1
|
Chen L, Kong X, Johnston KG, Mortazavi A, Holmes TC, Tan Z, Yokomori K, Xu X. Single-cell spatial transcriptomics reveals a dystrophic trajectory following a developmental bifurcation of myoblast cell fates in facioscapulohumeral muscular dystrophy. Genome Res 2024; 34:665-679. [PMID: 38777608 PMCID: PMC11216401 DOI: 10.1101/gr.278717.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is linked to abnormal derepression of the transcription activator DUX4. This effect is localized to a low percentage of cells, requiring single-cell analysis. However, single-cell/nucleus RNA-seq cannot fully capture the transcriptome of multinucleated large myotubes. To circumvent these issues, we use multiplexed error-robust fluorescent in situ hybridization (MERFISH) spatial transcriptomics that allows profiling of RNA transcripts at a subcellular resolution. We simultaneously examined spatial distributions of 140 genes, including 24 direct DUX4 targets, in in vitro differentiated myotubes and unfused mononuclear cells (MNCs) of control, isogenic D4Z4 contraction mutant and FSHD patient samples, as well as the individual nuclei within them. We find myocyte nuclei segregate into two clusters defined by the expression of DUX4 target genes, which is exclusively found in patient/mutant nuclei, whereas MNCs cluster based on developmental states. Patient/mutant myotubes are found in "FSHD-hi" and "FSHD-lo" states with the former signified by high DUX4 target expression and decreased muscle gene expression. Pseudotime analyses reveal a clear bifurcation of myoblast differentiation into control and FSHD-hi myotube branches, with variable numbers of DUX4 target-expressing nuclei found in multinucleated FSHD-hi myotubes. Gene coexpression modules related to extracellular matrix and stress gene ontologies are significantly altered in patient/mutant myotubes compared with the control. We also identify distinct subpathways within the DUX4 gene network that may differentially contribute to the disease transcriptomic phenotype. Taken together, our MERFISH-based study provides effective gene network profiling of multinucleated cells and identifies FSHD-induced transcriptomic alterations during myoblast differentiation.
Collapse
Affiliation(s)
- Lujia Chen
- Department of Biomedical Engineering, University of California, Irvine, California 92697, USA
- Center for Neural Circuit Mapping, University of California, Irvine, California 92697, USA
| | - Xiangduo Kong
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California 92697, USA
| | - Kevin G Johnston
- Department of Anatomy and Neurobiology, School of Medicine, University of California Irvine, Irvine, California 92697, USA
| | - Ali Mortazavi
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California 92697, USA
| | - Todd C Holmes
- Center for Neural Circuit Mapping, University of California, Irvine, California 92697, USA
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, California 92697, USA
| | - Zhiqun Tan
- Center for Neural Circuit Mapping, University of California, Irvine, California 92697, USA;
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California 92697, USA
- Department of Anatomy and Neurobiology, School of Medicine, University of California Irvine, Irvine, California 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California 92697, USA
| | - Kyoko Yokomori
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California 92697, USA;
| | - Xiangmin Xu
- Department of Biomedical Engineering, University of California, Irvine, California 92697, USA;
- Center for Neural Circuit Mapping, University of California, Irvine, California 92697, USA
- Department of Anatomy and Neurobiology, School of Medicine, University of California Irvine, Irvine, California 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California 92697, USA
- Department of Computer Science, University of California, Irvine, California 92697, USA
| |
Collapse
|
2
|
Laskin GR, Rentería LI, Muller-Delp JM, Kim JS, Chase PB, Hwang HS, Gordon BS. Short-term aerobic exercise prevents development of glucocorticoid myopathic features in aged skeletal muscle in a sex-dependent manner. J Physiol 2024. [PMID: 38861348 DOI: 10.1113/jp286334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024] Open
Abstract
Older adults are vulnerable to glucocorticoid-induced muscle atrophy and weakness, with sex potentially influencing their susceptibility to those effects. Aerobic exercise can reduce glucocorticoid-induced muscle atrophy in young rodents. However, it is unknown whether aerobic exercise can prevent glucocorticoid myopathy in aged muscle. The objectives of this study were to define the extent to which sex influences the development of glucocorticoid myopathy in aged muscle, and to determine the extent to which aerobic exercise training protects against myopathy development. Twenty-four-month-old female (n = 30) and male (n = 33) mice were randomized to either sedentary or aerobic exercise groups. Within their respective groups, mice were randomized to either daily treatment with dexamethasone (DEX) or saline. Upon completing treatments, the contractile properties of the triceps surae complex were assessed in situ. DEX marginally lowered muscle mass and soluble protein content in both sexes, which was attenuated by aerobic exercise only in females. DEX increased sub-tetanic force and rate of force development only in females, which was not influenced by aerobic exercise. Muscle fatigue was higher in both sexes following DEX, but aerobic exercise prevented fatigue induction only in females. The sex-specific differences to muscle function in response to DEX treatment coincided with sex-specific changes to the content of proteins related to calcium handling, mitochondrial quality control, reactive oxygen species production, and glucocorticoid receptor in muscle. These findings define several important sexually dimorphic changes to aged skeletal muscle physiology in response to glucocorticoid treatment and define the capacity of short-term aerobic exercise to protect against those changes. KEY POINTS: There are sexually dimorphic effects of glucocorticoids on aged skeletal muscle physiology. Glucocorticoid-induced changes to aged muscle contractile properties coincide with sex-specific differences in the content of calcium handling proteins. Aerobic exercise prevents glucocorticoid-induced fatigue only in aged females and coincides with differences in the content of mitochondrial quality control proteins and glucocorticoid receptors.
Collapse
Affiliation(s)
- Grant R Laskin
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, USA
| | - Liliana I Rentería
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, USA
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida, USA
| | - Judy M Muller-Delp
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Jeong-Su Kim
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, USA
| | - P Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Hyun Seok Hwang
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, USA
| | - Bradley S Gordon
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, USA
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
3
|
Leszczynski EC, Thorn ME, Szlachetka J, Lee MH, Ferguson DP. The Effect of an Early Life Motor Skill Intervention on Physical Activity in Growth-Restricted Mice. Med Sci Sports Exerc 2024; 56:1066-1076. [PMID: 38233993 DOI: 10.1249/mss.0000000000003393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
INTRODUCTION Early life growth restriction significantly increases the risk of adulthood physical inactivity and thereby chronic disease incidence. Improvements in motor skill acquisition could result in greater physical activity engagement in the growth-restricted population, thus reducing chronic disease risk. The purpose of this study was to implement an early life motor training intervention to improve physical activity engagement in control and growth-restricted mice. METHODS Mice were growth restricted in early life utilizing a validated nutritive model or remained fully nourished in early life as a control. All mice were tested throughout early life for various components of motor skill acquisition. On postnatal day 10, mice were randomly assigned to engage in an early life motor skill intervention daily until postnatal day 21 or remained as a sedentary control. All mice were given access to an in-cage running wheel from postnatal days 45-70. RESULTS Growth-restricted group (PGR) mice had impaired trunk and postural control, coordination/vestibular development, and hindlimb strength in early life compared with control mice. There were no differences in wheel running behavior between the trained and sedentary mice, although control mice ran at a faster average speed compared with PGR mice. Control female mice ran more than PGR female mice during the week 2 dark cycle. CONCLUSIONS Early life growth restriction reduced motor skill attainment throughout early life, which may be associated with reduced ability to engage in physical activity in adulthood. The early life motor skill intervention did not elicit changes in body weight or physical activity engagement in control or PGR mice, indicating that a more intense/different intervention specifically targeting skeletal muscle may be necessary to counteract the detrimental effects of early life growth restriction.
Collapse
Affiliation(s)
| | - Megan E Thorn
- Department of Kinesiology, Michigan State University, East Lansing, MI
| | - Josie Szlachetka
- Department of Kinesiology, Michigan State University, East Lansing, MI
| | - Mei-Hua Lee
- Department of Kinesiology, Michigan State University, East Lansing, MI
| | - David P Ferguson
- Department of Kinesiology, Michigan State University, East Lansing, MI
| |
Collapse
|
4
|
Song Q, Li J, Li S, Cao H, Jin X, Zeng Y, Chen W. Full-Length Transcriptome Analysis of Skeletal Muscle of Jiangquan Black Pig at Different Developmental Stages. Int J Mol Sci 2024; 25:6095. [PMID: 38892283 PMCID: PMC11172715 DOI: 10.3390/ijms25116095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Skeletal muscle grows in response to a combination of genetic and environmental factors, and its growth and development influence the quality of pork. Elucidating the molecular mechanisms regulating the growth and development of skeletal muscle is of great significance to both animal husbandry and farm management. The Jiangquan black pig is an excellent pig breed based on the original Yimeng black pig, importing the genes of the Duroc pig for meat traits, and cultivated through years of scientific selection and breeding. In this study, full-length transcriptome sequencing was performed on three growth stages of Jiangquan black pigs, aiming to study the developmental changes in Jiangquan black pigs at different developmental stages at the molecular level and to screen the key genes affecting the growth of skeletal muscle in Jiangquan black pigs. We performed an enrichment analysis of genes showing differential expression and constructed a protein-protein interaction network with the aim of identifying core genes involved in the development of Jiangquan black pigs. Notably, genes such as TNNI2, TMOD4, PLDIM3, MYOZ1, and MYH1 may be potential regulators of muscle development in Jiangquan black pigs. Our results contribute to the understanding of the molecular mechanisms of skeletal muscle development in this pig breed, which will facilitate molecular breeding efforts and the development of pig breeds to meet the needs of the livestock industry.
Collapse
Affiliation(s)
- Qi Song
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271017, China; (Q.S.); (J.L.); (S.L.); (H.C.); (X.J.); (Y.Z.)
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tai’an 271017, China
| | - Jinbao Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271017, China; (Q.S.); (J.L.); (S.L.); (H.C.); (X.J.); (Y.Z.)
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tai’an 271017, China
| | - Shiyin Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271017, China; (Q.S.); (J.L.); (S.L.); (H.C.); (X.J.); (Y.Z.)
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tai’an 271017, China
| | - Hongzhen Cao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271017, China; (Q.S.); (J.L.); (S.L.); (H.C.); (X.J.); (Y.Z.)
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tai’an 271017, China
| | - Xinlin Jin
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271017, China; (Q.S.); (J.L.); (S.L.); (H.C.); (X.J.); (Y.Z.)
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tai’an 271017, China
| | - Yongqing Zeng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271017, China; (Q.S.); (J.L.); (S.L.); (H.C.); (X.J.); (Y.Z.)
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tai’an 271017, China
| | - Wei Chen
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271017, China; (Q.S.); (J.L.); (S.L.); (H.C.); (X.J.); (Y.Z.)
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tai’an 271017, China
| |
Collapse
|
5
|
Jeong SY, Choi JH, Kim J, Woo JS, Lee EH. Tripartite Motif-Containing Protein 32 (TRIM32): What Does It Do for Skeletal Muscle? Cells 2023; 12:2104. [PMID: 37626915 PMCID: PMC10453674 DOI: 10.3390/cells12162104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Tripartite motif-containing protein 32 (TRIM32) is a member of the tripartite motif family and is highly conserved from flies to humans. Via its E3 ubiquitin ligase activity, TRIM32 mediates and regulates many physiological and pathophysiological processes, such as growth, differentiation, muscle regeneration, immunity, and carcinogenesis. TRIM32 plays multifunctional roles in the maintenance of skeletal muscle. Genetic variations in the TRIM32 gene are associated with skeletal muscular dystrophies in humans, including limb-girdle muscular dystrophy type 2H (LGMD2H). LGMD2H-causing genetic variations of TRIM32 occur most frequently in the C-terminal NHL (ncl-1, HT2A, and lin-41) repeats of TRIM32. LGMD2H is characterized by skeletal muscle dystrophy, myopathy, and atrophy. Surprisingly, most patients with LGMD2H show minimal or no dysfunction in other tissues or organs, despite the broad expression of TRIM32 in various tissues. This suggests more prominent roles for TRIM32 in skeletal muscle than in other tissues or organs. This review is focused on understanding the physiological roles of TRIM32 in skeletal muscle, the pathophysiological mechanisms mediated by TRIM32 genetic variants in LGMD2H patients, and the correlations between TRIM32 and Duchenne muscular dystrophy (DMD).
Collapse
Affiliation(s)
- Seung Yeon Jeong
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jun Hee Choi
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jooho Kim
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jin Seok Woo
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 10833, USA
| | - Eun Hui Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
6
|
Mayfield JE, Dixon JE. Emerging mechanisms of regulation for endoplasmic/sarcoplasmic reticulum Ca2+ stores by secretory pathway kinase FAM20C. Curr Opin Chem Biol 2023; 74:102279. [DOI: 10.1016/j.cbpa.2023.102279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 03/28/2023]
|
7
|
Lubbe C, Meyer LCR, Kohn TA, Harvey BH, Wolmarans DW. The pathophysiology of rhabdomyolysis in ungulates and rats: towards the development of a rodent model of capture myopathy. Vet Res Commun 2023; 47:361-371. [PMID: 36334218 DOI: 10.1007/s11259-022-10030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/20/2022] [Indexed: 11/08/2022]
Abstract
Capture myopathy (CM), which is associated with the capture and translocation of wildlife, is a life-threatening condition that causes noteworthy morbidity and mortality in captured animals. Such wildlife deaths have a significant impact on nature conservation efforts and the socio-economic wellbeing of communities reliant on ecotourism. Several strategies are used to minimise the adverse consequences associated with wildlife capture, especially in ungulates, but no successful preventative or curative measures have yet been developed. The primary cause of death in wild animals diagnosed with CM stems from kidney or multiple organ failure as secondary complications to capture-induced rhabdomyolysis. Ergo, the development of accurate and robust model frameworks is vital to improve our understanding of CM. Still, since CM-related complications are borne from biological and behavioural factors that may be unique to wildlife, e.g. skeletal muscle architecture or flighty nature, certain differences between the physiology and stress responses of wildlife and rodents need consideration in such endeavours. Therefore, the purpose of this review is to summarise some of the major etiological and pathological mechanisms of the condition as it is observed in wildlife and what is currently known of CM-like syndromes, i.e. rhabdomyolysis, in laboratory rats. Additionally, we will highlight some key aspects for consideration in the development and application of potential future rodent models.
Collapse
Affiliation(s)
- Crystal Lubbe
- Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, 2520, South Africa
| | - Leith C R Meyer
- Center for Veterinary Wildlife Research and Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Tertius A Kohn
- Center for Veterinary Wildlife Research and Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
- Department of Medical Bioscience, Faculty of Natural Sciences, University of the Western Cape, Western Cape, South Africa
| | - Brian H Harvey
- Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, 2520, South Africa
- South African Medical Research Council Unit On Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Western Cape, South Africa
| | - De Wet Wolmarans
- Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, 2520, South Africa.
| |
Collapse
|
8
|
Dowling P, Gargan S, Swandulla D, Ohlendieck K. Proteomic profiling of impaired excitation-contraction coupling and abnormal calcium handling in muscular dystrophy. Proteomics 2022; 22:e2200003. [PMID: 35902360 PMCID: PMC10078611 DOI: 10.1002/pmic.202200003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/06/2022]
Abstract
The X-linked inherited neuromuscular disorder Duchenne muscular dystrophy is characterised by primary abnormalities in the membrane cytoskeletal component dystrophin. The almost complete absence of the Dp427-M isoform of dystrophin in skeletal muscles renders contractile fibres more susceptible to progressive degeneration and a leaky sarcolemma membrane. This in turn results in abnormal calcium homeostasis, enhanced proteolysis and impaired excitation-contraction coupling. Biochemical and mass spectrometry-based proteomic studies of both patient biopsy specimens and genetic animal models of dystrophinopathy have demonstrated significant changes in the concentration and/or physiological function of essential calcium-regulatory proteins in dystrophin-lacking voluntary muscles. Abnormalities include dystrophinopathy-associated changes in voltage sensing receptors, calcium release channels, calcium pumps and calcium binding proteins. This review article provides an overview of the importance of the sarcolemmal dystrophin-glycoprotein complex and the wider dystrophin complexome in skeletal muscle and its linkage to depolarisation-induced calcium-release mechanisms and the excitation-contraction-relaxation cycle. Besides chronic inflammation, fat substitution and reactive myofibrosis, a major pathobiochemical hallmark of X-linked muscular dystrophy is represented by the chronic influx of calcium ions through the damaged plasmalemma in conjunction with abnormal intracellular calcium fluxes and buffering. Impaired calcium handling proteins should therefore be included in an improved biomarker signature of Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | | | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
9
|
Endo Y, Groom L, Celik A, Kraeva N, Lee CS, Jung SY, Gardner L, Shaw MA, Hamilton SL, Hopkins PM, Dirksen RT, Riazi S, Dowling JJ. Variants in ASPH cause exertional heat illness and are associated with malignant hyperthermia susceptibility. Nat Commun 2022; 13:3403. [PMID: 35697689 PMCID: PMC9192596 DOI: 10.1038/s41467-022-31088-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/31/2022] [Indexed: 01/24/2023] Open
Abstract
Exertional heat illness (EHI) and malignant hyperthermia (MH) are life threatening conditions associated with muscle breakdown in the setting of triggering factors including volatile anesthetics, exercise, and high environmental temperature. To identify new genetic variants that predispose to EHI and/or MH, we performed genomic sequencing on a cohort with EHI/MH and/or abnormal caffeine-halothane contracture test. In five individuals, we identified rare, pathogenic heterozygous variants in ASPH, a gene encoding junctin, a regulator of excitation-contraction coupling. We validated the pathogenicity of these variants using orthogonal pre-clinical models, CRISPR-edited C2C12 myotubes and transgenic zebrafish. In total, we demonstrate that ASPH variants represent a new cause of EHI and MH susceptibility.
Collapse
Affiliation(s)
- Yukari Endo
- grid.42327.300000 0004 0473 9646Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario Canada
| | - Linda Groom
- grid.16416.340000 0004 1936 9174Department of Physiology, University of Rochester, Rochester, NY USA
| | - Alper Celik
- grid.42327.300000 0004 0473 9646Centre for Computation Medicine, Hospital for Sick Children, Toronto, Ontario Canada
| | - Natalia Kraeva
- grid.417184.f0000 0001 0661 1177Malignant Hyperthermia Unit, Department of Anesthesia, Toronto General Hospital, Toronto, Ontario Canada
| | - Chang Seok Lee
- grid.39382.330000 0001 2160 926XDepartment of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX USA
| | - Sung Yun Jung
- grid.39382.330000 0001 2160 926XDepartment of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX USA
| | - Lois Gardner
- grid.9909.90000 0004 1936 8403Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds, UK
| | - Marie-Anne Shaw
- grid.9909.90000 0004 1936 8403Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds, UK
| | - Susan L. Hamilton
- grid.39382.330000 0001 2160 926XDepartment of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX USA
| | - Philip M. Hopkins
- grid.9909.90000 0004 1936 8403Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds, UK ,grid.443984.60000 0000 8813 7132Malignant Hyperthermia Unit, St. James’s University Hospital, Leeds, UK
| | - Robert T. Dirksen
- grid.16416.340000 0004 1936 9174Department of Physiology, University of Rochester, Rochester, NY USA
| | - Sheila Riazi
- grid.417184.f0000 0001 0661 1177Malignant Hyperthermia Unit, Department of Anesthesia, Toronto General Hospital, Toronto, Ontario Canada
| | - James J. Dowling
- grid.42327.300000 0004 0473 9646Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario Canada ,grid.42327.300000 0004 0473 9646Division of Neurology, Hospital for Sick Children, Toronto, Ontario Canada ,grid.17063.330000 0001 2157 2938Department of Paediatrics, University of Toronto, Toronto, Ontario Canada ,grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, Ontario Canada
| |
Collapse
|
10
|
Lee KY, Seah C, Li C, Chen YF, Chen CY, Wu CI, Liao PC, Shyu YC, Olafson HR, McKee KK, Wang ET, Yeh CH, Wang CH. Mice lacking MBNL1 and MBNL2 exhibit sudden cardiac death and molecular signatures recapitulating myotonic dystrophy. Hum Mol Genet 2022; 31:3144-3160. [PMID: 35567413 PMCID: PMC9476621 DOI: 10.1093/hmg/ddac108] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 04/22/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Myotonic dystrophy (DM) is caused by expansions of C(C)TG repeats in the non-coding regions of the DMPK and CNBP genes, and DM patients often suffer from sudden cardiac death due to lethal conduction block or arrhythmia. Specific molecular changes that underlie DM cardiac pathology have been linked to repeat-associated depletion of Muscleblind-like (MBNL) 1 and 2 proteins and upregulation of CUGBP, Elav-like family member 1 (CELF1). Hypothesis solely targeting MBNL1 or CELF1 pathways that could address all the consequences of repeat expansion in heart remained inconclusive, particularly when the direct cause of mortality and results of transcriptome analyses remained undetermined in Mbnl compound knockout (KO) mice with cardiac phenotypes. Here, we develop Myh6-Cre double KO (DKO) (Mbnl1−/−; Mbnl2cond/cond; Myh6-Cre+/−) mice to eliminate Mbnl1/2 in cardiomyocytes and observe spontaneous lethal cardiac events under no anesthesia. RNA sequencing recapitulates DM heart spliceopathy and shows gene expression changes that were previously undescribed in DM heart studies. Notably, immunoblotting reveals a nearly 6-fold increase of Calsequestrin 1 and 50% reduction of epidermal growth factor proteins. Our findings demonstrate that complete ablation of MBNL1/2 in cardiomyocytes is essential for generating sudden death due to lethal cardiac rhythms and reveal potential mechanisms for DM heart pathogenesis.
Collapse
Affiliation(s)
- Kuang-Yung Lee
- Department of Neurology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan.,Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Carol Seah
- Department of Neurology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
| | - Ching Li
- Department of Neurology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
| | - Yu-Fu Chen
- Department of Neurology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
| | - Chwen-Yu Chen
- Department of Neurology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
| | - Ching-I Wu
- Department of Neurology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
| | - Po-Cheng Liao
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
| | - Yu-Chiau Shyu
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan.,Department of Nursing, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
| | - Hailey R Olafson
- Department of Molecular Genetics & Microbiology, Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL. 32610, USA
| | - Kendra K McKee
- Department of Molecular Genetics & Microbiology, Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL. 32610, USA
| | - Eric T Wang
- Department of Molecular Genetics & Microbiology, Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL. 32610, USA
| | - Chi-Hsiao Yeh
- Department of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital, Linko Branch, Taoyuan, Taiwan.,Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Chao-Hung Wang
- Division of Cardiology, Department of Internal Medicine, Heart Failure Research Center, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan.,Chang Gung University, College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
11
|
Nusier M, Shah AK, Dhalla NS. Structure-Function Relationships and Modifications of Cardiac Sarcoplasmic Reticulum Ca2+-Transport. Physiol Res 2022; 70:S443-S470. [DOI: 10.33549/physiolres.934805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Sarcoplasmic reticulum (SR) is a specialized tubular network, which not only maintains the intracellular concentration of Ca2+ at a low level but is also known to release and accumulate Ca2+ for the occurrence of cardiac contraction and relaxation, respectively. This subcellular organelle is composed of several phospholipids and different Ca2+-cycling, Ca2+-binding and regulatory proteins, which work in a coordinated manner to determine its function in cardiomyocytes. Some of the major proteins in the cardiac SR membrane include Ca2+-pump ATPase (SERCA2), Ca2+-release protein (ryanodine receptor), calsequestrin (Ca2+-binding protein) and phospholamban (regulatory protein). The phosphorylation of SR Ca2+-cycling proteins by protein kinase A or Ca2+-calmodulin kinase (directly or indirectly) has been demonstrated to augment SR Ca2+-release and Ca2+-uptake activities and promote cardiac contraction and relaxation functions. The activation of phospholipases and proteases as well as changes in different gene expressions under different pathological conditions have been shown to alter the SR composition and produce Ca2+-handling abnormalities in cardiomyocytes for the development of cardiac dysfunction. The post-translational modifications of SR Ca2+ cycling proteins by processes such as oxidation, nitrosylation, glycosylation, lipidation, acetylation, sumoylation, and O GlcNacylation have also been reported to affect the SR Ca2+ release and uptake activities as well as cardiac contractile activity. The SR function in the heart is also influenced in association with changes in cardiac performance by several hormones including thyroid hormones and adiponectin as well as by exercise-training. On the basis of such observations, it is suggested that both Ca2+-cycling and regulatory proteins in the SR membranes are intimately involved in determining the status of cardiac function and are thus excellent targets for drug development for the treatment of heart disease.
Collapse
Affiliation(s)
| | | | - NS Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen, Research Centre, 351 Tache Avenue, Winnipeg, MB, R2H 2A6 Canada.
| |
Collapse
|
12
|
Huang T, Jian X, Liu J, Zheng L, Li FQ, Meng D, Wang T, Zhang S, Liu Y, Guan Z, Feng J. Exercise and/or Cold Exposure Alters the Gene Expression Profile in the Fat Body and Changes the Heart Function in Drosophila. Front Endocrinol (Lausanne) 2022; 13:790414. [PMID: 35418948 PMCID: PMC8995477 DOI: 10.3389/fendo.2022.790414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/25/2022] [Indexed: 12/18/2022] Open
Abstract
The major reason of human morbidity and mortality is obesity and related diseases. Brown adipose tissue (BAT) is associated with low total adipose tissue content and a lower risk of type 2 diabetes mellitus. Studies have shown that exercise and cold expose may induce browning. In this study, we verified (1) whether exercise and/or cold exposure can improve the expression level of ucp4c, serca, ampkα, camkII, sirt1, octβ3r, and hamlet; (2) if these interventions can save cardiac dysfunction induced by a high-fat diet (HFD) in Drosophila. w1118 (wild-type) virgin female flies collected within 8 h after eclosion were divided into eight groups: the normal feed control group (NFD-C), the normal feed exercise group (NFD-E), the normal feed cold exposure group (NFD-CA), the normal feed exercise/cold exposure group (NFD-EC), the HFD control group (HFD-C), the HFD exercise group (HFD-E), the HFD cold exposure group (HFD-CA), and the HFD exercise/cold exposure group (HFD-EC). After exercise and/or cold exposure for 7 days, the mRNA expression levels of ucp4c, serca, ampkα, camk II, sirt1, octβ3r, and hamlet were tested by qRT-PCR, and m-mode was used to assess cardiac function. In addition, we assessed the triacylglycerol (TAG) levels, motor ability, fat mass (by Oil Red O [ORO] staining), and morphological features. The results of TAG, ORO staining, and morphological features all indicate that after interventions, body size of Drosophila was smaller compared with the control group, irrespective of the feeding patterns. The mRNA expression levels of ucp4c, serca, octβ3r, hamlet, ampkα, camkII, and sirt1 were changed to varying degrees under different intervention states (exercise and/or cold exposure). Cold exposure and exercise/cold exposure partly improved cardiac function and the normal fruit flies' cardiac function and exercise ability. However, after exercise intervention, exercise ability and heart function were improved in both HFD and normal-fat diet (NFD) fruit flies. In conclusion, different intervention states (exercise and/or cold exposure) can change the mRNA expression levels of ucp4c, serca, octβ3r, hamlet, ampkα, camkII, and sirt1. Exercise is the most effective way to restore HFD-induced cardiac dysfunction.
Collapse
|
13
|
Calsequestrin 1 Is an Active Partner of Stromal Interaction Molecule 2 in Skeletal Muscle. Cells 2021; 10:cells10112821. [PMID: 34831044 PMCID: PMC8616366 DOI: 10.3390/cells10112821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 12/25/2022] Open
Abstract
Calsequestrin 1 (CASQ1) in skeletal muscle buffers and senses Ca2+ in the sarcoplasmic reticulum (SR). CASQ1 also regulates store-operated Ca2+ entry (SOCE) by binding to stromal interaction molecule 1 (STIM1). Abnormal SOCE and/or abnormal expression or mutations in CASQ1, STIM1, or STIM2 are associated with human skeletal, cardiac, or smooth muscle diseases. However, the functional relevance of CASQ1 along with STIM2 has not been studied in any tissue, including skeletal muscle. First, in the present study, it was found by biochemical approaches that CASQ1 is bound to STIM2 via its 92 N-terminal amino acids (C1 region). Next, to examine the functional relevance of the CASQ1-STIM2 interaction in skeletal muscle, the full-length wild-type CASQ1 or the C1 region was expressed in mouse primary skeletal myotubes, and the myotubes were examined using single-myotube Ca2+ imaging experiments and transmission electron microscopy observations. The CASQ1-STIM2 interaction via the C1 region decreased SOCE, increased intracellular Ca2+ release for skeletal muscle contraction, and changed intracellular Ca2+ distributions (high Ca2+ in the SR and low Ca2+ in the cytosol were observed). Furthermore, the C1 region itself (which lacks Ca2+-buffering ability but has STIM2-binding ability) decreased the expression of Ca2+-related proteins (canonical-type transient receptor potential cation channel type 6 and calmodulin 1) and induced mitochondrial shape abnormalities. Therefore, in skeletal muscle, CASQ1 plays active roles in Ca2+ movement and distribution by interacting with STIM2 as well as Ca2+ sensing and buffering.
Collapse
|
14
|
Lilliu E, Koenig S, Koenig X, Frieden M. Store-Operated Calcium Entry in Skeletal Muscle: What Makes It Different? Cells 2021; 10:2356. [PMID: 34572005 PMCID: PMC8468011 DOI: 10.3390/cells10092356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 01/26/2023] Open
Abstract
Current knowledge on store-operated Ca2+ entry (SOCE) regarding its localization, kinetics, and regulation is mostly derived from studies performed in non-excitable cells. After a long time of relative disinterest in skeletal muscle SOCE, this mechanism is now recognized as an essential contributor to muscle physiology, as highlighted by the muscle pathologies that are associated with mutations in the SOCE molecules STIM1 and Orai1. This review mainly focuses on the peculiar aspects of skeletal muscle SOCE that differentiate it from its counterpart found in non-excitable cells. This includes questions about SOCE localization and the movement of respective proteins in the highly organized skeletal muscle fibers, as well as the diversity of expressed STIM isoforms and their differential expression between muscle fiber types. The emerging evidence of a phasic SOCE, which is activated during EC coupling, and its physiological implication is described as well. The specific issues related to the use of SOCE modulators in skeletal muscles are discussed. This review highlights the complexity of SOCE activation and its regulation in skeletal muscle, with an emphasis on the most recent findings and the aim to reach a current picture of this mesmerizing phenomenon.
Collapse
Affiliation(s)
- Elena Lilliu
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Stéphane Koenig
- Department of Cell Physiology and Metabolism, University of Geneva, 1201 Geneva, Switzerland;
| | - Xaver Koenig
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Maud Frieden
- Department of Cell Physiology and Metabolism, University of Geneva, 1201 Geneva, Switzerland;
| |
Collapse
|
15
|
Choi JH, Noh H, Kim YD, Woo KI. Prognostic factors of restrictive myopathy in thyroid eye disease. Sci Rep 2021; 11:13781. [PMID: 34215786 PMCID: PMC8253730 DOI: 10.1038/s41598-021-93275-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/23/2021] [Indexed: 11/09/2022] Open
Abstract
To investigate the prognostic factors of extraocular muscle restriction in patients with thyroid eye disease (TED), 65 patients with TED and restrictive myopathy were evaluated. Demographics, clinical activity score (CAS), smoking status, thyroid disease status, thyroid hormone status, thyroid autoantibody status, orbital computed tomography (CT) scan at initial presentation, and treatment regimens were assessed. The movements of the most severely affected extraocular muscles were categorized into five grades. The patients were divided into the improved and the not-improved group based on the improvement in the limitation of the extraocular muscle excursion (LOM) throughout the follow-up, and the groups were compared using clinical factors. The mean LOM significantly improved from 2.3 ± 1.1 to 1.7 ± 1.2 after 1 year of follow-up. The excursion of the most restricted muscle improved in 32 patients but not in 33 patients during the follow-up. The initial concentration of the thyroid-stimulating antibody (TSAb) was significantly lower in the improved (229.3 ± 114.1) than in the not-improved group (345.0 ± 178.6) (P = 0.02) Age, sex, smoking status, CAS, thyroid status, and muscle thickness on the CT scan did not significantly differ in the groups. This study showed that the initial concentration of TSAb is a factor affecting the recovery of restrictive myopathy.
Collapse
Affiliation(s)
- Jae Hwan Choi
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| | - Hoon Noh
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| | | | - Kyung In Woo
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea.
| |
Collapse
|