1
|
Di Paola R, Marucci A, Mangiacotti D, Antonucci A, Fontana A, Wang X, Qi L, Menzaghi C, Trischitta V. Leveraging Genetics to Address the Role of GALNT2 on Atherogenic Dyslipidemia. Adv Biol (Weinh) 2023; 7:e2200319. [PMID: 36861373 DOI: 10.1002/adbi.202200319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/20/2023] [Indexed: 03/03/2023]
Abstract
Several studies have shown that downregulation of GALNT2 (Polypeptide N-Acetylgalactosaminyltransferase 2), encoding polypeptide N-acetylgalactosaminyltransferase 2, decreases high-density lipoprotein cholesterol (HDL-C) and increases triglycerides levels by glycosylating key enzymes of lipid metabolism, such as angiopoietin like 3, apolipoprotein C-III, and phospholipid transfer protein. GALNT2 is also a positive modulator of insulin signaling and action, associated with in vivo insulin sensitivity and during adipogenesis strongly upregulates adiponectin. Thus, the hypothesis that GALNT2 affects HDL-C and triglycerides levels also through insulin sensitivity and/or circulating adiponectin, is tested. In 881 normoglycemic individuals the G allele of rs4846914 SNP at the GALNT2 locus, known to associate with GALNT2 downregulation, is associated with low HDL-C and high values of triglycerides, triglycerides/HDL-C ratio, and theHomeostatic Model Assessment of insulin resistance HOMAIR (p-values = 0.01, 0.027, 0.002, and 0.016, respectively). Conversely, no association is observed with serum adiponectin levels (p = 0.091). Importantly, HOMAIR significantly mediates a proportion of the genetic association with HDL-C (21%, 95% CI: 7-35%, p = 0.004) and triglyceride levels (32%, 95% CI: 4-59%, p = 0.023). The results are compatible with the hypothesis that, besides the effect on key lipid metabolism enzymes, GALNT2 alters HDL-C and triglyceride levels also indirectly through a positive effect on insulin sensitivity.
Collapse
Affiliation(s)
- Rosa Di Paola
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, San Giovanni Rotondo, 71013, Italy
| | - Antonella Marucci
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, San Giovanni Rotondo, 71013, Italy
| | - Davide Mangiacotti
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, San Giovanni Rotondo, 71013, Italy
| | - Alessandra Antonucci
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, San Giovanni Rotondo, 71013, Italy
| | - Andrea Fontana
- Biostatistics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, San Giovanni Rotondo, 71013, Italy
| | - Xuan Wang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, Suite 1724, New Orleans, LA, 70112, USA
| | - Lu Qi
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, Suite 1724, New Orleans, LA, 70112, USA
| | - Claudia Menzaghi
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, San Giovanni Rotondo, 71013, Italy
| | - Vincenzo Trischitta
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, San Giovanni Rotondo, 71013, Italy
- Department of Experimental Medicine, Sapienza University, Piazzale Aldo Moro 5, Rome, 00185, Italy
| |
Collapse
|
2
|
Verzijl CRC, Oldoni F, Loaiza N, Wolters JC, Rimbert A, Tian E, Yang W, Struik D, Smit M, Kloosterhuis NJ, Fernandez AJ, Samara NL, Ten Hagen KG, Dalal K, Chernish A, McCluggage P, Tabak LA, Jonker JW, Kuivenhoven JA. A novel role for GalNAc-T2 dependent glycosylation in energy homeostasis. Mol Metab 2022; 60:101472. [PMID: 35304331 PMCID: PMC9019398 DOI: 10.1016/j.molmet.2022.101472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 10/27/2022] Open
Abstract
OBJECTIVE GALNT2, encoding polypeptide N-acetylgalactosaminyltransferase 2 (GalNAc-T2), was initially discovered as a regulator of high-density lipoprotein metabolism. GalNAc-T2 is known to exert these effects through post-translational modification, i.e., O-linked glycosylation of secreted proteins with established roles in plasma lipid metabolism. It has recently become clear that loss of GALNT2 in rodents, cattle, nonhuman primates, and humans should be regarded as a novel congenital disorder of glycosylation that affects development and body weight. The role of GALNT2 in metabolic abnormalities other than plasma lipids, including insulin sensitivity and energy homeostasis, is poorly understood. METHODS GWAS data from the UK Biobank was used to study variation in the GALNT2 locus beyond changes in high-density lipoprotein metabolism. Experimental data were obtained through studies in Galnt2-/- mice and wild-type littermates on both control and high-fat diet. RESULTS First, we uncovered associations between GALNT2 gene variation, adiposity, and body mass index in humans. In mice, we identify the insulin receptor as a novel substrate of GalNAc-T2 and demonstrate that Galnt2-/- mice exhibit decreased adiposity, alterations in insulin signaling and a shift in energy substrate utilization in the inactive phase. CONCLUSIONS This study identifies a novel role for GALNT2 in energy homeostasis, and our findings suggest that the local effects of GalNAc-T2 are mediated through posttranslational modification of the insulin receptor.
Collapse
Affiliation(s)
- Cristy R C Verzijl
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Federico Oldoni
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Natalia Loaiza
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Justina C Wolters
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Antoine Rimbert
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France
| | - E Tian
- Developmental Glycobiology Section, NIDCR, National Institutes of Health, Bethesda, MD, United States
| | - Weiming Yang
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Dicky Struik
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marieke Smit
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Niels J Kloosterhuis
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Amy J Fernandez
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nadine L Samara
- Structural Biochemistry Unit, National Institutes of Health, Bethesda, MD, United States; Developmental Glycobiology Section, NIDCR, National Institutes of Health, Bethesda, MD, United States
| | - Kelly G Ten Hagen
- Developmental Glycobiology Section, NIDCR, National Institutes of Health, Bethesda, MD, United States
| | - Kruti Dalal
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Aliona Chernish
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Peggy McCluggage
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Lawrence A Tabak
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Johan W Jonker
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jan Albert Kuivenhoven
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
3
|
Antonucci A, Marucci A, Trischitta V, Di Paola R. Role of GALNT2 on Insulin Sensitivity, Lipid Metabolism and Fat Homeostasis. Int J Mol Sci 2022; 23:929. [PMID: 35055114 PMCID: PMC8781516 DOI: 10.3390/ijms23020929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 01/16/2023] Open
Abstract
O-linked glycosylation, the greatest form of post-translational modifications, plays a key role in regulating the majority of physiological processes. It is, therefore, not surprising that abnormal O-linked glycosylation has been related to several human diseases. Recently, GALNT2, which encodes the GalNAc-transferase 2 involved in the first step of O-linked glycosylation, has attracted great attention as a possible player in many highly prevalent human metabolic diseases, including atherogenic dyslipidemia, type 2 diabetes and obesity, all clustered on the common ground of insulin resistance. Data available both in human and animal models point to GALNT2 as a molecule that shapes the risk of the aforementioned abnormalities affecting diverse protein functions, which eventually cause clinically distinct phenotypes (a typical example of pleiotropism). Pathways linking GALNT2 to dyslipidemia and insulin resistance have been partly identified, while those for type 2 diabetes and obesity are yet to be understood. Here, we will provide a brief overview on the present knowledge on GALNT2 function and dysfunction and propose novel insights on the complex pathogenesis of the aforementioned metabolic diseases, which all impose a heavy burden for patients, their families and the entire society.
Collapse
Affiliation(s)
- Alessandra Antonucci
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), 71013 Foggia, Italy; (A.A.); (A.M.)
| | - Antonella Marucci
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), 71013 Foggia, Italy; (A.A.); (A.M.)
| | - Vincenzo Trischitta
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), 71013 Foggia, Italy; (A.A.); (A.M.)
- Department of Experimental Medicine, Sapienza University, 00161 Rome, Italy
| | - Rosa Di Paola
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), 71013 Foggia, Italy; (A.A.); (A.M.)
| |
Collapse
|