1
|
Chen E, Zeng Z, Zhou W. The key role of matrix stiffness in colorectal cancer immunotherapy: mechanisms and therapeutic strategies. Biochim Biophys Acta Rev Cancer 2024; 1879:189198. [PMID: 39413857 DOI: 10.1016/j.bbcan.2024.189198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
Increased matrix stiffness within the colorectal cancer (CRC) tumor microenvironment (TME) has emerged as a pivotal determinant of immunotherapy outcomes. This review discusses the role of aberrant extracellular matrix (ECM) deposition and cross-linking in augmenting matrix stiffness, a phenomenon that not only scaffolds the tumor architecture but also contributes to tumorigenicity and immunologic evasion. Herein, we critically appraise the influence of matrix stiffness on the immunotherapeutic landscape of CRC, focusing on its capacity to impede therapeutic efficacy by modulating immune cell infiltration, activation, and functional performance. The review explores the molecular dynamics whereby matrix stiffness prompts tumor evolution, highlighting the integral role of integrin signaling, cancer-associated fibroblasts (CAFs), and the process of epithelial-mesenchymal transition (EMT). We bring to the fore the paradoxical impact of an indurated ECM on immune effector cells, chiefly T cells and macrophages, which are indispensable for immune surveillance and the execution of immunotherapeutic strategies, yet are markedly restrained by a fibrotic matrix. Furthermore, we examine how matrix stiffness modulates immune checkpoint molecule expression, thereby exacerbating the immunosuppressive milieu within the TME and attenuating immunotherapeutic potency. Emergent therapeutic regimens targeting matrix stiffness-including matrix modulators, inhibitors of mechanotransduction signaling pathways, and advanced biomaterials that mimic the ECM-proffer novel modalities to potentiate immunotherapy responsiveness. By refining the ECM's biomechanical attributes, the mechanical barriers posed by the tumor stroma can be improved, facilitating robust immune cell penetration and activity, and thereby bolstering the tumor's susceptibility to immunotherapy. Ongoing clinical trials are evaluating these innovative treatments, particularly in combination with immunotherapies, with the aim of enhancing clinical outcomes for CRC patients afflicted by pronounced matrix stiffness.
Collapse
Affiliation(s)
- Engeng Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou 310016, China
| | - Zhiru Zeng
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Zhejiang University, Hangzhou 310009, China
| | - Wei Zhou
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou 310016, China.
| |
Collapse
|
2
|
Hernandez-Padilla C, Joosten B, Franco A, Cambi A, van den Dries K, Nain AS. Dendritic cell force-migration coupling on aligned fiber networks. Biophys J 2024; 123:3120-3132. [PMID: 38993114 PMCID: PMC11427780 DOI: 10.1016/j.bpj.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/12/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
Dendritic cells (DCs) are antigen-presenting cells that reside in peripheral tissues and are responsible for initiating adaptive immune responses. As gatekeepers of the immune system, DCs need to continuously explore their surroundings, for which they can rapidly move through various types of connective tissue and basement membranes. DC motility has been extensively studied on flat 2D surfaces, yet the influences of a contextual 3D fibrous environment still need to be described. Using ECM-mimicking suspended fiber networks, we show how immature DCs (iDCs) engage in migratory cycles that allow them to transition from persistent migration to slow migratory states. For a subset of iDCs with high migratory potential, we report the organization of protrusions at the front of the cell body, which reverses upon treatment with inflammation agent PGE2. We identify an unusual migratory response to aligned fiber networks, whereby iDCs use filamentous protrusions to attach laterally and exert forces on fibers to migrate independent of fiber alignment. Increasing the fiber diameter from 200 to 500 nm does not significantly affect the migratory response; however, iDCs respond by forming denser actin bundles around larger diameters. Overall, the correlation between force-coupling and random migration of iDCs in aligned fibrous topography offers new insights into how iDCs might move in fibrous environments in vivo.
Collapse
Affiliation(s)
| | - Ben Joosten
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Aime Franco
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Alessandra Cambi
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Koen van den Dries
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Amrinder S Nain
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia.
| |
Collapse
|
3
|
Gil-Cantero S, Iorio F, Unalan I, Kurtuldu F, Künig S, Wenhardt C, Pinnaro V, Aigner-Radakovics K, Steinberger P, Boccaccini AR, Stöckl J. Impact of morphological features and chemical composition of tendon biomimetic scaffolds on immune recognition via Toll-like receptors. Biomater Sci 2024; 12:4695-4712. [PMID: 39082440 DOI: 10.1039/d4bm00147h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Tendinopathies are a major worldwide clinical problem. The development of tendon biomimetic scaffolds is considered a promising, therapeutic approach. However, to be clinically effective, scaffolds should avoid immunological recognition. It has been well described that scaffolds composed of aligned fibers lead to a better tenocyte differentiation, vitality, proliferation and motility. However, little has been studied regarding the impact of fiber spatial distribution on the recognition by immune cells. Additionally, it has been suggested that higher hydrophilicity would reduce their immune recognition. Herein, polycaprolactone (PCL)-hyaluronic acid (HA)-based electrospun scaffolds were generated with different fiber diameters (in the nano- and micro-scales) and orientations as well as different grades of wettability and the impact of these properties on immunological recognition has been assessed, by means of Toll-like receptor (TLR) reporter cells. Our results showed that TLR 2/1 and TLR 2/6 were not triggered by the scaffolds. In addition, the TLR 4 signalling pathway seems to be triggered to a greater extent by higher PCL and HA concentrations, but the alignment of the fibers prevents the triggering of this receptor. Taken together, TLR reporter cells were shown to be a useful and effective tool to study the potential of scaffolds to induce immune responses and the results obtained can be used to inform the design of fibrous scaffolds for tendon repair.
Collapse
Affiliation(s)
- Sara Gil-Cantero
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria.
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Germany.
| | - Francesco Iorio
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Germany.
| | - Irem Unalan
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Germany.
| | - Fatih Kurtuldu
- FunGlass, Alexander Dubček University of Trenčín, Trenčín, Slovakia
| | - Sarojinidevi Künig
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria.
| | - Claus Wenhardt
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria.
| | - Veronica Pinnaro
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria.
| | - Katharina Aigner-Radakovics
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria.
| | - Peter Steinberger
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria.
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Germany.
| | - Johannes Stöckl
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Wang Z, Xie N, Liang X, Shu Q, Hong Y, Shi H, Wang J, Fan D, Liu N, Xu F. Gut mechanoimmunology: Shaping immune response through physical cues. Phys Life Rev 2024; 50:13-26. [PMID: 38821019 DOI: 10.1016/j.plrev.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024]
Abstract
The gut immune system embodies a complex interplay between the gut mucosal barrier, the host's immune cells, and gut microbiota. These components exist within a dynamic environment characterized by a variety of physical cues, e.g., compression, tension, shear stress, stiffness, and viscoelasticity. The physical cues can be modified under specific pathological conditions. Given their dynamic nature, comprehending the specific effects of these physical cues on the gut immune system is critical for pathological and therapeutic studies of intestinal immune-related diseases. This review aims to discuss how physical cues influence gut immunology by affecting the gut mucosal barrier, host immune cells, and gut microbiota, defining this concept as gut mechanoimmunology. This review seeks to highlight that an enhanced understanding of gut mechanoimmunology carries therapeutic implications, not only for intestinal diseases but also for extraintestinal diseases.
Collapse
Affiliation(s)
- Ziwei Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Ning Xie
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Xiru Liang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China
| | - Qiuai Shu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China
| | - Yijie Hong
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China
| | - Haitao Shi
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China
| | - Jinhai Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China
| | - Daiming Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China.
| | - Na Liu
- Department of Gastroenterology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China.
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
5
|
Hong Q, Zhang W, Liu Z, Li B, Liu X, Wang Z, Wang R, Yang J, Nie B, Yue B. Infection microenvironment-triggered nanoparticles eradicate MRSA by thermally amplified chemodynamic therapy and M1 macrophage. J Nanobiotechnology 2024; 22:448. [PMID: 39080692 PMCID: PMC11287980 DOI: 10.1186/s12951-024-02706-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/05/2024] [Indexed: 08/03/2024] Open
Abstract
It is of great significance to develop a novel approach to treat bacterial infections, as the frequent misuse of antibiotics leads to the serious problem of bacterial resistance. This study proposed antibiotic-free antibacterial nanoparticles for eliminating methicillin-resistant Staphylococcus aureus (MRSA) based on a multi-model synergistic antibacterial ability of chemodynamic therapy (CDT), photothermal effect, and innate immunomodulation. Specifically, a polydopamine (PDA) layer coated and Ag nanoparticles loaded core-shell structure Fe3O4 nanoparticles (Fe3O4@PDA-Ag) is prepared. The Fe3O4 catalyzes H2O2 present in acidic microenvironment of bacterial infection into more toxic reactive oxygen species (ROS) and synergizes with the released Ag ions to exert a stronger bactericidal capacity, which can be augmented by photothermal action of PDA triggered by near-infrared light and loosen the biofilm by photothermal action to promote the penetration of ROS and Ag ion into the biofilm, result in disrupting biofilm structure along with killing encapsulated bacteria. Furthermore, Fe3O4@PDA-Ag exerts indirect antibacterial effects by promoting M1 macrophage polarizing. Animal models demonstrated that Fe3O4@PDA-Ag effectively controlled MRSA-induced infections through photothermal enhanced CDT, Ag+ releasing, and macrophage-mediated bactericidal properties. The acid-triggered antibacterial nanoparticles are expected to combat drug-resistant bacteria infection.
Collapse
Affiliation(s)
- Qimin Hong
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Wei Zhang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Zhen Liu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Bo Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xi Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Radiology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Zhinan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Radiology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Rui Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Bin'en Nie
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China.
| | - Bing Yue
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China.
| |
Collapse
|
6
|
He M, Zhang M, Xu T, Xue S, Li D, Zhao Y, Zhi F, Ding D. Enhancing photodynamic immunotherapy by reprograming the immunosuppressive tumor microenvironment with hypoxia relief. J Control Release 2024; 368:233-250. [PMID: 38395154 DOI: 10.1016/j.jconrel.2024.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Tumor hypoxia impairs the generation of reactive oxygen species and the induction of immunogenic cell death (ICD) for photodynamic therapy (PDT), thus impeding its efficacy and the subsequent immunotherapy. In addition, hypoxia plays a critical role in forming immunosuppressive tumor microenvironments (TME) by regulating the infiltration of immunosuppressive tumor-associated macrophages (TAMs) and the expression of programmed death ligand 1 (PD-L1). To simultaneously tackle these issues, a MnO2-containing albumin nanoplatform co-delivering IR780, NLG919, and a paclitaxel (PTX) dimer is designed to boost photodynamic immunotherapy. The MnO2-catalyzed oxygen supply bolsters the efficacy of PDT and PTX-mediated chemotherapy, collectively amplifying the induction of ICD and the expansion of tumor-specific cytotoxic T lymphocytes (CTLs). More importantly, hypoxia releif reshapes the immunosuppressive TME via down-regulating the intratumoral infiltration of M2-type TAMs and the PD-L1 expression of tumor cells to enhance the infiltration and efficacy of CTLs in combination with immune checkpoint blockade (ICB) by NLG919, consequently eradicating primary tumors and almost completely preventing tumor relapse and metastasis. This study sets an example of enhanced immunotherapy for breast cancers through dual ICD induction and simultaneous immunosuppression modulation via both hypoxia relief and ICB, providing a strategy for the treatment of other hypoxic and immunosuppressive cancers.
Collapse
Affiliation(s)
- Mengying He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Mengyao Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Tao Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin D02 NY74, Ireland
| | - Shujuan Xue
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Dazhao Li
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou 213003, China; Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Yanan Zhao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Feng Zhi
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou 213003, China; Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China.
| | - Dawei Ding
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
7
|
Jiang F, Wang J, Ren Z, Hu Y, Wang B, Li M, Yu J, Tang J, Guo G, Cheng Y, Han P, Shen H. Targeted Light-Induced Immunomodulatory Strategy for Implant-Associated Infections via Reversing Biofilm-Mediated Immunosuppression. ACS NANO 2024; 18:6990-7010. [PMID: 38385433 DOI: 10.1021/acsnano.3c10172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The clinical treatment efficacy for implant-associated infections (IAIs), particularly those caused by Methicillin-resistant Staphylococcus aureus (MRSA), remains unsatisfactory, primarily due to the formation of biofilm barriers and the resulting immunosuppressive microenvironment, leading to the chronicity and recurrence of IAIs. To address this challenge, we propose a light-induced immune enhancement strategy, synthesizing BSA@MnO2@Ce6@Van (BMCV). The BMCV exhibits precise targeting and adhesion to the S. aureus biofilm-infected region, coupled with its capacity to catalyze oxygen generation from H2O2 in the hypoxic and acidic biofilm microenvironment (BME), promoting oxygen-dependent photodynamic therapy efficacy while ensuring continuous release of manganese ions. Notably, targeted BMCV can penetrate biofilms, producing ROS that degrade extracellular DNA, disrupting the biofilm structure and impairing its barrier function, making it vulnerable to infiltration and elimination by the immune system. Furthermore, light-induced reactive oxygen species (ROS) around the biofilm can lyse S. aureus, triggering bacterium-like immunogenic cell death (ICD), releasing abundant immune costimulatory factors, facilitating the recognition and maturation of antigen-presenting cells (APCs), and activating adaptive immunity. Additionally, manganese ions in the BME act as immunoadjuvants, further amplifying macrophage-mediated innate and adaptive immune responses and reversing the immunologically cold BME to an immunologically hot BME. We prove that our synthesized BMCV elicits a robust adaptive immune response in vivo, effectively clearing primary IAIs and inducing long-term immune memory to prevent recurrence. Our study introduces a potent light-induced immunomodulatory nanoplatform capable of reversing the biofilm-induced immunosuppressive microenvironment and disrupting biofilm-mediated protective barriers, offering a promising immunotherapeutic strategy for addressing challenging S. aureus IAIs.
Collapse
Affiliation(s)
- Feng Jiang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jian Wang
- Department of Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Zun Ren
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yujie Hu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Boyong Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Mingzhang Li
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jinlong Yu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jin Tang
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Geyong Guo
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yingsheng Cheng
- Department of Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Department of Imaging Medicine and Nuclear Medicine, Tongji Hospital, Shanghai 200065, China
| | - Pei Han
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Hao Shen
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| |
Collapse
|
8
|
Fateh S, Alromaihi RA, Ghaemmaghami AM, Alexander MR. Unlocking Bio-Instructive Polymers: A Novel Multi-Well Screening Platform Based on Secretome Sampling. Bio Protoc 2024; 14:e4939. [PMID: 38405080 PMCID: PMC10883890 DOI: 10.21769/bioprotoc.4939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/01/2024] [Accepted: 01/05/2024] [Indexed: 02/27/2024] Open
Abstract
Biomaterials are designed to interact with biological systems to replace, support, enhance, or monitor their function. However, there are challenges associated with traditional biomaterials' development due to the lack of underlying theory governing cell response to materials' chemistry. This leads to the time-consuming process of testing different materials plus the adverse reactions in the body such as cytotoxicity and foreign body response. High-throughput screening (HTS) offers a solution to these challenges by enabling rapid and simultaneous testing of a large number of materials to determine their bio-interactions and biocompatibility. Secreted proteins regulate many physiological functions and determine the success of implanted biomaterials through directing cell behaviour. However, the majority of biomaterials' HTS platforms are suitable for microscopic analyses of cell behaviour and not for investigating non-adherent cells or measuring cell secretions. Here, we describe a multi-well platform adaptable to robotic printing of polymers and suitable for secretome profiling of both adherent and non-adherent cells. We detail the platform's development steps, encompassing the preparation of individual cell culture chambers, polymer printing, and the culture environment, as well as examples to demonstrate surface chemical characterisation and biological assessments of secreted mediators. Such platforms will no doubt facilitate the discovery of novel biomaterials and broaden their scope by adapting wider arrays of cell types and incorporating assessments of both secretome and cell-bound interactions. Key features • Detailed protocols for preparation of substrate for contact printing of acrylate-based polymers including O2 plasma etching, functionalisation process, and Poly(2-hydroxyethyl methacrylate) (pHEMA) dip coating. • Preparations of 7 mm × 7 mm polymers employing pin printing system. • Provision of confined area for each polymer using ProPlate® multi-well chambers. • Compatibility of this platform was validated using adherent cells [primary human monocyte-derived macrophages (MDMs)) and non-adherent cells (primary human monocyte-derived dendritic cells (moDCs)]. • Examples of the adaptability of the platform for secretome analysis including five different cytokines using enzyme-linked immunosorbent assay (ELISA, DuoSet®). Graphical overview.
Collapse
Affiliation(s)
- Shirin Fateh
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | | | | | | |
Collapse
|
9
|
Zhao Q, Zhao Z, Zhang J, Ni Y, Ouyang S, Qi H, Yu Y, Miron RJ, Tang H, Zhang Y. Fn-HMGB1 Adsorption Behavior Initiates Early Immune Recognition and Subsequent Osteoinduction of Biomaterials. Adv Healthc Mater 2024; 13:e2301808. [PMID: 37602504 DOI: 10.1002/adhm.202301808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/11/2023] [Indexed: 08/22/2023]
Abstract
Implantable biomaterials are widely used in bone tissue engineering, but little is still known about how they initiate early immune recognition and the initial dynamics. Herein, the early immune recognition and subsequent osteoinduction of biphasic calcium phosphate (BCP) after implantation to the protein adsorption behavior is attributed. By liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis, the biomaterial-related molecular patterns (BAMPs) formed after BCP implantation are mapped, dominated by the highly expressed extracellular matrix protein fibronectin (Fn) and the high mobility group box 1 (HMGB1). Molecular dynamics simulations show that Fn has the ability to bind more readily to the BCP surface than HMGB1. The preferential binding of Fn provides a higher adsorption energy for HMGB1. Furthermore, multiple hydrogen bonding sites between HMGB1 and Fn are demonstrated using a molecular docking approach. Ultimately, the formation of BAMPs through HMGB1 antagonist glycyrrhizic acid (GA), resulting in impaired immune recognition of myeloid differentiation factor 88 (MYD88) mediated dendritic cells (DCs) and macrophages (Mφs), as well as failed osteoinduction processes is obstructed. This study introduces a mechanism for early immune recognition of implant materials based on protein adsorption, providing perspectives for future design and application of tissue engineering materials.
Collapse
Affiliation(s)
- Qin Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Zifan Zhao
- Center of Digital Dentistry, Faculty of Prosthodontics, Peking University School and Hospital of Stomatology; National Center of Stomatology; National Engineerœing Research Center of Oral Biomaterials and Digital Medical Devices; Beijing Key Laboratory of Digital Stomatology; Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, National Clinical Research Center for Oral Diseases, Beijing, 100081, China
| | - Jing Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Yueqi Ni
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Simin Ouyang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Haoning Qi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Yiqian Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Richard J Miron
- Department of Periodontology, University of Bern, Bern, 300392, Switzerland
| | - Hua Tang
- Department of Rheumatology and Autoimmunology, Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250000, China
- Institute of Infection and Immunity, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Yufeng Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
10
|
Aderinto N, Abdulbasit MO, Tangmi ADE, Okesanya JO, Mubarak JM. Unveiling the growing significance of metabolism in modulating immune cell function: exploring mechanisms and implications; a review. Ann Med Surg (Lond) 2023; 85:5511-5522. [PMID: 37915697 PMCID: PMC10617839 DOI: 10.1097/ms9.0000000000001308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/06/2023] [Indexed: 11/03/2023] Open
Abstract
Immunometabolism has emerged as a rapidly growing field of research, holding significant promise for personalised medicine and precision immunotherapy. This review explores the intricate relationship between immune function and metabolic processes, emphasising their profound impact on various immune-related disorders. Understanding how metabolic dysregulation contributes to the pathogenesis of these disorders remains a critical research gap. Therefore, this review aims to bridge that gap by examining the key metabolic pathways involved and their specific implications in immune cell function. Key metabolic pathways, including glycolysis, mitochondrial metabolism, fatty acid metabolism, and amino acid metabolism, are discussed in the context of immune cell function. Dysregulation of these pathways can disrupt immune cell activation, differentiation, and overall function, contributing to disease pathogenesis. Understanding these metabolic alterations' molecular mechanisms is essential for developing targeted therapeutic interventions. The review also emphasises the importance of personalised medicine in immune-related disorders. The unique metabolic profiles of individuals can influence treatment outcomes, highlighting the need for tailored approaches. Integrating metabolic profiling into clinical practice can enhance treatment efficacy and improve patient outcomes. Investigating the clinical significance of immunometabolism in diverse disease contexts will facilitate the translation of research findings into clinical practice. Moreover, refining treatment strategies based on individual metabolic profiles will contribute to advancing precision immunotherapy.
Collapse
Affiliation(s)
- Nicholas Aderinto
- Department of Medicine and Surgery, Ladoke Akintola University of Technology, Ogbomoso
| | | | | | | | | |
Collapse
|
11
|
Zhu F, Wang S, Zhu X, Pang C, Cui P, Yang F, Li R, Zhan Q, Xin H. Potential effects of biomaterials on macrophage function and their signalling pathways. Biomater Sci 2023; 11:6977-7002. [PMID: 37695360 DOI: 10.1039/d3bm01213a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The use of biomaterials in biomedicine and healthcare has increased in recent years. Macrophages are the primary immune cells that induce inflammation and tissue repair after implantation of biomaterials. Given that macrophages exhibit high heterogeneity and plasticity, the influence of biomaterials on macrophage phenotype should be considered a crucial evaluation criterion during the development of novel biomaterials. This review provides a comprehensive summary of the physicochemical, biological, and dynamic characteristics of biomaterials that drive the regulation of immune responses in macrophages. The mechanisms involved in the interaction between macrophages and biomaterials, including endocytosis, receptors, signalling pathways, integrins, inflammasomes and long non-coding RNAs, are summarised in this review. In addition, research prospects of the interaction between macrophages and biomaterials are discussed. An in-depth understanding of mechanisms underlying the spatiotemporal changes in macrophage phenotype induced by biomaterials and their impact on macrophage polarization can facilitate the identification and development of novel biomaterials with superior performance. These biomaterials may be used for tissue repair and regeneration, vaccine or drug delivery and immunotherapy.
Collapse
Affiliation(s)
- Fujun Zhu
- Department of Burns and Plastic Surgery, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China.
| | - Shaolian Wang
- Central Sterile Supply Department, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Xianglian Zhu
- Outpatient Department, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Caixiang Pang
- Department of Emergency Medicine, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Pei Cui
- Animal Laboratory, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Fuwang Yang
- Department of Burns and Plastic Surgery, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China.
| | - Rongsheng Li
- Animal Laboratory, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Qiu Zhan
- Animal Laboratory, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Haiming Xin
- Department of Burns and Plastic Surgery, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China.
| |
Collapse
|
12
|
Zhao Z, Zhao Q, Chen H, Chen F, Wang F, Tang H, Xia H, Zhou Y, Sun Y. Role of dendritic cells in MYD88-mediated immune recognition and osteoinduction initiated by the implantation of biomaterials. Int J Oral Sci 2023; 15:31. [PMID: 37532700 PMCID: PMC10397189 DOI: 10.1038/s41368-023-00234-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/21/2023] [Accepted: 06/26/2023] [Indexed: 08/04/2023] Open
Abstract
Bone substitute material implantation has become an important treatment strategy for the repair of oral and maxillofacial bone defects. Recent studies have shown that appropriate inflammatory and immune cells are essential factors in the process of osteoinduction of bone substitute materials. Previous studies have mainly focused on innate immune cells such as macrophages. In our previous work, we found that T lymphocytes, as adaptive immune cells, are also essential in the osteoinduction procedure. As the most important antigen-presenting cell, whether dendritic cells (DCs) can recognize non-antigen biomaterials and participate in osteoinduction was still unclear. In this study, we found that surgical trauma associated with materials implantation induces necrocytosis, and this causes the release of high mobility group protein-1 (HMGB1), which is adsorbed on the surface of bone substitute materials. Subsequently, HMGB1-adsorbed materials were recognized by the TLR4-MYD88-NFκB signal axis of dendritic cells, and the inflammatory response was activated. Finally, activated DCs release regeneration-related chemokines, recruit mesenchymal stem cells, and initiate the osteoinduction process. This study sheds light on the immune-regeneration process after bone substitute materials implantation, points out a potential direction for the development of bone substitute materials, and provides guidance for the development of clinical surgical methods.
Collapse
Affiliation(s)
- Zifan Zhao
- Center of Digital Dentistry, Faculty of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Qin Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hu Chen
- Center of Digital Dentistry, Faculty of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Fanfan Chen
- Center of Digital Dentistry, Faculty of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Feifei Wang
- Center of Digital Dentistry, Faculty of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Hua Tang
- Institute of Infection and Immunity, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Haibin Xia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yongsheng Zhou
- Center of Digital Dentistry, Faculty of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China.
| | - Yuchun Sun
- Center of Digital Dentistry, Faculty of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China.
| |
Collapse
|
13
|
Liu X, Song H, Sun T, Wang H. Responsive Microneedles as a New Platform for Precision Immunotherapy. Pharmaceutics 2023; 15:1407. [PMID: 37242649 PMCID: PMC10220742 DOI: 10.3390/pharmaceutics15051407] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Microneedles are a well-known transdermal or transdermal drug delivery system. Different from intramuscular injection, intravenous injection, etc., the microneedle delivery system provides unique characteristics for immunotherapy administration. Microneedles can deliver immunotherapeutic agents to the epidermis and dermis, where immune cells are abundant, unlike conventional vaccine systems. Furthermore, microneedle devices can be designed to respond to certain endogenous or exogenous stimuli including pH, reactive oxygen species (ROS), enzyme, light, temperature, or mechanical force, thereby allowing controlled release of active compounds in the epidermis and dermis. In this way, multifunctional or stimuli-responsive microneedles for immunotherapy could enhance the efficacy of immune responses to prevent or mitigate disease progression and lessen systemic adverse effects on healthy tissues and organs. Since microneedles are a promising drug delivery system for accurate delivery and controlled drug release, this review focuses on the progress of using reactive microneedles for immunotherapy, especially for tumors. Limitations of current microneedle system are summarized, and the controllable administration and targeting of reactive microneedle systems are examined.
Collapse
Affiliation(s)
- Xinyang Liu
- Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Haohao Song
- Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Tairan Sun
- The Second Affiliated Hospital of Hebei North University, Zhangjiakou 075100, China
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
The HDAC inhibitor zabadinostat is a systemic regulator of adaptive immunity. Commun Biol 2023; 6:102. [PMID: 36702861 PMCID: PMC9878486 DOI: 10.1038/s42003-023-04485-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
Protein acetylation plays a key role in regulating cellular processes and is subject to aberrant control in diverse pathologies. Although histone deacetylase (HDAC) inhibitors are approved drugs for certain cancers, it is not known whether they can be deployed in other therapeutic contexts. We have explored the clinical HDAC inhibitor, zabadinostat/CXD101, and found that it is a stand-alone regulator of the adaptive immune response. Zabadinostat treatment increased expression of MHC class I and II genes in a variety of cells, including dendritic cells (DCs) and healthy tissue. Remarkably, zabadinostat enhanced the activity of DCs, and CD4 and CD8 T lymphocytes. Using an antigenic peptide presented to the immune system by MHC class I, zabadinostat caused an increase in antigen-specific CD8 T lymphocytes. Further, mice immunised with covid19 spike protein and treated with zabadinostat exhibit enhanced covid19 neutralising antibodies and an increased level of T lymphocytes. The enhanced humoral response reflected increased activity of T follicular helper (Tfh) cells and germinal centre (GC) B cells. Our results argue strongly that zabadinostat has potential to augment diverse therapeutic agents that act through the immune system.
Collapse
|