1
|
Tung S, Delavogia E, Fernandez-Gonzalez A, Mitsialis SA, Kourembanas S. Harnessing the therapeutic potential of the stem cell secretome in neonatal diseases. Semin Perinatol 2023; 47:151730. [PMID: 36990921 PMCID: PMC10133192 DOI: 10.1016/j.semperi.2023.151730] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Preterm birth and intrapartum related complications account for a substantial amount of mortality and morbidity in the neonatal period despite significant advancements in neonatal-perinatal care. Currently, there is a noticeable lack of curative or preventative therapies available for any of the most common complications of prematurity including bronchopulmonary dysplasia, necrotizing enterocolitis, intraventricular hemorrhage, periventricular leukomalacia and retinopathy of prematurity or hypoxic-ischemic encephalopathy, the main cause of perinatal brain injury in term infants. Mesenchymal stem/stromal cell-derived therapy has been an active area of investigation for the past decade and has demonstrated encouraging results in multiple experimental models of neonatal disease. It is now widely acknowledged that mesenchymal stem/stromal cells exert their therapeutic effects via their secretome, with the principal vector identified as extracellular vesicles. This review will focus on summarizing the current literature and investigations on mesenchymal stem/stromal cell-derived extracellular vesicles as a treatment for neonatal diseases and examine the considerations to their application in the clinical setting.
Collapse
Affiliation(s)
- Stephanie Tung
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Eleni Delavogia
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States; Department of Pediatrics, Massachusetts General Hospital for Children, Boston, MA, United States
| | - Angeles Fernandez-Gonzalez
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - S Alex Mitsialis
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Stella Kourembanas
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
2
|
Dimitroglou M, Iliodromiti Z, Christou E, Volaki P, Petropoulou C, Sokou R, Boutsikou T, Iacovidou N. Human Breast Milk: The Key Role in the Maturation of Immune, Gastrointestinal and Central Nervous Systems: A Narrative Review. Diagnostics (Basel) 2022; 12:diagnostics12092208. [PMID: 36140609 PMCID: PMC9498242 DOI: 10.3390/diagnostics12092208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 12/22/2022] Open
Abstract
Premature birth is a major cause of mortality and morbidity in the pediatric population. Because their immune, gastrointestinal and nervous systems are not fully developed, preterm infants (<37 weeks of gestation) and especially very preterm infants (VPIs, <32 weeks of gestation) are more prone to infectious diseases, tissue damage and future neurodevelopmental impairment. The aim of this narrative review is to report the immaturity of VPI systems and examine the role of Human Breast Milk (HBM) in their development and protection against infectious diseases, inflammation and tissue damage. For this purpose, we searched and synthesized the data from the existing literature published in the English language. Studies revealed the significance of HBM and indicate HBM as the best dietary choice for VPIs.
Collapse
|
3
|
Di SJ, Wu SY, Liu TJ, Shi YY. Stem cell therapy as a promising strategy in necrotizing enterocolitis. Mol Med 2022; 28:107. [PMID: 36068527 PMCID: PMC9450300 DOI: 10.1186/s10020-022-00536-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/29/2022] [Indexed: 11/10/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a devastating gastrointestinal disease that affects newborns, particularly preterm infants, and is associated with high morbidity and mortality. No effective therapeutic strategies to decrease the incidence and severity of NEC have been developed to date. Stem cell therapy has been explored and even applied in various diseases, including gastrointestinal disorders. Animal studies on stem cell therapy have made great progress, and the anti-inflammatory, anti-apoptotic, and intestinal barrier enhancing effects of stem cells may be protective against NEC clinically. In this review, we discuss the therapeutic mechanisms through which stem cells may function in the treatment of NEC.
Collapse
Affiliation(s)
- Si-Jia Di
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Si-Yuan Wu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Tian-Jing Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yong-Yan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
4
|
Zeng R, Wang J, Zhuo Z, Luo Y, Sha W, Chen H. Stem cells and exosomes: promising candidates for necrotizing enterocolitis therapy. Stem Cell Res Ther 2021; 12:323. [PMID: 34090496 PMCID: PMC8180168 DOI: 10.1186/s13287-021-02389-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/13/2021] [Indexed: 02/08/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is a devastating disease predominately affecting neonates. Despite therapeutic advances, NEC remains the leading cause of mortality due to gastrointestinal conditions in neonates. Stem cells have been exploited in various diseases, and the application of different types of stem cells in the NEC therapy is explored in the past decade. However, stem cell transplantation possesses several deficiencies, and exosomes are considered potent alternatives. Exosomes, especially those derived from stem cells and breast milk, demonstrate beneficial effects for NEC both in vivo and in vitro and emerge as promising options for clinical practice. In this review, the function and therapeutic effects of stem cells and exosomes for NEC are investigated and summarized, which provide insights for the development and application of novel therapeutic strategies in pediatric diseases. Further elucidation of mechanisms, improvement in preparation, bioengineering, and administration, as well as rigorous clinical trials are warranted.
Collapse
Affiliation(s)
- Ruijie Zeng
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Shantou University Medical College, Shantou, 515041, China
| | - Jinghua Wang
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Zewei Zhuo
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Yujun Luo
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Weihong Sha
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| |
Collapse
|
5
|
de Lange IH, van Gorp C, Eeftinck Schattenkerk LD, van Gemert WG, Derikx JPM, Wolfs TGAM. Enteral Feeding Interventions in the Prevention of Necrotizing Enterocolitis: A Systematic Review of Experimental and Clinical Studies. Nutrients 2021; 13:1726. [PMID: 34069699 PMCID: PMC8161173 DOI: 10.3390/nu13051726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 12/11/2022] Open
Abstract
Necrotizing enterocolitis (NEC), which is characterized by severe intestinal inflammation and in advanced stages necrosis, is a gastrointestinal emergency in the neonate with high mortality and morbidity. Despite advancing medical care, effective prevention strategies remain sparse. Factors contributing to the complex pathogenesis of NEC include immaturity of the intestinal immune defense, barrier function, motility and local circulatory regulation and abnormal microbial colonization. Interestingly, enteral feeding is regarded as an important modifiable factor influencing NEC pathogenesis. Moreover, breast milk, which forms the currently most effective prevention strategy, contains many bioactive components that are known to support neonatal immune development and promote healthy gut colonization. This systematic review describes the effect of different enteral feeding interventions on the prevention of NEC incidence and severity and the effect on pathophysiological mechanisms of NEC, in both experimental NEC models and clinical NEC. Besides, pathophysiological mechanisms involved in human NEC development are briefly described to give context for the findings of altered pathophysiological mechanisms of NEC by enteral feeding interventions.
Collapse
Affiliation(s)
- Ilse H. de Lange
- European Surgical Center Aachen/Maastricht, Department of Pediatric Surgery, School for Nutrition, Toxicology and Metabolism (NUTRIM), 6202 AZ Maastricht, The Netherlands; (I.H.d.L.); (W.G.v.G.)
- Department of Surgery, School for Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht University, 6202 AZ Maastricht, The Netherlands
- Department of Pediatrics, School of Oncology and Developmental Biology (GROW), Maastricht University, 6202 AZ Maastricht, The Netherlands;
| | - Charlotte van Gorp
- Department of Pediatrics, School of Oncology and Developmental Biology (GROW), Maastricht University, 6202 AZ Maastricht, The Netherlands;
| | - Laurens D. Eeftinck Schattenkerk
- Department of Pediatric Surgery, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam and Vrije Universiteit Amsterdam, 1105 AZ Amsterdam, The Netherlands; (L.D.E.S.); (J.P.M.D.)
| | - Wim G. van Gemert
- European Surgical Center Aachen/Maastricht, Department of Pediatric Surgery, School for Nutrition, Toxicology and Metabolism (NUTRIM), 6202 AZ Maastricht, The Netherlands; (I.H.d.L.); (W.G.v.G.)
- Department of Surgery, School for Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht University, 6202 AZ Maastricht, The Netherlands
| | - Joep P. M. Derikx
- Department of Pediatric Surgery, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam and Vrije Universiteit Amsterdam, 1105 AZ Amsterdam, The Netherlands; (L.D.E.S.); (J.P.M.D.)
| | - Tim G. A. M. Wolfs
- Department of Pediatrics, School of Oncology and Developmental Biology (GROW), Maastricht University, 6202 AZ Maastricht, The Netherlands;
- Department of Biomedical Engineering (BMT), School for Cardiovascular Diseases (CARIM), Maastricht University, 6202 AZ Maastricht, The Netherlands
| |
Collapse
|
6
|
Chen X, Meng X, Zhang H, Feng C, Wang B, Li N, Abdullahi KM, Wu X, Yang J, Li Z, Jiao C, Wei J, Xiong X, Fu K, Yu L, Besner GE, Feng J. Intestinal proinflammatory macrophages induce a phenotypic switch in interstitial cells of Cajal. J Clin Invest 2021; 130:6443-6456. [PMID: 32809970 DOI: 10.1172/jci126584] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 08/13/2020] [Indexed: 01/06/2023] Open
Abstract
Interstitial cells of Cajal (ICCs) are pacemaker cells in the intestine, and their function can be compromised by loss of C-KIT expression. Macrophage activation has been identified in intestine affected by Hirschsprung disease-associated enterocolitis (HAEC). In this study, we examined proinflammatory macrophage activation and explored the mechanisms by which it downregulates C-KIT expression in ICCs in colon affected by HAEC. We found that macrophage activation and TNF-α production were dramatically increased in the proximal dilated colon of HAEC patients and 3-week-old Ednrb-/- mice. Moreover, ICCs lost their C-KIT+ phenotype in the dilated colon, resulting in damaged pacemaker function and intestinal dysmotility. However, macrophage depletion or TNF-α neutralization led to recovery of ICC phenotype and restored their pacemaker function. In isolated ICCs, TNF-α-mediated phosphorylation of p65 induced overexpression of microRNA-221 (miR-221), resulting in suppression of C-KIT expression and pacemaker currents. We also identified a TNF-α/NF-κB/miR-221 pathway that downregulated C-KIT expression in ICCs in the colon affected by HAEC. These findings suggest the important roles of proinflammatory macrophage activation in a phenotypic switch of ICCs, representing a promising therapeutic target for HAEC.
Collapse
Affiliation(s)
- Xuyong Chen
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College; and
| | - Xinyao Meng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College; and
| | - Hongyi Zhang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College; and
| | - Chenzhao Feng
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Wang
- Department of Pediatric Surgery, Shenzhen Children's Hospital, Shenzhen, China
| | - Ning Li
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College; and
| | | | - Xiaojuan Wu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College; and
| | - Jixin Yang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College; and
| | - Zhi Li
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College; and
| | - Chunlei Jiao
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College; and
| | - Jia Wei
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College; and
| | - Xiaofeng Xiong
- Department of Neonatal Surgery, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Fu
- Department of Neonatal Surgery, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Yu
- Department of Neonatal Surgery, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gail E Besner
- Department of Pediatric Surgery, Center for Perinatal Research, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Jiexiong Feng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College; and
| |
Collapse
|
7
|
Li Y, Yang J, Fu G, Zhou P, Liu Y, Li Z, Jiao G. [Human umbilical cord mesenchymal stem cells differentiate into neuron-like cells after induction with B27-supplemented serum-free medium]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:1340-1345. [PMID: 32990222 DOI: 10.12122/j.issn.1673-4254.2020.09.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To evaluate the capacity and efficiency of human umbilical cord mesenchymal stem cells (HUCMSCs) to differentiate into neuron- like cells after induction with B27- supplemented serum- free medium. METHODS HUCMSCs at passage 4 were cultured for 14 days with serum-containing medium (SCM) (group A), SCM supplemented with 20 ng/mL nerve growth factor (NGF) and 10 ng/mL basic fibroblast growth factor (bFGF) (group B), serum-free medium (SFM) (group C), or SFM supplemented with 20 ng/mL NGF and 10 ng/mL bFGF. The culture medium were changed every 3 days and the growth of the neurospheres was observed using an inverted microscope. The cell markers were analyzed with flow cytometry and the expressions of nestin, neuron- specific enolase (NSE), neurofilament heavy polypeptide (NEFH), and glial fibrillary acidic protein (GFAP) were quantified by quantitative real-time PCR (qRT-PCR) and Western blotting. RESULTS Before induction, HUCMSCs expressed abundant mesenchymal stem cell surface markers including CD29 (99.5%), CD44 (49.6%) and CD105 (77.7%). Neuron-like cells were observed in the cultures on days 7, 10, and 14, and the cell differentiation was the best in group D, followed by groups C, B and A. In all the 4 groups, the cellular expressions of nestin and GFAP gradually lowered while those of NEFH and NSE increased progressively. The expressions of GFAP, NEFH, nestin and NSE were significantly different between group A and the other 3 groups (P < 0.001 or 0.05). CONCLUSIONS B27-supplemented SFM effectively induces the differentiation of HUCMSCs into neuron- like cells, and the supplementation with cytokines (NGF and bFGF) strongly promotes the cell differentiation.
Collapse
Affiliation(s)
- Yunyi Li
- First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Jinpei Yang
- First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Guo Fu
- First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Pan Zhou
- First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Yang Liu
- First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Zhizhong Li
- Shenhe Hospital Affiliated to Jinan University, Heyuan 517000, China
| | - Genlong Jiao
- First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| |
Collapse
|
8
|
Tavassoly O, Safavi F, Tavassoly I. Heparin-binding Peptides as Novel Therapies to Stop SARS-CoV-2 Cellular Entry and Infection. Mol Pharmacol 2020; 98:612-619. [PMID: 32913137 DOI: 10.1124/molpharm.120.000098] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/27/2020] [Indexed: 01/07/2023] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are cell surface receptors that are involved in the cellular uptake of pathologic amyloid proteins and viruses, including the novel coronavirus; severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Heparin and heparan sulfate antagonize the binding of these pathogens to HSPGs and stop their cellular internalization, but the anticoagulant effect of these agents has been limiting their use in the treatment of viral infections. Heparin-binding peptides (HBPs) are suitable nonanticoagulant agents that are capable of antagonizing binding of heparin-binding pathogens to HSPGs. Here, we review and discuss the use of HBPs as viral uptake inhibitors and will address their benefits and limitations to treat viral infections. Furthermore, we will discuss a variant of these peptides that is in the clinic and can be considered as a novel therapy in coronavirus disease 2019 (COVID-19) infection. SIGNIFICANCE STATEMENT: The need to discover treatment modalities for COVID-19 is a necessity, and therapeutic interventions such as heparin-binding peptides (HBPs), which are used for other cases, can be beneficial based on their mechanisms of actions. In this paper, we have discussed the application of HBPs as viral uptake inhibitors in COVID-19 and explained possible mechanisms of actions and the therapeutic effects.
Collapse
Affiliation(s)
- Omid Tavassoly
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada (O.T.); Neuroimmunology and Neurovirology Branch, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (F.S.); and Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York (I.T.)
| | - Farinaz Safavi
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada (O.T.); Neuroimmunology and Neurovirology Branch, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (F.S.); and Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York (I.T.)
| | - Iman Tavassoly
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada (O.T.); Neuroimmunology and Neurovirology Branch, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (F.S.); and Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York (I.T.)
| |
Collapse
|
9
|
Kovler ML, Sodhi CP, Hackam DJ. Precision-based modeling approaches for necrotizing enterocolitis. Dis Model Mech 2020; 13:dmm044388. [PMID: 32764156 PMCID: PMC7328169 DOI: 10.1242/dmm.044388] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is the leading cause of death from gastrointestinal disease in premature infants and remains stubbornly difficult to treat in many cases. Much of our understanding of NEC pathogenesis has been gained through the study of highly translational animal models. However, most models of NEC are limited by their overall complexity and by the fact that they do not incorporate human tissue. To address these limitations, investigators have recently developed precision-based ex vivo models of NEC, also termed 'NEC-in-a-dish' models, which provide the opportunity to increase our understanding of this disease and for drug discovery. These approaches involve exposing intestinal cells from either humans or animals with or without NEC to a combination of environmental and microbial factors associated with NEC pathogenesis. This Review highlights the current progress in the field of NEC model development, introduces NEC-in-a-dish models as a means to understand NEC pathogenesis and examines the fundamental questions that remain unanswered in NEC research. By answering these questions, and through a renewed focus on precision model development, the research community may finally achieve enduring success in improving the outcome of patients with this devastating disease.
Collapse
Affiliation(s)
- Mark L Kovler
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Chhinder P Sodhi
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - David J Hackam
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
10
|
Contribution of heparin to recovery of incarcerated intestine in a rat incarcerated hernia model. Hernia 2019; 23:1155-1161. [PMID: 31172320 DOI: 10.1007/s10029-019-01985-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 05/09/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE Inguinal hernias are the most common type of abdominal wall hernias. Although surgery is the only effective treatment for these hernias in adults, several problems associated with surgical treatment have been reported. If the hernia exits from a weak point of the abdominal wall, it can obstruct the bowel, thereby causing serious complications, including intestinal obstruction or strangulation. Through this study, we aimed to analyze the optimal incarceration induction time taken to cause some degree of necrosis from which recovery would be possible in a rat incarcerated abdominal wall hernia model and to determine the efficacy of heparin for expedite recovery from intestinal incarceration. METHODS A rat incarcerated abdominal wall hernia model was constructed, intestinal activity and the incarceration induction time were determined based on the color of the intestine and HE staining of intestinal sections. Heparin and procaine were sprayed onto intestinal surfaces, and their effects on the recovery from intestinal incarceration were evaluated. RESULTS Recovery from intestinal incarceration would be better if the incarceration induction time was maintained below 2.5 h in our rat model, and heparin was found to be superior to procaine in the expedite recovery from intestinal incarceration, particularly immediately after relieving such intestines. CONCLUSIONS The results of this study are significant for planning the treatment of incarcerated inguinal hernia. Further, heparin is superior to procaine in terms of expedite recovery from intestinal incarceration.
Collapse
|
11
|
Zhang J, Zhao J, Chen Y, Shi H, Huang X, Wang Y, Wang Y, Wei Y, Xue W, Han J. Effect of mGluR7 on proliferation of human embryonic neural stem cells. Medicine (Baltimore) 2019; 98:e14683. [PMID: 30817600 PMCID: PMC6831331 DOI: 10.1097/md.0000000000014683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
This study is to investigate the effect of metabotropic glutamate receptor 7 (mGluR7) on the proliferation of human embryonic neural stem cells (NSCs) and its molecular mechanism.Human embryonic NSCs were isolated. The pCMV2-GV146-GFP-mGluR7 plasmid was transfected to over-express mGluR7 while mGluR7 siRNA was transfected to knockdown mGluR7. MTT assay was used to analyze cell proliferation. Flow cytometry was used to detect cell cycle and apoptosis. Protein and mRNA levels were analyzed by Western blot and RT-qPCR, respectively.The viability of human NSCs and the diameter of neurospheres after 24 hours, 48 hours, and 72 hours of transfection significantly increased by mGluR7 overexpression whereas significantly decreased by mGluR7 knockdown. Ki-67 expression was up-regulated by mGluR7 overexpression whereas down-regulated by mGluR7 siRNA, indicating a promotive effect of mGluR7 on NSC proliferation. After mGluR7 overexpression, G1/G0 phase cell ratio dropped significantly compared with control group, while the S phase cell ratio increased. mGluR7 silencing arrested human NSCs at G1/G0 phase. After 48 hours of transfection, there was a decrease of apoptosis by mGluR7 overexpression, while mGluR7 silencing induced apoptosis of human NSCs. Additionally, overexpression of mGluR7 up-regulated the expression of p-serine/threonine kinase (AKT), cyclin D1, and cyclin-dependent kinase 2 (CDK2). The mGluR7 knockdown had opposite effects. Similarly, mGluR7 down-regulated the expression of Caspase-3/9, while the mGluR7 knockdown promoted this.mGluR7 can promote the proliferation of human embryonic cortical NSCs in vitro. This effect may be mediated by promoting cell cycle progression, inhibiting cell apoptosis, activating the AKT signaling pathway, and inhibiting the Caspase-3/9 signaling pathway.
Collapse
|
12
|
Chen H, Wu H, Yin H, Wang J, Dong H, Chen Q, Li Y. Effect of photobiomodulation on neural differentiation of human umbilical cord mesenchymal stem cells. Lasers Med Sci 2018; 34:667-675. [PMID: 30232645 DOI: 10.1007/s10103-018-2638-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/11/2018] [Indexed: 12/21/2022]
Abstract
Photobiomodulation therapy (PBMT) can enhance the mesenchymal stem cell (MSC) proliferation, differentiation, and tissue repair and can therefore be used in regenerative medicine. The objective of this study is to investigate the effects of photobiomodulation on the directional neural differentiation of human umbilical cord mesenchymal stem cells (hUC-MSCs) and provide a theoretical basis for neurogenesis. hUC-MSCs were divided into control, inducer, laser, and lasers combined with inducer groups. A 635-nm laser and an 808-nm laser delivering energy densities from 0 to 10 J/cm2 were used in the study. Normal cerebrospinal fluid (CSF) and injured cerebrospinal fluid (iCSF) were used as inducers. The groups were continuously induced for 3 days. Cellular proliferation was evaluated using MTT. The marker proteins nestin (marker protein of the neural precursor cells), NeuN (marker protein of neuron), and GFAP (glial fibrillary acidic protein, marker proteins of glial cells) were detected by immunofluorescence and western blot. We found that irradiation with 635-nm laser increased cell proliferation, and that with 808 nm laser by itself and combined with cerebrospinal fluid treatment generated significant neuron-like morphological changes in the cells at 72 h. Nestin showed high positive expression at 24 h in the 808 nm group. The expression of GFAP increased in the 808-nm combined inducer group at 24 h but decreased at 72 h. The expression of neuN protein increased only at 72 h in both the 808-nm combined inducer group and inducer group. We concluded that 808 nm laser irradiation could help CSF to induce neuronal differentiation of hUC-MSCs in early stage and tend to change to neuron rather than glial cells.
Collapse
Affiliation(s)
- Hongli Chen
- School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin, 300387, China.,Laboratory of Laser Medicine, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Hongjun Wu
- School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin, 300387, China
| | - Huijuan Yin
- Laboratory of Laser Medicine, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
| | - Jinhai Wang
- School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin, 300387, China.
| | - Huajiang Dong
- Logistics University of People's Armed Police Force, Tianjin, 300309, China
| | - Qianqian Chen
- Laboratory of Laser Medicine, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Yingxin Li
- Laboratory of Laser Medicine, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| |
Collapse
|
13
|
Joddar B, Tasnim N, Thakur V, Kumar A, McCallum RW, Chattopadhyay M. Delivery of Mesenchymal Stem Cells from Gelatin-Alginate Hydrogels to Stomach Lumen for Treatment of Gastroparesis. Bioengineering (Basel) 2018; 5:E12. [PMID: 29414870 PMCID: PMC5874878 DOI: 10.3390/bioengineering5010012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/02/2018] [Accepted: 02/04/2018] [Indexed: 12/12/2022] Open
Abstract
Gastroparesis (GP) is associated with depletion of interstitial cells of Cajal (ICCs) and enteric neurons, which leads to pyloric dysfunction followed by severe nausea, vomiting and delayed gastric emptying. Regenerating these fundamental structures with mesenchymal stem cell (MSC) therapy would be helpful to restore gastric function in GP. MSCs have been successfully used in animal models of other gastrointestinal (GI) diseases, including colitis. However, no study has been performed with these cells on GP animals. In this study, we explored whether mouse MSCs can be delivered from a hydrogel scaffold to the luminal surfaces of mice stomach explants. Mouse MSCs were seeded atop alginate-gelatin, coated with poly-l-lysine. These cell-gel constructs were placed atop stomach explants facing the luminal side. MSCs grew uniformly all across the gel surface within 48 h. When placed atop the lumen of the stomach, MSCs migrated from the gels to the tissues, as confirmed by positive staining with vimentin and N-cadherin. Thus, the feasibility of transplanting a cell-gel construct to deliver stem cells in the stomach wall was successfully shown in a mice stomach explant model, thereby making a significant advance towards envisioning the transplantation of an entire tissue-engineered 'gastric patch' or 'microgels' with cells and growth factors.
Collapse
Affiliation(s)
- Binata Joddar
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, USA.
- Border Biomedical Research Center, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, USA.
| | - Nishat Tasnim
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, USA.
| | - Vikram Thakur
- Department of Biomedical Sciences, Center of Emphasis in Diabetes and Metabolism, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, TX 79905, USA.
| | - Alok Kumar
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, USA.
| | - Richard W McCallum
- Department of Internal Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, 4800 Alberta Avenue, El Paso, TX 79905, USA.
| | - Munmun Chattopadhyay
- Department of Biomedical Sciences, Center of Emphasis in Diabetes and Metabolism, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, TX 79905, USA.
| |
Collapse
|
14
|
Bardanzellu F, Fanos V, Reali A. "Omics" in Human Colostrum and Mature Milk: Looking to Old Data with New Eyes. Nutrients 2017; 9:E843. [PMID: 28783113 PMCID: PMC5579636 DOI: 10.3390/nu9080843] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/02/2017] [Accepted: 08/04/2017] [Indexed: 12/21/2022] Open
Abstract
Human Milk (HM) is the best source for newborn nutrition until at least six months; it exerts anti-inflammatory and anti-infective functions, promotes immune system formation and supports organ development. Breastfeeding could also protect from obesity, diabetes and cardiovascular disease. Furthermore, human colostrum (HC) presents a peculiar role in newborn support as a protective effect against allergic and chronic diseases, in addition to long-term metabolic benefits. In this review, we discuss the recent literature regarding "omics" technologies and growth factors (GF) in HC and the effects of pasteurization on its composition. Our aim was to provide new evidence in terms of transcriptomics, proteomics, metabolomics, and microbiomics, also in relation to maternal metabolic diseases and/or fetal anomalies and to underline the functions of GF. Since HC results are so precious, particularly for the vulnerable pre-terms category, we also discuss the importance of HM pasteurization to ensure donated HC even to neonates whose mothers are unable to provide. To the best of our knowledge, this is the first review analyzing in detail the molecular pattern, microbiota, bioactive factors, and dynamic profile of HC, finding clinical correlations of such mediators with their possible in vivo effects and with the consequent impact on neonatal outcomes.
Collapse
Affiliation(s)
- Flaminia Bardanzellu
- Neonatal Intensive Care Unit, Neonatal Pathology and Neonatal Section, AOU and University of Cagliari, 09124 Cagliari, Italy.
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Neonatal Pathology and Neonatal Section, AOU and University of Cagliari, 09124 Cagliari, Italy.
| | - Alessandra Reali
- Neonatal Intensive Care Unit, Neonatal Pathology and Neonatal Section, AOU and University of Cagliari, 09124 Cagliari, Italy.
| |
Collapse
|