV-induced injury and AJC disruption were augmented in the lungs of mice given TiO2-NP. Airway inflammation was exacerbated, as evidenced by increased white blood cell infiltration into the BAL, along with exaggeration of peribronchial inflammation and AJC disruption. These data demonstrate that TiO2-NP exposure exacerbates RSV-induced AJC dysfunction and increases inflammation by mechanisms involving generation of ROS. Further studies are required to determine whether NP exposure plays a role in the health disparities of asthma and other lung diseases, and why some children experience more severe airway disease with RSV infection.
Collapse
Affiliation(s)
- Carrie C Smallcombe
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Terri J Harford
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Debra T Linfield
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Vladimir Bokun
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | | | - Fariba Rezaee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
- Centre for Pediatric Pulmonary Medicine, Cleveland Clinic Children's, Cleveland, Ohio
| |
Collapse
|
8
|
Douros K, Everard ML. Time to Say Goodbye to Bronchiolitis, Viral Wheeze, Reactive Airways Disease, Wheeze Bronchitis and All That. Front Pediatr 2020; 8:218. [PMID: 32432064 PMCID: PMC7214804 DOI: 10.3389/fped.2020.00218] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
The diagnosis and management of infants and children with a significant viral lower respiratory tract illness remains the subject of much debate and little progress. Over the decades various terms for such illnesses have been in and fallen out of fashion or have evolved to mean different things to different clinicians. Terms such as "bronchiolitis," "reactive airways disease," "viral wheeze," and many more are used to describe the same condition and the same term is frequently used to describe illnesses caused by completely different dominant pathologies. This lack of clarity is due, in large part, to a failure to understand the basic underlying inflammatory and associated processes and, in part, due to the lack of a simple test to identify a condition such as asthma. Moreover, there is a lack of insight into the fact that the same pathology can produce different clinical signs at different ages. The consequence is that terminology and fashions in treatment have tended to go around in circles. As was noted almost 60 years ago, amongst pre-school children with a viral LRTI and airways obstruction there are those with a "viral bronchitis" and those with asthma. In the former group, a neutrophil dominated inflammation response is responsible for the airways' obstruction whilst amongst asthmatics much of the obstruction is attributable to bronchoconstriction. The airways obstruction in the former group is predominantly caused by airways secretions and to some extent mucosal oedema (a "snotty lung"). These patients benefit from good supportive care including supplemental oxygen if required (though those with a pre-existing bacterial bronchitis will also benefit from antibiotics). For those with a viral exacerbation of asthma, characterized by bronchoconstriction combined with impaired b-agonist responsiveness, standard management of an exacerbation of asthma (including the use of steroids to re-establish bronchodilator responsiveness) represents optimal treatment. The difficulty is identifying which group a particular patient falls into. A proposed simplified approach to the nomenclature used to categorize virus associated LRTIs is presented based on an understanding of the underlying pathological processes and how these contribute to the physical signs.
Collapse
Affiliation(s)
- Konstantinos Douros
- Third Department of Paediatrics, Attikon Hospital, University of Athens School of Medicine, Athens, Greece
| | - Mark L. Everard
- Division of Paediatrics and Child Health, Perth Children's Hospital, University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
9
|
Vázquez Y, González L, Noguera L, González PA, Riedel CA, Bertrand P, Bueno SM. Cytokines in the Respiratory Airway as Biomarkers of Severity and Prognosis for Respiratory Syncytial Virus Infection: An Update. Front Immunol 2019; 10:1154. [PMID: 31214165 PMCID: PMC6557983 DOI: 10.3389/fimmu.2019.01154] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 05/07/2019] [Indexed: 12/24/2022] Open
Abstract
The human respiratory syncytial virus (hRSV) is one of the most important causes of upper and lower respiratory tract infections in children and the main cause of bronchiolitis worldwide. Disease manifestations caused by hRSV may vary from mild to severe, occasionally requiring admission and hospitalization in intensive care units. Despite the high morbidity rates associated to bronchiolitis, treatment options against hRSV are limited and there are no current vaccination strategies to prevent infection. Importantly, the early identification of high-risk patients can help improve disease management and prevent complications associated with hRSV infection. Recently, the characterization of pro- and anti-inflammatory cytokine patterns produced during hRSV-related inflammatory processes has allowed the identification of potential prognosis biomarkers. A suitable biomarker should allow predicting the severity of the infection in a simple and opportune manner and should ideally be obtained from non-invasive samples. Among the cytokines associated with hRSV disease severity, IL-8, interferon-alpha (IFN-alpha), and IL-6, as well as the Th2-type cytokines thymic stromal lymphopoietin (TSLP), IL-3, and IL-33 have been highlighted as molecules with prognostic value in hRSV infections. In this review, we discuss current studies that describe molecules produced by patients during hRSV infection and their potential as biomarkers to anticipate the severity of the disease caused by this virus.
Collapse
Affiliation(s)
- Yaneisi Vázquez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Liliana González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Loreani Noguera
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Pablo Bertrand
- División de Pediatría, Unidad de Enfermedades Respiratorias Pediátricas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
10
|
Bohmwald K, Gálvez NMS, Canedo-Marroquín G, Pizarro-Ortega MS, Andrade-Parra C, Gómez-Santander F, Kalergis AM. Contribution of Cytokines to Tissue Damage During Human Respiratory Syncytial Virus Infection. Front Immunol 2019; 10:452. [PMID: 30936869 PMCID: PMC6431622 DOI: 10.3389/fimmu.2019.00452] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/19/2019] [Indexed: 12/26/2022] Open
Abstract
The human respiratory syncytial virus (hRSV) remains one of the leading pathogens causing acute respiratory tract infections (ARTIs) in children younger than 2 years old, worldwide. Hospitalizations during the winter season due to hRSV-induced bronchiolitis and pneumonia increase every year. Despite this, there are no available vaccines to mitigate the health and economic burden caused by hRSV infection. The pathology caused by hRSV induces significant damage to the pulmonary epithelium, due to an excessive inflammatory response at the airways. Cytokines are considered essential players for the establishment and modulation of the immune and inflammatory responses, which can either be beneficial or harmful for the host. The deleterious effect observed upon hRSV infection is mainly due to tissue damage caused by immune cells recruited to the site of infection. This cellular recruitment takes place due to an altered profile of cytokines secreted by epithelial cells. As a result of inflammatory cell recruitment, the amounts of cytokines, such as IL-1, IL-6, IL-10, and CCL5 are further increased, while IL-10 and IFN-γ are decreased. However, additional studies are required to elicit the mediators directly associated with hRSV damage entirely. In addition to the detrimental induction of inflammatory mediators in the respiratory tract caused by hRSV, reports indicating alterations in the central nervous system (CNS) have been published. Indeed, elevated levels of IL-6, IL-8 (CXCL8), CCL2, and CCL4 have been reported in cerebrospinal fluid from patients with severe bronchiolitis and hRSV-associated encephalopathy. In this review article, we provide an in-depth analysis of the role of cytokines secreted upon hRSV infection and their potentially harmful contribution to tissue damage of the respiratory tract and the CNS.
Collapse
Affiliation(s)
- Karen Bohmwald
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás M. S. Gálvez
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gisela Canedo-Marroquín
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Magdalena S. Pizarro-Ortega
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina Andrade-Parra
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Gómez-Santander
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
11
|
Kim SJ, Lee JW, Eun YG, Lee KH, Yeo SG, Kim SW. Pretreatment with a grape seed proanthocyanidin extract downregulates proinflammatory cytokine expression in airway epithelial cells infected with respiratory syncytial virus. Mol Med Rep 2019; 19:3330-3336. [PMID: 30816467 DOI: 10.3892/mmr.2019.9967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 01/29/2019] [Indexed: 11/06/2022] Open
Abstract
Respiratory syncytial virus (RSV) infections are associated with significant morbidity and mortality. Inflammation is mediated by cytokine secretion from RSV‑infected airway epithelial cells. Grape seed proanthocyanidin extract (GSPE) exhibits potent antioxidant capacity, as well as anti‑bacterial, anti‑viral, anti‑carcinogenic, anti‑inflammatory and anti‑allergic actions. However, few studies have explored the anti‑inflammatory effects of GSPE on airway epithelial cells infected with RSV. Airway epithelial A549 cells were pretreated with GSPE and its effects on cytokine production during RSV infection were investigated. A549 cells were infected with RSV, with or without GSPE pretreatment, and cultured for 24, 48 and 72 h. The expression of interleukin (IL)‑1β, IL‑6 and IL‑8, were measured by reverse transcription‑quantitative polymerase chain reaction, ELISA and western blotting. RSV infection induced significant increases in proinflammatory cytokine expression. However, GSPE pretreatment decreased the mRNA and protein expression levels of IL‑1ß, IL‑6 and IL‑8. GSPE regulated the immune response by reducing the RSV‑induced transcription of proinflammatory cytokines in airway epithelial cells, suggesting that GSPE helps to prevent RSV‑induced airway disease.
Collapse
Affiliation(s)
- Su Jin Kim
- Department of Otorhinolaryngology, Eulji University Hospital, Eulji University School of Medicine, Daejeon 35233, Republic of Korea
| | - Jin-Woo Lee
- College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Young-Gyu Eun
- Department of Otorhinolaryngology‑Head and Neck Surgery, Kyung Hee University School of Medicine, Seoul 02447, Republic of Korea
| | - Kun Hee Lee
- Department of Otorhinolaryngology‑Head and Neck Surgery, Kyung Hee University School of Medicine, Seoul 02447, Republic of Korea
| | - Seung Gun Yeo
- Department of Otorhinolaryngology‑Head and Neck Surgery, Kyung Hee University School of Medicine, Seoul 02447, Republic of Korea
| | - Sung Wan Kim
- Department of Otorhinolaryngology‑Head and Neck Surgery, Kyung Hee University School of Medicine, Seoul 02447, Republic of Korea
| |
Collapse
|
12
|
Mormile R. Respiratory syncytial virus infection in cardiac patients: outcomes preordained by IL-6 gene polymorphism? Minerva Pediatr 2018; 71:218-219. [PMID: 30299023 DOI: 10.23736/s0026-4946.18.05236-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Raffaella Mormile
- Division of Pediatrics and Neonatology, Moscati Hospital, Aversa, Caserta, Italy -
| |
Collapse
|