1
|
Ye J, Wang JG, Liu RQ, Shi Q, Wang WX. Association between intra-pancreatic fat deposition and diseases of the exocrine pancreas: A narrative review. World J Gastroenterol 2025; 31:101180. [DOI: 10.3748/wjg.v31.i2.101180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/26/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Intrapancreatic fat deposition (IPFD) has garnered increasing attention in recent years. The prevalence of IPFD is relatively high and associated with factors such as obesity, age, and sex. However, the pathophysiological mechanisms underlying IPFD remain unclear, with several potential contributing factors, including oxidative stress, alterations in the gut microbiota, and hormonal imbalances. IPFD was found to be highly correlated with the occurrence and prognosis of exocrine pancreatic diseases. Although imaging techniques remain the primary diagnostic approach for IPFD, an expanding array of biomarkers and clinical scoring systems have been identified for screening purposes. Currently, effective treatments for IPFD are not available; however, existing medications, such as glucagon-like peptide-1 receptor agonists, and new therapeutic approaches explored in animal models have shown considerable potential for managing this disease. This paper reviews the pathogenesis of IPFD, its association with exocrine pancreatic diseases, and recent advancements in its diagnosis and treatment, emphasizing the significant clinical relevance of IPFD.
Collapse
Affiliation(s)
- Jing Ye
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Jian-Guo Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Rong-Qiang Liu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Qiao Shi
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Wei-Xing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| |
Collapse
|
2
|
Lin WY, Tsui JL, Chiu HW, Wong WT, Wu CH, Hsu HT, Ho CL, Yeh SP, Rao YK, Chen A, Wang CC, Hsu CH, Chernikov OV, Hua KF, Li LH. Exploring Candesartan, an angiotensin II receptor antagonist, as a novel inhibitor of NLRP3 inflammasome: alleviating inflammation in Neisseria gonorrhoeae infection. BMC Infect Dis 2024; 24:1338. [PMID: 39578786 PMCID: PMC11585111 DOI: 10.1186/s12879-024-10208-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Gonorrhea, induced by Neisseria gonorrhoeae infection, stands as a prevalent sexually transmitted inflammatory disease globally. Our earlier research illuminated that N. gonorrhoeae-infected macrophages provoke inflammation by activating the intracellular sensor NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome, a pivotal regulator in inflammatory diseases governing the maturation and secretion of interleukin (IL)-1β and IL-18. Nevertheless, effective therapies addressing N. gonorrhoeae-mediated NLRP3 inflammasome activation and ensuing inflammation are currently lacking. This study delves into the impact of the angiotensin II receptor antagonist Candesartan (CS) on N. gonorrhoeae-infected macrophages. METHODS The protein expression levels were examined through ELISA and Western blotting. Intracellular H2O2 levels, mitochondrial reactive oxygen species, and mitochondrial membrane integrity were evaluated using targeted fluorescent probes and analyzed via flow cytometry. NF-κB transcriptional activity was assessed using NF-κB reporter cells. LC3-knockdown cells were created using CRISPR/Cas9 technology. RESULTS CS effectively inhibits the NLRP3 inflammasome, as indicated by the suppression of caspase-1 activation, IL-1β secretion, NLRP3 release, and the release of apoptosis-associated speck-like protein containing a CARD (ASC) in N. gonorrhoeae-infected J774A.1 macrophages. Additionally, CS selectively impedes IL-6 secretion and iNOS expression in both N. gonorrhoeae-infected J774A.1 and RAW264.7 macrophages. Mechanistic insights uncover the inhibition of NF-κB by CS in N. gonorrhoeae-infected J774A.1 macrophages, while intracellular H2O2 generation, mitogen-activated protein kinases phosphorylation, and mitochondrial damage remain unaffected. Notably, our study highlights that CS-induced autophagy contributes partially to its inhibitory effect on the NLRP3 inflammasome. CONCLUSIONS These results underscore the potential of CS as an anti-inflammatory drug for the treatment of gonorrhea, addressing a critical unmet medical need in combating N. gonorrhoeae-induced inflammation.
Collapse
Affiliation(s)
- Wen-Yu Lin
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jin-Lian Tsui
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Laboratory Medicine, Linsen, Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, Taiwan
| | - Hsiao-Wen Chiu
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Wei-Ting Wong
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
- Taiwan Autoantibody Biobank Initiative, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Chun-Hsien Wu
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsien-Ta Hsu
- Division of Neurosurgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Buddhist Tzu Chi University, Hualien, Taiwan
| | - Chen-Lung Ho
- Division of Wood Cellulose, Taiwan Forestry Research Institute, Taipei, Taiwan
| | - Shan-Pei Yeh
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Laboratory Medicine, Linsen, Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, Taiwan
| | - Yerra Koteswara Rao
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Ann Chen
- Taiwan Autoantibody Biobank Initiative, Hualien Tzu Chi Hospital, Hualien, Taiwan
- Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Chun Wang
- Infectious Disease Division, Linsen, Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, Taiwan
- Kunming Prevention and Control Center, Taipei City Hospital, Taipei, Taiwan
| | - Chung-Hua Hsu
- Linsen, Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, Taiwan
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Oleg V Chernikov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| | - Lan-Hui Li
- Department of Laboratory Medicine, Linsen, Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, Taiwan.
| |
Collapse
|
3
|
Li Z, Wei H, Li R, Wu B, Xu M, Yang X, Zhang Y, Liu Y. The effects of antihypertensive drugs on glucose metabolism. Diabetes Obes Metab 2024; 26:4820-4829. [PMID: 39140233 DOI: 10.1111/dom.15821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 08/15/2024]
Abstract
Abnormal glucose metabolism is a common disease of the endocrine system. The effects of drugs on glucose metabolism have been reported frequently in recent years, and since abnormal glucose metabolism increases the risk of microvascular and macrovascular complications, metabolic disorders, and infection, clinicians need to pay close attention to these effects. A variety of common drugs can affect glucose metabolism and have different mechanisms of action. Hypertension is a common chronic cardiovascular disease that requires long-term medication. Studies have shown that various antihypertensive drugs also have an impact on glucose metabolism. Among them, α-receptor blockers, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and calcium channel blockers can improve insulin resistance, while β-receptor blockers, thiazides and loop diuretics can impair glucose metabolism. The aim of this review was to discuss the mechanisms underlying the effects of various antihypertensive drugs on glucose metabolism in order to provide reference information for rational clinical drug use.
Collapse
Affiliation(s)
- Zhe Li
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Hongxia Wei
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Ru Li
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Baofeng Wu
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Ming Xu
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Xifeng Yang
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Yunfeng Liu
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, China
- Clinical Research Center For Metabolic Diseases Of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
4
|
Sharma AK, Rastogi S, Goyal RK. Retrospective analysis of neoplasms in patients using angiotensin receptor blockers. Sci Rep 2024; 14:15774. [PMID: 38982193 PMCID: PMC11233655 DOI: 10.1038/s41598-024-64867-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/13/2024] [Indexed: 07/11/2024] Open
Abstract
In recent years, regulatory agencies have raised concerns about the presence of potentially carcinogenic substances in certain formulations of Angiotensin Receptor Blockers (ARBs). Specifically, nitrosamines and azido compounds have been identified in some ARB products. Nitrosamines are known to have carcinogenic properties and are associated with an increased risk of neoplasms. Spontaneous safety reports from the EudraVigilance Data Analysis System (EVDAS) database were analyzed to investigate cases of neoplasms associated with ARBs. A disproportionality analysis was conducted, calculating the reporting odds ratio (ROR) and 95% confidence intervals (CIs) using a case/non-case approach for each ARB drug. The EVDAS database contained 68,522 safety reports related to ARBs (including Azilsartan, Candesartan, Irbesartan, Olmesartan, Losartan, Valsartan, and Telmisartan), among which 3,396 (5%) cases were associated with neoplasms. The majority of these cases were reported in Germany (11.9%), followed by France (9.7%). Approximately 70% of the reports were submitted by healthcare professionals such as physicians and nurses. Among the ARBs, valsartan had the highest ROR for neoplasm (ROR 1.949, 95% CI 1.857-2.046). This association remained significant when comparing ARBs with other classes of antihypertensive drugs, including ACE inhibitors, beta-blockers, calcium channel blockers, and diuretics. Our study identifies a possible signal of an association between ARBs, particularly valsartan, and the risk of neoplasms. However, further observational and analytical studies are necessary to confirm these findings and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Arvind Kumar Sharma
- Delhi Pharmaceutical Sciences and Research University, Pushp vihar Sector 3, New Delhi, 110017, India
- Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Govt. of India, Sector-23, Raj Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| | - Shruti Rastogi
- Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Govt. of India, Sector-23, Raj Nagar, Ghaziabad, 201002, Uttar Pradesh, India.
| | - Ramesh K Goyal
- Delhi Pharmaceutical Sciences and Research University, Pushp vihar Sector 3, New Delhi, 110017, India
| |
Collapse
|
5
|
Petrov MS. The Pharmacological Landscape for Fatty Change of the Pancreas. Drugs 2024; 84:375-384. [PMID: 38573485 PMCID: PMC11101365 DOI: 10.1007/s40265-024-02022-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
The quest for medications to reduce intra-pancreatic fat deposition is now quarter a century old. While no specific medication has been approved for the treatment of fatty change of the pancreas, drug repurposing shows promise in reducing the burden of the most common disorder of the pancreas. This leading article outlines the 12 classes of medications that have been investigated to date with a view to reducing intra-pancreatic fat deposition. Information is presented hierarchically-from preclinical studies to retrospective findings in humans to prospective interventional studies to randomised controlled trials. This lays the grounds for shepherding the most propitious drugs into medical practice through well-designed basic science studies and adequately powered randomised controlled trials.
Collapse
Affiliation(s)
- Maxim S Petrov
- School of Medicine, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
6
|
Lu Y, Tian H, Peng H, Wang Q, Bunnell BA, Bazan NG, Hong S. Novel lipid mediator 7 S,14 R-docosahexaenoic acid: biogenesis and harnessing mesenchymal stem cells to ameliorate diabetic mellitus and retinal pericyte loss. Front Cell Dev Biol 2024; 12:1380059. [PMID: 38533089 PMCID: PMC10963555 DOI: 10.3389/fcell.2024.1380059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Introduction: Stem cells can be used to treat diabetic mellitus and complications. ω3-docosahexaenoic acid (DHA) derived lipid mediators are inflammation-resolving and protective. This study found novel DHA-derived 7S,14R-dihydroxy-4Z,8E,10Z,12E,16Z,19Z-docosahexaenoic acid (7S,14R-diHDHA), a maresin-1 stereoisomer biosynthesized by leukocytes and related enzymes. Moreover, 7S,14R-diHDHA can enhance mesenchymal stem cell (MSC) functions in the amelioration of diabetic mellitus and retinal pericyte loss in diabetic db/db mice. Methods: MSCs treated with 7S,14R-diHDHA were delivered into db/db mice i.v. every 5 days for 35 days. Results: Blood glucose levels in diabetic mice were lowered by 7S,14R-diHDHA-treated MSCs compared to control and untreated MSC groups, accompanied by improved glucose tolerance and higher blood insulin levels. 7S,14R-diHDHA-treated MSCs increased insulin+ β-cell ratio and decreased glucogan+ α-cell ratio in islets, as well as reduced macrophages in pancreas. 7S,14R-diHDHA induced MSC functions in promoting MIN6 β-cell viability and insulin secretion. 7S,14R-diHDHA induced MSC paracrine functions by increasing the generation of hepatocyte growth factor and vascular endothelial growth factor. Furthermore, 7S,14R-diHDHA enhanced MSC functions to ameliorate diabetes-caused pericyte loss in diabetic retinopathy by increasing their density in retina in db/db mice. Discussion: Our findings provide a novel strategy for improving therapy for diabetes and diabetic retinopathy using 7S,14R-diHDHA-primed MSCs.
Collapse
Affiliation(s)
- Yan Lu
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA, United States
| | - Haibin Tian
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA, United States
- Tongji University, Shanghai, China
| | - Hongying Peng
- Biostatistics, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Quansheng Wang
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA, United States
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bruce A. Bunnell
- Tulane University School of Medicine, Center for Stem Cell Research and Regenerative Medicine, New Orleans, LA, United States
| | - Nicolas G. Bazan
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA, United States
- Department of Ophthalmology, School of Medicine, L.S.U. Health, New Orleans, LA, United States
| | - Song Hong
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA, United States
- Department of Ophthalmology, School of Medicine, L.S.U. Health, New Orleans, LA, United States
| |
Collapse
|
7
|
Liu M, Pan J, Meng K, Wang Y, Sun X, Ma L, Yu X. Triglyceride-glucose body mass index predicts prognosis in patients with ST-elevation myocardial infarction. Sci Rep 2024; 14:976. [PMID: 38200157 PMCID: PMC10782013 DOI: 10.1038/s41598-023-51136-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024] Open
Abstract
Triglyceride glycemic-body mass index (TyG-BMI) is a simple and reliable surrogate for insulin resistance (IR). However, it is still unclear if TyG-BMI has any predictive value in patients having percutaneous coronary intervention (PCI) for ST-segment elevation myocardial infarction (STEMI). The purpose of this study was to examine the TyG-BMI index's prognostic significance and predictive power in patients with STEMI. The study comprised a total of 2648 consecutive STEMI patients who underwent PCI. The primary endpoint was the occurrence of major adverse cardiovascular events (MACE), defined as the combination of all-cause death, nonfatal myocardial infarction, nonfatal stroke, and coronary revascularization. The TyG-BMI index was formulated as ln [fasting triglycerides (mg/dL) × fasting plasma glucose (mg/dL)/2] × BMI. 193 patients in all experienced MACE over a median follow-up of 14.7 months. There was a statistically significant difference between the Kaplan-Meier survival curves for the TyG-BMI index tertiles (log-rank test, p = 0.019) for the cumulative incidence of MACE. The adjusted HRs for the incidence of MACE in the middle and highest quartiles of the TyG-BMI index compared with the lowest quartile were 1.37 (95% CI 0.92, 2.03) and 1.53 (95% CI 1.02, 2.29), respectively, in the fully adjusted Cox regression model. At six months, one year, and three years, the TyG-BMI area under the curve (AUC) for predicting MACE was 0.691, 0.666, and 0.637, respectively. Additionally, adding the TyG-BMI index to the risk prediction model enhanced outcome prediction. In STEMI patients undergoing PCI, TyG-BMI was independently linked to MACE. TyG-BMI could be a simple and solid way to assess MACE risk and prognosis.
Collapse
Affiliation(s)
- Ming Liu
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Department of Cardiology, Anhui Provincial Hospital Affiliated of Anhui Medical University, Hefei, 230001, Anhui, China
| | - Jianyuan Pan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Ke Meng
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Yuwei Wang
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Xueqing Sun
- The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Likun Ma
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Xiaofan Yu
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| |
Collapse
|
8
|
Wu W, Zheng J, Wang R, Wang Y. Ion channels regulate energy homeostasis and the progression of metabolic disorders: Novel mechanisms and pharmacology of their modulators. Biochem Pharmacol 2023; 218:115863. [PMID: 37863328 DOI: 10.1016/j.bcp.2023.115863] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
The progression of metabolic diseases, featured by dysregulated metabolic signaling pathways, is orchestrated by numerous signaling networks. Among the regulators, ion channels transport ions across the membranes and trigger downstream signaling transduction. They critically regulate energy homeostasis and pathogenesis of metabolic diseases and are potential therapeutic targets for treating metabolic disorders. Ion channel blockers have been used to treat diabetes for decades by stimulating insulin secretion, yet with hypoglycemia and other adverse effects. It calls for deeper understanding of the largely elusive regulatory mechanisms, which facilitates the identification of new therapeutic targets and safe drugs against ion channels. In the article, we critically assess the two principal regulatory mechanisms, protein-channel interaction and post-translational modification on the activities of ion channels to modulate energy homeostasis and metabolic disorders through multiple novel mechanisms. Moreover, we discuss the multidisciplinary methods that provide the tools for elucidation of the regulatory mechanisms mediating metabolic disorders by ion channels. In terms of translational perspective, the mechanistic analysis of recently validated ion channels that regulate insulin resistance, body weight control, and adverse effects of current ion channel antagonists are discussed in details. Their small molecule modulators serve as promising new drug candidates to combat metabolic disorders.
Collapse
Affiliation(s)
- Wenyi Wu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Jianan Zheng
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Ru Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, China
| | - Yibing Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, China.
| |
Collapse
|
9
|
Luo Z, Wei Z, Zhang G, Chen H, Li L, Kang X. Achilles' Heel-The Significance of Maintaining Microenvironmental Homeostasis in the Nucleus Pulposus for Intervertebral Discs. Int J Mol Sci 2023; 24:16592. [PMID: 38068915 PMCID: PMC10706299 DOI: 10.3390/ijms242316592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
The dysregulation of intracellular and extracellular environments as well as the aberrant expression of ion channels on the cell membrane are intricately linked to a diverse array of degenerative disorders, including intervertebral disc degeneration. This condition is a significant contributor to low back pain, which poses a substantial burden on both personal quality of life and societal economics. Changes in the number and function of ion channels can disrupt the water and ion balance both inside and outside cells, thereby impacting the physiological functions of tissues and organs. Therefore, maintaining ion homeostasis and stable expression of ion channels within the cellular microenvironment may prove beneficial in the treatment of disc degeneration. Aquaporin (AQP), calcium ion channels, and acid-sensitive ion channels (ASIC) play crucial roles in regulating water, calcium ions, and hydrogen ions levels. These channels have significant effects on physiological and pathological processes such as cellular aging, inflammatory response, stromal decomposition, endoplasmic reticulum stress, and accumulation of cell metabolites. Additionally, Piezo 1, transient receptor potential vanilloid type 4 (TRPV4), tension response enhancer binding protein (TonEBP), potassium ions, zinc ions, and tungsten all play a role in the process of intervertebral disc degeneration. This review endeavors to elucidate alterations in the microenvironment of the nucleus pulposus during intervertebral disc degeneration (IVDD), with a view to offer novel insights and approaches for exploring therapeutic interventions against disc degeneration.
Collapse
Affiliation(s)
- Zhangbin Luo
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Z.L.); (Z.W.); (G.Z.); (H.C.); (L.L.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
| | - Ziyan Wei
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Z.L.); (Z.W.); (G.Z.); (H.C.); (L.L.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
| | - Guangzhi Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Z.L.); (Z.W.); (G.Z.); (H.C.); (L.L.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
| | - Haiwei Chen
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Z.L.); (Z.W.); (G.Z.); (H.C.); (L.L.)
| | - Lei Li
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Z.L.); (Z.W.); (G.Z.); (H.C.); (L.L.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
| | - Xuewen Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Z.L.); (Z.W.); (G.Z.); (H.C.); (L.L.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
| |
Collapse
|
10
|
Cheng H, Hu Y, Zhao H, Zhou G, Wang G, Ma C, Xu Y. Exploring the association between triglyceride-glucose index and thyroid function. Eur J Med Res 2023; 28:508. [PMID: 37946276 PMCID: PMC10636949 DOI: 10.1186/s40001-023-01501-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Thyroid dysfunction is associated with abnormal glucose-insulin homeostasis, and the triglyceride-glucose (TyG) index has been recommended as a convenient surrogate of insulin resistance (IR). This study aimed to investigate the relationship between TyG and thyroid function in the US population. METHODS We analyzed data from the National Health and Nutrition Examination Survey (NHANES) conducted from 2007 to 2012 in a cross-sectional manner. Aside from conventional thyroid parameters, our study evaluated the central sensitivity to thyroid hormones (THs) using the thyroid feedback quantile-based index (TFQI), thyrotropin resistance index (TT4RI), and thyrotropin index (TSHI). To evaluate peripheral sensitivity to THs, we calculated the ratio of free triiodothyronine (FT3) to free thyroxine (FT4) and the sum activity of peripheral deiodinases (SPINA-GD). In the 1848 adults, multivariable linear regression, subgroup, and interaction analyses were employed to estimate the association between TyG and thyroid parameters. The nonlinear relationship was addressed by smooth curve fittings and generalized additive models. RESULTS After adjusting covariates, we demonstrated a significant negative association between TyG and FT4 (β = - 0.57, p < 0.001), and a positive relationship between TyG and thyroid-stimulating hormone (β = 0.34, p = 0.037), as well as TgAb (β = 17.06, p = 0.005). Subgroup analysis indicated that the association between TyG and TgAb was more pronounced in the female subjects (β = 32.39, p < 0.001, p for interaction = 0.021). We also confirmed an inverse correlation between TyG and central sensitivity to THs, as assessed by TSHI and TT4RI (βTSHI = 0.12, p < 0.001; βTT4RI = 2.54, p = 0.023). In terms of peripheral sensitivity to THs, we found a significant positive correlation between TyG and FT3/FT4 (β = 0.03, p = 0.004), and SPINA-GD (β = 2.93, p = 0.004). CONCLUSION The present study established a noteworthy association between TyG and thyroid parameters, indicating a strong link between IR and thyroid dysfunction. Further investigations are warranted to validate these results.
Collapse
Affiliation(s)
- Hui Cheng
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, No.155, Hanzhong Road, Qinhuai District, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Yanyan Hu
- Nursing College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Haoran Zhao
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, No.155, Hanzhong Road, Qinhuai District, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Guowei Zhou
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, No.155, Hanzhong Road, Qinhuai District, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Gaoyuan Wang
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, No.155, Hanzhong Road, Qinhuai District, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Chaoqun Ma
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, No.155, Hanzhong Road, Qinhuai District, Nanjing, 210029, Jiangsu, People's Republic of China.
| | - Yan Xu
- Outpatient Department, Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, The Second Hospital of Nanjing, No.1, Zhongfu Road, Gulou District, Nanjing, 210003, Jiangsu, People's Republic of China.
| |
Collapse
|
11
|
Ishigooka G, Mizuno H, Oosuka S, Jin D, Takai S, Kida T. Effects of Angiotensin Receptor Blockers on Streptozotocin-Induced Diabetic Cataracts. J Clin Med 2023; 12:6627. [PMID: 37892765 PMCID: PMC10607684 DOI: 10.3390/jcm12206627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/06/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
This study aimed to determine the role of oxidative stress produced by the renin-angiotensin system (RAS) in cataract formation in streptozotocin-induced diabetic rats (STZ) using angiotensin II receptor blockers (ARBs). Rats were treated with streptozotocin and orally administered candesartan (2.5 mg/kg/day) or a normal diet for 10 weeks until sacrifice. Cataract progression was assessed through a slit-lamp examination. Animals were euthanized at 18 weeks, and the degree of cataract progression was evaluated. Oxidative stress was also assessed. In STZ-treated rats, lens opacity occurred at 12 weeks. Cataract progression was inhibited in the ARB-treated group compared with the placebo group (p < 0.05). STZ-treated rats exhibited upregulated angiotensin-converting enzyme (ACE) gene expression than control rats. Oxidative stress-related factors were upregulated in the placebo-treated group but suppressed in the ARB-treated group. A correlation coefficient test revealed a positive correlation between ACE gene expression and oxidative stress-related factors and a negative correlation between ACE and superoxide dismutase. Immunostaining revealed oxidative stress-related factors and advanced glycation end products in the lens cortex of the placebo-treated group. The mechanism of diabetic cataracts may be related to RAS, and the increase in focal ACE and angiotensin II in the lens promotes oxidative stress-related factor production.
Collapse
Affiliation(s)
- Gaku Ishigooka
- Department of Ophthalmology, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan; (H.M.); (S.O.)
| | - Hiroshi Mizuno
- Department of Ophthalmology, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan; (H.M.); (S.O.)
| | - Shou Oosuka
- Department of Ophthalmology, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan; (H.M.); (S.O.)
| | - Denan Jin
- Department of Innovative Medicine, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan; (D.J.); (S.T.)
| | - Shinji Takai
- Department of Innovative Medicine, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan; (D.J.); (S.T.)
| | - Teruyo Kida
- Department of Ophthalmology, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan; (H.M.); (S.O.)
| |
Collapse
|
12
|
Oh BC. Phosphoinositides and intracellular calcium signaling: novel insights into phosphoinositides and calcium coupling as negative regulators of cellular signaling. Exp Mol Med 2023; 55:1702-1712. [PMID: 37524877 PMCID: PMC10474053 DOI: 10.1038/s12276-023-01067-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 08/02/2023] Open
Abstract
Intracellular calcium (Ca2+) and phosphoinositides (PIPs) are crucial for regulating cellular activities such as metabolism and cell survival. Cells maintain precise intracellular Ca2+ and PIP levels via the actions of a complex system of Ca2+ channels, transporters, Ca2+ ATPases, and signaling effectors, including specific lipid kinases, phosphatases, and phospholipases. Recent research has shed light on the complex interplay between Ca2+ and PIP signaling, suggesting that elevated intracellular Ca2+ levels negatively regulate PIP signaling by inhibiting the membrane localization of PIP-binding proteins carrying specific domains, such as the pleckstrin homology (PH) and Ca2+-independent C2 domains. This dysregulation is often associated with cancer and metabolic diseases. PIPs recruit various proteins with PH domains to the plasma membrane in response to growth hormones, which activate signaling pathways regulating metabolism, cell survival, and growth. However, abnormal PIP signaling in cancer cells triggers consistent membrane localization and activation of PIP-binding proteins. In the context of obesity, an excessive intracellular Ca2+ level prevents the membrane localization of the PIP-binding proteins AKT, IRS1, and PLCδ via Ca2+-PIPs, contributing to insulin resistance and other metabolic diseases. Furthermore, an excessive intracellular Ca2+ level can cause functional defects in subcellular organelles such as the endoplasmic reticulum (ER), lysosomes, and mitochondria, causing metabolic diseases. This review explores how intracellular Ca2+ overload negatively regulates the membrane localization of PIP-binding proteins.
Collapse
Affiliation(s)
- Byung-Chul Oh
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon College of Medicine, Incheon, 21999, Republic of Korea.
| |
Collapse
|