1
|
Kukavica D, Trancuccio A, Mazzanti A, Napolitano C, Morini M, Pili G, Memmi M, Gambelli P, Bloise R, Nastoli J, Colombi B, Guarracino A, Marino M, Ceriotti C, Galimberti P, Ottaviano L, Mantica M, Priori SG. Nonmodifiable Risk Factors Predict Outcomes in Brugada Syndrome. J Am Coll Cardiol 2024; 84:2087-2098. [PMID: 39387761 DOI: 10.1016/j.jacc.2024.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Risk stratification in Brugada syndrome (BrS) is based on the occurrence of dynamic factors, such as unexplained syncope and documentation of spontaneous type 1 pattern. At odds with other channelopathies, the role of nonmodifiable risk factors such as sex or genetics remains uncertain. OBJECTIVES This study aims to identify nonmodifiable risk factors for the occurrence of life-threatening arrhythmic events (LAEs) and define their clinical utility. METHODS Clinical and genetic data from consecutive, unrelated Italian patients with Brugada syndrome screened on the sodium voltage-gated channel alpha subunit 5 (SCN5A) gene and 3 pivotal single-nucleotide variations (formerly single-nucleotide polymorphisms) associated with BrS (rs11708996, rs10428132, and rs9388451) were analyzed using multivariable Cox proportional hazards model. RESULTS In 2,182 unrelated patients with BrS (81% males; median age at diagnosis: 41.6 years [Q1-Q3: 33.4-50.3 years]), male sex (HR: 3.6; 95% CI: 1.9-6.9; P = 0.0001), missense SCN5A mutations in BrS-enriched domains (HR: 2.3; 95% CI: 1.2-4.3; P = 0.008), nonmissense SCN5A mutations (HR: 3.2; 95% CI: 1.8-5.7; P < 0.001), and polygenic risk score for BrS (HR: 1.3; 95% CI: 1.0-1.6; P = 0.041) were all independently associated with a significantly higher risk of a first LAE since birth. Based on these results, we derived the nonmodifiable risk of each patient with BrS, and the division of nonmodifiable risk into tertiles identified 3 distinct risk profiles. In an analysis at follow-up, nonmodifiable risk was independently associated with LAE at follow-up (HR: 1.8; 95% CI: 1.1-2.7; P = 0.014), alongside classical predictors including: history of LAE before diagnosis (HR: 13.8; 95% CI: 8.1-23.7; P < 0.0001), history of unexplained syncope before diagnosis (HR: 4.1; 95% CI: 2.4-6.8; P < 0.0001), and spontaneous type 1 pattern at diagnosis (HR: 2.1; 95% CI: 1.2-3.8; P = 0.010). The model was internally validated, and we derived the equation permitting to calculate the granular 5-year risk of experiencing an LAE at follow-up for each patient with BrS, which may be used to facilitate clinical decision-making. CONCLUSIONS Our data show that male sex, type of SCN5A mutation, and polygenic risk score for BrS define the nonmodifiable risk of each patient with BrS. Nonmodifiable risk is independently associated with LAE, regardless of symptoms or pattern type.
Collapse
Affiliation(s)
- Deni Kukavica
- Molecular Cardiology Unit, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy; Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Alessandro Trancuccio
- Molecular Cardiology Unit, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy; Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Andrea Mazzanti
- Molecular Cardiology Unit, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy; Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Carlo Napolitano
- Molecular Cardiology Unit, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy; Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Massimo Morini
- Molecular Cardiology Unit, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Gianluca Pili
- Molecular Cardiology Unit, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy; Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Mirella Memmi
- Molecular Cardiology Unit, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Patrick Gambelli
- Molecular Cardiology Unit, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Raffaella Bloise
- Molecular Cardiology Unit, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Jannì Nastoli
- Molecular Cardiology Unit, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Barbara Colombi
- Molecular Cardiology Unit, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Alessio Guarracino
- Molecular Cardiology Unit, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Maira Marino
- Molecular Cardiology Unit, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Carlo Ceriotti
- Electrophysiology and Pacing Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Paola Galimberti
- Electrophysiology and Pacing Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Luca Ottaviano
- Arrhythmia and Electrophysiology Unit, Cardiothoracic Department, IRCCS Galeazzi-S. Ambrogio, Milan, Italy
| | - Massimo Mantica
- Arrhythmia and Electrophysiology Unit, Cardiothoracic Department, IRCCS Galeazzi-S. Ambrogio, Milan, Italy
| | - Silvia G Priori
- Molecular Cardiology Unit, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy; Department of Molecular Medicine, University of Pavia, Pavia, Italy.
| |
Collapse
|
2
|
Begovic M, Schneider L, Zhou X, Hamdani N, Akin I, El-Battrawy I. The Role of Human-Induced Pluripotent Stem Cells in Studying Cardiac Channelopathies. Int J Mol Sci 2024; 25:12034. [PMID: 39596103 PMCID: PMC11593457 DOI: 10.3390/ijms252212034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/22/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
Cardiac channelopathies are inherited diseases that increase the risk of sudden cardiac death. While different genes have been associated with inherited channelopathies, there are still subtypes, e.g., catecholaminergic polymorphic ventricular tachycardia and Brugada syndrome, where the genetic cause remains unknown. Various models, including animal models, heterologous expression systems, and the human-induced pluripotent stem-cell-derived cardiomyocytes (hiPSCs-CMs) model, have been used to study the pathophysiological mechanisms of channelopathies. Recently, researchers have focused on using hiPSCs-CMs to understand the genotype-phenotype correlation and screen drugs. By combining innovative techniques such as Clustered Regularly Interspaced Short Palindromic Repeats/Clustered Regularly Interspaced Short Palindromic Repeats associated protein 9 (CRISPR/Cas9)-mediated genome editing, and three-dimensional (3D) engineered heart tissues, we can gain new insights into the pathophysiological mechanisms of channelopathies. This approach holds promise for improving personalized drug treatment. This review highlights the role of hiPSCs-CMs in understanding the pathomechanism of Brugada syndrome and catecholaminergic polymorphic ventricular tachycardia and how these models can be utilized for drug screening.
Collapse
Affiliation(s)
- Merima Begovic
- Institute of Physiology, Department of Cellular and Translational Physiology, Ruhr-University Bochum, 44801 Bochum, Germany; (M.B.); (L.S.); (N.H.)
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Luca Schneider
- Institute of Physiology, Department of Cellular and Translational Physiology, Ruhr-University Bochum, 44801 Bochum, Germany; (M.B.); (L.S.); (N.H.)
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Xiaobo Zhou
- Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany;
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Nazha Hamdani
- Institute of Physiology, Department of Cellular and Translational Physiology, Ruhr-University Bochum, 44801 Bochum, Germany; (M.B.); (L.S.); (N.H.)
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
- Department of Physiology, Cardiovascular Research Institute, University Maastricht, 6229HX Maastricht, The Netherlands
- HCEMM-SU Cardiovascular Comorbidities Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Intézet címe Semmelweis University, 1089 Budapest, Hungary
- Department of Cardiology and Rhythmology, St. Josef Hospital, Ruhr University, 44791 Bochum, Germany
| | - Ibrahim Akin
- Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany;
| | - Ibrahim El-Battrawy
- Institute of Physiology, Department of Cellular and Translational Physiology, Ruhr-University Bochum, 44801 Bochum, Germany; (M.B.); (L.S.); (N.H.)
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
- Department of Cardiology and Rhythmology, St. Josef Hospital, Ruhr University, 44791 Bochum, Germany
| |
Collapse
|
3
|
Xu B, Yang J, Liu F, Lv T, Li K, Yuan Y, Li S, Liu Y, Zhang P. Clinical and genetic characteristics of catecholaminergic polymorphic ventricular tachycardia combined with left ventricular non-compaction. Cardiol Young 2024; 34:1010-1017. [PMID: 38017672 DOI: 10.1017/s1047951123003086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
BACKGROUND Catecholaminergic polymorphic ventricular tachycardia is an ion channelopathy, caused by mutations in genes coding for calcium-handling proteins. It can coexist with left ventricular non-compaction. We aim to investigate the clinical and genetic characteristics of this co-phenotype. METHODS Medical records of 24 patients diagnosed with catecholaminergic polymorphic ventricular tachycardia in two Chinese hospitals between September, 2005, and January, 2020, were retrospectively reviewed. We evaluated their clinical and genetic characteristics, including basic demographic data, electrocardiogram parameters, medications and survival during follow-up, and their gene mutations. We did structural analysis for a novel variant ryanodine receptor 2-E4005V. RESULTS The patients included 19 with catecholaminergic polymorphic ventricular tachycardia mono-phenotype and 5 catecholaminergic polymorphic ventricular tachycardia-left ventricular non-compaction overlap patients. The median age of onset symptoms was 9.0 (8.0,13.5) years. Most patients (91.7%) had cardiac symptoms, and 50% had a family history of syncope. Overlap patients had lower peak heart rate and threshold heart rate for ventricular tachycardia and ventricular premature beat during the exercise stress test (p < 0.05). Sudden cardiac death risk may be higher in overlap patients during follow-up. Gene sequencing revealed 1 novel ryanodine receptor 2 missense mutation E4005V and 1 mutation previously unreported in catecholaminergic polymorphic ventricular tachycardia, but no left ventricular non-compaction-causing mutations were observed. In-silico analysis showed the novel mutation E4005V broke down the interaction between two charged residues. CONCLUSIONS Catecholaminergic polymorphic ventricular tachycardia overlapping with left ventricular non-compaction may lead to ventricular premature beat/ventricular tachycardia during exercise stress test at lower threshold heart rate than catecholaminergic polymorphic ventricular tachycardia alone; it may also indicate a worse prognosis and requires strict follow-up. ryanodine receptor 2 mutations disrupted interactions between residues and may interfere the function of ryanodine receptor 2.
Collapse
Affiliation(s)
- Bihe Xu
- Department of Cardiology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Jing Yang
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Department of Cardiology, Peking University People's Hospital, Beijing, China
| | - Fang Liu
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Tingting Lv
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Kun Li
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yifang Yuan
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Siyuan Li
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yuanwei Liu
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Ping Zhang
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Department of Cardiology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
4
|
Bansal V, Winkelmann BR, Dietrich JW, Boehm BO. Whole-exome sequencing in familial type 2 diabetes identifies an atypical missense variant in the RyR2 gene. Front Endocrinol (Lausanne) 2024; 15:1258982. [PMID: 38444585 PMCID: PMC10913019 DOI: 10.3389/fendo.2024.1258982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/10/2024] [Indexed: 03/07/2024] Open
Abstract
Genome-wide association studies have identified several hundred loci associated with type 2 diabetes mellitus (T2DM). Additionally, pathogenic variants in several genes are known to cause monogenic diabetes that overlaps clinically with T2DM. Whole-exome sequencing of related individuals with T2DM is a powerful approach to identify novel high-penetrance disease variants in coding regions of the genome. We performed whole-exome sequencing on four related individuals with T2DM - including one individual diagnosed at the age of 33 years. The individuals were negative for mutations in monogenic diabetes genes, had a strong family history of T2DM, and presented with several characteristics of metabolic syndrome. A missense variant (p.N2291D) in the type 2 ryanodine receptor (RyR2) gene was one of eight rare coding variants shared by all individuals. The variant was absent in large population databases and affects a highly conserved amino acid located in a mutational hotspot for pathogenic variants in Catecholaminergic polymorphic ventricular tachycardia (CPVT). Electrocardiogram data did not reveal any cardiac abnormalities except a lower-than-normal resting heart rate (< 60 bpm) in two individuals - a phenotype observed in CPVT individuals with RyR2 mutations. RyR2-mediated Ca2+ release contributes to glucose-mediated insulin secretion and pathogenic RyR2 mutations cause glucose intolerance in humans and mice. Analysis of glucose tolerance testing data revealed that missense mutations in a CPVT mutation hotspot region - overlapping the p.N2291D variant - are associated with complete penetrance for glucose intolerance. In conclusion, we have identified an atypical missense variant in the RyR2 gene that co-segregates with diabetes in the absence of overt CPVT.
Collapse
Affiliation(s)
- Vikas Bansal
- Department of Pediatrics, University of California San Diego, La Jolla, CA, United States
- Institute of Genomic Medicine, University of California San Diego, La Jolla, CA, United States
| | | | - Johannes W Dietrich
- Diabetes, Endocrinology and Metabolism Section, Department of Internal Medicine I, St. Josef Hospital, Ruhr University Hospitals, Bochum, Germany
- Diabetes Center Bochum-Hattingen, St. Elisabeth-Hospital Blankenstein, Hattingen, Germany
- Center for Rare Endocrine Diseases, Ruhr Center for Rare Diseases (CeSER), Ruhr University Bochum and Witten/Herdecke University, Bochum, Germany
- Center for Diabetes Technology, Catholic Hospitals Bochum, Bochum, Germany
| | - Bernhard O Boehm
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
5
|
Ishida R, Kurebayashi N, Iinuma H, Zeng X, Mori S, Kodama M, Murayama T, Masuno H, Takeda F, Kawahata M, Tanatani A, Miura A, Nishio H, Sakurai T, Kagechika H. A potent and selective cis-amide inhibitor of ryanodine receptor 2 as a candidate for cardiac arrhythmia treatment. Eur J Med Chem 2023; 262:115910. [PMID: 37922828 DOI: 10.1016/j.ejmech.2023.115910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Ryanodine receptor 2 (RyR2) is a Ca2+ release channel mainly located on the sarcoplasmic reticulum (SR) membrane of heart muscle cells and regulates the concentration of Ca2+ in the cytosol. RyR2 overactivation causes potentially lethal cardiac arrhythmias, but no specific inhibitor is yet available. Herein we developed the first highly potent and selective RyR2 inhibitor, TMDJ-035, containing 3,5-difluoro substituents on the A ring and a 4-fluoro substituent on the B ring, based on a comprehensive structure-activity relationship (SAR) study of tetrazole compound 1. The SAR study also showed that the amide conformation is critical for inhibitory potency. Single-crystal X-ray diffraction analysis and variable-temperature 1H NMR revealed that TMDJ-035 strongly favors cis-amide configuration, while the inactive analogue TMDJ-011 with a secondary amide takes trans-amide configuration. Examination of the selectivity among RyRs indicated that TMDJ-035 displayed high selectivity for RyR2. TMDJ-035 suppressed abnormal Ca2+ waves and transients in isolated cardiomyocytes from RyR2-mutated mice. It appears to be a promising candidate drug for treating cardiac arrhythmias due to RyR2 overactivation, as well as a tool for studying the mechanism and dynamics of RyR2 channel gating.
Collapse
Affiliation(s)
- Ryosuke Ishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, 101-0062, Japan
| | - Nagomi Kurebayashi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan.
| | - Hiroto Iinuma
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, 101-0062, Japan
| | - Xi Zeng
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, 101-0062, Japan
| | - Shuichi Mori
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, 101-0062, Japan
| | - Masami Kodama
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Takashi Murayama
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Hiroyuki Masuno
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, 101-0062, Japan
| | - Fumi Takeda
- Department of Chemistry, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
| | - Masatoshi Kawahata
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Aya Tanatani
- Department of Chemistry, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
| | - Aya Miura
- Department of Legal Medicine, Hyogo Medical University, Nishinomiya, 663-8501, Japan
| | - Hajime Nishio
- Department of Legal Medicine, Hyogo Medical University, Nishinomiya, 663-8501, Japan
| | - Takashi Sakurai
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Hiroyuki Kagechika
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, 101-0062, Japan.
| |
Collapse
|
6
|
Pannone L, Gauthey A, Conte G, Osei R, Campanale D, Baldi E, Berne P, Vicentini A, Vergara P, Sorgente A, Rootwelt-Norberg C, Della Rocca DG, Monaco C, Bisignani A, Miraglia V, Spolverini M, Paparella G, Overeinder I, Bala G, Almorad A, Ströker E, de Ravel T, Medeiros-Domingo A, Sieira J, Haugaa KH, Brugada P, La Meir M, Auricchio A, Chierchia GB, Van Dooren S, de Asmundis C. Genetics in Probands With Idiopathic Ventricular Fibrillation: A Multicenter Study. JACC Clin Electrophysiol 2023; 9:1296-1306. [PMID: 37227348 DOI: 10.1016/j.jacep.2023.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Different genes have been associated with idiopathic ventricular fibrillation (IVF); however, there are no studies correlating genotype with phenotype. OBJECTIVES The aim of this study was to define the genetic background of probands with IVF using large gene panel analysis and to correlate genetics with long-term clinical outcomes. METHODS All consecutive probands with a diagnosis of IVF were included in a multicenter retrospective study. All patients had: 1) IVF diagnosis throughout the follow-up; and 2) genetic analysis with a broad gene panel. All genetic variants were classified as pathogenic/likely pathogenic (P+), variants of unknown significance (VUS) or no variants (NO-V), following current guidelines of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. The primary endpoint was occurrence of ventricular arrhythmias (VA). RESULTS Forty-five consecutive patients were included. A variant was found in 12 patients, 3 P+ and 9 VUS carriers. After a mean follow-up time of 105.0 months, there were no deaths and 16 patients (35.6%) experienced a VA. NO-V patients had higher VA free survival during the follow-up, compared with both VUS (72.7% vs 55.6%, log-rank P < 0.001) and P+ (72.7% vs 0%, log-rank P = 0.013). At Cox analysis, P+ or VUS carrier status was a predictor of VA occurrence. CONCLUSIONS In probands with IVF, undergoing genetic analysis with a broad panel, the diagnostic yield for P+ is 6.7%. P+ or VUS carrier status is a predictor of VA occurrence.
Collapse
Affiliation(s)
- Luigi Pannone
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Anaïs Gauthey
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Giulio Conte
- Division of Cardiology, Istituto Cardiocentro Ticino, Ente Cantonale Ospedaliero, Lugano, Switzerland
| | - Randy Osei
- Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Brussels, Belgium
| | - Daniela Campanale
- Division of Cardiology, Istituto Cardiocentro Ticino, Ente Cantonale Ospedaliero, Lugano, Switzerland
| | - Enrico Baldi
- Department of Molecular Medicine, Section of Cardiology, University of Pavia, Pavia, Italy; Cardiac Intensive Care Unit, Arrhythmia and Electrophysiology and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Paola Berne
- Department of Cardiology, Ospedale Santissima Annunziata, University of Sassari, Sassari, Italy
| | - Alessandro Vicentini
- Department of Molecular Medicine, Section of Cardiology, University of Pavia, Pavia, Italy; Cardiac Intensive Care Unit, Arrhythmia and Electrophysiology and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Pasquale Vergara
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Antonio Sorgente
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Christine Rootwelt-Norberg
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; University of Oslo, Oslo, Norway
| | - Domenico Giovanni Della Rocca
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Cinzia Monaco
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Antonio Bisignani
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Vincenzo Miraglia
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Marcello Spolverini
- Department of Molecular Medicine, Section of Cardiology, University of Pavia, Pavia, Italy; Cardiac Intensive Care Unit, Arrhythmia and Electrophysiology and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Gaetano Paparella
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Ingrid Overeinder
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Gezim Bala
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Alexandre Almorad
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Erwin Ströker
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Thomy de Ravel
- Centre for Medical Genetics Universitair Ziekenhuis Brussel - Vrije Universiteit Brussel, Brussels, Belgium, and European Reference Networks Guard-Heart, Brussels, Belgium
| | | | - Juan Sieira
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Kristina H Haugaa
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; University of Oslo, Oslo, Norway
| | - Pedro Brugada
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Mark La Meir
- Cardiac Surgery Department, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Brussels, Belgium
| | - Angelo Auricchio
- Division of Cardiology, Istituto Cardiocentro Ticino, Ente Cantonale Ospedaliero, Lugano, Switzerland
| | - Gian-Battista Chierchia
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Sonia Van Dooren
- Centre for Medical Genetics Universitair Ziekenhuis Brussel - Vrije Universiteit Brussel, Brussels, Belgium, and European Reference Networks Guard-Heart, Brussels, Belgium
| | - Carlo de Asmundis
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium.
| |
Collapse
|
7
|
Molecular Aspects Implicated in Dantrolene Selectivity with Respect to Ryanodine Receptor Isoforms. Int J Mol Sci 2023; 24:ijms24065409. [PMID: 36982484 PMCID: PMC10049336 DOI: 10.3390/ijms24065409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/24/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Dantrolene is an intra-cellularly acting skeletal muscle relaxant used for the treatment of the rare genetic disorder, malignant hyperthermia (MH). In most cases, MH susceptibility is caused by dysfunction of the skeletal ryanodine receptor (RyR1) harboring one of nearly 230 single-point MH mutations. The therapeutic effect of dantrolene is the result of a direct inhibitory action on the RyR1 channel, thus suppressing aberrant Ca2+ release from the sarcoplasmic reticulum. Despite the almost identical dantrolene-binding sequence exits in all three mammalian RyR isoforms, dantrolene appears to be an isoform-selective inhibitor. Whereas RyR1 and RyR3 channels are competent to bind dantrolene, the RyR2 channel, predominantly expressed in the heart, is unresponsive. However, a large body of evidence suggests that the RyR2 channel becomes sensitive to dantrolene-mediated inhibition under certain pathological conditions. Although a consistent picture of the dantrolene effect emerges from in vivo studies, in vitro results are often contradictory. Hence, our goal in this perspective is to provide the best possible clues to the molecular mechanism of dantrolene’s action on RyR isoforms by identifying and discussing potential sources of conflicting results, mainly coming from cell-free experiments. Moreover, we propose that, specifically in the case of the RyR2 channel, its phosphorylation could be implicated in acquiring the channel responsiveness to dantrolene inhibition, interpreting functional findings in the structural context.
Collapse
|
8
|
Zaffran S, Kraoua L, Jaouadi H. Calcium Handling in Inherited Cardiac Diseases: A Focus on Catecholaminergic Polymorphic Ventricular Tachycardia and Hypertrophic Cardiomyopathy. Int J Mol Sci 2023; 24:3365. [PMID: 36834774 PMCID: PMC9963263 DOI: 10.3390/ijms24043365] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Calcium (Ca2+) is the major mediator of cardiac contractile function. It plays a key role in regulating excitation-contraction coupling and modulating the systolic and diastolic phases. Defective handling of intracellular Ca2+ can cause different types of cardiac dysfunction. Thus, the remodeling of Ca2+ handling has been proposed to be a part of the pathological mechanism leading to electrical and structural heart diseases. Indeed, to ensure appropriate electrical cardiac conduction and contraction, Ca2+ levels are regulated by several Ca2+-related proteins. This review focuses on the genetic etiology of cardiac diseases related to calcium mishandling. We will approach the subject by focalizing on two clinical entities: catecholaminergic polymorphic ventricular tachycardia (CPVT) as a cardiac channelopathy and hypertrophic cardiomyopathy (HCM) as a primary cardiomyopathy. Further, this review will illustrate the fact that despite the genetic and allelic heterogeneity of cardiac defects, calcium-handling perturbations are the common pathophysiological mechanism. The newly identified calcium-related genes and the genetic overlap between the associated heart diseases are also discussed in this review.
Collapse
Affiliation(s)
- Stéphane Zaffran
- Marseille Medical Genetics, INSERM, Aix Marseille University, U1251 Marseille, France
| | - Lilia Kraoua
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital, Tunis 1006, Tunisia
| | - Hager Jaouadi
- Marseille Medical Genetics, INSERM, Aix Marseille University, U1251 Marseille, France
| |
Collapse
|
9
|
Abstract
Flecainide, a cardiac class 1C blocker of the surface membrane sodium channel (NaV1.5), has also been reported to reduce cardiac ryanodine receptor (RyR2)-mediated sarcoplasmic reticulum (SR) Ca2+ release. It has been introduced as a clinical antiarrhythmic agent for catecholaminergic polymorphic ventricular tachycardia (CPVT), a condition most commonly associated with gain-of-function RyR2 mutations. Current debate concerns both cellular mechanisms of its antiarrhythmic action and molecular mechanisms of its RyR2 actions. At the cellular level, it targets NaV1.5, RyR2, Na+/Ca2+ exchange (NCX), and additional proteins involved in excitation-contraction (EC) coupling and potentially contribute to the CPVT phenotype. This Viewpoint primarily addresses the various direct molecular actions of flecainide on isolated RyR2 channels in artificial lipid bilayers. Such studies demonstrate different, multifarious, flecainide binding sites on RyR2, with voltage-dependent binding in the channel pore or voltage-independent binding at distant peripheral sites. In contrast to its single NaV1.5 pore binding site, flecainide may bind to at least four separate inhibitory sites on RyR2 and one activation site. None of these binding sites have been specifically located in the linear RyR2 sequence or high-resolution structure. Furthermore, it is not clear which of the inhibitory sites contribute to flecainide's reduction of spontaneous Ca2+ release in cellular studies. A confounding observation is that flecainide binding to voltage-dependent inhibition sites reduces cation fluxes in a direction opposite to physiological Ca2+ flow from SR lumen to cytosol. This may suggest that, rather than directly blocking Ca2+ efflux, flecainide can reduce Ca2+ efflux by blocking counter currents through the pore which otherwise limit SR membrane potential change during systolic Ca2+ efflux. In summary, the antiarrhythmic effects of flecainide in CPVT seem to involve multiple components of EC coupling and multiple actions on RyR2. Their clarification may identify novel specific drug targets and facilitate flecainide's clinical utilization in CPVT.
Collapse
Affiliation(s)
| | - Christopher L.-H. Huang
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - James A. Fraser
- Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - Angela F. Dulhunty
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| |
Collapse
|
10
|
Molecular, Subcellular, and Arrhythmogenic Mechanisms in Genetic RyR2 Disease. Biomolecules 2022; 12:biom12081030. [PMID: 35892340 PMCID: PMC9394283 DOI: 10.3390/biom12081030] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 11/17/2022] Open
Abstract
The ryanodine receptor (RyR2) has a critical role in controlling Ca2+ release from the sarcoplasmic reticulum (SR) throughout the cardiac cycle. RyR2 protein has multiple functional domains with specific roles, and four of these RyR2 protomers are required to form the quaternary structure that comprises the functional channel. Numerous mutations in the gene encoding RyR2 protein have been identified and many are linked to a wide spectrum of arrhythmic heart disease. Gain of function mutations (GoF) result in a hyperactive channel that causes excessive spontaneous SR Ca2+ release. This is the predominant cause of the inherited syndrome catecholaminergic polymorphic ventricular tachycardia (CPVT). Recently, rare hypoactive loss of function (LoF) mutations have been identified that produce atypical effects on cardiac Ca2+ handling that has been termed calcium release deficiency syndrome (CRDS). Aberrant Ca2+ release resulting from both GoF and LoF mutations can result in arrhythmias through the Na+/Ca2+ exchange mechanism. This mini-review discusses recent findings regarding the role of RyR2 domains and endogenous regulators that influence RyR2 gating normally and with GoF/LoF mutations. The arrhythmogenic consequences of GoF/LoF mutations will then be discussed at the macromolecular and cellular level.
Collapse
|
11
|
Anderson CL, Munawar S, Reilly L, Kamp TJ, January CT, Delisle BP, Eckhardt LL. How Functional Genomics Can Keep Pace With VUS Identification. Front Cardiovasc Med 2022; 9:900431. [PMID: 35859585 PMCID: PMC9291992 DOI: 10.3389/fcvm.2022.900431] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/09/2022] [Indexed: 01/03/2023] Open
Abstract
Over the last two decades, an exponentially expanding number of genetic variants have been identified associated with inherited cardiac conditions. These tremendous gains also present challenges in deciphering the clinical relevance of unclassified variants or variants of uncertain significance (VUS). This review provides an overview of the advancements (and challenges) in functional and computational approaches to characterize variants and help keep pace with VUS identification related to inherited heart diseases.
Collapse
Affiliation(s)
- Corey L. Anderson
- Cellular and Molecular Arrythmias Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Saba Munawar
- Cellular and Molecular Arrythmias Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Louise Reilly
- Cellular and Molecular Arrythmias Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Timothy J. Kamp
- Cellular and Molecular Arrythmias Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Craig T. January
- Cellular and Molecular Arrythmias Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Brian P. Delisle
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Lee L. Eckhardt
- Cellular and Molecular Arrythmias Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
12
|
Mazzanti A, Kukavica D, Trancuccio A, Memmi M, Bloise R, Gambelli P, Marino M, Ortíz-Genga M, Morini M, Monteforte N, Giordano U, Keegan R, Tomasi L, Anastasakis A, Davis AM, Shimizu W, Blom NA, Santiago DJ, Napolitano C, Monserrat L, Priori SG. Outcomes of Patients With Catecholaminergic Polymorphic Ventricular Tachycardia Treated With β-Blockers. JAMA Cardiol 2022; 7:504-512. [PMID: 35353122 PMCID: PMC8968697 DOI: 10.1001/jamacardio.2022.0219] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/02/2022] [Indexed: 12/15/2022]
Abstract
Importance Patients with catecholaminergic polymorphic ventricular tachycardia (CPVT) may experience life-threatening arrhythmic events (LTAEs) despite β-blocker treatment. Further complicating management, the role of implantable cardioverter defibrillator (ICD) in CPVT is debated. Objective To investigate the long-term outcomes of patients with RYR2 CPVT treated with β-blockers only and the cost to benefit ratio of ICD. Design, Settings, and Participants This prospective cohort study conducted from January 1988 to October 2020 with a mean (SD) follow-up of 9.4 (7.5) years included patients who were referred to the Molecular Cardiology Clinics of ICS Maugeri Hospital, Pavia, Italy. Participants included consecutive patients with CPVT who were carriers of a pathogenic or likely pathogenic RYR2 variant with long-term clinical follow-up. Exposures Treatment with selective and nonselective β-blocker only and ICD implant when indicated. Main Outcome and Measures The main outcome was the occurrence of the first LTAE while taking a β-blocker. LTAE was defined as a composite of 3 hard end points: sudden cardiac death, aborted cardiac arrest, and hemodynamically nontolerated ventricular tachycardia. Results The cohort included 216 patients with RYR2 CPVT (121 of 216 female [55%], median [IQR] age 14, [9-30] years). During a mean (SD) follow-up of 9.4 (7.5) years taking β-blockers only, 28 of 216 patients (13%) experienced an LTAE (annual rate, 1.9%; 95% CI, 1.3-2.7). In multivariable analysis, experiencing either an LTAE (hazard ratio [HR], 3.3; 95% CI, 1.2-8.9; P = .02) or syncope before diagnosis (HR, 4.5; 95% CI, 1.8-11.1; P = .001) and carrying a C-terminal domain variant (HR, 18.1; 95% CI, 4.1-80.8; P < .001) were associated with an increased LTAE risk during β-blocker therapy only. The risk of LTAE among those taking selective β-blockers vs nadolol was increased 6-fold (HR, 5.8; 95% CI, 2.1-16.3; P = .001). Conversely, no significant difference was present between propranolol and nadolol (HR, 1.8; 95% CI, 0.4-7.3; P = .44). An ICD was implanted in 79 of 216 patients (37%) who were followed up for a mean (SD) of 8.6 (6.3) years. At the occurrence of LTAE, ICD carriers were more likely to survive (18 of 18 [100%]) than non-ICD carriers (6 of 10 [60%]; P = .01). Conclusions and Relevance In this cohort study, selective β-blockers were associated with a higher risk of LTAE as compared with nadolol. Independently from treatment, LTAE and syncope before diagnosis and C-terminal domain variants identified patients at higher risk of β-blocker failure, and the ICD was associated with reduced mortality in high-risk patients with CPVT.
Collapse
Affiliation(s)
- Andrea Mazzanti
- Department of Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- ERN Guard-Heart European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart
- Department of Molecular Cardiology, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Deni Kukavica
- Department of Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Molecular Cardiology, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Alessandro Trancuccio
- Department of Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Molecular Cardiology, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Mirella Memmi
- Department of Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Raffaella Bloise
- Department of Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Patrick Gambelli
- Department of Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Maira Marino
- Department of Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | | | - Massimo Morini
- Department of Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Nicola Monteforte
- Department of Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Umberto Giordano
- Department of Cardiology, ARNAS Civico Cristina Di Benefratelli, Palermo, Italy
| | - Roberto Keegan
- Department of Electrophysiology, Hospital Privado Del Sur, Buenos Aires, Argentina
| | - Luca Tomasi
- Department of Cardiology, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Aristides Anastasakis
- Unit of Inherited and Rare Cardiovascular Diseases, Onassis Cardiac Surgery Center, Athens, Greece
| | - Andrew M. Davis
- Department of Cardiology, The Royal Children’s Hospital, Melbourne, Australia
- Department of Pediatrics, University of Melbourne, Melbourne, Australia
- Murdoch Children’s Research Institute, Melbourne, Australia
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
| | - Nico A. Blom
- Department of Pediatric Cardiology, University of Leiden, Leiden, the Netherlands
| | - Demetrio Julián Santiago
- Department of Molecular Cardiology, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Carlo Napolitano
- Department of Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- ERN Guard-Heart European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart
| | | | - Silvia G. Priori
- Department of Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- ERN Guard-Heart European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart
- Department of Molecular Cardiology, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| |
Collapse
|
13
|
Hopton C, Tijsen AJ, Maizels L, Arbel G, Gepstein A, Bates N, Brown B, Huber I, Kimber SJ, Newman WG, Venetucci L, Gepstein L. Characterization of the mechanism by which a nonsense variant in RYR2 leads to disordered calcium handling. Physiol Rep 2022; 10:e15265. [PMID: 35439358 PMCID: PMC9017975 DOI: 10.14814/phy2.15265] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023] Open
Abstract
Heterozygous missense variants of the cardiac ryanodine receptor gene (RYR2) cause catecholaminergic polymorphic ventricular tachycardia (CPVT). These missense variants of RYR2 result in a gain of function of the ryanodine receptors, characterized by increased sensitivity to activation by calcium that results in an increased propensity to develop calcium waves and delayed afterdepolarizations. We have recently detected a nonsense variant in RYR2 in a young patient who suffered an unexplained cardiac arrest. To understand the mechanism by which this variant in RYR2, p.(Arg4790Ter), leads to ventricular arrhythmias, human induced pluripotent stem cells (hiPSCs) harboring the novel nonsense variant in RYR2 were generated and differentiated into cardiomyocytes (RYR2-hiPSC-CMs) and molecular and calcium handling properties were studied. RYR2-hiPSC-CMs displayed significant calcium handling abnormalities at baseline and following treatment with isoproterenol. Treatment with carvedilol and nebivolol resulted in a significant reduction in calcium handling abnormalities in the RYR2-hiPSC-CMs. Expression of the mutant RYR2 allele was confirmed at the mRNA level and partial silencing of the mutant allele resulted in a reduction in calcium handling abnormalities at baseline. The nonsense variant behaves similarly to other gain of function variants in RYR2. Carvedilol and nebivolol may be suitable treatments for patients with gain of function RYR2 variants.
Collapse
Affiliation(s)
- Claire Hopton
- Division of Evolution and Genomic SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
- Manchester Centre for Genomic MedicineManchester University NHS Foundation TrustHealth Innovation ManchesterManchesterUK
- Division of Cardiovascular SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Anke J. Tijsen
- The Rappaport Faculty of Medicine and Research InstituteTechnion‐Institute of TechnologyHaifaIsrael
- Amsterdam UMCDepartment of Experimental CardiologyAmsterdam Cardiovascular SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | - Leonid Maizels
- The Rappaport Faculty of Medicine and Research InstituteTechnion‐Institute of TechnologyHaifaIsrael
- Division of CardiologySheba Medical Center HospitalTel HashomerIsrael
- The Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- The Talpiot Sheba Medical Leadership ProgramIsrael
| | - Gil Arbel
- The Rappaport Faculty of Medicine and Research InstituteTechnion‐Institute of TechnologyHaifaIsrael
| | - Amira Gepstein
- The Rappaport Faculty of Medicine and Research InstituteTechnion‐Institute of TechnologyHaifaIsrael
| | - Nicola Bates
- Division of Cell Matrix Biology and Regenerative MedicineFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Benjamin Brown
- Department of CardiologyWythenshawe HospitalManchester University NHS Foundation TrustManchesterUK
| | - Irit Huber
- The Rappaport Faculty of Medicine and Research InstituteTechnion‐Institute of TechnologyHaifaIsrael
| | - Susan J. Kimber
- Division of Cell Matrix Biology and Regenerative MedicineFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - William G. Newman
- Division of Evolution and Genomic SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
- Manchester Centre for Genomic MedicineManchester University NHS Foundation TrustHealth Innovation ManchesterManchesterUK
| | - Luigi Venetucci
- Division of Cardiovascular SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
- Manchester Heart CentreManchester University NHS Foundation TrustHealth Innovation ManchesterManchesterUK
| | - Lior Gepstein
- The Rappaport Faculty of Medicine and Research InstituteTechnion‐Institute of TechnologyHaifaIsrael
- Cardiology DepartmentRambam Health Care CampusHaifaIsrael
| |
Collapse
|
14
|
Dulhunty AF. Molecular Changes in the Cardiac RyR2 With Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT). Front Physiol 2022; 13:830367. [PMID: 35222090 PMCID: PMC8867003 DOI: 10.3389/fphys.2022.830367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
The cardiac ryanodine receptor Ca2+ release channel (RyR2) is inserted into the membrane of intracellular sarcoplasmic reticulum (SR) myocyte Ca2+ stores, where it releases the Ca2+ essential for contraction. Mutations in proteins involved in Ca2+ signaling can lead to catecholaminergic polymorphic ventricular tachycardia (CPVT). The most common cellular phenotype in CPVT is higher than normal cytoplasmic Ca2+ concentrations during diastole due to Ca2+ leak from the SR through mutant RyR2. Arrhythmias are triggered when the surface membrane sodium calcium exchanger (NCX) lowers cytoplasmic Ca2+ by importing 3 Na+ ions to extrude one Ca2+ ion. The Na+ influx leads to delayed after depolarizations (DADs) which trigger arrhythmia when reaching action potential threshold. Present therapies use drugs developed for different purposes that serendipitously reduce RyR2 Ca2+ leak, but can adversely effect systolic Ca2+ release and other target processes. Ideal drugs would specifically reverse the effect of individual mutations, without altering normal channel function. Such drugs will depend on the location of the mutation in the 4967-residue monomer and the effect of the mutation on local structure, and downstream effects on structures along the conformational pathway to the pore. Such atomic resolution information is only now becoming available. This perspective provides a summary of known or predicted structural changes associated with a handful of CPVT mutations. Known molecular changes associated with RyR opening are discussed, as well one study where minute molecular changes with a particular mutation have been tracked from the N-terminal mutation site to gating residues in the channel pore.
Collapse
|
15
|
Sleiman Y, Lacampagne A, Meli AC. "Ryanopathies" and RyR2 dysfunctions: can we further decipher them using in vitro human disease models? Cell Death Dis 2021; 12:1041. [PMID: 34725342 PMCID: PMC8560800 DOI: 10.1038/s41419-021-04337-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 12/23/2022]
Abstract
The regulation of intracellular calcium (Ca2+) homeostasis is fundamental to maintain normal functions in many cell types. The ryanodine receptor (RyR), the largest intracellular calcium release channel located on the sarco/endoplasmic reticulum (SR/ER), plays a key role in the intracellular Ca2+ handling. Abnormal type 2 ryanodine receptor (RyR2) function, associated to mutations (ryanopathies) or pathological remodeling, has been reported, not only in cardiac diseases, but also in neuronal and pancreatic disorders. While animal models and in vitro studies provided valuable contributions to our knowledge on RyR2 dysfunctions, the human cell models derived from patients’ cells offer new hope for improving our understanding of human clinical diseases and enrich the development of great medical advances. We here discuss the current knowledge on RyR2 dysfunctions associated with mutations and post-translational remodeling. We then reviewed the novel human cellular technologies allowing the correlation of patient’s genome with their cellular environment and providing approaches for personalized RyR-targeted therapeutics.
Collapse
Affiliation(s)
- Yvonne Sleiman
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Alain Lacampagne
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Albano C Meli
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France.
| |
Collapse
|
16
|
Sarquella-Brugada G, Fernandez-Falgueras A, Cesar S, Arbelo E, Coll M, Perez-Serra A, Puigmulé M, Iglesias A, Alcalde M, Vallverdú-Prats M, Fiol V, Ferrer-Costa C, Del Olmo B, Picó F, Lopez L, García-Alvarez A, Jordà P, Tiron de Llano C, Toro R, Grassi S, Oliva A, Brugada J, Brugada R, Campuzano O. Clinical impact of rare variants associated with inherited channelopathies: a 5-year update. Hum Genet 2021; 141:1579-1589. [PMID: 34546463 PMCID: PMC9522753 DOI: 10.1007/s00439-021-02370-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022]
Abstract
A proper interpretation of the pathogenicity of rare variants is crucial before clinical translation. Ongoing addition of new data may modify previous variant classifications; however, how often a reanalysis is necessary remains undefined. We aimed to extensively reanalyze rare variants associated with inherited channelopathies originally classified 5 years ago and its clinical impact. In 2016, rare variants identified through genetic analysis were classified following the American College of Medical Genetics and Genomics’ recommendations. Five years later, we have reclassified the same variants following the same recommendations but including new available data. Potential clinical implications were discussed. Our cohort included 49 cases of inherited channelopathies diagnosed in 2016. Update show that 18.36% of the variants changed classification mainly due to improved global frequency data. Reclassifications mostly occurred in minority genes associated with channelopathies. Similar percentage of variants remain as deleterious nowadays, located in main known genes (SCN5A, KCNH2 and KCNQ1). In 2016, 69.38% of variants were classified as unknown significance, but now, 53.06% of variants are classified as such, remaining the most common group. No management was modified after translation of genetic data into clinics. After 5 years, nearly 20% of rare variants associated with inherited channelopathies were reclassified. This supports performing periodic reanalyses of no more than 5 years since last classification. Use of newly available data is necessary, especially concerning global frequencies and family segregation. Personalized clinical translation of rare variants can be crucial to management if a significant change in classification is identified.
Collapse
Affiliation(s)
- Georgia Sarquella-Brugada
- Medical Science Department, School of Medicine, University of Girona, C/ Emili Grahit 77, 17003, Girona, Catalunya, Spain.,Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Anna Fernandez-Falgueras
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain.,Centro de Investigación Biomédica en Red. Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Cardiology Service, Hospital Josep Trueta, University of Girona, Girona, Spain
| | - Sergi Cesar
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Elena Arbelo
- Centro de Investigación Biomédica en Red. Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Arrhythmias Unit, Hospital Clinic, University of Barcelona-IDIBAPS, Barcelona, Spain
| | - Mónica Coll
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain.,Centro de Investigación Biomédica en Red. Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Alexandra Perez-Serra
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain.,Centro de Investigación Biomédica en Red. Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Marta Puigmulé
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain.,Centro de Investigación Biomédica en Red. Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Anna Iglesias
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain.,Centro de Investigación Biomédica en Red. Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Mireia Alcalde
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain.,Centro de Investigación Biomédica en Red. Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | - Victoria Fiol
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | | | - Bernat Del Olmo
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain.,Centro de Investigación Biomédica en Red. Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Ferran Picó
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain.,Centro de Investigación Biomédica en Red. Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Laura Lopez
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain.,Centro de Investigación Biomédica en Red. Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Ana García-Alvarez
- Centro de Investigación Biomédica en Red. Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Arrhythmias Unit, Hospital Clinic, University of Barcelona-IDIBAPS, Barcelona, Spain
| | - Paloma Jordà
- Centro de Investigación Biomédica en Red. Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Arrhythmias Unit, Hospital Clinic, University of Barcelona-IDIBAPS, Barcelona, Spain
| | | | - Rocío Toro
- Medicine Department, School of Medicine, Cádiz, Spain
| | - Simone Grassi
- Institute of Public Health, Section Legal Medicine, Catholic University, Rome, Italy
| | - Antonio Oliva
- Institute of Public Health, Section Legal Medicine, Catholic University, Rome, Italy
| | - Josep Brugada
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red. Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Arrhythmias Unit, Hospital Clinic, University of Barcelona-IDIBAPS, Barcelona, Spain
| | - Ramon Brugada
- Medical Science Department, School of Medicine, University of Girona, C/ Emili Grahit 77, 17003, Girona, Catalunya, Spain. .,Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain. .,Centro de Investigación Biomédica en Red. Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain. .,Cardiology Service, Hospital Josep Trueta, University of Girona, Girona, Spain.
| | - Oscar Campuzano
- Medical Science Department, School of Medicine, University of Girona, C/ Emili Grahit 77, 17003, Girona, Catalunya, Spain. .,Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain. .,Centro de Investigación Biomédica en Red. Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| |
Collapse
|
17
|
Shillington A, Zea Vera A, Perry T, Hopkin R, Thomas C, Cooper D, Suhrie K. Clinical RNA sequencing confirms compound heterozygous intronic variants in RYR1 in a patient with congenital myopathy, respiratory failure, neonatal brain hemorrhage, and d-transposition of the great arteries. Mol Genet Genomic Med 2021; 9:e1804. [PMID: 34528764 PMCID: PMC8580091 DOI: 10.1002/mgg3.1804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/19/2021] [Accepted: 08/24/2021] [Indexed: 01/18/2023] Open
Abstract
Background Defects in the RYR1 (OMIM#180901) gene lead to Ryanodine receptor type 1‐related myopathies (RYR1‐RM); the most common subgroup of congenital myopathies. Methods Congenital myopathy presents a diagnostic challenge due to the need for multiple testing modalities to identify the many different genetic etiologies. In this case, the patient remained undiagnosed after whole‐exome sequencing (WES), chromosomal microarray, methylation analysis, targeted deletion and duplication studies, and targeted repeat expansion studies. Clinical whole‐genome sequencing (WGS) was then pursued as part of a research study to identify a diagnosis. Results WGS identified compound heterozygous RYR1 intronic variants, RNA sequencing confirmed both variants to be pathogenic causing RYR1‐RM in a phenotype of severe congenital hypotonia with respiratory failure from birth, neonatal brain hemorrhage, and congenital heart disease involving transposition of the great arteries. Conclusion While there is an ongoing debate about the clinical superiority of WGS versus WES for patients with a suspected genetic condition, this scenario highlights a weakness of WES as well as the added cost and delay in diagnosis timing with having WGS follow WES or even ending further genetic testing with a negative WES. While knowledge gaps still exist for many intronic variants, transcriptome analysis provides a way of validating the resulting dysfunction caused by these variants and thus allowing for appropriate pathogenicity classification. This is the second published case report of a patient with pathogenic intronic variants in RYR1‐RM, with clinical RNA testing confirming variant pathogenicity and therefore the diagnosis suggesting that for some patients careful analysis of a patient's genome and transcriptome are required for a complete genetic evaluation. The diagnostic odyssey experienced by this patient highlights the importance of early, rapid WGS.
Collapse
Affiliation(s)
- Amelle Shillington
- Department of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Alonso Zea Vera
- Department of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Tanya Perry
- Department of Cardiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Robert Hopkin
- Department of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Cameron Thomas
- Department of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - David Cooper
- Department of Cardiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kristen Suhrie
- Department of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
18
|
Precision Medicine in Catecholaminergic Polymorphic Ventricular Tachycardia: JACC Focus Seminar 5/5. J Am Coll Cardiol 2021; 77:2592-2612. [PMID: 34016269 DOI: 10.1016/j.jacc.2020.12.073] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 11/20/2022]
Abstract
In this final of a 5-part Focus Seminar series on precision medicine, we focus on catecholaminergic polymorphic ventricular tachycardia (CPVT). This focus on CPVT allows us to take a "deep dive" and explore the full extent of the precision medicine opportunities for a single cardiovascular condition at a level that was not possible in the preceding articles. As a new paradigm presented in this article, it has become clear that CPVT can occur as either a typical or atypical form. Although there is a degree of overlap between the typical and atypical forms, it is notable that they arise due to different underlying genetic changes, likely exhibiting differing mechanisms of action, and presenting with different phenotypic features. The recognition of these differing forms of CPVT and their different etiologies and mechanisms is an important step toward implementing rapidly emerging precision medicine approaches that will tailor novel therapies to specific gene defects.
Collapse
|
19
|
Bonaglia MC, Bertuzzo S, Ciaschini AM, Discepoli G, Castiglia L, Romaniello R, Zuffardi O, Fichera M. Targeted next-generation sequencing identifies the disruption of the SHANK3 and RYR2 genes in a patient carrying a de novo t(1;22)(q43;q13.3) associated with signs of Phelan-McDermid syndrome. Mol Cytogenet 2020; 13:22. [PMID: 32536973 PMCID: PMC7291734 DOI: 10.1186/s13039-020-00490-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/26/2020] [Indexed: 11/10/2022] Open
Abstract
Background It has been known for more than 30 years that balanced translocations, especially if de novo, can associate with congenital malformations and / or neurodevelopmental disorders, following the disruption of a disease gene or its cis-regulatory elements at one or both breakpoints. Case presentation We describe a 10-year-old girl with a non-specific neurodevelopmental disorder characterized by moderate intellectual disability (ID), gross motor clumsiness, social and communication deficits. She carries a de novo reciprocal translocation between chromosomes 1q43 and 22q13.3, the latter suggesting the involvement of SHANK3. Indeed, its haploinsufficiency associates with Phelan-McDermid Syndrome, whose main symptoms are characterized by global developmental delay and absent or severely delayed expressive speech. A deep molecular approach, including next-generation sequencing of SHANK3 locus, allowed demonstrating the breakage of RYR2 and SHANK3 on the derivative chromosomes 1 and 22 respectively, and the formation of two fusion genes SHANK3-RYR2 and RYR2-SHANK3 with concomitant cryptic deletion of 3.6 and 4.1 kilobases at translocation junction of both derivatives chromosomes 22 and 1, respectively. Conclusions Although the interruption of SHANK3 accounts for the patient’s psychomotor retardation and autism-like behavior, we do not exclude that the interruption of RYR2 may also have a role on her disorder, or result in further pathogenicity in the future. Indeed, RYR2 that has a well-established role in the etiology of two autosomal dominant adulthood cardiac disorders (#600996 and #604772) is also expressed in the brain (cerebellum, hippocampus, and cerebral cortex) and about half of RYR2 mutation carriers present late onset primary generalized epilepsy without cardiac arrhythmogenic disorders. Moreover, RYR2 variants have also been sporadically reported in individuals with early onset schizophrenia or ID, and its constraint values suggest intolerance to loss-of-function. This study not only confirms the usefulness of the molecular mapping of de novo balanced rearrangements in symptomatic individuals, but also underscores the need for long-term clinical evaluation of the patients, for better evaluating the pathogenicity of the chromosomal breakpoints.
Collapse
Affiliation(s)
- Maria Clara Bonaglia
- Cytogenetics Laboratory, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy
| | - Sara Bertuzzo
- Cytogenetics Laboratory, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy
| | - Anna Maria Ciaschini
- Lab. di Genetica Medica SOS Malattie Rare, AOU Ospedali Riuniti Umberto I-G.M.Lancisi-G.Salesi, Ancona, Italy
| | - Giancarlo Discepoli
- Lab. di Genetica Medica SOS Malattie Rare, AOU Ospedali Riuniti Umberto I-G.M.Lancisi-G.Salesi, Ancona, Italy
| | | | - Romina Romaniello
- Neuropsychiatry and Neurorehabilitation Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, 23842 Lecco, Italy
| | - Orsetta Zuffardi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Marco Fichera
- Oasi Research Institute-IRCCS, Troina, Italy.,Department of Biomedical and Biotechnological Sciences, Medical Genetics, University of Catania, Catania, Italy
| |
Collapse
|
20
|
Campuzano O, Sarquella-Brugada G, Arbelo E, Cesar S, Jordà P, Pérez-Serra A, Toro R, Brugada J, Brugada R. Genetic Variants as Sudden-Death Risk Markers in Inherited Arrhythmogenic Syndromes: Personalized Genetic Interpretation. J Clin Med 2020; 9:jcm9061866. [PMID: 32549272 PMCID: PMC7356862 DOI: 10.3390/jcm9061866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/25/2022] Open
Abstract
Inherited arrhythmogenic syndromes are the primary cause of unexpected lethal cardiac episodes in young people. It is possible that the first sign of the condition may be sudden death. Inherited arrhythmogenic syndromes are caused by genetic defects that may be analyzed using different technical approaches. A genetic alteration may be used as a marker of risk for families who carry the genetic alterations. Therefore, the early identification of the responsible genetic defect may help the adoption of preventive therapeutic measures focused on reducing the risk of lethal arrhythmias. Here, we describe the use of massive sequencing technologies and the interpretation of genetic analyses in inherited arrhythmogenic syndromes.
Collapse
Affiliation(s)
- Oscar Campuzano
- Cardiovascular Genetics Center, University of Girona-IDIBGI, 17190 Girona, Spain;
- Centro de Investigación Biomédica en Red. Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.A.); (J.B.)
- Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain;
- Correspondence: (O.C.); (R.B.)
| | - Georgia Sarquella-Brugada
- Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain;
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08950 Barcelona, Spain;
| | - Elena Arbelo
- Centro de Investigación Biomédica en Red. Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.A.); (J.B.)
- Arrhythmias Unit, Hospital Clinic, University of Barcelona-IDIBAPS, 08036 Barcelona, Spain;
| | - Sergi Cesar
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08950 Barcelona, Spain;
| | - Paloma Jordà
- Arrhythmias Unit, Hospital Clinic, University of Barcelona-IDIBAPS, 08036 Barcelona, Spain;
| | - Alexandra Pérez-Serra
- Cardiovascular Genetics Center, University of Girona-IDIBGI, 17190 Girona, Spain;
- Centro de Investigación Biomédica en Red. Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.A.); (J.B.)
| | - Rocío Toro
- Medicine Department, School of Medicine, 11003 Cadiz, Spain;
| | - Josep Brugada
- Centro de Investigación Biomédica en Red. Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.A.); (J.B.)
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08950 Barcelona, Spain;
- Arrhythmias Unit, Hospital Clinic, University of Barcelona-IDIBAPS, 08036 Barcelona, Spain;
| | - Ramon Brugada
- Cardiovascular Genetics Center, University of Girona-IDIBGI, 17190 Girona, Spain;
- Centro de Investigación Biomédica en Red. Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.A.); (J.B.)
- Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain;
- Cardiology Service, Hospital Josep Trueta, University of Girona, 17007 Girona, Spain
- Correspondence: (O.C.); (R.B.)
| |
Collapse
|