1
|
Zhang Y, Li BM, Zhang W, Chen P, Liu L, Nie Y, Huang C, Zhu X. LHPP deficiency aggravates liver fibrosis through TGF-β/Smad3 signaling. FASEB J 2024; 38:e70053. [PMID: 39373847 DOI: 10.1096/fj.202400117rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024]
Abstract
Liver fibrosis is characterized by a wound-healing response and may progress to liver cirrhosis and even hepatocellular carcinoma. Phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP) is a tumor suppressor that participates in malignant diseases. However, the role of LHPP in liver fibrosis has not been determined. Herein, the function and regulatory network of LHPP were explored in liver fibrosis. The expression of LHPP in human and murine fibrotic liver tissues was assessed via immunohistochemistry and Western blot analysis. In addition, liver fibrosis was induced in wild-type (WT) and LHPP-/- (KO) mice after carbon tetrachloride (CCl4) or thioacetamide (TAA) treatment. The effect of LHPP was systematically assessed by using specimens acquired from the above murine models. The functional role of LHPP was further explored by detecting the pathway activity of TGF-β/Smad3 and apoptosis after interfering with LHPP in vitro. To explore whether the function of LHPP depended on the TGF-β/Smad3 pathway in vivo, an inhibitor of the TGF-β/Smad3 pathway was used in CCl4-induced WT and KO mice. LHPP expression was downregulated in liver tissue samples from fibrosis patients and fibrotic mice. LHPP deficiency aggravated CCl4- and TAA-induced liver fibrosis. Moreover, through immunoblot analysis, we identified the TGF-β/Smad3 pathway as a key downstream pathway of LHPP in vivo and in vitro. The effect of LHPP deficiency was reversed by inhibiting the TGF-β/Smad3 pathway in liver fibrosis. These results revealed that LHPP deficiency exacerbates liver fibrosis through the TGF-β/Smad3 pathway. LHPP may be a potential therapeutic target in hepatic fibrosis.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Bi-Min Li
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wang Zhang
- Department of Gastroenterology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Peng Chen
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Linxiang Liu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yuan Nie
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Chenkai Huang
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xuan Zhu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Zhi Y, Fan K, Liu S, Hu K, Zan X, Lin L, Yang Y, Gong X, Chen K, Tang L, Li L, Huang J, Zhang S, Zhang L. Deletion of GPR81 activates CREB/Smad7 pathway and alleviates liver fibrosis in mice. Mol Med 2024; 30:99. [PMID: 38982366 PMCID: PMC11234765 DOI: 10.1186/s10020-024-00867-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/24/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Enhanced glycolysis is a crucial metabolic event that drives the development of liver fibrosis, but the molecular mechanisms have not been fully understood. Lactate is the endproduct of glycolysis, which has recently been identified as a bioactive metabolite binding to G-protein-coupled receptor 81 (GPR81). We then questioned whether GPR81 is implicated in the development of liver fibrosis. METHODS The level of GPR81 was determined in mice with carbon tetrachloride (CCl4)-induced liver fibrosis and in transforming growth factor beta 1 (TGF-β1)-activated hepatic stellate cells (HSCs) LX-2. To investigate the significance of GPR81 in liver fibrosis, wild-type (WT) and GPR81 knockout (KO) mice were exposed to CCl4, and then the degree of liver fibrosis was determined. In addition, the GPR81 agonist 3,5-dihydroxybenzoic acid (DHBA) was supplemented in CCl4-challenged mice and TGF-β1-activated LX-2 cells to further investigate the pathological roles of GPR81 on HSCs activation. RESULTS CCl4 exposure or TGF-β1 stimulation significantly upregulated the expression of GPR81, while deletion of GPR81 alleviated CCl4-induced elevation of aminotransferase, production of pro-inflammatory cytokines, and deposition of collagen. Consistently, the production of TGF-β1, the expression of alpha-smooth muscle actin (α-SMA) and collagen I (COL1A1), as well as the elevation of hydroxyproline were suppressed in GPR81 deficient mice. Supplementation with DHBA enhanced CCl4-induced liver fibrogenesis in WT mice but not in GPR81 KO mice. DHBA also promoted TGF-β1-induced LX-2 activation. Mechanistically, GPR81 suppressed cAMP/CREB and then inhibited the expression of Smad7, a negative regulator of Smad3, which resulted in increased phosphorylation of Smad3 and enhanced activation of HSCs. CONCLUSION GPR81 might be a detrimental factor that promotes the development of liver fibrosis by regulating CREB/Smad7 pathway.
Collapse
Affiliation(s)
- Ying Zhi
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, China
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Kerui Fan
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, China
- Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Shuang Liu
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Kai Hu
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Xinyan Zan
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Ling Lin
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Yongqiang Yang
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Xianqiong Gong
- Hepatology Center, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, Fujian, China
| | - Kun Chen
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Li Tang
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Longjiang Li
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Jiayi Huang
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Shujun Zhang
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Li Zhang
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, China.
- Laboratory of Integrated Traditional and Western Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400011, China.
| |
Collapse
|
3
|
Gisina A, Yarygin K, Lupatov A. The Impact of Glycosylation on the Functional Activity of CD133 and the Accuracy of Its Immunodetection. BIOLOGY 2024; 13:449. [PMID: 38927329 PMCID: PMC11200695 DOI: 10.3390/biology13060449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/01/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024]
Abstract
The membrane glycoprotein CD133 (prominin-1) is widely regarded as the main molecular marker of cancer stem cells, which are the most malignant cell subpopulation within the tumor, responsible for tumor growth and metastasis. For this reason, CD133 is considered a promising prognostic biomarker and molecular target for antitumor therapy. Under normal conditions, CD133 is present on the cell membrane in glycosylated form. However, in malignancies, altered glycosylation apparently leads to changes in the functional activity of CD133 and the availability of some of its epitopes for antibodies. This review focuses on CD133's glycosylation in human cells and its impact on the function of this glycoprotein. The association of CD133 with proliferation, differentiation, apoptosis, autophagy, epithelial-mesenchymal transition, the organization of plasma membrane protrusions and extracellular trafficking is discussed. In this review, particular attention is paid to the influence of CD133's glycosylation on its immunodetection. A list of commercially available and custom antibodies with their characteristics is provided. The available data indicate that the development of CD133-based biomedical technologies should include an assessment of CD133's glycosylation in each tumor type.
Collapse
Affiliation(s)
- Alisa Gisina
- Laboratory of Cell Biology, V. N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | | | | |
Collapse
|
4
|
Wahid RM, Hassan NH, Samy W, Abdelhadi AA, Saadawy SF, Elsayed SF, Seada SG, Mohamed SRA. Unraveling the hepatic stellate cells mediated mechanisms in aging's influence on liver fibrosis. Sci Rep 2024; 14:13473. [PMID: 38866800 PMCID: PMC11169484 DOI: 10.1038/s41598-024-63644-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024] Open
Abstract
Aging enhances numerous processes that compromise homeostasis and pathophysiological processes. Among these, activated HSCs play a pivotal role in advancing liver fibrosis. This research delved into how aging impacts liver fibrosis mechanisms. The study involved 32 albino rats categorized into four groups: Group I (young controls), Group II (young with liver fibrosis), Group III (old controls), and Group IV (old with liver fibrosis). Various parameters including serum ALT, adiponectin, leptin, and cholesterol levels were evaluated. Histopathological analysis was performed, alongside assessments of TGF-β, FOXP3, and CD133 gene expressions. Markers of fibrosis and apoptosis were the highest in group IV. Adiponectin levels significantly decreased in Group IV compared to all other groups except Group II, while cholesterol levels were significantly higher in liver fibrosis groups than their respective control groups. Group III displayed high hepatic expression of desmin, α-SMA, GFAP and TGF- β and in contrast to Group I. Increased TGF-β and FOXP3 gene expressions were observed in Group IV relative to Group II, while CD133 gene expression decreased in Group IV compared to Group II. In conclusion, aging modulates immune responses, impairs regenerative capacities via HSC activation, and influences adipokine and cholesterol levels, elevating the susceptibility to liver fibrosis.
Collapse
Affiliation(s)
- Reham M Wahid
- Medical Physiology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Nancy Husseiny Hassan
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Walaa Samy
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Amina A Abdelhadi
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Sara F Saadawy
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Sherein F Elsayed
- Medical Physiology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Sara G Seada
- Medical Physiology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | |
Collapse
|
5
|
Pleskač P, Fargeas CA, Veselska R, Corbeil D, Skoda J. Emerging roles of prominin-1 (CD133) in the dynamics of plasma membrane architecture and cell signaling pathways in health and disease. Cell Mol Biol Lett 2024; 29:41. [PMID: 38532366 DOI: 10.1186/s11658-024-00554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/22/2024] [Indexed: 03/28/2024] Open
Abstract
Prominin-1 (CD133) is a cholesterol-binding membrane glycoprotein selectively associated with highly curved and prominent membrane structures. It is widely recognized as an antigenic marker of stem cells and cancer stem cells and is frequently used to isolate them from biological and clinical samples. Recent progress in understanding various aspects of CD133 biology in different cell types has revealed the involvement of CD133 in the architecture and dynamics of plasma membrane protrusions, such as microvilli and cilia, including the release of extracellular vesicles, as well as in various signaling pathways, which may be regulated in part by posttranslational modifications of CD133 and its interactions with a variety of proteins and lipids. Hence, CD133 appears to be a master regulator of cell signaling as its engagement in PI3K/Akt, Src-FAK, Wnt/β-catenin, TGF-β/Smad and MAPK/ERK pathways may explain its broad action in many cellular processes, including cell proliferation, differentiation, and migration or intercellular communication. Here, we summarize early studies on CD133, as they are essential to grasp its novel features, and describe recent evidence demonstrating that this unique molecule is involved in membrane dynamics and molecular signaling that affects various facets of tissue homeostasis and cancer development. We hope this review will provide an informative resource for future efforts to elucidate the details of CD133's molecular function in health and disease.
Collapse
Affiliation(s)
- Petr Pleskač
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Christine A Fargeas
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Dresden, Germany
| | - Renata Veselska
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Denis Corbeil
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Dresden, Germany.
| | - Jan Skoda
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
| |
Collapse
|
6
|
Moreno-Londoño AP, Robles-Flores M. Functional Roles of CD133: More than Stemness Associated Factor Regulated by the Microenvironment. Stem Cell Rev Rep 2024; 20:25-51. [PMID: 37922108 PMCID: PMC10799829 DOI: 10.1007/s12015-023-10647-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 11/05/2023]
Abstract
CD133 protein has been one of the most used surface markers to select and identify cancer cells with stem-like features. However, its expression is not restricted to tumoral cells; it is also expressed in differentiated cells and stem/progenitor cells in various normal tissues. CD133 participates in several cellular processes, in part orchestrating signal transduction of essential pathways that frequently are dysregulated in cancer, such as PI3K/Akt signaling and the Wnt/β-catenin pathway. CD133 expression correlates with enhanced cell self-renewal, migration, invasion, and survival under stress conditions in cancer. Aside from the intrinsic cell mechanisms that regulate CD133 expression in each cellular type, extrinsic factors from the surrounding niche can also impact CD33 levels. The enhanced CD133 expression in cells can confer adaptive advantages by amplifying the activation of a specific signaling pathway in a context-dependent manner. In this review, we do not only describe the CD133 physiological functions known so far, but importantly, we analyze how the microenvironment changes impact the regulation of CD133 functions emphasizing its value as a marker of cell adaptability beyond a cancer-stem cell marker.
Collapse
Affiliation(s)
- Angela Patricia Moreno-Londoño
- Department of Biochemistry, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico City, Mexico
| | - Martha Robles-Flores
- Department of Biochemistry, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico City, Mexico.
| |
Collapse
|
7
|
Che Z, Zhou Z, Li SQ, Gao L, Xiao J, Wong NK. ROS/RNS as molecular signatures of chronic liver diseases. Trends Mol Med 2023; 29:951-967. [PMID: 37704494 DOI: 10.1016/j.molmed.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/11/2023] [Accepted: 08/07/2023] [Indexed: 09/15/2023]
Abstract
The liver can succumb to oxidant damage during the development of chronic liver diseases. Despite their physiological relevance to hepatic homeostasis, excessive reactive oxygen/nitrogen species (ROS/RNS) production under pathological conditions is detrimental to all liver constituents. Chronic oxidative stress coupled to unresolved inflammation sets in motion the activation of profibrogenic hepatic stellate cells (HSCs) and later pathogenesis of liver fibrosis, cirrhosis, and liver cancer. The liver antioxidant and repair systems, along with autophagic and ferroptotic machineries, are implicated in the onset and trajectory of disease development. In this review, we discuss the ROS/RNS-related mechanisms underlying liver fibrosis of distinct etiologies and highlight preclinical and clinical trials of antifibrotic therapies premised on remediating oxidative/nitrosative stress in hepatocytes or targeting HSC activation.
Collapse
Affiliation(s)
- Zhaodi Che
- Clinical Research Institute, Institute of Obesity and Metabolism, The First Affiliated Hospital of Jinan University, Guangzhou 510000, China
| | - Ziyuan Zhou
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China; Clinical Pharmacology Section, Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Si-Qi Li
- Clinical Pharmacology Section, Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510000, China
| | - Jia Xiao
- Clinical Research Institute, Institute of Obesity and Metabolism, The First Affiliated Hospital of Jinan University, Guangzhou 510000, China; Shandong Provincial Key Laboratory for Clinical Research of Liver Diseases, Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao 266001, China.
| | - Nai-Kei Wong
- Clinical Pharmacology Section, Department of Pharmacology, Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|
8
|
Kim JS, Han HS, Seong JK, Ko YG, Koo SH. Involvement of a novel cAMP signaling mediator for beige adipogenesis. Metabolism 2023; 143:155536. [PMID: 36933791 DOI: 10.1016/j.metabol.2023.155536] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/27/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Exposure to cold temperature stimulates the sympathetic nervous system that activates β-adrenergic receptor signals in brown and beige adipocytes, leading to the induction of adaptive thermogenesis in mammals. Prominin-1 (PROM1) is a pentaspan transmembrane protein that is widely identified as a marker for stem cells, although the role of this protein as a regulator of many intracellular signaling cascades has been recently delineated. The main focus of the current study is to identify the previously unknown role of PROM1 in beige adipogenesis and adaptive thermogenesis. METHODS Prom1 whole body knockout (Prom1 KO) mice, Prom1 adipogenic progenitor (AP) cell-specific knockout (Prom1 APKO) mice and Prom1 adipocyte-specific knockout (Prom1 AKO) mice were constructed and were subject for the induction of adaptive thermogenesis. The effect of systemic Prom1 depletion was evaluated by hematoxylin and eosin staining, immunostaining, and biochemical analysis in vivo. Flow cytometric analysis was performed to determine the identity of PROM1-expressing cell types, and the resultant cells were subject to beige adipogenesis in vitro. The potential role of PROM1 and ERM in cAMP signaling was also assessed in undifferentiated AP cells in vitro. Finally, the specific effect of Prom1 depletion on AP cell or mature adipocytes on adaptive thermogenesis was evaluated by hematoxylin and eosin staining, immunostaining, and biochemical analysis in vivo. RESULTS Prom1 KO mice displayed an impairment in cold- or β3-adrenergic agonist-induced adaptive thermogenesis in subcutaneous adipose tissues (SAT) but not in brown adipose tissues (BAT). By fluorescence-activated cell sorting (FACS) analysis, we identified that PROM1 positive cells are enriched in PDGFRα+Sca1+ AP cells from SAT. Interestingly, Prom1 knockout stromal vascular fractions showed reduced PDGFRα expression, suggesting a role of PROM1 in beige adipogenic potential. Indeed, we found that Prom1-deficient AP cells from SAT showed reduced potential for beige adipogenesis. Furthermore, AP cell-specific depletion of Prom1, but not adipocyte-specific depletion of Prom1, displayed defects in adaptive thermogenesis as evidenced by resistance to cold-induced browning of SAT and dampened energy expenditure in mice. CONCLUSION We found that PROM1 positive AP cells are essential for the adaptive thermogenesis by ensuing stress-induced beige adipogenesis. Identification of PROM1 ligand might be useful in the activation of thermogenesis that could be potentially beneficial in combating obesity.
Collapse
Affiliation(s)
- Jun Seok Kim
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Hye-Sook Han
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Gyu Ko
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Seung-Hoi Koo
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
9
|
Bahn MS, Ko YG. PROM1-mediated cell signal transduction in cancer stem cells and hepatocytes. BMB Rep 2023; 56:65-70. [PMID: 36617467 PMCID: PMC9978360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Indexed: 01/10/2023] Open
Abstract
Prominin-1 (PROM1), also called CD133, is a penta-span transmembrane protein that is localized in membrane protrusions, such as microvilli and filopodia. It is known to be expressed in cancer stem cells and various progenitor cells of bone marrow, liver, kidney, and intestine. Accumulating evidence has revealed that PROM1 has multiple functions in various organs, such as eye, tooth, peripheral nerve, and liver, associating with various molecular protein partners. PROM1 regulates PKA-induced gluconeogenesis, TGFβ-induced fibrosis, and IL-6-induced regeneration in the liver, associating with Radixin, SMAD7, and GP130, respectively. In addition, PROM1 is necessary to maintain cancer stem cell properties by activating PI3K and β-Catenin. PROM1-deficienct mice also show distinct phenotypes in eyes, brain, peripheral nerves, and tooth. Here, we discuss recent findings of PROM1-mediated signal transduction. [BMB Reports 2023; 56(2): 65-70].
Collapse
Affiliation(s)
- Myeong-Suk Bahn
- Division of Life Sciences, Korea University, Seoul 02841, Korea
| | - Young-Gyu Ko
- Division of Life Sciences, Korea University, Seoul 02841, Korea
| |
Collapse
|
10
|
Central role of Prominin-1 in lipid rafts during liver regeneration. Nat Commun 2022; 13:6219. [PMID: 36266314 PMCID: PMC9585078 DOI: 10.1038/s41467-022-33969-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 10/07/2022] [Indexed: 12/24/2022] Open
Abstract
Prominin-1, a lipid raft protein, is required for maintaining cancer stem cell properties in hepatocarcinoma cell lines, but its physiological roles in the liver have not been well studied. Here, we investigate the role of Prominin-1 in lipid rafts during liver regeneration and show that expression of Prominin-1 increases after 2/3 partial hepatectomy or CCl4 injection. Hepatocyte proliferation and liver regeneration are attenuated in liver-specific Prominin-1 knockout mice compared to wild-type mice. Detailed mechanistic studies reveal that Prominin-1 interacts with the interleukin-6 signal transducer glycoprotein 130, confining it to lipid rafts so that STAT3 signaling by IL-6 is effectively activated. The overexpression of the glycosylphosphatidylinsositol-anchored first extracellular domain of Prominin-1, which is the domain that binds to GP130, rescued the proliferation of hepatocytes and liver regeneration in liver-specific Prominin-1 knockout mice. In summary, Prominin-1 is upregulated in hepatocytes during liver regeneration where it recruits GP130 into lipid rafts and activates the IL6-GP130-STAT3 axis, suggesting that Prominin-1 might be a promising target for therapeutic applications in liver transplantation.
Collapse
|