1
|
Zhang Z, Hu X, Jin M, Mu Y, Zhou H, Ma C, Ma L, Liu B, Yao H, Huang Y, Wang DA. Collagen Type II-Based Injectable Materials for In situ Repair and Regeneration of Articular Cartilage Defect. Biomater Res 2024; 28:0072. [PMID: 39220112 PMCID: PMC11362811 DOI: 10.34133/bmr.0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
Repairing and regenerating articular cartilage defects (ACDs) have long been challenging for physicians and scientists. The rise of injectable materials provides a novel strategy for minimally invasive surgery to repair ACDs. In this study, we successfully developed injectable materials based on collagen type II, achieving hyaline cartilage repair and regeneration of ACDs. Analysis was conducted on the regenerated cartilage after materials injection. The histology staining demonstrated complete healing of the ACDs with the attainment of a hyaline cartilage phenotype. The biochemical and biomechanical properties are similar to the adjacent native cartilage without noticeable adverse effects on the subchondral bone. Further transcriptome analysis found that compared with the Native cartilage adjacent to the defect area, the Regenerated cartilage in the defect area repaired with type II collagen-based injection materials showed changes in cartilage-related pathways, as well as down-regulation of T cell receptor signaling pathways and interleukin-17 signaling pathways, which changed the immune microenvironment of the ACD area. Overall, these findings offer a promising injectable approach to treating ACDs, providing a potential solution to the challenges associated with achieving hyaline cartilage in situ repair and regeneration while minimizing damage to the surrounding cartilage.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Biomedical Engineering,
City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Xu Hu
- Department of Biomedical Engineering,
City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Min Jin
- Department of Biomedical Engineering,
City University of Hong Kong, Kowloon, Hong Kong SAR
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine,
HKSTP, Sha Tin, Hong Kong SAR
| | - Yulei Mu
- Department of Biomedical Engineering,
City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Huiqun Zhou
- Department of Biomedical Engineering,
City University of Hong Kong, Kowloon, Hong Kong SAR
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine,
HKSTP, Sha Tin, Hong Kong SAR
| | - Cheng Ma
- Department of Biomedical Engineering,
City University of Hong Kong, Kowloon, Hong Kong SAR
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine,
HKSTP, Sha Tin, Hong Kong SAR
| | - Liang Ma
- Department of Biomedical Engineering,
City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Bangheng Liu
- Department of Biomedical Engineering,
City University of Hong Kong, Kowloon, Hong Kong SAR
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine,
HKSTP, Sha Tin, Hong Kong SAR
| | - Hang Yao
- School of Chemistry and Chemical Engineering,
Yangzhou University, Yangzhou, China
| | - Ye Huang
- Knee Preservation Clinical and Research Center,
Beijing Jishuitan Hospital, Beijing, China
| | - Dong-An Wang
- Department of Biomedical Engineering,
City University of Hong Kong, Kowloon, Hong Kong SAR
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine,
HKSTP, Sha Tin, Hong Kong SAR
- Center for Neuromusculoskeletal Restorative Medicine,
HKSTP, Shatin, Hong Kong SAR
| |
Collapse
|
2
|
Zhao L, Lai Y, Jiao H, Li J, Lu K, Huang J. CRISPR-mediated Sox9 activation and RelA inhibition enhance cell therapy for osteoarthritis. Mol Ther 2024; 32:2549-2562. [PMID: 38879753 PMCID: PMC11405173 DOI: 10.1016/j.ymthe.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/10/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024] Open
Abstract
Osteoarthritis (OA) is a painful and debilitating disease affecting over 500 million people worldwide. Intraarticular injection of mesenchymal stromal cells (MSCs) shows promise for the clinical treatment of OA, but the lack of consistency in MSC preparation and application makes it difficult to further optimize MSC therapy and to properly evaluate the clinical outcomes. In this study, we used Sox9 activation and RelA inhibition, both mediated by the CRISPR-dCas9 technology simultaneously, to engineer MSCs with enhanced chondrogenic potential and downregulated inflammatory responses. We found that both Sox9 and RelA could be fine-tuned to the desired levels, which enhances the chondrogenic and immunomodulatory potentials of the cells. Intraarticular injection of modified cells significantly attenuated cartilage degradation and palliated OA pain compared with the injection of cell culture medium or unmodified cells. Mechanistically, the modified cells promoted the expression of factors beneficial to cartilage integrity, inhibited the production of catabolic enzymes in osteoarthritic joints, and suppressed immune cells. Interestingly, a substantial number of modified cells could survive in the cartilaginous tissues including articular cartilage and meniscus. Together, our results suggest that CRISPR-dCas9-based gene regulation is useful for optimizing MSC therapy for OA.
Collapse
Affiliation(s)
- Lan Zhao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA.
| | - Yumei Lai
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Hongli Jiao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Jun Li
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Ke Lu
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Jian Huang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
3
|
Sheppard AJ, Delgado K, Barfield AM, Xu Q, Massey PA, Dong Y, Barton RS. Rapamycin Inhibits Senescence and Improves Immunomodulatory Function of Mesenchymal Stem Cells Through IL-8 and TGF-β Signaling. Stem Cell Rev Rep 2024; 20:816-826. [PMID: 38340274 PMCID: PMC10984889 DOI: 10.1007/s12015-024-10682-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/12/2024]
Abstract
Mesenchymal stromal cells (MSCs) grown in high-density monolayers (sheets) are promising vehicles for numerous bioengineering applications. When MSC sheets are maintained in prolonged cultures, they undergo rapid senescence, limiting their downstream efficacy. Although rapamycin is a potential agent that can inhibit senescence in cell cultures, no study has investigated rapamycin's effect on MSCs grown in high-density culture and its effect on downstream target gene expression. In this study, placental-derived MSCs (PMSCs) were seeded at high density to generate PMSC sheets in 24 hours and were then treated with rapamycin or vehicle for up to 7 days. Autophagy activity, cell senescence and apoptosis, cell size and granularity, and senescence-associated cytokines (IL-6 and IL-8) were analyzed. Differential response in gene expression were assessed via microarray analysis. Rapamycin significantly increased PMSC sheet autophagy activity, inhibited cellular senescence, decreased cell size and granularity at all timepoints. Rapamycin also significantly decreased the number of cells in late apoptosis at day 7 of sheet culture, as well as caspase 3/7 activity at all timepoints. Notably, while rapamycin decreased IL-6 secretion, increased IL-8 levels were observed at all timepoints. Microarray analysis further confirmed the upregulation of IL-8 transcription, as well as provided a list of 396 genes with 2-fold differential expression, where transforming growth factor-β (TGF-β) signaling were identified as important upregulated pathways. Rapamycin both decreased senescence and has an immunomodulatory action of PMSCs grown in sheet culture, which will likely improve the chemotaxis of pro-healing cells to sites of tissue repair in future bioengineering applications.
Collapse
Affiliation(s)
- Aaron J Sheppard
- School of Medicine, LSU Health Shreveport, Shreveport, LA, USA
- Department of Orthopedic Surgery, LSU Health Shreveport, Shreveport, LA, USA
| | - Kristin Delgado
- School of Medicine, LSU Health Shreveport, Shreveport, LA, USA
| | | | - Qinqin Xu
- Department of Orthopedic Surgery, LSU Health Shreveport, Shreveport, LA, USA
| | - Patrick A Massey
- Department of Orthopedic Surgery, LSU Health Shreveport, Shreveport, LA, USA
| | - Yufeng Dong
- Department of Orthopedic Surgery, LSU Health Shreveport, Shreveport, LA, USA.
| | - Richard S Barton
- Department of Orthopedic Surgery, LSU Health Shreveport, Shreveport, LA, USA
| |
Collapse
|
4
|
Liu G, Wei J, Xiao W, Xie W, Ru Q, Chen L, Wu Y, Mobasheri A, Li Y. Insights into the Notch signaling pathway in degenerative musculoskeletal disorders: Mechanisms and perspectives. Biomed Pharmacother 2023; 169:115884. [PMID: 37981460 DOI: 10.1016/j.biopha.2023.115884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023] Open
Abstract
Degenerative musculoskeletal disorders are a group of age-related diseases of the locomotive system that severely affects the patient's ability to work and cause adverse sequalae such as fractures and even death. The incidence and prevalence of degenerative musculoskeletal disorders is rising owing to the aging of the world's population. The Notch signaling pathway, which is expressed in almost all organ systems, extensively regulates cell proliferation and differentiation as well as cellular fate. Notch signaling shows increased activity in degenerative musculoskeletal disorders and retards the progression of degeneration to some extent. The review focuses on four major degenerative musculoskeletal disorders (osteoarthritis, intervertebral disc degeneration, osteoporosis, and sarcopenia) and summarizes the pathophysiological functions of Notch signaling in these disorders, especially its role in stem/progenitor cells in each disorder. Finally, a conclusion will be presented to explore the research and application of the perspectives on Notch signaling in degenerative musculoskeletal disorders.
Collapse
Affiliation(s)
- Gaoming Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410011, China
| | - Jun Wei
- Department of Clinical Medical School, Xinjiang Medical University, Urumqi 830054, China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410011, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410011, China
| | - Qin Ru
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Lin Chen
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Yuxiang Wu
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China.
| | - Ali Mobasheri
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland; Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania; Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410011, China; Department of Clinical Medical School, Xinjiang Medical University, Urumqi 830054, China.
| |
Collapse
|
5
|
Zhang P, Dong B, Yuan P, Li X. Human umbilical cord mesenchymal stem cells promoting knee joint chondrogenesis for the treatment of knee osteoarthritis: a systematic review. J Orthop Surg Res 2023; 18:639. [PMID: 37644595 PMCID: PMC10466768 DOI: 10.1186/s13018-023-04131-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
PURPOSE The onset of OA is affected by a variety of factors, which eventually lead to the loss of cartilage in the joints, the formation of osteophytes, the loss of normal knee mobility, and pain and discomfort, which seriously affects the quality of life. HUC-MSCs can promote cartilage production and have been widely used in research in the past decade. This article systematically summarizes that it is well used in basic research and clinical studies to promote inflammatory chondrogenesis in the treatment of OA. Provide a theoretical basis for clinical treatment. PATIENTS AND METHODS This study collected CNKI, Wanfang, PubMed, and articles related to the treatment of OA with HUC-MSCs since their publication, excluding non-basic and clinical studies such as reviews and meta-analysis. A total of 31 basic experimental studies and 12 clinical studies were included. Systematically analyze the effects of HUC-MSCs on inhibiting inflammatory factors, promoting chondrocyte production, and current clinical treatment. RESULTS HUC-MSCs can reduce inflammatory factors such as MMP-13, ADAMTS-5, IL-1β, IL-1, IL-6, TNF-α, induced conversion from M1 to M2 in OA to protect cartilage damage and reduce OA inflammation. Synthesize ColII, SOX9, and aggrecan at the same time to promote cartilage synthesis. CONCLUSION HUC-MSCs not only have typical stem cell biological characteristics, but also have rich sources and convenient material extraction. Compared with stem cells from other sources, HUC-MSCs have stronger proliferation, differentiation, and immune regulation abilities. Furthermore, there are no ethical issues associated with their use. SAFETY Primarily attributed to pain, the majority of individuals experience recovery within 24 h following injection. HUC-MSCs possess the ability to alleviate pain, enhance knee joint function, and potentially postpone the need for surgical intervention in both non-surgical and other cases, making them highly deserving of clinical promotion and application.
Collapse
Affiliation(s)
| | - Bo Dong
- Xi'an Hong Hui Hospital, Xi'an, Shaanxi, China.
| | - Puwei Yuan
- Xi'an Hong Hui Hospital, Xi'an, Shaanxi, China
| | - Xun Li
- Xi'an Hong Hui Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
6
|
Khan I, Gril B, Hoshino A, Yang HH, Lee MP, Difilippantonio S, Lyden DC, Steeg PS. Metastasis suppressor NME1 in exosomes or liposomes conveys motility and migration inhibition in breast cancer model systems. Clin Exp Metastasis 2022; 39:815-831. [PMID: 35939247 PMCID: PMC10642714 DOI: 10.1007/s10585-022-10182-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/27/2022] [Indexed: 11/03/2022]
Abstract
Tumor-derived exosomes have documented roles in accelerating the initiation and outgrowth of metastases, as well as in therapy resistance. Little information supports the converse, that exosomes or similar vesicles can suppress metastasis. We investigated the NME1 (Nm23-H1) metastasis suppressor as a candidate for metastasis suppression by extracellular vesicles. Exosomes derived from two cancer cell lines (MDA-MB-231T and MDA-MB-435), when transfected with the NME1 (Nm23-H1) metastasis suppressor, secreted exosomes with NME1 as the predominant constituent. These exosomes entered recipient tumor cells, altered their endocytic patterns in agreement with NME1 function, and suppressed in vitro tumor cell motility and migration compared to exosomes from control transfectants. Proteomic analysis of exosomes revealed multiple differentially expressed proteins that could exert biological functions. Therefore, we also prepared and investigated liposomes, empty or containing partially purified rNME1. rNME1 containing liposomes recapitulated the effects of exosomes from NME1 transfectants in vitro. In an experimental lung metastasis assay the median lung metastases per histologic section was 158 using control liposomes and 15 in the rNME1 liposome group, 90.5% lower than the control liposome group (P = 0.016). The data expand the exosome/liposome field to include metastasis suppressive functions and describe a new translational approach to prevent metastasis.
Collapse
Affiliation(s)
- Imran Khan
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Building 37, Convent Drive, Room 1126, Bethesda, MD, 20892, USA.
| | - Brunilde Gril
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Building 37, Convent Drive, Room 1126, Bethesda, MD, 20892, USA
| | - Ayuko Hoshino
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Howard H Yang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, USA
| | - Maxwell P Lee
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, USA
| | - Simone Difilippantonio
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - David C Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Patricia S Steeg
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Building 37, Convent Drive, Room 1126, Bethesda, MD, 20892, USA
| |
Collapse
|
7
|
Reynolds SD, Hill CL, Alsudayri A, Lallier SW, Wijeratne S, Tan ZH, Chiang T, Cormet-Boyaka E. Assemblies of JAG1 and JAG2 determine tracheobronchial cell fate in mucosecretory lung disease. JCI Insight 2022; 7:e157380. [PMID: 35819850 PMCID: PMC9462471 DOI: 10.1172/jci.insight.157380] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
Mucosecretory lung disease compromises airway epithelial function and is characterized by goblet cell hyperplasia and ciliated cell hypoplasia. Goblet and ciliated cell types are derived from tracheobronchial stem/progenitor cells via a Notch-dependent mechanism. Although specific arrays of Notch receptors regulate cell fate determination, the function of the ligands Jagged1 (JAG1) and JAG2 is unclear. This study examined JAG1 and JAG2 function using human air-liquid-interface cultures that were treated with γ-secretase complex (GSC) inhibitors, neutralizing peptides/antibodies, or WNT/β-catenin pathway antagonists/agonists. These experiments revealed that JAG1 and JAG2 regulated cell fate determination in the tracheobronchial epithelium; however, their roles did not adhere to simple necessity and sufficiency rules. Biochemical studies indicated that JAG1 and JAG2 underwent posttranslational modifications that resulted in generation of a JAG1 C-terminal peptide and regulated the abundance of full-length JAG2 on the cell surface. GSC and glycogen synthase kinase 3 were implicated in these posttranslational events, but WNT agonist/antagonist studies and RNA-Seq indicated a WNT-independent mechanism. Collectively, these data suggest that posttranslational modifications create distinct assemblies of JAG1 and JAG2, which regulate Notch signal strength and determine the fate of tracheobronchial stem/progenitor cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Zheng Hong Tan
- Center for Regenerative Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Tendy Chiang
- Center for Regenerative Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | | |
Collapse
|
8
|
Yang X, Tian S, Fan L, Niu R, Yan M, Chen S, Zheng M, Zhang S. Integrated regulation of chondrogenic differentiation in mesenchymal stem cells and differentiation of cancer cells. Cancer Cell Int 2022; 22:169. [PMID: 35488254 PMCID: PMC9052535 DOI: 10.1186/s12935-022-02598-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/19/2022] [Indexed: 11/15/2022] Open
Abstract
Chondrogenesis is the formation of chondrocytes and cartilage tissues and starts with mesenchymal stem cell (MSC) recruitment and migration, condensation of progenitors, chondrocyte differentiation, and maturation. The chondrogenic differentiation of MSCs depends on co-regulation of many exogenous and endogenous factors including specific microenvironmental signals, non-coding RNAs, physical factors existed in culture condition, etc. Cancer stem cells (CSCs) exhibit self-renewal capacity, pluripotency and cellular plasticity, which have the potential to differentiate into post-mitotic and benign cells. Accumulating evidence has shown that CSCs can be induced to differentiate into various benign cells including adipocytes, fibrocytes, osteoblast, and so on. Retinoic acid has been widely used in the treatment of acute promyelocytic leukemia. Previous study confirmed that polyploid giant cancer cells, a type of cancer stem-like cells, could differentiate into adipocytes, osteocytes, and chondrocytes. In this review, we will summarize signaling pathways and cytokines in chondrogenic differentiation of MSCs. Understanding the molecular mechanism of chondrogenic differentiation of CSCs and cancer cells may provide new strategies for cancer treatment.
Collapse
Affiliation(s)
- Xiaohui Yang
- Nankai University School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
| | - Shifeng Tian
- Graduate School, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Linlin Fan
- Department of Pathology, Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Rui Niu
- Department of Pathology, Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Man Yan
- Department of Pathology, Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Shuo Chen
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300071, People's Republic of China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
9
|
Notch signaling pathway: architecture, disease, and therapeutics. Signal Transduct Target Ther 2022; 7:95. [PMID: 35332121 PMCID: PMC8948217 DOI: 10.1038/s41392-022-00934-y] [Citation(s) in RCA: 348] [Impact Index Per Article: 174.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
The NOTCH gene was identified approximately 110 years ago. Classical studies have revealed that NOTCH signaling is an evolutionarily conserved pathway. NOTCH receptors undergo three cleavages and translocate into the nucleus to regulate the transcription of target genes. NOTCH signaling deeply participates in the development and homeostasis of multiple tissues and organs, the aberration of which results in cancerous and noncancerous diseases. However, recent studies indicate that the outcomes of NOTCH signaling are changeable and highly dependent on context. In terms of cancers, NOTCH signaling can both promote and inhibit tumor development in various types of cancer. The overall performance of NOTCH-targeted therapies in clinical trials has failed to meet expectations. Additionally, NOTCH mutation has been proposed as a predictive biomarker for immune checkpoint blockade therapy in many cancers. Collectively, the NOTCH pathway needs to be integrally assessed with new perspectives to inspire discoveries and applications. In this review, we focus on both classical and the latest findings related to NOTCH signaling to illustrate the history, architecture, regulatory mechanisms, contributions to physiological development, related diseases, and therapeutic applications of the NOTCH pathway. The contributions of NOTCH signaling to the tumor immune microenvironment and cancer immunotherapy are also highlighted. We hope this review will help not only beginners but also experts to systematically and thoroughly understand the NOTCH signaling pathway.
Collapse
|
10
|
Deng Y, Li R, Wang H, Yang B, Shi P, Zhang Y, Yang Q, Li G, Bian L. Biomaterial-Mediated Presentation of Jagged-1 Mimetic Ligand Enhances Cellular Activation of Notch Signaling and Bone Regeneration. ACS NANO 2022; 16:1051-1062. [PMID: 34967609 DOI: 10.1021/acsnano.1c08728] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development from stem cells to adult tissues requires the delicate presentation of numerous crucial inductive cues and the activation of associated signaling pathways. The Notch signaling pathways triggered by ligands such as Jagged-1 have been demonstrated to be essential in various development processes especially in osteogenesis and ossification. However, few studies have capitalized on the osteoinductivity of the Jagged-1 mimetic ligands to enhance the osteogenesis and skeleton regeneration. In this study, we conjugate the porous hyaluronic acid hydrogels with a Jagged-1 mimetic peptide ligand (Jagged-1) and investigate the efficacy of such biomimetic functionalization to promote the mechanotransduction and osteogenesis of human mesenchymal stem cells by activating the Notch signaling pathway. Our findings indicate that the immobilized Jagged-1 mimetic ligand activates Notch signaling via the upregulation of NICD and downstream MSX2, leading to the enhanced mechanotransduction and osteogenesis of stem cells. We further demonstrate that the functionalization of the Jagged-1 ligand in the porous scaffold promotes angiogenesis, regulates macrophage recruitment and polarization, and enhances in situ regeneration of rat calvarial defects. Our findings provide valuable guidance to the design of development-inspired bioactive biomaterials for diverse biomedical applications.
Collapse
Affiliation(s)
- Yingrui Deng
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, New Territories 999077, Hong Kong, P.R. China
| | - Rui Li
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, New York 11201, United States
| | - Haixing Wang
- Department of Orthopaedics and Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, P.R China
| | - Boguang Yang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, New Territories 999077, Hong Kong, P.R. China
| | - Peng Shi
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P.R. China
| | - Yuan Zhang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P.R. China
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin 300211, P.R. China
| | - Gang Li
- Department of Orthopaedics and Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, P.R China
| | - Liming Bian
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P.R. China
| |
Collapse
|
11
|
Wang Z, Chai C, Wang R, Feng Y, Huang L, Zhang Y, Xiao X, Yang S, Zhang Y, Zhang X. Single-cell transcriptome atlas of human mesenchymal stem cells exploring cellular heterogeneity. Clin Transl Med 2021; 11:e650. [PMID: 34965030 PMCID: PMC8715893 DOI: 10.1002/ctm2.650] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/24/2021] [Accepted: 10/30/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The heterogeneity of mesenchymal stem cells (MSCs) is poorly understood, thus limiting clinical application and basic research reproducibility. Advanced single-cell RNA sequencing (scRNA-seq) is a robust tool used to analyse for dissecting cellular heterogeneity. However, the comprehensive single-cell atlas for human MSCs has not been achieved. METHODS This study used massive parallel multiplexing scRNA-seq to construct an atlas of > 130 000 single-MSC transcriptomes across multiple tissues and donors to assess their heterogeneity. The most widely clinically utilised tissue resources for MSCs were collected, including normal bone marrow (n = 3), adipose (n = 3), umbilical cord (n = 2), and dermis (n = 3). RESULTS Seven tissue-specific and five conserved MSC subpopulations with distinct gene-expression signatures were identified from multiple tissue origins based on the high-quality data, which has not been achieved previously. This study showed that extracellular matrix (ECM) highly contributes to MSC heterogeneity. Notably, tissue-specific MSC subpopulations were substantially heterogeneous on ECM-associated immune regulation, antigen processing/presentation, and senescence, thus promoting inter-donor and intra-tissue heterogeneity. The variable dynamics of ECM-associated genes had discrete trajectory patterns across multiple tissues. Additionally, the conserved and tissue-specific transcriptomic-regulons and protein-protein interactions were identified, potentially representing common or tissue-specific MSC functional roles. Furthermore, the umbilical-cord-specific subpopulation possessed advantages in immunosuppressive properties. CONCLUSION In summary, this work provides timely and great insights into MSC heterogeneity at multiple levels. This MSC atlas taxonomy also provides a comprehensive understanding of cellular heterogeneity, thus revealing the potential improvements in MSC-based therapeutic efficacy.
Collapse
Affiliation(s)
- Zheng Wang
- Medical Center of Hematologythe Second Affiliated HospitalArmy Medical UniversityChongqingChina
- State Key Laboratory of TraumaBurn and Combined InjuryArmy Medical UniversityChongqingChina
| | - Chengyan Chai
- Medical Center of Hematologythe Second Affiliated HospitalArmy Medical UniversityChongqingChina
- State Key Laboratory of TraumaBurn and Combined InjuryArmy Medical UniversityChongqingChina
| | - Rui Wang
- Medical Center of Hematologythe Second Affiliated HospitalArmy Medical UniversityChongqingChina
- State Key Laboratory of TraumaBurn and Combined InjuryArmy Medical UniversityChongqingChina
| | - Yimei Feng
- Medical Center of Hematologythe Second Affiliated HospitalArmy Medical UniversityChongqingChina
- State Key Laboratory of TraumaBurn and Combined InjuryArmy Medical UniversityChongqingChina
| | - Lei Huang
- Department of Urologythe Second Affiliated HospitalArmy Military Medical UniversityChongqingChina
| | - Yiming Zhang
- Department of Plastic and Cosmetic Surgerythe Second Affiliated HospitalArmy Medical UniversityChongqingChina
| | - Xia Xiao
- Time Plastic Surgery HospitalChongqingChina
| | - Shijie Yang
- Medical Center of Hematologythe Second Affiliated HospitalArmy Medical UniversityChongqingChina
- State Key Laboratory of TraumaBurn and Combined InjuryArmy Medical UniversityChongqingChina
| | - Yunfang Zhang
- Medical Center of Hematologythe Second Affiliated HospitalArmy Medical UniversityChongqingChina
- State Key Laboratory of TraumaBurn and Combined InjuryArmy Medical UniversityChongqingChina
| | - Xi Zhang
- Medical Center of Hematologythe Second Affiliated HospitalArmy Medical UniversityChongqingChina
- State Key Laboratory of TraumaBurn and Combined InjuryArmy Medical UniversityChongqingChina
- National Clinical Research Center for Hematologic Diseasesthe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
12
|
Immobilization of Jagged1 Enhances Vascular Smooth Muscle Cells Maturation by Activating the Notch Pathway. Cells 2021; 10:cells10082089. [PMID: 34440858 PMCID: PMC8391929 DOI: 10.3390/cells10082089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 12/14/2022] Open
Abstract
In Notch signaling, the Jagged1-Notch3 ligand-receptor pairing is implicated for regulating the phenotype maturity of vascular smooth muscle cells. However, less is known about the role of Jagged1 presentation strategy in this regulation. In this study, we used bead-immobilized Jagged1 to direct phenotype control of primary human coronary artery smooth muscle cells (HCASMC), and to differentiate embryonic multipotent mesenchymal progenitor (10T1/2) cell towards a vascular lineage. This Jagged1 presentation strategy was sufficient to activate the Notch transcription factor HES1 and induce early-stage contractile markers, including smooth muscle α-actin and calponin in HCASMCs. Bead-bound Jagged1 was unable to regulate the late-stage markers myosin heavy chain and smoothelin; however, serum starvation and TGFβ1 were used to achieve a fully contractile smooth muscle cell. When progenitor 10T1/2 cells were used for Notch3 signaling, pre-differentiation with TGFβ1 was required for a robust Jagged1 specific response, suggesting a SMC lineage commitment was necessary to direct SMC differentiation and maturity. The presence of a magnetic tension force to the ligand-receptor complex was evaluated for signaling efficacy. Magnetic pulling forces downregulated HES1 and smooth muscle α-actin in both HCASMCs and progenitor 10T1/2 cells. Taken together, this study demonstrated that (i) bead-bound Jagged1 was sufficient to activate Notch3 and promote SMC differentiation/maturation and (ii) magnetic pulling forces did not activate Notch3, suggesting the bead alone was able to provide necessary clustering or traction forces for Notch activation. Notch is highly context-dependent; therefore, these findings provide insights to improve biomaterial-driven Jagged1 control of SMC behavior.
Collapse
|
13
|
Barzegar M, Vital S, Stokes KY, Wang Y, Yun JW, White LA, Chernyshev O, Kelley RE, Alexander JS. Human placenta mesenchymal stem cell protection in ischemic stroke is angiotensin converting enzyme-2 and masR receptor-dependent. STEM CELLS (DAYTON, OHIO) 2021; 39:1335-1348. [PMID: 34124808 PMCID: PMC8881785 DOI: 10.1002/stem.3426] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022]
Abstract
Thromboembolic stroke remains a major cause of neurological disability and death. Current stroke treatments (aspirin, tissue plasminogen activator) are significantly limited by timing and risks for hemorrhage which have driven researchers to explore other approaches. Stem cell‐based therapy appears to be an effective option for ischemic stroke. Besides trans‐differentiation into neural cells, stem cells also provide acute protection via paracrine signaling pathways through which releasing neuroprotective factors. We previously reported that intraperitoneal administration of human placenta mesenchymal stem cell (hPMSC) therapy upon reperfusion significantly protected the brain against middle cerebral artery occlusion (MCAO)‐induced injury. In the present study, we specifically investigated the role of hPMSC‐derived angiotensin converting enzyme‐2 (ACE‐2) in protection of MCAO‐induced brain injury by measurement of brain tissue viability, cerebral blood flow, and neurological score. Here, we report for the first time that hPMSC expressing substantial amount of ACE‐2, which mediates hPMSC protection in the MCAO model. Strikingly, we found that the protective effects of hPMSC in MCAO‐induced brain injury could be attenuated by pretreatment of hPMSCs with MLN‐4760, a specific inhibitor of ACE‐2 activity, or by transfection of hPMSCs with ACE‐2‐shRNA‐lentivirus. The hPMSC‐derived ACE‐2 specific protective mechanism was further demonstrated by administration of PD123319, an Angiotensin type‐2 receptor antagonist, or A779, a MasR antagonist. Importantly, our study demonstrated that the protective effects of hPMSC in experimental stroke are ACE‐2/MasR dependent and this signaling pathway represents an innovative and highly promising approach for targeted stroke therapy.
Collapse
Affiliation(s)
- Mansoureh Barzegar
- Molecular and Cellular Physiology, Ochsner-LSU Health Sciences Center, Shreveport, Louisiana, USA
| | - Shantel Vital
- Molecular and Cellular Physiology, Ochsner-LSU Health Sciences Center, Shreveport, Louisiana, USA
| | - Karen Y Stokes
- Molecular and Cellular Physiology, Ochsner-LSU Health Sciences Center, Shreveport, Louisiana, USA
| | - Yuping Wang
- Obstetrics and Gynecology and Medicine, Ochsner-LSU Health Sciences Center, Shreveport, Louisiana, USA
| | - Jungmi Winny Yun
- Molecular and Cellular Physiology, Ochsner-LSU Health Sciences Center, Shreveport, Louisiana, USA
| | - Luke A White
- Molecular and Cellular Physiology, Ochsner-LSU Health Sciences Center, Shreveport, Louisiana, USA
| | - Oleg Chernyshev
- Neurology, Ochsner-LSU Health Sciences Center, Shreveport, Louisiana, USA
| | - Roger E Kelley
- Neurology, Ochsner-LSU Health Sciences Center, Shreveport, Louisiana, USA
| | - Jonathan S Alexander
- Molecular and Cellular Physiology, Ochsner-LSU Health Sciences Center, Shreveport, Louisiana, USA.,Neurology, Ochsner-LSU Health Sciences Center, Shreveport, Louisiana, USA
| |
Collapse
|
14
|
Pethe P, Kale V. Placenta: A gold mine for translational research and regenerative medicine. Reprod Biol 2021; 21:100508. [PMID: 33930790 DOI: 10.1016/j.repbio.2021.100508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 02/06/2023]
Abstract
Stem cell therapy has gained much impetus in regenerative medicine due to some of the encouraging results obtained in the laboratory as well as in translational/clinical studies. Although stem cells are of various types and their therapeutic potential has been documented in several studies, mesenchymal stromal/stem cells (MSCs) have an edge, as in addition to being multipotent, these cells are easy to obtain and expand, pose fewer ethical issues, and possess immense regenerative potential when used in a scientifically correct manner. Currently, MSCs are being sourced from various tissues such as bone marrow, cord, cord blood, adipose tissue, dental tissue, etc., and, quite often, the choice depends on the availability of the source. One such rich source of tissue suitable for obtaining good quality MSCs in large numbers is the placenta obtained in a full-term delivery leading to a healthy child's birth. Several studies have demonstrated the regenerative potential of human placenta-derived MSCs (hPMSC), and most show that these MSCs possess comparable, in some instances, even better, therapeutic potential as that shown by human bone marrow-derived (hBMSC) or human umbilical cord-derived (hUC-MSC) MSCs. The placenta can be easily sourced from the OB/GYN department of any hospital, and if its derivatives such as hPMSC or their EVs are produced under GMP conditions, it could serve as a gold mine for translational/clinical research. Here, we have reviewed recent studies revealing the therapeutic potential of hPMSC and their extracellular vesicles (EVs) published over the past three years.
Collapse
Affiliation(s)
- Prasad Pethe
- Symbiosis Centre for Stem Cell Research, Symbiosis International University, Pune, 412115, India
| | - Vaijayanti Kale
- Symbiosis Centre for Stem Cell Research, Symbiosis International University, Pune, 412115, India.
| |
Collapse
|
15
|
Human placental mesenchymal stem cells improve stroke outcomes via extracellular vesicles-mediated preservation of cerebral blood flow. EBioMedicine 2020; 63:103161. [PMID: 33348090 PMCID: PMC7753936 DOI: 10.1016/j.ebiom.2020.103161] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/30/2020] [Accepted: 11/20/2020] [Indexed: 12/17/2022] Open
Abstract
Background Besides long-term trans-differentiation into neural cells, benefits of stem cell therapy (SCT) in ischemic stroke may include secretion of protective factors, which partly reflects extracellular vesicle (EVs) released by stem cell. However, the mechanism(s) by which stem cells/EVs limit stroke injury have yet to be fully defined. Methods We evaluated the protection effect of human placenta mesenchymal stem cells (hPMSC) as a potential form of SCT in experimental ischemic stroke ‘transient middle cerebral artery occusion (MCAO)/reperfusion’ mice model. Findings We found for the first time that intraperitoneal administration of hPMSCs or intravenous hPMSC-derived EVs, given at the time of reperfusion, significantly protected the ipsilateral hemisphere from ischemic injury. This protection was associated with significant restoration of normal blood flow to the post-MCAO brain. More importantly, EVs derived from hPMSC promote paracrine-based protection of SCT in the MCAO model in a cholesterol/lipid-dependent manner. Interpretation Together, our results demonstrated beneficial effects of hPMSC/EVs in experimental stroke models which could permit the rapid “translation” of these cells into clinical trials in the near-term.
Collapse
|
16
|
Chen Y, Guo Y, Chen H, Ma F. Long Non-coding RNA Expression Profiling Identifies a Four-Long Non-coding RNA Prognostic Signature for Isocitrate Dehydrogenase Mutant Glioma. Front Neurol 2020; 11:573264. [PMID: 33329315 PMCID: PMC7714930 DOI: 10.3389/fneur.2020.573264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Isocitrate dehydrogenase (IDH) mutant is one of the most robust and important genetic aberrations in glioma. However, the underlying regulation mechanism of long non-coding RNA (lncRNA) in IDH mutant glioma has not been systematically portrayed. Methods:In this work, 775 IDH mutant glioma samples with transcriptome data, including 167 samples from the Chinese Glioma Genome Atlas (CGGA) RNAseq dataset, 390 samples from The Cancer Genome Atlas (TCGA) dataset, 79 samples from GSE16011 dataset, and 139 samples from CGGA microarray dataset, were enrolled. R language and GraphPad Prism software were applied for the statistical analysis and graphical work. Results: By comparing the differentially lncRNA genes between IDH mutant and IDH wild-type glioma samples, a four-lncRNA (JAG1, PVT1, H19, and HAR1A) signature was identified in IDH mutant glioma patients. The signature model was established based on the expression level and the regression coefficient of the four lncRNA genes. IDH mutant glioma samples could be successfully stratified into low-risk and high-risk groups in CGGA RNAseq, TCGA, GSE16011, and CGGA microarray databases. Meanwhile, multivariate Cox analysis showed that the four-lncRNA signature was an independent prognostic biomarker after adjusting for other clinicopathologic factors. Moreover, the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that the immune response and cellular metabolism were significantly associated with the four-lncRNA risk signature. Conclusion: Taken together, the four-lncRNA risk signature was identified as a novel prognostic marker for IDH mutant glioma patients and may potentially lead to improvements in the lives of glioma patients.
Collapse
Affiliation(s)
- Yusheng Chen
- Department of Neurosurgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yang Guo
- Department of Neurosurgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Hang Chen
- Department of Neurosurgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Fengjin Ma
- Department of Intensive Care Unit, The Third People's Hospital of Zhengzhou, Zhengzhou, China
| |
Collapse
|
17
|
Zohorsky K, Mequanint K. Designing Biomaterials to Modulate Notch Signaling in Tissue Engineering and Regenerative Medicine. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:383-410. [PMID: 33040694 DOI: 10.1089/ten.teb.2020.0182] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The design of cell-instructive biomaterials for tissue engineering and regenerative medicine is at a crossroads. Although the conventional tissue engineering approach is top-down (cells seeded to macroporous scaffolds and mature to form tissues), bottom-up tissue engineering strategies are becoming appealing. With such developments, we can study cell signaling events, thus enabling functional tissue assembly in physiologic and diseased models. Among many important signaling pathways, the Notch signaling pathway is the most diverse in its influence during tissue morphogenesis and repair following injury. Although Notch signaling is extensively studied in developmental biology and cancer biology, our knowledge of designing biomaterial-based Notch signaling platforms and incorporating Notch signaling components into engineered tissue systems is limited. By incorporating Notch signaling to tissue engineering scaffolds, we can direct cell-specific responses and improve engineered tissue maturation. This review will discuss recent progress in the development of Notch signaling biomaterials as a promising target to control cellular fate decisions, including the influences of ligand identity, biophysical material cues, ligand presentation strategies, and mechanotransduction. Notch signaling is consequently of interest to direct, control, and reprogram cellular behavior on a biomaterial surface. We anticipate that discussions in this article will allow for enhanced knowledge and insight into designing Notch targeted biomaterials for various tissue engineering and cell fate determinations. Impact statement Notch signaling is recognized as an important pathway in tissue engineering and regenerative medicine; however, there is no systematic review on this topic. The comprehensive review and perspectives presented here provide an in-depth discussion on ligand presentation strategies both in 2D and in 3D cell culture environments involving biomaterials/scaffolds. In addition, this review article provides insight into the challenges in designing cell surrogate biomaterials capable of providing Notch signals. To the best of the authors' knowledge, this is the first review relevant to the fields of tissue engineering.
Collapse
Affiliation(s)
- Kathleen Zohorsky
- School of Biomedical Engineering and The University of Western Ontario, London, Canada
| | - Kibret Mequanint
- School of Biomedical Engineering and The University of Western Ontario, London, Canada.,Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Canada
| |
Collapse
|
18
|
Zhang M, Yuan SZ, Sun H, Sun L, Zhou D, Yan J. miR-199b-5p promoted chondrogenic differentiation of C3H10T1/2 cells by regulating JAG1. J Tissue Eng Regen Med 2020; 14:1618-1629. [PMID: 32870569 DOI: 10.1002/term.3122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/17/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) are considered a promising candidate for use in cell-based therapy for cartilage repair. To promote understanding of the molecular control of chondrogenesis differentiation in MSCs, we compared the changes in microRNAs during in vitro chondrogenesis process of human bone-marrow mesenchymal stem cells (hBMSCs). MiR-199b-5p was up-regulated significantly during this process. The aim of the study was to investigate the effects of miR-199b-5p on chondrogenic differentiation of C3H10T1/2 MSC cells and explore the underlying mechanisms. MiR-199b-5p mimics or inhibitor were transfected into C3H10T1/2 cells, respectively, and then, the effects of miR-199b-5p on chondrogenic differentiation of C3H10T1/2 cells were detected. The results indicated that miR-199b-5p overexpression inhibited the growth of C3H10T1/2 cells but promoted transforming growth factor-β3 (TGF-β3)-induced C3H10T1/2 cells of chondrogenic differentiation, as supported by enhancing the gene and protein expression of chondrocyte specific markers of SOX9, aggrecan, and collagen type II (Col2a1). In contrast, inhibiting miR-199b-5p notably promoted the proliferation of C3H10T1/2 cells but decreased chondrogenic differentiation. Furthermore, mechanism studies revealed that JAG1 was a direct target of miR-199b-5p by dual luciferase reporter assays. While silencing of JAG1 by isRNA resulted an increase of chondrogenic differentiation. Further, JAG1 knockdown was demonstrated to block the effect of miR-199b-5p inhibition. In conclusion, the present study revealed for the first time that miR-199b-5p was the positive regulators to modulate chondrogenic differentiation of C3H10T1/2 cells by targeting JAG1. These findings may provide a novel insight on miRNA-mediated MSC therapy for cartilage related disorders.
Collapse
Affiliation(s)
- Miao Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shu Zheng Yuan
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Haimei Sun
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lei Sun
- Musculosketetal Tissue Bank, Beijing Jishuitan Hospital, Beijing, China
| | - Deshan Zhou
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jihong Yan
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|