1
|
Hamilton ARL, Yuki K, Fynn-Thompson F, DiNardo JA, Odegard KC. Perioperative Outcomes in Congenital Heart Disease: A Review of Clinical Factors Associated With Prolonged Ventilation and Length of Stay in Four Common CHD Operations. J Cardiothorac Vasc Anesth 2024:S1053-0770(24)00885-1. [PMID: 39668050 DOI: 10.1053/j.jvca.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 12/14/2024]
Abstract
OBJECTIVES Perioperative management strategies and outcomes for low-risk congenital heart disease (CHD) surgery vary between institutions. To date, no consensus exists on standardized management for pediatric patients undergoing cardiac surgery. This study seeks to benchmark the perioperative management of 4 common CHD lesions and explore clinical factors affecting postoperative outcomes. DESIGN A retrospective review of CHD procedures performed between 2015 and 2020. SETTING The study was conducted at a single academic tertiary pediatric hospital. PARTICIPANTS All patients presenting for repair of ventricular septal defects (VSDs), complete atrioventricular canal defects, tetralogy of Fallot (TOF), and transposition of the great arteries (TGA) were reviewed. INTERVENTIONS Demographic and clinical data were collected; clinical outcomes were defined as postoperative length of ventilation (LOV) and hospital length of stay, divided into reference and prolonged course groups analyzed for variables associated with differences in outcomes. MEASUREMENTS AND MAIN RESULTS We selected 931 patients for review. Prolonged length of ventilation and length of stay in all cohorts were associated with longer operative, cardiopulmonary bypass, and cross-clamp times; higher intraoperative requirements for inotropic support; more blood transfusions and higher opioid administration; lower pH preoperatively and higher lactic acid postoperatively. Worse outcomes were associated with younger age in VSD, older age in TGA, and lower weight in TOF and TGA. Worse outcomes were also associated with a higher preoperative hematocrit in VSD and TOF and elevated preoperative blood glucose in VSD and TGA. CONCLUSIONS A better understanding of clinical factors affecting outcomes may facilitate streamlining perioperative management strategies for pediatric patients undergoing low-risk cardiac surgery.
Collapse
Affiliation(s)
- A Rebecca L Hamilton
- Division of Cardiac Anesthesia, Department of Anesthesia and Pain Medicine, Hospital for Sick Children; Department of Anesthesiology, University of Toronto, Toronto, Ontario, Canada; Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden.
| | - Koichi Yuki
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Francis Fynn-Thompson
- Department of Cardiac Surgery, Boston Children's Hospital; Department of Surgery, Harvard Medical School, Boston, MA
| | - James A DiNardo
- Division of Cardiac Anesthesia, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital; Department of Anaesthesia, Harvard Medical School, Boston, MA
| | - Kirsten C Odegard
- Division of Cardiac Anesthesia, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital; Department of Anaesthesia, Harvard Medical School, Boston, MA
| |
Collapse
|
2
|
Zhu F, Wen R, Tan X, Nie H, Li J, Wang Q, Qin J. Cyanotic Nephropathy in an Adult Patient with Eisenmenger Syndrome: A Case Report and Literature Review. Kidney Blood Press Res 2024; 49:211-217. [PMID: 38447536 DOI: 10.1159/000538100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/21/2024] [Indexed: 03/08/2024] Open
Abstract
INTRODUCTION Cyanotic nephropathy, a rare disease characterized by proteinuria, decreased estimated glomerular filtration rate, thrombocytopenia, polycythemia, and hyperuricemia, may occasionally be secondary to cyanotic congenital heart disease (CHD). There are currently no detailed diagnostic criteria or treatments for cyanotic nephropathy, owing to its extremely low incidence. Eisenmenger syndrome (ES) was initially defined by Paul Wood in pathophysiologic terms as "pulmonary hypertension (PH) at the systemic level, caused by a high pulmonary vascular resistance, with a reversed or bidirectional shunt at the aorto-pulmonary, ventricular, or atrial level." It typically develops in the presence of large, unrepaired atrial or ventricular septal defects, arterial shunts, or complex forms of CHD and is the most severe hemodynamic phenotype of pulmonary arterial hypertension associated with CHD. This study aimed to outline the case of an ES patient who developed cyanotic nephropathy and successfully achieved clinical remission through primary disease treatment and symptomatic management. Overall, this case expands our understanding of cyanotic nephropathy and lays a theoretical reference for the treatment of ES. CASE PRESENTATION A 33-year-old Chinese female attended the outpatient department with abnormal urine test results over the past two and a half years. Following a comprehensive medical history collection, she underwent the necessary tests. Cardiac color ultrasound displayed a significant widening of the pulmonary artery and PH (severe), as well as mild tricuspid regurgitation and patent ductus arteriosus. The results of the kidney biopsy, combined with clinical findings, suggested a high risk of polycythemia-related kidney disease. She was eventually diagnosed with cyanotic nephropathy and ES. Her symptoms were relieved following symptomatic treatment, such as the administration of ambrisentan, febuxostat, and home oxygen therapy. Her follow-up visit at 6 months demonstrated improvements in hyperuricemia and a significant increase in physical strength. CONCLUSION Cyanotic nephropathy is a rare condition in adults. Kidney biopsy remains the gold standard of diagnosis for various nephropathies. Active treatment of CHD and alleviating hypoxia may be pivotal for the treatment of cyanotic nephropathy.
Collapse
Affiliation(s)
- Fanyou Zhu
- Department of Rheumatology and Immunology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China,
| | - Rui Wen
- Department of Rheumatology and Immunology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Xiangling Tan
- Department of Rheumatology and Immunology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Hongjun Nie
- Department of Ultrasonic Radiology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Jiali Li
- Department of Rheumatology and Immunology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Qi Wang
- Department of Rheumatology and Immunology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Jiao Qin
- Department of Rheumatology and Immunology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| |
Collapse
|
3
|
Berezin AE, Berezin AA. Extracellular vesicles in heart failure. Adv Clin Chem 2024; 119:1-32. [PMID: 38514208 DOI: 10.1016/bs.acc.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Physiologically, extracellular vesicles (EVs) have been implicated as crucial mediators of immune response, cell homeostasis, angiogenesis, cell differentiation and growth, and tissue repair. In heart failure (HF) they may act as regulators of cardiac remodeling, microvascular inflammation, micro environmental changes, tissue fibrosis, atherosclerosis, neovascularization of plaques, endothelial dysfunction, thrombosis, and reciprocal heart-remote organ interaction. The chapter summaries the nomenclature, isolation, detection of EVs, their biologic role and function physiologically as well as in the pathogenesis of HF. Current challenges to the utilization of EVs as diagnostic and predictive biomarkers in HF are also discussed.
Collapse
Affiliation(s)
- Alexander E Berezin
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, Salzburg, Austria.
| | | |
Collapse
|
4
|
Cardiovascular Disease-Associated MicroRNAs as Novel Biomarkers of First-Trimester Screening for Gestational Diabetes Mellitus in the Absence of Other Pregnancy-Related Complications. Int J Mol Sci 2022; 23:ijms231810635. [PMID: 36142536 PMCID: PMC9501303 DOI: 10.3390/ijms231810635] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/25/2022] Open
Abstract
We assessed the diagnostic potential of cardiovascular disease-associated microRNAs for the early prediction of gestational diabetes mellitus (GDM) in singleton pregnancies of Caucasian descent in the absence of other pregnancy-related complications. Whole peripheral venous blood samples were collected within 10 to 13 weeks of gestation. This retrospective study involved all pregnancies diagnosed with only GDM (n = 121) and 80 normal term pregnancies selected with regard to equality of sample storage time. Gene expression of 29 microRNAs was assessed using real-time RT-PCR. Upregulation of 11 microRNAs (miR-1-3p, miR-20a-5p, miR-20b-5p, miR-23a-3p, miR-100-5p, miR-125b-5p, miR-126-3p, miR-181a-5p, miR-195-5p, miR-499a-5p, and miR-574-3p) was observed in pregnancies destinated to develop GDM. Combined screening of all 11 dysregulated microRNAs showed the highest accuracy for the early identification of pregnancies destinated to develop GDM. This screening identified 47.93% of GDM pregnancies at a 10.0% false positive rate (FPR). The predictive model for GDM based on aberrant microRNA expression profile was further improved via the implementation of clinical characteristics (maternal age and BMI at early stages of gestation and an infertility treatment by assisted reproductive technology). Following this, 69.17% of GDM pregnancies were identified at a 10.0% FPR. The effective prediction model specifically for severe GDM requiring administration of therapy involved using a combination of these three clinical characteristics and three microRNA biomarkers (miR-20a-5p, miR-20b-5p, and miR-195-5p). This model identified 78.95% of cases at a 10.0% FPR. The effective prediction model for GDM managed by diet only required the involvement of these three clinical characteristics and eight microRNA biomarkers (miR-1-3p, miR-20a-5p, miR-20b-5p, miR-100-5p, miR-125b-5p, miR-195-5p, miR-499a-5p, and miR-574-3p). With this, the model identified 50.50% of GDM pregnancies managed by diet only at a 10.0% FPR. When other clinical variables such as history of miscarriage, the presence of trombophilic gene mutations, positive first-trimester screening for preeclampsia and/or fetal growth restriction by the Fetal Medicine Foundation algorithm, and family history of diabetes mellitus in first-degree relatives were included in the GDM prediction model, the predictive power was further increased at a 10.0% FPR (72.50% GDM in total, 89.47% GDM requiring therapy, and 56.44% GDM managed by diet only). Cardiovascular disease-associated microRNAs represent promising early biomarkers to be implemented into routine first-trimester screening programs with a very good predictive potential for GDM.
Collapse
|
5
|
Douvris A, Viñas J, Burns KD. miRNA-486-5p: signaling targets and role in non-malignant disease. Cell Mol Life Sci 2022; 79:376. [PMID: 35731367 PMCID: PMC9217846 DOI: 10.1007/s00018-022-04406-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 11/30/2022]
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs, highly conserved between species, that are powerful regulators of gene expression. Aberrant expression of miRNAs alters biological processes and pathways linked to human disease. miR-486-5p is a muscle-enriched miRNA localized to the cytoplasm and nucleus, and is highly abundant in human plasma and enriched in small extracellular vesicles. Studies of malignant and non-malignant diseases, including kidney diseases, have found correlations with circulating miR-486-5p levels, supporting its role as a potential biomarker. Pre-clinical studies of non-malignant diseases have identified miR-486-5p targets that regulate major signaling pathways involved in cellular proliferation, migration, angiogenesis, and apoptosis. Validated miR-486-5p targets include phosphatase and tensin homolog (PTEN) and FoXO1, whose suppression activates phosphatidyl inositol-3-kinase (PI3K)/Akt signaling. Targeting of Smad1/2/4 and IGF-1 by miR-486-5p inhibits transforming growth factor (TGF)-β and insulin-like growth factor-1 (IGF-1) signaling, respectively. Other miR-486-5p targets include matrix metalloproteinase-19 (MMP-19), Sp5, histone acetyltransferase 1 (HAT1), and nuclear factor of activated T cells-5 (NFAT5). In this review, we examine the biogenesis, regulation, validated gene targets and biological effects of miR-486-5p in non-malignant diseases.
Collapse
Affiliation(s)
- Adrianna Douvris
- Division of Nephrology, Department of Medicine and Kidney Research Centre, The Ottawa Hospital Research Institute, University of Ottawa, 1967 Riverside Dr., Rm. 535, Ottawa, ON, K1H 7W9, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jose Viñas
- Division of Nephrology, Department of Medicine and Kidney Research Centre, The Ottawa Hospital Research Institute, University of Ottawa, 1967 Riverside Dr., Rm. 535, Ottawa, ON, K1H 7W9, Canada
| | - Kevin D Burns
- Division of Nephrology, Department of Medicine and Kidney Research Centre, The Ottawa Hospital Research Institute, University of Ottawa, 1967 Riverside Dr., Rm. 535, Ottawa, ON, K1H 7W9, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
6
|
Cortesi V, Raffaeli G, Amelio GS, Amodeo I, Gulden S, Manzoni F, Cervellini G, Tomaselli A, Colombo M, Araimo G, Artoni A, Ghirardello S, Mosca F, Cavallaro G. Hemostasis in neonatal ECMO. Front Pediatr 2022; 10:988681. [PMID: 36090551 PMCID: PMC9458915 DOI: 10.3389/fped.2022.988681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/12/2022] [Indexed: 12/14/2022] Open
Abstract
Extracorporeal membrane oxygenation (ECMO) is a life-saving support for cardio-respiratory function. Over the last 50 years, the extracorporeal field has faced huge technological progress. However, despite the improvements in technique and materials, coagulation problems are still the main contributor to morbidity and mortality of ECMO patients. Indeed, the incidence and survival rates of the main hemorrhagic and thrombotic complications in neonatal respiratory ECMO are relevant. The main culprit is related to the intrinsic nature of ECMO: the contact phase activation. The exposure of the human blood to the non-endothelial surface triggers a systemic inflammatory response syndrome, which chronically activates the thrombin generation and ultimately leads to coagulative derangements. Pre-existing illness-related hemostatic dysfunction and the peculiarity of the neonatal clotting balance further complicate the picture. Systemic anticoagulation is the management's mainstay, aiming to prevent thrombosis within the circuit and bleeding complications in the patient. Although other agents (i.e., direct thrombin inhibitors) have been recently introduced, unfractionated heparin (UFH) is the standard of care worldwide. Currently, there are multiple tests exploring ECMO-induced coagulopathy. A combination of the parameters mentioned above and the evaluation of the patient's underlying clinical context should be used to provide a goal-directed antithrombotic strategy. However, the ideal algorithm for monitoring anticoagulation is currently unknown, resulting in a large inter-institutional diagnostic variability. In this review, we face the features of the available monitoring tests and approaches, mainly focusing on the role of point-of-care (POC) viscoelastic assays in neonatal ECMO. Current gaps in knowledge and areas that warrant further study will also be addressed.
Collapse
Affiliation(s)
- Valeria Cortesi
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Genny Raffaeli
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Giacomo S Amelio
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ilaria Amodeo
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Silvia Gulden
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Manzoni
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Gaia Cervellini
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Andrea Tomaselli
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Marta Colombo
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Gabriella Araimo
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Artoni
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Ghirardello
- Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fabio Mosca
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Giacomo Cavallaro
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
7
|
Substantially Altered Expression Profile of Diabetes/Cardiovascular/Cerebrovascular Disease Associated microRNAs in Children Descending from Pregnancy Complicated by Gestational Diabetes Mellitus-One of Several Possible Reasons for an Increased Cardiovascular Risk. Cells 2020; 9:cells9061557. [PMID: 32604801 PMCID: PMC7349356 DOI: 10.3390/cells9061557] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/19/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
Gestational diabetes mellitus (GDM), one of the major pregnancy-related complications, characterized as a transitory form of diabetes induced by insulin resistance accompanied by a low/absent pancreatic beta-cell compensatory adaptation to the increased insulin demand, causes the acute, long-term, and transgenerational health complications. The aim of the study was to assess if alterations in gene expression of microRNAs associated with diabetes/cardiovascular/cerebrovascular diseases are present in whole peripheral blood of children aged 3-11 years descending from GDM complicated pregnancies. A substantially altered microRNA expression profile was found in children descending from GDM complicated pregnancies. Almost all microRNAs with the exception of miR-92a-3p, miR-155-5p, and miR-210-3p were upregulated. The microRNA expression profile also differed between children after normal and GDM complicated pregnancies in relation to the presence of overweight/obesity, prehypertension/hypertension, and/or valve problems and heart defects. Always, screening based on the combination of microRNAs was superior over using individual microRNAs, since at 10.0% false positive rate it was able to identify a large proportion of children with an aberrant microRNA expression profile (88.14% regardless of clinical findings, 75.41% with normal clinical findings, and 96.49% with abnormal clinical findings). In addition, the higher incidence of valve problems and heart defects was found in children with a prior exposure to GDM. The extensive file of predicted targets of all microRNAs aberrantly expressed in children descending from GDM complicated pregnancies indicates that a large group of these genes is involved in ontologies of diabetes/cardiovascular/cerebrovascular diseases. In general, children with a prior exposure to GDM are at higher risk of later development of diabetes mellitus and cardiovascular/cerebrovascular diseases, and would benefit from dispensarisation as well as implementation of primary prevention strategies.
Collapse
|
8
|
Sadat-Ebrahimi SR, Aslanabadi N. Role of MicroRNAs in Diagnosis, Prognosis, and Treatment of Acute Heart Failure: Ambassadors from Intracellular Zone. Galen Med J 2020; 9:e1818. [PMID: 34466598 PMCID: PMC8343948 DOI: 10.31661/gmj.v9i0.1818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/24/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
Acute heart failure (AHF) is one of the burdensome diseases affecting a considerable proportion of the population. Recently, it has been demonstrated that micro-ribonucleic acids (miRNAs) can exert diagnostic, prognostic, and therapeutic roles in a variety of conditions including AHF. These molecules play essential roles in HF-related pathophysiology, particularly, cardiac fibrosis, and hypertrophy. Some miRNAs namely miRNA-423-5p are reported to have both diagnostic and prognostic capabilities. However, some studies suggest that combination of biomarkers is a much better way to achieve the highest accuracy such as the combination of miRNAs and N-terminal pro b-type Natriuretic Peptide (NT pro-BNP). Therefore, this review discusses different views towards various roles of miRNAs in AHF.
Collapse
Affiliation(s)
- Seyyed-Reza Sadat-Ebrahimi
- Cardiovascular Research Center, Madani Heart Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naser Aslanabadi
- Cardiovascular Research Center, Madani Heart Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Correspondence to: Naser Aslanabadi, Professor of Cardiology, Cardiovascular Research Center, Madani Heart Center, Tabriz University of Medical Sciences, Tabriz, Iran Telephone Number: +989143110844 Email Address:
| |
Collapse
|
9
|
Griesman J, Karahalios D, Prendergast C. Hematologic changes in cyanotic congenital heart disease: a review. PROGRESS IN PEDIATRIC CARDIOLOGY 2020. [DOI: 10.1016/j.ppedcard.2020.101193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
ElKhouly AM, Youness RA, Gad MZ. MicroRNA-486-5p and microRNA-486-3p: Multifaceted pleiotropic mediators in oncological and non-oncological conditions. Noncoding RNA Res 2020; 5:11-21. [PMID: 31993547 PMCID: PMC6971376 DOI: 10.1016/j.ncrna.2020.01.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/19/2019] [Accepted: 01/05/2020] [Indexed: 02/06/2023] Open
Abstract
Despite historically known as "junk" DNA, nowadays non-coding RNA transcripts (ncRNAs) are considered as fundamental players in various physiological and pathological conditions. Nonetheless, any alteration in their expression level has been reported to be directly associated with the incidence and aggressiveness of several diseases. MicroRNAs (miRNAs) are the well-studied members of the ncRNAs family. Several reports have highlighted their crucial roles in the post-transcriptional manipulation of several signaling pathways in different pathological conditions. In this review, our main focus is the multifaceted microRNA-486 (miR-486). miR-486-5p and miR-486-3p have been reported to have central roles in several types oncological and non-oncological conditions such as lung, liver, breast cancers and autism, intervertebral disc degeneration and metabolic syndrome, respectively. Moreover, we spotted the light onto the pleiotropic role of miR-486-5p in acting as competing endogenous RNA with other members of ncRNAs family such as long non-coding RNAs.
Collapse
Affiliation(s)
- Aisha M ElKhouly
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - R A Youness
- Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - M Z Gad
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| |
Collapse
|
11
|
Yang F, Li S, Shi Y, Liu L, Ye M, Zhang J, Liu H, Liu F, Yu Q, Sun M, Tian Q, Tu S. Fifty Percent Effective Dose of Intranasal Dexmedetomidine Sedation for Transthoracic Echocardiography in Children With Cyanotic and Acyanotic Congenital Heart Disease. J Cardiothorac Vasc Anesth 2019; 34:966-971. [PMID: 31899144 DOI: 10.1053/j.jvca.2019.11.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/10/2019] [Accepted: 11/27/2019] [Indexed: 11/11/2022]
Abstract
OBJECTIVES To determine the 50% and 95% effective dose of intranasal dexmedetomidine sedation for transthoracic echocardiography in children with cyanotic and acyanotic congenital heart disease. DESIGN A prospective, nonrandomized study. SETTING A tertiary care teaching hospital. PARTICIPANTS Patients younger than 18 months with known or suspected congenital heart disease scheduled for transthoracic echocardiography with sedation. INTERVENTIONS Patients were divided into a cyanotic group (blood oxygen saturation <85%) or an acyanotic group (blood oxygen saturation ≥85%). This study used Dixon's up-and-down method sequential allocation design. In both groups, the initial dose of intranasal dexmedetomidine was 2 μg/kg and the gradient of increase or decrease was 0.25 μg/kg. MEASUREMENTS AND MAIN RESULTS The 50% effective dose (95% confidence interval) of intranasal dexmedetomidine sedation for transthoracic echocardiography was 3.2 (2.78-3.55) μg/kg and 1.9 (1.69-2.06) μg/kg in the cyanotic and acyanotic groups, respectively. None of the patients experienced significant adverse events. CONCLUSION The 50% (95% confidence intervals) effective doses of intranasal dexmedetomidine sedation for transthoracic echocardiography were 3.2 (2.78-3.55) μg/kg and 1.9 (1.69-2.06) μg/kg in children with cyanotic and acyanotic congenital heart disease, respectively.
Collapse
Affiliation(s)
- Fei Yang
- Department of Anesthesiology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation base of Child development and Critical Disorders; Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Shangyingying Li
- Department of Anesthesiology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation base of Child development and Critical Disorders; Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yuan Shi
- Department of Anesthesiology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation base of Child development and Critical Disorders; Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Lu Liu
- Department of Anesthesiology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation base of Child development and Critical Disorders; Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Mao Ye
- Department of Anesthesiology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation base of Child development and Critical Disorders; Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jin Zhang
- Department of Anesthesiology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation base of Child development and Critical Disorders; Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Hui Liu
- Department of Anesthesiology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation base of Child development and Critical Disorders; Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Feng Liu
- Department of Anesthesiology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation base of Child development and Critical Disorders; Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Qing Yu
- Department of Anesthesiology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation base of Child development and Critical Disorders; Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China; Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Mang Sun
- Department of Anesthesiology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation base of Child development and Critical Disorders; Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China; Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Tian
- Department of Anesthesiology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation base of Child development and Critical Disorders; Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Shengfen Tu
- Department of Anesthesiology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation base of Child development and Critical Disorders; Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China; Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
12
|
Lv Z, Ma J, Wang J, Lu J. MicroRNA-761 targets FGFR1 to suppress the malignancy of osteosarcoma by deactivating PI3K/Akt pathway. Onco Targets Ther 2019; 12:8501-8513. [PMID: 31686864 PMCID: PMC6800886 DOI: 10.2147/ott.s208263] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/15/2019] [Indexed: 12/15/2022] Open
Abstract
Purpose MicroRNA-761 (miR-761) has been reported to be deregulated in many types of human cancers and play important roles in cancer genesis and progression. However, the biological roles of miR-761 in osteosarcoma (OS) and the underlying mechanisms remain largely unknown. Methods The expression of miR-761 in OS tissues and cell lines was analyzed using RT-qPCR. A series of gain-of-function tests were performed, and status of malignancy was evaluated on basis of proliferation, migration, invasion, and apoptosis using different assays to determine the regulatory roles of miR-761 in OS cells in vivo and in vitro. Notably, the mechanisms underlying the action of miR-761 in the pathogenesis of OS were investigated using bioinformatic analysis, luciferase reporter assay, RT-qPCR and Western blotting. Results The results showed that miR-761 expression was decreased in OS tissues and cell lines and is closely correlated with clinical stage and distant metastasis in OS patients. Patients with OS having low miR-761 expression showed worse prognosis compared to OS patients with high miR-761 expression. Restoring the miR-761 expression level decreased OS cell proliferation, migration, and invasion in vitro; promoted cell apoptosis in vitro; and impaired tumor growth in vivo. In addition, fibroblast growth factor receptor 1 (FGFR1) was found as a direct target gene of miR-761 in OS cells. Furthermore, silencing FGFR1 expression stimulated the tumor-suppressing roles of miR-761 upregulation in OS cells, whereas the activity of miR-761 overexpression in OS cells was abolished by the restoration of FGFR1 expression. Moreover, restoration of miR-761 expression deactivated the PI3K/Akt pathway in vitro and in vivo. Conclusion These results suggest that miR-761 plays anti-cancer roles in OS by directly targeting FGFR1 and deactivating the PI3K/Akt pathway. The newly identified miR-761/FGFR1/PI3K/Akt pathway partially illustrates the mechanism of OS pathogenesis and presents a novel candidate therapeutic target for antitumor therapy.
Collapse
Affiliation(s)
- Zhongzhe Lv
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Liaoning 116001, People's Republic of China
| | - Jinming Ma
- School of Graduate Studies, Zunyi Medical University, Guizhou 563000, People's Republic of China
| | - Jianchuan Wang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Liaoning 116001, People's Republic of China
| | - Jianmin Lu
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Liaoning 116001, People's Republic of China
| |
Collapse
|
13
|
Zhirov IV, Baulina NM, Nasonova SN, Osmak GZ, Matveyeva NA, Mindzaev DR, Favorova OO, Tereshchenko SN. [Full - transcriptome analysis of miRNA expression in mononuclear cells in patients with acute decompensation of chronic heart failure of various etiologies]. TERAPEVT ARKH 2019; 91:62-67. [PMID: 32598816 DOI: 10.26442/00403660.2019.09.000294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Indexed: 11/22/2022]
Abstract
It is known that micro RNAs are an important regulatory element in the pathogenesis of many diseases, including cardiovascular diseases. Different levels of expression of these molecules in various pathologies makes miRNA a potential diagnostic and prognostic biomarker. AIM Analysis of miRNA expression levels in mononuclear blood cells (MBC) of patients with acute decompensation f chronic heart failure (CHF) of various etiologies and evaluation of the possibility of their use as a biological marker. MATERIALS AND METHODS 7 male patients with acute decompensation of CHF with a reduced ejection fraction (EF), NYHA functional class II-IV (FC) according to NYHA [mean (M) EF 29.2%, standard deviation (SD) 13.27%] in age 38 to 65 years old [median (Me) 58 years]. In 3 patients, heart failure developed as a result of dilated cardiomyopathy (DCMP), in 4 patients - against the background of post - infarction cardiosclerosis of the ischemic nature [group of patients with coronary heart disease (CHD)]. The control group - 5 age - matched (from 41 to 57 years old, Me 49 years old) healthy male volunteers. A complete transcript analysis of miRNA expression in MNCs was performed for all patients and healthy volunteers. RESULTS Differentially expressed miRNAs were determined in patients with CHF (regardless of etiology) compared with healthy individuals: miR-182, miR-144, miR-183, miR-486-5p, miR-143 (log2FC >1, FDR p - value.
Collapse
Affiliation(s)
- I V Zhirov
- Myasnikov Institute of Clinical Cardiology, National Medical Research Center of Cardiology.,Russian Medical Academy of Continuing Professional Education
| | - N M Baulina
- Institute of Experimental Cardiology, National Medical Research Center of Cardiology
| | - S N Nasonova
- Myasnikov Institute of Clinical Cardiology, National Medical Research Center of Cardiology
| | - G Z Osmak
- Institute of Experimental Cardiology, National Medical Research Center of Cardiology
| | - N A Matveyeva
- Institute of Experimental Cardiology, National Medical Research Center of Cardiology
| | - D R Mindzaev
- Myasnikov Institute of Clinical Cardiology, National Medical Research Center of Cardiology
| | - O O Favorova
- Institute of Experimental Cardiology, National Medical Research Center of Cardiology
| | - S N Tereshchenko
- Myasnikov Institute of Clinical Cardiology, National Medical Research Center of Cardiology.,Russian Medical Academy of Continuing Professional Education
| |
Collapse
|
14
|
Mukai N, Nakayama Y, Ishi S, Murakami T, Ogawa S, Kageyama K, Murakami S, Sasada Y, Yoshioka J, Nakajima Y. Cold storage conditions modify microRNA expressions for platelet transfusion. PLoS One 2019; 14:e0218797. [PMID: 31269049 PMCID: PMC6608970 DOI: 10.1371/journal.pone.0218797] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/09/2019] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are small RNA molecules that modulate gene and protein expression in hematopoiesis. Platelets are known to contain a fully functional miRNA machinery. While platelets used for transfusion are normally stored at room temperature, recent evidence suggests more favorable effects under a cold-storage condition, including higher adhesion and aggregation properties. Thus, we sought to determine whether functional differences in platelets are associated with the differential profiling of platelet miRNA expressions. To obtain the miRNA expression profile, next-generation sequencing was performed on human platelets obtained from 10 healthy subjects. The miRNAs were quantified after being stored in three different conditions: 1) baseline (before storage), 2) stored at 22°C with agitation for 72 h, and 3) stored at 4°C for 72 h. Following the identification of miRNAs by sequencing, the results were validated at the level of mature miRNAs from 18 healthy subjects, by using quantitative polymerase chain reaction (qPCR). Differential expression was observed for 125 miRNAs that were stored at 4°C and 9 miRNAs stored at 22°C as compared to the baseline. The validation study by qPCR confirmed that storage at 4°C increased the expression levels (fold change 95% CI) of mir-20a-5p (1.87, p<0.0001), mir-10a-3p (1.88, p<0.0001), mir-16-2-3p (1.54, p<0.01), and mir-223-5p (1.38, p<0.05), compared with those of the samples stored at 22°C. These results show that miRNAs correlate with platelet quality under specific storage conditions. The data indicate that miRNAs could be potentially used as biomarkers of platelet quality.
Collapse
Affiliation(s)
- Nobuhiro Mukai
- Department of Anesthesiology and Critical Care, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshinobu Nakayama
- Department of Anesthesiology and Critical Care, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, City College of New York, New York, NY, United States of America
- * E-mail:
| | - Sachiyo Ishi
- Department of Anesthesiology and Critical Care, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takayuki Murakami
- Department of Anesthesiology and Critical Care, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoru Ogawa
- Department of Anesthesiology and Critical Care, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kyoko Kageyama
- Department of Anesthesiology, Otokoyama Hospital, Kyoto, Japan
| | - Satoshi Murakami
- Thermo Fisher Scientific, Life Technologies Japan Ltd., Life Solutions Group, Tokyo, Japan
| | - Yuji Sasada
- Department of Transfusion Medicine and Cell Therapy, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Jun Yoshioka
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, City College of New York, New York, NY, United States of America
| | - Yasufumi Nakajima
- Department of Anesthesiology and Critical Care, Kansai Medical University, Osaka, Japan and Outcomes Research Consortium, Cleveland, OH, United States of America
| |
Collapse
|
15
|
Huang YM, Li WW, Wu J, Han M, Li BH. The diagnostic value of circulating microRNAs in heart failure. Exp Ther Med 2019; 17:1985-2003. [PMID: 30783473 PMCID: PMC6364251 DOI: 10.3892/etm.2019.7177] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 01/07/2019] [Indexed: 12/17/2022] Open
Abstract
Heart failure (HF) is a complex clinical syndrome, characterized by inadequate blood perfusion of tissues and organs caused by decreased heart ejection capacity resulting from structural or functional cardiac disorders. HF is the most severe heart condition and it severely compromises human health; thus, its early diagnosis and effective management are crucial. However, given the lack of satisfactory sensitivity and specificity of the currently available biomarkers, the majority of patients with HF are not diagnosed early and do not receive timely treatment. A number of studies have demonstrated that peripheral blood circulating nucleic acids [such as microRNAs (miRs), mRNA and DNA] are important for the diagnosis and monitoring of treatment response in HF. miRs have been attracting increasing attention as promising biomarkers, given their presence in body fluids and relative structural stability under diverse conditions of sampling. The aim of the present review was to analyze the associations between the mechanisms underlying the development of HF and the expression of miRs, and discuss the value of using circulating miRs as diagnostic biomarkers in HF management. In particular, miR-155, miR-22 and miR-133 appear to be promising for the diagnosis, prognosis and management of HF patients.
Collapse
Affiliation(s)
- Yao-Meng Huang
- Hebei Key Laboratory of Medical Biotechnology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Wei-Wei Li
- Hebei Key Laboratory of Medical Biotechnology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Jun Wu
- Hebei Key Laboratory of Medical Biotechnology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Mei Han
- Hebei Key Laboratory of Medical Biotechnology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Bing-Hui Li
- Department of Oncological Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
16
|
Oatmen KE, Toro-Salazar OH, Hauser K, Zellars KN, Mason KC, Hor K, Gillan E, Zeiss CJ, Gatti DM, Spinale FG. Identification of a novel microRNA profile in pediatric patients with cancer treated with anthracycline chemotherapy. Am J Physiol Heart Circ Physiol 2018; 315:H1443-H1452. [DOI: 10.1152/ajpheart.00252.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Anthracycline chemotherapy (AC) is associated with decline in left ventricular ejection fraction (LVEF), yet the mechanisms remain unclear. Although changes in microRNAs (miRs) have been identified in adult cardiovascular disease, miR profiles in pediatric patients with AC have not been well studied. The goal of this study was to examine miR profiles (unbiased array) in pediatric patients with AC compared with age-matched referent normal patients. We hypothesize that pediatric patients with AC will express a unique miR profile at the initiation and completion of therapy and will be related to LVEF. Serum was collected in pediatric patients (10–22 yr, n = 12) with newly diagnosed malignancy requiring AC within 24–48 h after the initiation of therapy (30–60 mg/m2) and ~1 yr after completing therapy. A custom microarray of 84 miRs associated with cardiovascular disease was used (quantitative RT-PCR) and indexed to referent normal profiles (13–17 yr, n = 17). LVEF was computed by cardiac MRI. LVEF fell from AC initiation at ~1 yr after AC completion (64.28 ± 1.78% vs. 57.53 ± 0.95%, respectively, P = 0.004). Of the 84 miRs profiled, significant shifts in 17 miRs occurred relative to referent normal ( P ≤ 0.05). Moreover, the functional domain of miRs associated with myocardial differentiation and development fell over threefold at the completion of AC ( P ≤ 0.05). Moreover, eight miRs were significantly downregulated after AC completion in those patients with the greatest decline in LVEF (≥10%, P < 0.05). This study demonstrates, for the first time, that changes in miR expression occur in pediatric patients with AC. These findings suggest that miRs are a potential strategy for the early identification of patients with AC susceptible to left ventricular dysfunction. NEW & NOTEWORTHY Although anthracycline chemotherapy (AC) is effective for a number of pediatric cancers, an all too often consequence of AC is the development of left ventricular failure. The present study identified that specific shifts in the pattern of microRNAs, which regulate myocardial growth, function, and viability, occurred during and after AC in pediatric patients, whereby the magnitude of this shift was associated with the degree of left ventricular failure.
Collapse
Affiliation(s)
- Kelsie E. Oatmen
- University of South Carolina School of Medicine, Columbia, South Carolina
| | | | - Kristine Hauser
- Connecticut Children’s Medical Center, Hartford, Connecticut
| | - Kia N. Zellars
- University of South Carolina School of Medicine, Columbia, South Carolina
| | - Kathryn C. Mason
- University of South Carolina School of Medicine, Columbia, South Carolina
- William Jennings Bryan Dorn Veterans Affairs Medical Center, Columbia, South Carolina
| | - Kan Hor
- Nationwide Children’s Hospital, Columbus, Ohio
| | - Eileen Gillan
- Connecticut Children’s Medical Center, Hartford, Connecticut
| | | | | | - Francis G. Spinale
- University of South Carolina School of Medicine, Columbia, South Carolina
- William Jennings Bryan Dorn Veterans Affairs Medical Center, Columbia, South Carolina
| |
Collapse
|