1
|
Purcell E, Shah J, Powell C, Nguyen T, Zhou L, McDonald CA, Allison BJ, Malhotra A. Umbilical cord blood-derived therapy for preterm lung injury: a systematic review and meta-analysis. Stem Cells Transl Med 2024; 13:606-624. [PMID: 38819251 PMCID: PMC11227974 DOI: 10.1093/stcltm/szae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/14/2024] [Indexed: 06/01/2024] Open
Abstract
INTRODUCTION Lung injuries, such as bronchopulmonary dysplasia (BPD), remain a major complication of preterm birth, with limited therapeutic options. One potential emerging therapy is umbilical cord blood (UCB)-derived therapy. OBJECTIVES To systematically assess the safety and efficacy of UCB-derived therapy for preterm lung injury in preclinical and clinical studies. METHODS A systematic search of MEDLINE, Embase, CENTRAL, ClinicalTrials.gov, and WHO International Trials Registry Platform was performed. A meta-analysis was conducted with Review Manager (5.4.1) using a random effects model. Data was expressed as standardized mean difference (SMD) for preclinical data and pooled relative risk (RR) for clinical data, with 95% confidence intervals (CI). Potential effect modifiers were investigated via subgroup analysis. Certainty of evidence was assessed using the GRADE system. RESULTS Twenty-three preclinical studies and six clinical studies met eligibility criteria. Statistically significant improvements were seen across several preclinical outcomes, including alveolarization (SMD, 1.32, 95%CI [0.99, 1.65]), angiogenesis (SMD, 1.53, 95%CI [0.87, 2.18]), and anti-inflammatory cytokines (SMD, 1.68, 95%CI [1.03, 2.34]). In clinical studies, 103 preterm infants have received UCB-derived therapy for preterm lung injury and no significant difference was observed in the development of BPD (RR, 0.93, 95%CI [0.73, 1.18]). Across both preclinical and clinical studies, administration of UCB-derived therapy appeared safe. Certainty of evidence was assessed as "low." CONCLUSIONS Administration of UCB-derived therapy was associated with statistically significant improvements across several lung injury markers in preclinical studies. Early clinical studies demonstrated the administration of UCB-derived therapy as safe and feasible but lacked data regarding efficacy.
Collapse
Affiliation(s)
- Elisha Purcell
- Department of Paediatrics, Monash University, VIC 3168, Melbourne, Australia
| | - Jainam Shah
- Department of Paediatrics, Monash University, VIC 3168, Melbourne, Australia
| | - Cameron Powell
- Department of Paediatrics, Monash University, VIC 3168, Melbourne, Australia
| | - Timothy Nguyen
- Department of Paediatrics, Monash University, VIC 3168, Melbourne, Australia
| | - Lindsay Zhou
- Department of Paediatrics, Monash University, VIC 3168, Melbourne, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, VIC 3168, Melbourne, Australia
- Monash Newborn, Monash Children's Hospital, VIC 3168, Melbourne, Australia
| | - Courtney A McDonald
- The Ritchie Centre, Hudson Institute of Medical Research, VIC 3168, Melbourne, Australia
- Department of Obstetrics and Gynaecology, Monash University, VIC 3168, Melbourne, Australia
| | - Beth J Allison
- The Ritchie Centre, Hudson Institute of Medical Research, VIC 3168, Melbourne, Australia
- Department of Obstetrics and Gynaecology, Monash University, VIC 3168, Melbourne, Australia
| | - Atul Malhotra
- Department of Paediatrics, Monash University, VIC 3168, Melbourne, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, VIC 3168, Melbourne, Australia
- Monash Newborn, Monash Children's Hospital, VIC 3168, Melbourne, Australia
| |
Collapse
|
2
|
Cerro Marín MJD, Ormazábal IG, Gimeno-Navarro A, Álvarez-Fuente M, López-Ortego P, Avila-Alvarez A, Arruza Gómez L, González-Menchen C, Labrandero de Lera C, Lozano Balseiro M, Moreno Gutiérrez L, Melen Frajilich G, Ramírez Orellana M, Saldaña García N, Pavón Delgado A, Vento Torres M. Repeated intravenous doses of human umbilical cord-derived mesenchymal stromal cells for bronchopulmonary dysplasia: results of a phase 1 clinical trial with 2-year follow-up. Cytotherapy 2024; 26:632-640. [PMID: 38556960 DOI: 10.1016/j.jcyt.2024.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/29/2023] [Accepted: 02/29/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Currently, there is a lack of effective treatments or preventive strategies for bronchopulmonary dysplasia (BPD). Pre-clinical studies with mesenchymal stromal cells (MSCs) have yielded encouraging results. The safety of administering repeated intravenous doses of umbilical cord tissue-derived mesenchymal stromal cells (UC-MSCs) has not yet been tested in extremely-low-gestational-age newborns (ELGANs). AIMS to test the safety and feasibility of administering three sequential intravenous doses of UC-MSCs every 7 days to ELGANs at risk of developing BPD. METHODS In this phase 1 clinical trial, we recruited ELGANs (birth weight ≤1250 g and ≤28 weeks in gestational age [GA]) who were on invasive mechanical ventilation (IMV) with FiO2 ≥ 0.3 at postnatal days 7-14. Three doses of 5 × 106/kg of UC-MSCs were intravenously administered at weekly intervals. Adverse effects and prematurity-related morbidities were recorded. RESULTS From April 2019 to July 2020, 10 patients were recruited with a mean GA of 25.2 ± 0.8 weeks and a mean birth weight of 659.8 ± 153.8 g. All patients received three intravenous UC-MSC doses. The first dose was administered at a mean of 16.6 ± 2.9 postnatal days. All patients were diagnosed with BPD. All patients were discharged from the hospital. No deaths or any serious adverse events related to the infusion of UC-MSCs were observed during administration, hospital stays or at 2-year follow-up. CONCLUSIONS The administration of repeated intravenous infusion of UC-MSCs in ELGANs at a high risk of developing BPD was feasible and safe in the short- and mid-term follow-up.
Collapse
Affiliation(s)
- Maria Jesús Del Cerro Marín
- Pediatric Cardiology, Hospital Universitario Ramón y Cajal, Madrid and Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), Madrid, Spain.
| | - Itziar Garcia Ormazábal
- Pediatric Cardiology, Hospital Universitario Ramón y Cajal, Madrid and Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), Madrid, Spain
| | - Ana Gimeno-Navarro
- Division of Neonatology, Hospital Universitari i Politècnic La Fe (HULAFE) and Health Research Institute La Fe (IISLAFE), Valencia, Spain
| | - María Álvarez-Fuente
- Pediatric Cardiology, Hospital Universitario Ramón y Cajal, Madrid and Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), Madrid, Spain
| | | | - Alejandro Avila-Alvarez
- Neonatology Department, Complexo Hospitalario Universitario A Coruña (CHUAC), A Coruña, Spain
| | - Luis Arruza Gómez
- Department of Neonatology, Instituto del Niño y del Adolescente, Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Cristina González-Menchen
- Department of Neonatology, Instituto del Niño y del Adolescente, Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | | | - María Lozano Balseiro
- Neonatology Department, Complexo Hospitalario Universitario A Coruña (CHUAC), A Coruña, Spain
| | | | | | | | - Natalia Saldaña García
- Neonatology Department, Hospital Regional Universitario de Málaga and Biomedical Research Institute of Málaga, Málaga, Spain
| | | | - Máximo Vento Torres
- Division of Neonatology, Hospital Universitari i Politècnic La Fe (HULAFE) and Health Research Institute La Fe (IISLAFE), Valencia, Spain
| |
Collapse
|
3
|
Song Y, Yang C. Mechanistic advances of hyperoxia-induced immature brain injury. Heliyon 2024; 10:e30005. [PMID: 38694048 PMCID: PMC11058899 DOI: 10.1016/j.heliyon.2024.e30005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 05/03/2024] Open
Abstract
The impact of hyperoxia-induced brain injury in preterm infants is being increasingly investigated. However, the parameters and protocols used to study this condition in animal models lack consistency. Research is further hampered by the fact that hyperoxia exerts both direct and indirect effects on oligodendrocytes and neurons, with the precise underlying mechanisms remaining unclear. In this article, we aim to provide a comprehensive overview of the conditions used to induce hyperoxia in animal models of immature brain injury. We discuss what is known regarding the mechanisms underlying hyperoxia-induced immature brain injury, focusing on the effects on oligodendrocytes and neurons, and briefly describe therapies that may counteract the effects of hyperoxia. We also identify further studies required to fully elucidate the effects of hyperoxia on the immature brain as well as discuss the leading therapeutic options.
Collapse
Affiliation(s)
- Yue Song
- Department of Pediatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
- Department of Clinical Medicine, The Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| | - Changqiang Yang
- Department of Cardiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
- Department of Clinical Medicine, The Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| |
Collapse
|
4
|
Xue-Jiao H, Jian-Hua F. A review of the effects of early postnatal hyperoxia exposure on the immature brain. Exp Neurol 2023; 370:114550. [PMID: 37774766 DOI: 10.1016/j.expneurol.2023.114550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Preterm birth is a public health priority worldwide, with approximately 15 million premature babies born each year. Oxygen supplementation is one of the most common interventions for preterm infants. However, prolonged oxygen inhalation at supraphysiological concentrations can lead to the development of bronchopulmonary dysplasia (BPD). In addition to lifelong pulmonary sequelae, clinical evidence suggests that BPD is associated with adverse neurodevelopmental outcomes, such as motor impairment, cognitive impairment, and behavioral deficits, severely affecting the quality of life of preterm infants. However, the mechanisms underlying the combination of neurodevelopmental impairment with BPD remain unclear. Therefore, in recent years, attention has also been focused on the effects of hyperoxia on brain development in preterm infants. In this review, we outline the pathophysiological mechanisms of brain injury caused by developmental hyperoxia exposure in current animal models and briefly describe the pharmacological therapies that may be applicable to the associated brain injury. Overall, more studies are needed to assess the effects of hyperoxia on the immature brain, particularly combined analyses of the lungs and brain in the same experimental setting, to elucidate the potential causes of combined neurodevelopmental impairment in BPD.
Collapse
Affiliation(s)
- Huang Xue-Jiao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fu Jian-Hua
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
5
|
Ahn SY, Chang YS, Lee MH, Sung S, Kim AR, Park WS. Five-year follow-up of phase II trial of stromal cells for bronchopulmonary dysplasia. Thorax 2023; 78:1105-1110. [PMID: 37604693 DOI: 10.1136/thorax-2022-219622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 07/03/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND We previously performed a phase II randomised double-blind clinical trial of mesenchymal stromal cell (MSCs) transplantation to prevent bronchopulmonary dysplasia in extremely premature infants. Subsequently, we followed the infants enrolled in this clinical trial to determine the safety and effectiveness of MSCs against bronchopulmonary dysplasia at 5-year follow-up. METHODS We evaluated infants at 5 years of age receiving placebo or MSCs in a prospective follow-up study. RESULTS In terms of the primary end point of composite respiratory morbidities, including respiratory problem-related readmission, emergency department visits or oxygen therapy, the MSC group had a rate of 60.7% for composite morbidities, while the control group showed a tendency of higher rate of 83.9% for the same outcomes without statistical significance. In terms of the secondary outcomes, the MSC group infants showed a tendency of being less likely to visit emergency department (control 67.7% vs MSC 35.7%) and to receive oxygen therapy (control 29.0% vs MSC 3.6%). No difference was observed in the incidence of respiratory problem-related hospital readmission or wheezing episodes between the groups. CONCLUSION Intratracheally instilled MSCs showed the possibility of potential to decrease respiratory symptom-related emergency department visits and oxygen therapy episodes in infants born extremely preterm during the 5 years after a phase II randomised controlled, double-blind trial of MSCs transplantation for bronchopulmonary dysplasia. This small size study suggests preliminary insights that can be further tested using larger sample sizes. TRIAL REGISTRATION NUMBER NCT01897987.
Collapse
Affiliation(s)
- So Yoon Ahn
- Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, South Korea
| | - Yun Sil Chang
- Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, South Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - Myung Hee Lee
- Social Information Research Institute, Seoul, South Korea
| | - Sein Sung
- Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Ai-Rhan Kim
- Pediatrics, University of Ulsan, Ulsan, South Korea
| | - Won Soon Park
- Pediatrics, Gangnam CHA Hospital, CHA University School of Medicine, Seoul, South Korea
| |
Collapse
|
6
|
Tung S, Delavogia E, Fernandez-Gonzalez A, Mitsialis SA, Kourembanas S. Harnessing the therapeutic potential of the stem cell secretome in neonatal diseases. Semin Perinatol 2023; 47:151730. [PMID: 36990921 PMCID: PMC10133192 DOI: 10.1016/j.semperi.2023.151730] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Preterm birth and intrapartum related complications account for a substantial amount of mortality and morbidity in the neonatal period despite significant advancements in neonatal-perinatal care. Currently, there is a noticeable lack of curative or preventative therapies available for any of the most common complications of prematurity including bronchopulmonary dysplasia, necrotizing enterocolitis, intraventricular hemorrhage, periventricular leukomalacia and retinopathy of prematurity or hypoxic-ischemic encephalopathy, the main cause of perinatal brain injury in term infants. Mesenchymal stem/stromal cell-derived therapy has been an active area of investigation for the past decade and has demonstrated encouraging results in multiple experimental models of neonatal disease. It is now widely acknowledged that mesenchymal stem/stromal cells exert their therapeutic effects via their secretome, with the principal vector identified as extracellular vesicles. This review will focus on summarizing the current literature and investigations on mesenchymal stem/stromal cell-derived extracellular vesicles as a treatment for neonatal diseases and examine the considerations to their application in the clinical setting.
Collapse
Affiliation(s)
- Stephanie Tung
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Eleni Delavogia
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States; Department of Pediatrics, Massachusetts General Hospital for Children, Boston, MA, United States
| | - Angeles Fernandez-Gonzalez
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - S Alex Mitsialis
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Stella Kourembanas
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
7
|
Nguyen T, Purcell E, Smith MJ, Penny TR, Paton MCB, Zhou L, Jenkin G, Miller SL, McDonald CA, Malhotra A. Umbilical Cord Blood-Derived Cell Therapy for Perinatal Brain Injury: A Systematic Review & Meta-Analysis of Preclinical Studies. Int J Mol Sci 2023; 24:ijms24054351. [PMID: 36901781 PMCID: PMC10001969 DOI: 10.3390/ijms24054351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Perinatal brain injury is a major contributor to long-term adverse neurodevelopment. There is mounting preclinical evidence for use of umbilical cord blood (UCB)-derived cell therapy as potential treatment. To systematically review and analyse effects of UCB-derived cell therapy on brain outcomes in preclinical models of perinatal brain injury. MEDLINE and Embase databases were searched for relevant studies. Brain injury outcomes were extracted for meta-analysis to calculate standard mean difference (SMD) with 95% confidence interval (CI), using an inverse variance, random effects model. Outcomes were separated based on grey matter (GM) and white matter (WM) regions where applicable. Risk of bias was assessed using SYRCLE, and GRADE was used to summarise certainty of evidence. Fifty-five eligible studies were included (7 large, 48 small animal models). UCB-derived cell therapy significantly improved outcomes across multiple domains, including decreased infarct size (SMD 0.53; 95% CI (0.32, 0.74), p < 0.00001), apoptosis (WM, SMD 1.59; 95%CI (0.86, 2.32), p < 0.0001), astrogliosis (GM, SMD 0.56; 95% CI (0.12, 1.01), p = 0.01), microglial activation (WM, SMD 1.03; 95% CI (0.40, 1.66), p = 0.001), neuroinflammation (TNF-α, SMD 0.84; 95%CI (0.44, 1.25), p < 0.0001); as well as improved neuron number (SMD 0.86; 95% CI (0.39, 1.33), p = 0.0003), oligodendrocyte number (GM, SMD 3.35; 95 %CI (1.00, 5.69), p = 0.005) and motor function (cylinder test, SMD 0.49; 95 %CI (0.23, 0.76), p = 0.0003). Risk of bias was determined as serious, and overall certainty of evidence was low. UCB-derived cell therapy is an efficacious treatment in pre-clinical models of perinatal brain injury, however findings are limited by low certainty of evidence.
Collapse
Affiliation(s)
- Timothy Nguyen
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
| | - Elisha Purcell
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
| | - Madeleine J. Smith
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC 3168, Australia
| | - Tayla R. Penny
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC 3168, Australia
| | - Madison C. B. Paton
- Cerebral Palsy Alliance Research Institute & Specialty of Child and Adolescent Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Lindsay Zhou
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Monash Newborn, Monash Children’s Hospital, Melbourne, VIC 3168, Australia
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC 3168, Australia
| | - Suzanne L. Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC 3168, Australia
| | - Courtney A. McDonald
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC 3168, Australia
| | - Atul Malhotra
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Monash Newborn, Monash Children’s Hospital, Melbourne, VIC 3168, Australia
- Correspondence:
| |
Collapse
|
8
|
Xuan C, Cui H, Jin Z, Yue Y, Cao S, Cui S, Xu D. Glutamine ameliorates hyperoxia-induced hippocampal damage by attenuating inflammation and apoptosis via the MKP-1/MAPK signaling pathway in neonatal rats. Front Pharmacol 2023; 14:1096309. [PMID: 36817145 PMCID: PMC9932780 DOI: 10.3389/fphar.2023.1096309] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Glutamine (Gln) is an immunomodulatory protein that mediates oxidative stress, inflammation, and apoptosis, but has not been reported in the treatment of hyperoxia (Hyp)-induced brain injury. The aim of this study was to determine whether Gln could improve hyp-induced brain injury in neonatal rats to and later learning and memory dysfunction, and to explore its possible mechanisms. We prepared a model of neonatal rat brain injury caused by normobaric hyperoxia while administered with Gln for 7 days for evaluation. Learning memory function was assessed with the Morris water maze test. Histological analysis, protein expression analysis, oxidative stress and inflammation level analysis were performed using hippocampal tissue. Gln treatment significantly reduced brain tissue water content, oxidative stress levels, microglia activation and inflammatory factor expression, and attenuated tissue damage and apoptosis in the hippocampal region. Gln ameliorates hyp-induced learning, memory impairment in neonatal rats in water maze test. It also increased MKP-1 protein expression and decreased p-p38, p-ERK and p-JNK. Therefore, it is hypothesized that Gln may exert neuroprotective effects by increasing MKP-1 expression to negatively regulate MAPK signaling, with potential cognitive improvement in hyp-induced brain injury.
Collapse
Affiliation(s)
- Chouhui Xuan
- Department of Pediatrics, Yanbian University Hospital, Yanji, Jilin, China
| | - Haixia Cui
- Department of Clinical Laboratory, Yanbian University Hospital, Yanji, Jilin, China
| | - Zhengyong Jin
- Department of Pediatrics, Yanbian University Hospital, Yanji, Jilin, China
| | - Yuyang Yue
- Department of Dermatology, Yanbian University Hospital, Yanji, Jilin, China
| | - Shuxia Cao
- Department of Center of Morphological Experiment, Yanbian University, Yanji, Jilin, China
| | - Songbiao Cui
- Department of Neurology, Yanbian University Hospital, Yanji, Jilin, China,*Correspondence: Songbiao Cui, ; Dongyuan Xu,
| | - Dongyuan Xu
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China,*Correspondence: Songbiao Cui, ; Dongyuan Xu,
| |
Collapse
|
9
|
Özer Bekmez B, Tayman C, Çakır U, Koyuncu İ, Büyüktiryaki M, Türkmenoğlu TT, Çakır E. Glucocorticoids in a Neonatal Hyperoxic Lung Injury Model: Pulmonary and Neurotoxic effects. Pediatr Res 2022; 92:436-444. [PMID: 34725500 DOI: 10.1038/s41390-021-01777-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 06/18/2021] [Accepted: 09/12/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND We aimed to compare the effect of dexamethasone (Dex), hydrocortisone (Hc), and methylprednisolone (Mpz) at equivalent doses on somatic growth, lung healing, and neurotoxicity in a hyperoxic rat model. We hypothesized that Mpz and Hc would be superior to Dex with less neurotoxicity by exerting similar therapeutic efficacy on the injured lung. METHODS Neonatal rats were randomized to control, bronchopulmonary dysplasia (BPD), Dex, Hc, and Mpz groups. All drugs were administered daily following day 15 over 7 days. Histopathological and immunohistochemical analyses of the lung and brain were performed on day 22. RESULTS All types had much the same impact on lung repair. Oxidative markers in the lung were similar in the steroid groups. While nuclear factor erythroid 2-related factor and heat-shock protein 70 dropped following steroid treatment, no difference was noted in other biochemical markers in the brain between the study groups. Apoptotic activity and neuron loss in the parietal cortex and hippocampus were noted utmost in Dex, but alike in other BPD groups. CONCLUSIONS Mpz does not appear to be superior to Dex or Hc in terms of pulmonary outcomes and oxidative damage in the brain, but safer than Dex regarding apoptotic neuron loss. IMPACT This is the first study that compared the pulmonary efficacy and neurotoxic effects of Dex, Hc, and Mpz simultaneously in an established BPD model. This study adds to the literature on the importance of possible antioxidant and protective effects of glucocorticoid therapy in an oxidative stress-exposed brain. Mpz ended up with no more additional neuron loss or apoptosis risk by having interchangeable effects with others for the treatment of established BPD. Mpz and Hc seem safe as a rescue therapy in terms of adverse outcomes for established BPD in which lung and brain tissue is already impaired.
Collapse
Affiliation(s)
- Buse Özer Bekmez
- Division of Neonatology, Sariyer Hamidiye Etfal Education and Research Hospital, Istanbul, Turkey.
| | - Cüneyt Tayman
- Division of Neonatology, Ankara City Hospital, Ankara, Turkey
| | - Ufuk Çakır
- Division of Neonatology, Ankara City Hospital, Ankara, Turkey
| | - İsmail Koyuncu
- Division of Biochemistry, Faculty of Medicine, Harran University, Şanlıurfa, Turkey
| | - Mehmet Büyüktiryaki
- Division of Neonatology, Faculty of Medicine, Medipol Univerisity, Istanbul, Turkey
| | | | - Esra Çakır
- Division of Anesthesia and Reanimation, Numune Education and Research Hospital, Ankara, Turkey
| |
Collapse
|
10
|
Omar SA, Abdul-Hafez A, Ibrahim S, Pillai N, Abdulmageed M, Thiruvenkataramani RP, Mohamed T, Madhukar BV, Uhal BD. Stem-Cell Therapy for Bronchopulmonary Dysplasia (BPD) in Newborns. Cells 2022; 11:cells11081275. [PMID: 35455954 PMCID: PMC9025385 DOI: 10.3390/cells11081275] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Premature newborns are at a higher risk for the development of respiratory distress syndrome (RDS), acute lung injury (ALI) associated with lung inflammation, disruption of alveolar structure, impaired alveolar growth, lung fibrosis, impaired lung angiogenesis, and development of bronchopulmonary dysplasia (BPD) with severe long-term developmental adverse effects. The current therapy for BPD is limited to supportive care including high-oxygen therapy and pharmacotherapy. Recognizing more feasible treatment options to improve lung health and reduce complications associated with BPD is essential for improving the overall quality of life of premature infants. There is a reduction in the resident stem cells in lungs of premature infants with BPD, which strongly suggests a critical role of stem cells in BPD pathogenesis; this warrants the exploration of the potential therapeutic use of stem-cell therapy. Stem-cell-based therapies have shown promise for the treatment of many pathological conditions including acute lung injury and BPD. Mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles (EVs) including exosomes are promising and effective therapeutic modalities for the treatment of BPD. Treatment with MSCs and EVs may help to reduce lung inflammation, improve pulmonary architecture, attenuate pulmonary fibrosis, and increase the survival rate.
Collapse
Affiliation(s)
- Said A. Omar
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (S.I.); (N.P.); (M.A.); (R.P.T.); (T.M.); (B.V.M.)
- Regional Neonatal Intensive Care Unit, Sparrow Health System, Lansing, MI 48912, USA
- Correspondence: ; Tel.: +1-517-364-2948
| | - Amal Abdul-Hafez
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (S.I.); (N.P.); (M.A.); (R.P.T.); (T.M.); (B.V.M.)
| | - Sherif Ibrahim
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (S.I.); (N.P.); (M.A.); (R.P.T.); (T.M.); (B.V.M.)
| | - Natasha Pillai
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (S.I.); (N.P.); (M.A.); (R.P.T.); (T.M.); (B.V.M.)
| | - Mohammed Abdulmageed
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (S.I.); (N.P.); (M.A.); (R.P.T.); (T.M.); (B.V.M.)
- Regional Neonatal Intensive Care Unit, Sparrow Health System, Lansing, MI 48912, USA
| | - Ranga Prasanth Thiruvenkataramani
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (S.I.); (N.P.); (M.A.); (R.P.T.); (T.M.); (B.V.M.)
- Regional Neonatal Intensive Care Unit, Sparrow Health System, Lansing, MI 48912, USA
| | - Tarek Mohamed
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (S.I.); (N.P.); (M.A.); (R.P.T.); (T.M.); (B.V.M.)
- Regional Neonatal Intensive Care Unit, Sparrow Health System, Lansing, MI 48912, USA
| | - Burra V. Madhukar
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (S.I.); (N.P.); (M.A.); (R.P.T.); (T.M.); (B.V.M.)
| | - Bruce D. Uhal
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
11
|
Perinatal Hyperoxia and Developmental Consequences on the Lung-Brain Axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5784146. [PMID: 35251477 PMCID: PMC8894035 DOI: 10.1155/2022/5784146] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022]
Abstract
Approximately 11.1% of all newborns worldwide are born preterm. Improved neonatal intensive care significantly increased survival rates over the last decades but failed to reduce the risk for the development of chronic lung disease (i.e., bronchopulmonary dysplasia (BPD)) and impaired neurodevelopment (i.e., encephalopathy of prematurity (EoP)), two major long-term sequelae of prematurity. Premature infants are exposed to relative hyperoxia, when compared to physiological in-utero conditions and, if needed to additional therapeutic oxygen supplementation. Both are associated with an increased risk for impaired organ development. Since the detrimental effects of hyperoxia on the immature retina are known for many years, lung and brain have come into focus in the last decade. Hyperoxia-induced excessive production of reactive oxygen species leading to oxidative stress and inflammation contribute to pulmonary growth restriction and abnormal neurodevelopment, including myelination deficits. Despite a large body of studies, which unraveled important pathophysiological mechanisms for both organs at risk, the majority focused exclusively either on lung or on brain injury. However, considering that preterm infants suffering from BPD are at higher risk for poor neurodevelopmental outcome, an interaction between both organs seems plausible. This review summarizes recent findings regarding mechanisms of hyperoxia-induced neonatal lung and brain injury. We will discuss common pathophysiological pathways, which potentially link both injured organ systems. Furthermore, promises and needs of currently suggested therapies, including pharmacological and regenerative cell-based treatments for BPD and EoP, will be emphasized. Limited therapeutic approaches highlight the urgent need for a better understanding of the mechanisms underlying detrimental effects of hyperoxia on the lung-brain axis in order to pave the way for the development of novel multimodal therapies, ideally targeting both severe preterm birth-associated complications.
Collapse
|
12
|
Bonadies L, Baraldi E. World Prematurity Day: the long journey of the preterm lung. Am J Physiol Lung Cell Mol Physiol 2021; 321:L970-L973. [PMID: 34643093 DOI: 10.1152/ajplung.00413.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Luca Bonadies
- Neonatal Intensive Care Unit, Department of Woman's and Child's Health, Padova University Hospital, Padua, Italy
| | - Eugenio Baraldi
- Neonatal Intensive Care Unit, Department of Woman's and Child's Health, Padova University Hospital, Padua, Italy
| |
Collapse
|
13
|
Kang L, Dong W, Li X, Ruan Y, Zhang R. Resveratrol Relieves Hyperoxia-Induced Brain Injury in Neonatal Rats by Activating Sirt1. Am J Perinatol 2021; 38:e351-e358. [PMID: 32357375 DOI: 10.1055/s-0040-1710352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Neonatal rats with hyperoxia-induced brain injury were treated with resveratrol to investigate its protective effects through analyzing changes in reactive oxygen species (ROS), Sirt1, p53, and acetylated p53 levels. STUDY DESIGN Neonatal rats were randomly divided into hyperoxia and resveratrol intervened groups. Rats in both groups were placed in a hyperoxia chamber for 7 days to induce hyperoxia-induced brain injury. The rats in the resveratrol intervened group were administered resveratrol 60 μg/g body weight daily, whereas those in the hyperoxia group were administered a dimethyl sulfoxide-based solvent. Brain tissues were collected, and hematoxylin and eosin (H&E) and TUNEL staining, ROS measurements, real time-polymerase chain reaction, and western blotting were performed. RESULTS H&E and TUNEL staining revealed increased cell damage and apoptosis in brain tissue from hyperoxia-exposed animals compared with the findings in animals in the resveratrol intervened group. Real time-polymerase chain reaction and western blotting identified increases in Sirt1 expression and decreases in p53 expression in the resveratrol intervened group. In addition, acetylated p53 protein expression was lower in the intervened group than in the hyperoxia group. CONCLUSION Resveratrol alleviated brain apoptosis induced by hyperoxia in neonatal rats by upregulating Sirt1-mediated pathways, suggesting its potentially beneficial role in the treatment of brain injury induced by hyperoxia.
Collapse
Affiliation(s)
- Lan Kang
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wenbin Dong
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaobin Li
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Ying Ruan
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Rong Zhang
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
14
|
Giusto K, Wanczyk H, Jensen T, Finck C. Hyperoxia-induced bronchopulmonary dysplasia: better models for better therapies. Dis Model Mech 2021; 14:dmm047753. [PMID: 33729989 PMCID: PMC7927658 DOI: 10.1242/dmm.047753] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease caused by exposure to high levels of oxygen (hyperoxia) and is the most common complication that affects preterm newborns. At present, there is no cure for BPD. Infants can recover from BPD; however, they will suffer from significant morbidity into adulthood in the form of neurodevelopmental impairment, asthma and emphysematous changes of the lung. The development of hyperoxia-induced lung injury models in small and large animals to test potential treatments for BPD has shown some success, yet a lack of standardization in approaches and methods makes clinical translation difficult. In vitro models have also been developed to investigate the molecular pathways altered during BPD and to address the pitfalls associated with animal models. Preclinical studies have investigated the efficacy of stem cell-based therapies to improve lung morphology after damage. However, variability regarding the type of animal model and duration of hyperoxia to elicit damage exists in the literature. These models should be further developed and standardized, to cover the degree and duration of hyperoxia, type of animal model, and lung injury endpoint, to improve their translational relevance. The purpose of this Review is to highlight concerns associated with current animal models of hyperoxia-induced BPD and to show the potential of in vitro models to complement in vivo studies in the significant improvement to our understanding of BPD pathogenesis and treatment. The status of current stem cell therapies for treatment of BPD is also discussed. We offer suggestions to optimize models and therapeutic modalities for treatment of hyperoxia-induced lung damage in order to advance the standardization of procedures for clinical translation.
Collapse
Affiliation(s)
- Kiersten Giusto
- Department of Pediatrics, University of Connecticut Health Center, Farmington, 06106 CT, USA
| | - Heather Wanczyk
- Department of Pediatrics, University of Connecticut Health Center, Farmington, 06106 CT, USA
| | - Todd Jensen
- Department of Pediatrics, University of Connecticut Health Center, Farmington, 06106 CT, USA
| | - Christine Finck
- Department of Pediatrics, University of Connecticut Health Center, Farmington, 06106 CT, USA
- Department of Surgery, Connecticut Children's Medical Center, Hartford, CT, USA
| |
Collapse
|
15
|
MSC Based Therapies to Prevent or Treat BPD-A Narrative Review on Advances and Ongoing Challenges. Int J Mol Sci 2021; 22:ijms22031138. [PMID: 33498887 PMCID: PMC7865378 DOI: 10.3390/ijms22031138] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/15/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) remains one of the most devastating consequences of preterm birth resulting in life-long restrictions in lung function. Distorted lung development is caused by its inflammatory response which is mainly provoked by mechanical ventilation, oxygen toxicity and bacterial infections. Dysfunction of resident lung mesenchymal stem cells (MSC) represents one key hallmark that drives BPD pathology. Despite all progress in the understanding of pathomechanisms, therapeutics to prevent or treat BPD are to date restricted to a few drugs. The limited therapeutic efficacy of established drugs can be explained by the fact that they fail to concurrently tackle the broad spectrum of disease driving mechanisms and by the huge overlap between distorted signal pathways of lung development and inflammation. The great enthusiasm about MSC based therapies as novel therapeutic for BPD arises from the capacity to inhibit inflammation while simultaneously promoting lung development and repair. Preclinical studies, mainly performed in rodents, raise hopes that there will be finally a broadly acting, efficient therapy at hand to prevent or treat BPD. Our narrative review gives a comprehensive overview on preclinical achievements, results from first early phase clinical studies and challenges to a successful translation into the clinical setting.
Collapse
|
16
|
Bonadies L, Zaramella P, Porzionato A, Perilongo G, Muraca M, Baraldi E. Present and Future of Bronchopulmonary Dysplasia. J Clin Med 2020; 9:jcm9051539. [PMID: 32443685 PMCID: PMC7290764 DOI: 10.3390/jcm9051539] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/04/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common respiratory disorder among infants born extremely preterm. The pathogenesis of BPD involves multiple prenatal and postnatal mechanisms affecting the development of a very immature lung. Their combined effects alter the lung's morphogenesis, disrupt capillary gas exchange in the alveoli, and lead to the pathological and clinical features of BPD. The disorder is ultimately the result of an aberrant repair response to antenatal and postnatal injuries to the developing lungs. Neonatology has made huge advances in dealing with conditions related to prematurity, but efforts to prevent and treat BPD have so far been only partially effective. Seeing that BPD appears to have a role in the early origin of chronic obstructive pulmonary disease, its prevention is pivotal also in long-term respiratory outcome of these patients. There is currently some evidence to support the use of antenatal glucocorticoids, surfactant therapy, protective noninvasive ventilation, targeted saturations, early caffeine treatment, vitamin A, and fluid restriction, but none of the existing strategies have had any significant impact in reducing the burden of BPD. New areas of research are raising novel therapeutic prospects, however. For instance, early topical (intratracheal or nebulized) steroids seem promising: they might help to limit BPD development without the side effects of systemic steroids. Evidence in favor of stem cell therapy has emerged from several preclinical trials, and from a couple of studies in humans. Mesenchymal stromal/stem cells (MSCs) have revealed a reparatory capability, preventing the progression of BPD in animal models. Administering MSC-conditioned media containing extracellular vesicles (EVs) have also demonstrated a preventive action, without the potential risks associated with unwanted engraftment or the adverse effects of administering cells. In this paper, we explore these emerging treatments and take a look at the revolutionary changes in BPD and neonatology on the horizon.
Collapse
Affiliation(s)
- Luca Bonadies
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (L.B.); (P.Z.)
| | - Patrizia Zaramella
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (L.B.); (P.Z.)
| | - Andrea Porzionato
- Human Anatomy Section, Department of Neurosciences, University of Padova, 35128 Padova, Italy;
| | - Giorgio Perilongo
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy;
| | - Maurizio Muraca
- Institute of Pediatric Research “Città della Speranza”, Stem Cell and Regenerative Medicine Laboratory, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy;
| | - Eugenio Baraldi
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (L.B.); (P.Z.)
- Correspondence: ; Tel.: +39-049-821-3560; Fax: +39-049-821-3502
| |
Collapse
|
17
|
Behnke J, Kremer S, Shahzad T, Chao CM, Böttcher-Friebertshäuser E, Morty RE, Bellusci S, Ehrhardt H. MSC Based Therapies-New Perspectives for the Injured Lung. J Clin Med 2020; 9:jcm9030682. [PMID: 32138309 PMCID: PMC7141210 DOI: 10.3390/jcm9030682] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic lung diseases pose a tremendous global burden. At least one in four people suffer from severe pulmonary sequelae over the course of a lifetime. Despite substantial improvements in therapeutic interventions, persistent alleviation of clinical symptoms cannot be offered to most patients affected to date. Despite broad discrepancies in origins and pathomechanisms, the important disease entities all have in common the pulmonary inflammatory response which is central to lung injury and structural abnormalities. Mesenchymal stem cells (MSC) attract particular attention due to their broadly acting anti-inflammatory and regenerative properties. Plenty of preclinical studies provided congruent and convincing evidence that MSC have the therapeutic potential to alleviate lung injuries across ages. These include the disease entities bronchopulmonary dysplasia, asthma and the different forms of acute lung injury and chronic pulmonary diseases in adulthood. While clinical trials are so far restricted to pioneering trials on safety and feasibility, preclinical results point out possibilities to boost the therapeutic efficacy of MSC application and to take advantage of the MSC secretome. The presented review summarizes the most recent advances and highlights joint mechanisms of MSC action across disease entities which provide the basis to timely tackle this global disease burden.
Collapse
Affiliation(s)
- Judith Behnke
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Feulgenstrasse 12, 35392 Gießen, Germany; (J.B.); (S.K.); (T.S.); (C.-M.C.)
| | - Sarah Kremer
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Feulgenstrasse 12, 35392 Gießen, Germany; (J.B.); (S.K.); (T.S.); (C.-M.C.)
| | - Tayyab Shahzad
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Feulgenstrasse 12, 35392 Gießen, Germany; (J.B.); (S.K.); (T.S.); (C.-M.C.)
| | - Cho-Ming Chao
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Feulgenstrasse 12, 35392 Gießen, Germany; (J.B.); (S.K.); (T.S.); (C.-M.C.)
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center (UGMLC), Cardiopulmonary Institute (CPI), German Center for Lung Research (DZL), Aulweg 130, 35392 Giessen, Germany;
| | | | - Rory E. Morty
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, German Center for Lung Research (DZL), Ludwigstrasse 43, 61231 Bad Nauheim, Germany;
| | - Saverio Bellusci
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center (UGMLC), Cardiopulmonary Institute (CPI), German Center for Lung Research (DZL), Aulweg 130, 35392 Giessen, Germany;
| | - Harald Ehrhardt
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Feulgenstrasse 12, 35392 Gießen, Germany; (J.B.); (S.K.); (T.S.); (C.-M.C.)
- Correspondence: ; Tel.: +49-985-43400; Fax: +49-985-43419
| |
Collapse
|
18
|
Augustine S, Cheng W, Avey MT, Chan ML, Lingappa SMC, Hutton B, Thébaud B. Are all stem cells equal? Systematic review, evidence map, and meta-analyses of preclinical stem cell-based therapies for bronchopulmonary dysplasia. Stem Cells Transl Med 2020; 9:158-168. [PMID: 31746123 PMCID: PMC6988768 DOI: 10.1002/sctm.19-0193] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/10/2019] [Indexed: 12/25/2022] Open
Abstract
Regenerative stem cell-based therapies for bronchopulmonary dysplasia (BPD), the most common preterm birth complication, demonstrate promise in animals. Failure to objectively appraise available preclinical data and identify knowledge gaps could jeopardize clinical translation. We performed a systematic review and network meta-analysis (NMA) of preclinical studies testing cell-based therapies in experimental neonatal lung injury. Fifty-three studies assessing 15 different cell-based therapies were identified: 35 studied the effects of mesenchymal stromal cells (MSCs) almost exclusively in hyperoxic rodent models of BPD. Exploratory NMAs, for select outcomes, suggest that MSCs are the most effective therapy. Although a broad range of promising cell-based therapies has been assessed, few head-to-head comparisons and unclear risk of bias exists. Successful clinical translation of cell-based therapies demands robust preclinical experimental design with appropriately blinded, randomized, and statistically powered studies, based on biological plausibility for a given cell product, in standardized models and endpoints with transparent reporting.
Collapse
Affiliation(s)
- Sajit Augustine
- Division of NeonatologyWindsor Regional HospitalWindsorOntarioCanada
- Department of Pediatrics, Schulich Medicine & DentistryWestern UniversityLondonOntarioCanada
| | - Wei Cheng
- Ottawa Hospital Research InstituteOttawaOntarioCanada
| | | | - Monica L. Chan
- Department of NeonatologyChildren's Hospital of Eastern OntarioOttawaOntarioCanada
| | | | - Brian Hutton
- Ottawa Hospital Research InstituteOttawaOntarioCanada
- School of Epidemiology, Public Health and Preventive Medicine, Faculty of Medicine, University of OttawaOttawaOntarioCanada
| | - Bernard Thébaud
- Ottawa Hospital Research InstituteOttawaOntarioCanada
- Department of NeonatologyChildren's Hospital of Eastern OntarioOttawaOntarioCanada
- Department of PediatricsChildren's Hospital of Eastern Ontario Research Institute, University of OttawaOttawaOntarioCanada
| |
Collapse
|
19
|
Kang L, Dong W, Ruan Y, Zhang R, Wang X. The Molecular Mechanism of Sirt1 Signaling Pathway in Brain Injury of Newborn Rats Exposed to Hyperoxia. Biol Pharm Bull 2019; 42:1854-1860. [PMID: 31527356 DOI: 10.1248/bpb.b19-00382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of the study was to investigate the changes in the reactive oxygen species (ROS), Sirt1, p53 and acetylated p53 in brain tissue of newborn rats exposed to hyperoxia to clarify the role of Sirt1 signaling pathway in brain injury. Neonate rats were randomly divided into normoxic group and hyperoxic group. Rats in the normoxic group were exposed to room air while the rats in the hyperoxic group were put in a hyperoxic chamber (80 ± 5% oxygen) for 1 to 14 d. Data, including weight growth, the water content of brain tissue, hematoxyline and eosin (H&E) and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (Tunel) stain, ROS expression, the relative expression of Sirt1 mRNA and p53 mRNA, and the protein relative expression of Sirt1, p53 and acetylated p53 were analyzed at 1, 7 and 14 d after exposure. A reduced body weight and increased water content were observed in the brain tissue of hyperoxic group compared to normoxic group. HE staining and Tunel staining of brain tissue suggested that cell damaged after hyperoxic exposure. RT-PCR and Western blot results showed that the expression of Sirt1 in the hyperoxic group was lower than that in the normoxic group while the expression of p53 was higher than that in the normoxic group. In addition, Western blot data indicated acetylated p53 expression was higher in the hyperoxic group. Hyperoxic exposure can lead to brain injury in newborn Sprague-Dawley (SD) rats. These events might be regulated by the Sirt1 pathway, which downregulated the deacetylation of p53.
Collapse
Affiliation(s)
- Lan Kang
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University.,Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University
| | - Wenbin Dong
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University
| | - Ying Ruan
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University
| | - Rong Zhang
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University
| | - Xingyong Wang
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University
| |
Collapse
|
20
|
Kim YE, Park WS, Sung DK, Ahn SY, Chang YS. Antenatal betamethasone enhanced the detrimental effects of postnatal dexamethasone on hyperoxic lung and brain injuries in newborn rats. PLoS One 2019; 14:e0221847. [PMID: 31469886 PMCID: PMC6716665 DOI: 10.1371/journal.pone.0221847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/18/2019] [Indexed: 02/07/2023] Open
Abstract
Purpose To determine the effects of antenatal betamethasone and/or postnatal dexamethasone administration on hyperoxic lung and brain injuries in newborn rats. Methods Newborn Sprague-Dawley rats were divided into five experimental groups: normoxia-vehicle-vehicle group, hyperoxia-vehicle-vehicle group, hyperoxia-betamethasone-vehicle group, hyperoxia-vehicle-dexamethasone group, and hyperoxia-betamethasone-dexamethasone group according to (i) whether rats were exposed to normoxia or hyperoxia after birth to postnatal day (P) 14, (ii) whether antenatal betamethasone (0.2mg/kg) or vehicle was administered to pregnant rats at gestation days 19 and 20, and (iii) whether three tapering doses of dexamethasone (0.5, 0.3, 0.1mg/kg per day) or vehicle were administered on P5, 6 and 7, respectively. The lungs and brains were harvested for histological and biochemical analyses at P8 and P14. Results Postnatal dexamethasone but not antenatal betamethasone significantly enhanced hyperoxia-induced reduction in body weight gain and alveolarization and increased lung terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positive cells both at P8 and P14, transiently increased hyperoxia-induced reductions in brain weight gain and angiogenesis, and increase in brain TUNEL-positive cells at P8 but not at P14. Co-administration of antenatal betamethasone significantly enhanced dexamethasone-induced impairments in alveolarization both at P8 and P14, transient increases in lung and brain oxidative stresses, and increases in brain TUNEL-positive cells at P8 but not at P14. Conclusion Although postnatal dexamethasone but not antenatal betamethasone alone significantly increased hyperoxic lung and brain injuries, co-administration of antenatal betamethasone significantly enhanced the detrimental effects of postnatal dexamethasone on hyperoxic lung and brain injuries in newborn rats.
Collapse
Affiliation(s)
- Young Eun Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Korea
| | - Won Soon Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Korea
| | - Dong Kyung Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Korea
| | - So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Korea
| | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Korea
- * E-mail:
| |
Collapse
|
21
|
Dexamethasone does not prevent hydrocephalus after severe intraventricular hemorrhage in newborn rats. PLoS One 2018; 13:e0206306. [PMID: 30359428 PMCID: PMC6201923 DOI: 10.1371/journal.pone.0206306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 10/10/2018] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was done to determine whether dexamethasone treatment prevents posthemorrhagic hydrocephalus (PHH) development and attenuates brain damage after severe IVH in newborn rats. Severe IVH was induced by injecting; 100 μL of blood into each lateral ventricle of postnatal day 4 (P4) Sprague-Dawley rats. Dexamethasone was injected intraperitoneally into rat pups at a dose of 0.5 mg/kg, 0.3 mg/kg, and 0.1 mg/kg on P5, P6, and P7, respectively. Serial brain magnetic resonance imaging and behavioral function tests, such as the negative geotaxis test and the rotarod test, were performed. On P32, brain tissues were obtained for histological and biochemical analyses. Dexamethasone treatment significantly improved the severe IVH-induced increase in the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labeling-positive cells, glial fibrillary acidic protein-positive astrocytes and ED-1 positive microglia, and the decrease in myelin basic protein. IVH reduced a survival of 71%, that showed a tendency to improve to 86% with dexamethasone treatment, although the result was not statistically significant. However, dexamethasone failed to prevent the progression to PHH and did not significantly improve impaired behavioral tests. Similarly, dexamethasone did not decrease the level of inflammatory cytokines such as interleukin (IL) -1α and ß, IL-6, and tumor necrosis factor-α after severe IVH. Despite its some neuroprotective effects, dexamethasone failed to improve the progress of PHH and impaired behavioral tests after severe IVH.
Collapse
|
22
|
Bjørge IM, Kim SY, Mano JF, Kalionis B, Chrzanowski W. Extracellular vesicles, exosomes and shedding vesicles in regenerative medicine - a new paradigm for tissue repair. Biomater Sci 2018; 6:60-78. [PMID: 29184934 DOI: 10.1039/c7bm00479f] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tissue regeneration by stem cells is driven by the paracrine activity of shedding vesicles and exosomes, which deliver specific cargoes to the recipient cells. Proteins, RNA, cytokines and subsequent gene expression, orchestrate the regeneration process by improving the microenvironment to promote cell survival, controlling inflammation, repairing injury and enhancing the healing process. The action of microRNA is widely accepted as an essential driver of the regenerative process through its impact on multiple downstream biological pathways, and its ability to regulate the host immune response. Here, we present an overview of the recent potential uses of exosomes for regenerative medicine and tissue engineering. We also highlight the differences in composition between shedding vesicles and exosomes that depend on the various types of stem cells from which they are derived. The conditions that affect the production of exosomes in different cell types are deliberated. This review also presents the current status of candidate exosomal microRNAs for potential therapeutic use in regenerative medicine, and in applications involving widely studied organs and tissues such as heart, lung, cartilage and bone.
Collapse
Affiliation(s)
- I M Bjørge
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | | | | | | | | |
Collapse
|
23
|
Chaubey S, Thueson S, Ponnalagu D, Alam MA, Gheorghe CP, Aghai Z, Singh H, Bhandari V. Early gestational mesenchymal stem cell secretome attenuates experimental bronchopulmonary dysplasia in part via exosome-associated factor TSG-6. Stem Cell Res Ther 2018; 9:173. [PMID: 29941022 PMCID: PMC6019224 DOI: 10.1186/s13287-018-0903-4] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/25/2018] [Accepted: 05/13/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are promising tools for the treatment of human lung disease and other pathologies relevant to newborn medicine. Recent studies have established MSC exosomes (EXO), as one of the main therapeutic vectors of MSCs in mouse models of multifactorial chronic lung disease of preterm infants, bronchopulmonary dysplasia (BPD). However, the mechanisms underlying MSC-EXO therapeutic action are not completely understood. Using a neonatal mouse model of human BPD, we evaluated the therapeutic efficiency of early gestational age (GA) human umbilical cord (hUC)-derived MSC EXO fraction and its exosomal factor, tumor necrosis factor alpha-stimulated gene-6 (TSG-6). METHODS Conditioned media (CM) and EXO fractions were isolated from 25 and 30 weeks GA hUC-MSC cultures grown in serum-free media (SFM) for 24 h. Newborn mice were exposed to hyperoxia (> 95% oxygen) and were given intraperitoneal injections of MSC-CM or MSC-CM EXO fractions at postnatal (PN) day 2 and PN4. They were then returned to room air until PN14 (in a mouse model of severe BPD). The treatment regime was followed with (rh)TSG-6, TSG-6-neutralizing antibody (NAb), TSG-6 (si)RNA-transfected MSC-CM EXO and their appropriate controls. Echocardiography was done at PN14 followed by harvesting of lung, heart and brain for assessment of pathology parameters. RESULTS Systemic administration of CM or EXO in the neonatal BPD mouse model resulted in robust improvement in lung, cardiac and brain pathology. Hyperoxia-exposed BPD mice exhibited pulmonary inflammation accompanied by alveolar-capillary leakage, increased chord length, and alveolar simplification, which was ameliorated by MSC CM/EXO treatment. Pulmonary hypertension and right ventricular hypertrophy was also corrected. Cell death in brain was decreased and the hypomyelination reversed. Importantly, we detected TSG-6, an immunomodulatory glycoprotein, in EXO. Administration of TSG-6 attenuated BPD and its associated pathologies, in lung, heart and brain. Knockdown of TSG-6 by NAb or by siRNA in EXO abrogated the therapeutic effects of EXO, suggesting TSG-6 as an important therapeutic molecule. CONCLUSIONS Preterm hUC-derived MSC-CM EXO alleviates hyperoxia-induced BPD and its associated pathologies, in part, via exosomal factor TSG-6. The work indicates early systemic intervention with TSG-6 as a robust option for cell-free therapy, particularly for treating BPD.
Collapse
Affiliation(s)
- Sushma Chaubey
- Section of Neonatal-Perinatal Medicine, Department of Pediatrics, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA, 19102, USA
| | - Sam Thueson
- Section of Neonatal-Perinatal Medicine, Department of Pediatrics, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA, 19102, USA
| | - Devasena Ponnalagu
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA, 19102, USA
| | - Mohammad Afaque Alam
- Section of Neonatal-Perinatal Medicine, Department of Pediatrics, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA, 19102, USA
| | - Ciprian P Gheorghe
- Department of Obstetrics and Gynecology, Loma Linda University School of Medicine, 11370 Anderson Street, Loma Linda, CA, 92354, USA
| | - Zubair Aghai
- Divison of Neonatology, Department of Pediatrics, Thomas Jefferson University Hospital, 132S, 10th Street, Philadelphia, PA, 19107, USA
| | - Harpreet Singh
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA, 19102, USA.,Department of Medicine, Division of Cardiology, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA, 19102, USA
| | - Vineet Bhandari
- Section of Neonatal-Perinatal Medicine, Department of Pediatrics, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA, 19102, USA.
| |
Collapse
|
24
|
Ee MT, Thébaud B. The Therapeutic Potential of Stem Cells for Bronchopulmonary Dysplasia: "It's About Time" or "Not so Fast" ? Curr Pediatr Rev 2018; 14:227-238. [PMID: 30205800 PMCID: PMC6416190 DOI: 10.2174/1573396314666180911100503] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/09/2018] [Accepted: 09/10/2018] [Indexed: 12/23/2022]
Abstract
OBJECTIVE While the survival of extremely premature infants has improved over the past decades, the rate of complications - especially for bronchopulmonary dysplasia (BPD) - remains unacceptably high. Over the past 50 years, no safe therapy has had a substantial impact on the incidence and severity of BPD. METHODS This may stem from the multifactorial disease pathogenesis and the increasing lung immaturity. Mesenchymal Stromal Cells (MSCs) display pleiotropic effects and show promising results in neonatal rodents in preventing or rescuing lung injury without adverse effects. Early phase clinical trials are now underway to determine the safety and efficacy of this therapy in extremely premature infants. RESULTS AND CONCLUSION This review summarizes our current knowledge about MSCs, their mechanism of action and the results of preclinical studies that provide the rationale for early phase clinical trials and discuss remaining gaps in our knowledge.
Collapse
Affiliation(s)
- Mong Tieng Ee
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, Ottawa, ON, Canada
| | - Bernard Thébaud
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, Ottawa, ON, Canada.,Sinclair Centre for Regenerative Medicine, Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
25
|
Hou C, Peng D, Gao L, Tian D, Dai J, Luo Z, Liu E, Chen H, Zou L, Fu Z. Human umbilical cord-derived mesenchymal stem cells protect from hyperoxic lung injury by ameliorating aberrant elastin remodeling in the lung of O 2-exposed newborn rat. Biochem Biophys Res Commun 2017; 495:1972-1979. [PMID: 29242152 DOI: 10.1016/j.bbrc.2017.12.055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 12/10/2017] [Indexed: 01/08/2023]
Abstract
The incidence and mortality rates of bronchopulmonary dysplasia (BPD) remain very high. Therefore, novel therapies are imminently needed to improve the outcome of this disease. Human umbilical cord-derived mesenchymal stem cells (UC-MSCs) show promising therapeutic effects on oxygen-induced model of BPD. In our experiment, UC-MSCs were intratracheally delivered into the newborn rats exposed to hyperoxia, a well-established BPD model. This study demonstrated that UC-MSCs reduce elastin expression stimulated by 90% O2 in human lung fibroblasts-a (HLF-a), and inhibit HLF-a transdifferentiation into myofibroblasts. In addition, the therapeutic effects of UC-MSCs in neonatal rats with BPD, UC-MSCs could inhibit lung elastase activity and reduce aberrant elastin expression and deposition in the lung of BPD rats. Overall, this study suggested that UC-MSCs could ameliorate aberrant elastin expression in the lung of hyperoxia-induced BPD model which may be associated with suppressing increased TGFβ1 activation.
Collapse
Affiliation(s)
- Chen Hou
- Pediatrics Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Chongqing Key Laboratory of Pediatrics, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
| | - Danyi Peng
- Pediatrics Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Chongqing Key Laboratory of Pediatrics, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
| | - Li Gao
- Pediatrics Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Department of Otorhinolaryngology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
| | - Daiyin Tian
- Pediatrics Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Jihong Dai
- Pediatrics Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Zhengxiu Luo
- Pediatrics Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Enmei Liu
- Pediatrics Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Hong Chen
- Pediatrics Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Chongqing Key Laboratory of Pediatrics, China; Department of Pediatrics, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Lin Zou
- Pediatrics Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Center for Clinical Molecular Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China.
| | - Zhou Fu
- Pediatrics Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China.
| |
Collapse
|
26
|
Goren B, Cakir A, Sevinc C, Serter Kocoglu S, Ocalan B, Oy C, Minbay Z, Kahveci N, Alkan T, Cansev M. Uridine treatment protects against neonatal brain damage and long-term cognitive deficits caused by hyperoxia. Brain Res 2017; 1676:57-68. [DOI: 10.1016/j.brainres.2017.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 12/29/2022]
|
27
|
Surate Solaligue DE, Rodríguez-Castillo JA, Ahlbrecht K, Morty RE. Recent advances in our understanding of the mechanisms of late lung development and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2017; 313:L1101-L1153. [PMID: 28971976 DOI: 10.1152/ajplung.00343.2017] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/21/2017] [Accepted: 09/23/2017] [Indexed: 02/08/2023] Open
Abstract
The objective of lung development is to generate an organ of gas exchange that provides both a thin gas diffusion barrier and a large gas diffusion surface area, which concomitantly generates a steep gas diffusion concentration gradient. As such, the lung is perfectly structured to undertake the function of gas exchange: a large number of small alveoli provide extensive surface area within the limited volume of the lung, and a delicate alveolo-capillary barrier brings circulating blood into close proximity to the inspired air. Efficient movement of inspired air and circulating blood through the conducting airways and conducting vessels, respectively, generates steep oxygen and carbon dioxide concentration gradients across the alveolo-capillary barrier, providing ideal conditions for effective diffusion of both gases during breathing. The development of the gas exchange apparatus of the lung occurs during the second phase of lung development-namely, late lung development-which includes the canalicular, saccular, and alveolar stages of lung development. It is during these stages of lung development that preterm-born infants are delivered, when the lung is not yet competent for effective gas exchange. These infants may develop bronchopulmonary dysplasia (BPD), a syndrome complicated by disturbances to the development of the alveoli and the pulmonary vasculature. It is the objective of this review to update the reader about recent developments that further our understanding of the mechanisms of lung alveolarization and vascularization and the pathogenesis of BPD and other neonatal lung diseases that feature lung hypoplasia.
Collapse
Affiliation(s)
- David E Surate Solaligue
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - José Alberto Rodríguez-Castillo
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Katrin Ahlbrecht
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and .,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| |
Collapse
|
28
|
Chen CM, Chou HC, Lin W, Tseng C. Surfactant effects on the viability and function of human mesenchymal stem cells: in vitro and in vivo assessment. Stem Cell Res Ther 2017; 8:180. [PMID: 28774314 PMCID: PMC5543543 DOI: 10.1186/s13287-017-0634-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/15/2017] [Accepted: 07/17/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Surfactant therapy has become the standard of care for preterm infants with respiratory distress syndrome. Preclinical studies have reported the therapeutic benefits of mesenchymal stem cells (MSCs) in experimental bronchopulmonary dysplasia. This study investigated the effects of a surfactant on the in vitro viability and in vivo function of human MSCs. METHODS The viability, phenotype, and mitochondrial membrane potential (MMP) of MSCs were assessed through flow cytometry. The in vivo function was assessed after intratracheal injection of human MSCs (1 × 105 cells) diluted in 30 μl of normal saline (NS), 10 μl of a surfactant diluted in 20 μl of NS, and 10 μl of a surfactant and MSCs (1 × 105 cells) diluted in 20 μl of NS in newborn rats on postnatal day 5. The pups were reared in room air (RA) or an oxygen-enriched atmosphere (85% O2) from postnatal days 1 to 14; eight study groups were examined: RA + NS, RA + MSCs, RA + surfactant, RA + surfactant + MSCs, O2 + NS, O2 + MSCs, O2 + surfactant, and O2 + surfactant + MSCs. The lungs were excised for histological and cytokine analysis on postnatal day 14. RESULTS Compared with the controls, surfactant-treated MSCs showed significantly reduced viability and MMP after exposure to 1:1 and 1:2 of surfactant:MSCs for 15 and 60 minutes. All human MSC samples exhibited similar percentages of CD markers, regardless of surfactant exposure. The rats reared in hyperoxia and treated with NS exhibited a significantly higher mean linear intercept (MLI) than did those reared in RA and treated with NS, MSCs, surfactant, or surfactant + MSCs. Treatment with MSCs, surfactant, or surfactant + MSCs significantly reduced the hyperoxia-induced increase in MLI. The O2 + surfactant + MSCs group exhibited a significantly higher MLI than did the O2 + MSCs group. Furthermore, treatment with MSCs and MSCs + surfactant significantly reduced the hyperoxia-induced increase in apoptotic cells. CONCLUSIONS Combination therapy involving a surfactant and MSCs does not exert additive effects on lung development in hyperoxia-induced lung injury.
Collapse
Affiliation(s)
- Chung-Ming Chen
- Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan. .,Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Hsiu-Chu Chou
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Willie Lin
- Meridigen Biotech Co., Ltd., Taipei, Taiwan
| | | |
Collapse
|
29
|
Cannabidiol reduces lung injury induced by hypoxic-ischemic brain damage in newborn piglets. Pediatr Res 2017; 82:79-86. [PMID: 28388598 DOI: 10.1038/pr.2017.104] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/30/2017] [Indexed: 02/07/2023]
Abstract
BackgroundBrain hypoxic-ischemic (HI) damage induces distant inflammatory lung damage in newborn pigs. We aimed to investigate the effects of cannabidiol (CBD) on lung damage in this scenario.MethodsNewborn piglets received intravenous vehicle, CBD, or CBD+WAY100635 (5-HT1A receptor antagonist) after HI brain damage (carotid flow interruption and FiO2 0.10 for 30 min). Total lung compliance (TLC), oxygenation index (OI), and extravascular lung water content (EVLW) were monitored for 6 h. Histological damage, interleukin (IL)-1β concentration, and oxidative stress were assessed in brain and lung tissue. Total protein content was determined in bronchoalveolar lavage fluid (BALF).ResultsCBD prevented HI-induced deleterious effects on TLC and OI and reduced lung histological damage, modulating inflammation (decreased leukocyte infiltration and IL-1 concentration) and reducing protein content in BALF and EVLW. These effects were related to CBD-induced anti-inflammatory changes in the brain. HI did not increase oxidative stress in the lungs. In the lungs, WAY100635 blunted the beneficial effects of CBD on histological damage, IL-1 concentration, and EVLW.ConclusionsCBD reduced brain HI-induced distant lung damage, with 5-HT1A receptor involvement in these effects. Whether the effects of CBD on the lungs were due to the anti-inflammatory effects on the brain or due to the direct effects on the lungs remains to be elucidated.
Collapse
|
30
|
Ahn SY, Chang YS, Kim JH, Sung SI, Park WS. Two-Year Follow-Up Outcomes of Premature Infants Enrolled in the Phase I Trial of Mesenchymal Stem Cells Transplantation for Bronchopulmonary Dysplasia. J Pediatr 2017; 185:49-54.e2. [PMID: 28341525 DOI: 10.1016/j.jpeds.2017.02.061] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/30/2016] [Accepted: 02/22/2017] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To determine the long-term safety and outcomes of mesenchymal stem cells (MSCs) for bronchopulmonary dysplasia in premature infants enrolled in a previous phase I clinical trial up to 2 years of corrected age (CA). STUDY DESIGN We assessed serious adverse events, somatic growth, and respiratory and neurodevelopmental outcomes at visit 1 (4-6 months of CA), visit 2 (8-12 months of CA), and visit 3 (18-24 months of CA) in a prospective longitudinal follow-up study up to 2 years' CA of infants who received MSCs (MSC group). We compared these data with those from a historical case-matched comparison group. RESULTS One of 9 infants in the MSC group died of Enterobacter cloacae sepsis at 6 months of CA, the remaining 8 infants survived without any transplantation-related adverse outcomes, including tumorigenicity. No infant in the MSC group was discharged with home supplemental oxygen compared with 22% in the comparison group. The average rehospitalization rate in the MSC group was 1.4/patient because of respiratory infections during 2 years of follow-up. The mean body weight of the MSC group at visit 3 was significantly higher compared with that of the comparison group. No infant in the MSC group was diagnosed with cerebral palsy, blindness, or developmental delay; in the comparison group, 1 infant was diagnosed with cerebral palsy and 1 with developmental delay. CONCLUSIONS Intratracheal transplantation of MSCs in preterm infants appears to be safe, with no adverse respiratory, growth, and neurodevelopmental effects at 2 years' CA. TRIAL REGISTRATION ClinicalTrials.gov: NCT01632475.
Collapse
Affiliation(s)
- So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea; Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Ji Hye Kim
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Republic of Korea
| | - Se In Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Won Soon Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea; Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
31
|
Lesage F, Jimenez J, Toelen J, Deprest J. Preclinical evaluation of cell-based strategies to prevent or treat bronchopulmonary dysplasia in animal models: a systematic review. J Matern Fetal Neonatal Med 2017; 31:958-966. [PMID: 28277906 DOI: 10.1080/14767058.2017.1301927] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bronchopulmonary dysplasia (BPD) remains the most common complication of extreme prematurity as no effective treatment is available to date. This calls for the exploration of new therapeutic options like cell therapy, which is already effective for various human (lung) disorders. We systematically searched the MEDLINE, Embase, and Web of Science databases from the earliest date till January 2017 and included original studies on the perinatal use of cell-based therapies (i.e. cells and/or cell-derivatives) to treat BDP in animal models. Fourth publications describing 47 interventions were retrieved. Newborn mice/rats raised in a hyperoxic environment were studied in most interventions. Different cell types - either intact cells or their conditioned medium - were administered, but bone marrow and umbilical cord blood derived mesenchymal stem cells were most prevalent. All studies reported positive effects on outcome parameters including alveolar and vascular morphometry, lung function, and inflammation. Cell homing to the lungs was demonstrated in some studies, but the therapeutic effects seemed to be mostly mediated via paracrine modulation of inflammation, fibrosis and angiogenesis. CONCLUSION Multiple rat/mouse studies show promise for cell therapy for BPD. Yet careful study of action mechanisms and side effects in large animal models is imperative before clinical translation can be achieved.
Collapse
Affiliation(s)
- Flore Lesage
- a Department of Development and Regeneration, Group Biomedical Sciences , KU Leuven , Leuven , Belgium
| | - Julio Jimenez
- a Department of Development and Regeneration, Group Biomedical Sciences , KU Leuven , Leuven , Belgium.,b Department of Obstetrics and Gynaecology , Clínica Alemana Universidad del Desarrollo , Santiago , Chile
| | - Jaan Toelen
- a Department of Development and Regeneration, Group Biomedical Sciences , KU Leuven , Leuven , Belgium.,c Department of Pediatrics , University Hospitals Leuven , Leuven , Belgium
| | - Jan Deprest
- a Department of Development and Regeneration, Group Biomedical Sciences , KU Leuven , Leuven , Belgium.,d Research Department of Maternal Fetal Medicine , UCL Institute for Women's Health (IWH), University College London , London , United Kingdom
| |
Collapse
|