1
|
Guindo Y, Parent ME, Richard H, Luce D, Barul C. Expert-based assessment of chemical and physical exposures, and organizational factors, in past agricultural jobs. ENVIRONMENTAL RESEARCH 2024; 263:120238. [PMID: 39461702 DOI: 10.1016/j.envres.2024.120238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Limited data document the spectrum of exposures in the agricultural environment. We describe here the wide range of chemical and physical agents, and organizational factors, encountered in agricultural jobs held in the past in Canada and abroad. METHODS We used data from a population-based case-control study of prostate cancer including 3,925 male participants residing in Montreal, Canada in 2005-2012. Lifetime occupational histories and detailed job descriptions were collected in-person. Industrial hygienists and an agronomist conducted semi-quantitative evaluations of exposure, including intensity and reliability, to some 300 chemical and physical agents in each job held. Analyses focused on the 156 agricultural jobs ever held in the study population. Clusters of agricultural co-exposures were derived. RESULTS Agricultural jobs had taken place in 1946-2012, 53% ending in 1970 or after. Jobs were often (43%) held in Quebec, Canada; 22% in Italy, Portugal or Greece, and 10% in Haiti. Jobs entailed exposure to an average of 10 chemical agents (±7) and most were characterized by long working hours, high physical activity levels, and did not provoke stress or anxiety. Few involved early morning shifts. Exposure to 78 agents was assigned with probable or definite certainty. The most common definite or probable carcinogens were ultraviolet radiation (92% of jobs), environmental tobacco smoke (39%), diesel engine exhaust (23%), wood dust (20%), lubricating oils and greases (20%) and lead (15%). Pesticide exposure (as a group) occurred in 31% of jobs. Fifty-four percent of jobs entailed exposure to ≥2 recognized carcinogens. Exposure clusters varied according to countries and type of agricultural activities (general, animal, crops, horticulture, vineyards, etc.). CONCLUSIONS Findings highlight the heterogeneity of exposure patterns in past agricultural environments based on their setting and activities involved. Studies on health-related effects of farming should account for numerous potential exposures, beyond their typical focus on pesticides.
Collapse
Affiliation(s)
- Yandai Guindo
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Pointe-à-Pitre, France
| | - Marie-Elise Parent
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Université du Québec, Laval, Québec, Canada; School of Public Health, Université de Montréal, Montréal, Québec, Canada
| | - Hugues Richard
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Université du Québec, Laval, Québec, Canada
| | - Danièle Luce
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Pointe-à-Pitre, France
| | - Christine Barul
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Pointe-à-Pitre, France.
| |
Collapse
|
2
|
Huang YS, Hung PL, Wang LJ, Tsai CM, Tsai CK, Tiao MM, Yu HR. Distinct Impacts of Prenatal and Postnatal Phthalate Exposure on Behavioral and Emotional Development in Children Aged 1.5 to 3 Years. TOXICS 2024; 12:795. [PMID: 39590974 PMCID: PMC11598217 DOI: 10.3390/toxics12110795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024]
Abstract
Development is a continuous process, but few studies have assessed the simultaneous impact of prenatal and postnatal phthalate exposure on children's behavioral and emotional development. A total of 491 mother-child pairs from the general population in southern Taiwan were studied from 2021 to 2022. Urinary concentrations of bisphenol A (BPA) and phthalate metabolites-mono-ethyl phthalate (MEP), mono-n-butyl phthalate (MnBP), mono-benzyl phthalate (MBzP), and mono-2-ethylhexyl phthalate (MEHP)-were measured in pregnant mothers during the second trimester and in their corresponding children aged 1.5 to 3 years. Behavioral symptoms in children were evaluated using the Child Behavior Checklist (CBCL). Odds ratios (ORs) represent a 1-unit increase in log10-transformed creatinine-corrected maternal urine concentrations. Prenatal maternal urinary MnBP levels were associated with total problems (OR = 19.32, 95% CI: 1.80-43.13, p = 0.04), anxiety (OR = 33.58, 95% CI: 2.16-521.18, p = 0.01), and sleep problems (OR = 41.34, 95% CI: 1.04-1632.84, p = 0.04) in children. Additionally, urinary MnBP levels in children correlated with total problems (OR = 7.06, 95% CI: 1.01-49.05, p = 0.04) and internalizing problems (OR = 11.04, 95% CI: 1.27-95.72, p = 0.01). These findings suggest that prenatal and postnatal exposure to dibutyl phthalate (DBP), metabolized as MnBP, distinctly affects children's behavioral development.
Collapse
Affiliation(s)
- Yi-Siang Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (Y.-S.H.)
| | - Pi-Lien Hung
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (Y.-S.H.)
| | - Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chih-Min Tsai
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (Y.-S.H.)
| | - Chang-Ku Tsai
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (Y.-S.H.)
| | - Mao-Meng Tiao
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (Y.-S.H.)
| | - Hong-Ren Yu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (Y.-S.H.)
- College of Medicine, Chang Gung University, Taoyuan 330, Taiwan
- Institute for Translational Research in Biomedicine, Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| |
Collapse
|
3
|
Asimaki K, Vazakidou P, van Tol HTA, van Duursen MBM, Gadella BM. Ketoconazole blocks progesterone production without affecting other parameters of cumulus-oocyte complex maturation. Reprod Toxicol 2024; 128:108637. [PMID: 38876429 DOI: 10.1016/j.reprotox.2024.108637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/19/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
Ketoconazole (KTZ) is widely used as a fungicide, but it is also known to target steroid hormone formation which may affect female reproductive health. Our study aims to investigate the effects of KTZ on in vitro matured bovine cumulus-oocyte complexes (COCs), as a model for female reproductive toxicity. Cumulus cells of in vitro maturing COCs produce progesterone and pregnenolone, but exposure to 10-6 M KTZ effectively blocked the synthesis of these hormones. Exposure to lower concentrations of KTZ (i.e. 10-7 M and 10-8 M) had no such effect on steroidogenesis compared to the 0.1 % v/v DMSO vehicle control. Classical parameters of in vitro COC maturation, such as oocyte nuclear maturation to the metaphase II stage and expansion of the cumulus investment, were not affected by any KTZ concentration tested. Apoptosis and necrosis levels were also not altered in cumulus cells or oocytes exposed to KTZ. Moreover, oocytes exposed to KTZ during maturation showed normal cleavage and early embryo development up to day 8 post fertilization; albeit a statistically significant decrease was observed in day 8 blastocysts produced from oocytes exposed to the lowest concentration of 10-8 M KTZ. When unexposed mature oocytes were fertilized, followed by embryo culture for 8 days under KTZ exposure, no adverse effects in embryo cleavage and blastocyst formation were observed. In conclusion, KTZ has no major impact on in vitro bovine oocyte maturation and blastocyst formation in our study, even at concentrations blocking steroidogenesis.
Collapse
Affiliation(s)
- K Asimaki
- Division of Farm Animal Health, Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; Amsterdam Institute for Life and Environment, Section Environment and Health, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - P Vazakidou
- Amsterdam Institute for Life and Environment, Section Environment and Health, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - H T A van Tol
- Division of Farm Animal Health, Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - M B M van Duursen
- Amsterdam Institute for Life and Environment, Section Environment and Health, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - B M Gadella
- Division of Farm Animal Health, Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
4
|
Xiang T, Liu Y, Guo Y, Zhang J, Liu J, Yao L, Mao Y, Yang X, Liu J, Liu R, Jin X, Shi J, Qu G, Jiang G. Occurrence and Prioritization of Human Androgen Receptor Disruptors in Sewage Sludges Across China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10309-10321. [PMID: 38795035 DOI: 10.1021/acs.est.4c02476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2024]
Abstract
The global practice of reusing sewage sludge in agriculture and its landfill disposal reintroduces environmental contaminants, posing risks to human and ecological health. This study screened sewage sludge from 30 Chinese cities for androgen receptor (AR) disruptors, utilizing a disruptor list from the Toxicology in the 21st Century program (Tox21), and identified 25 agonists and 33 antagonists across diverse use categories. Predominantly, natural products 5α-dihydrotestosterone and thymidine emerged as agonists, whereas the industrial intermediate caprolactam was the principal antagonist. In-house bioassays for identified disruptors displayed good alignment with Tox21 potency data, validating employing Tox21 toxicity data for theoretical toxicity estimations. Potency calculations revealed 5α-dihydrotestosterone and two pharmaceuticals (17β-trenbolone and testosterone isocaproate) as the most potent AR agonists and three dyes (rhodamine 6G, Victoria blue BO, and gentian violet) as antagonists. Theoretical effect contribution evaluations prioritized 5α-dihydrotestosterone and testosterone isocaproate as high-risk AR agonists and caprolactam, rhodamine 6G, and 8-hydroxyquinoline (as a biocide and a preservative) as key antagonists. Notably, 16 agonists and 20 antagonists were newly reported in the sludge, many exhibiting significant detection frequencies, concentrations, and/or toxicities, demanding future scrutiny. Our study presents an efficient strategy for estimating environmental sample toxicity and identifying key toxicants, thereby supporting the development of appropriate sludge management strategies.
Collapse
Affiliation(s)
- Tongtong Xiang
- College of Sciences, Northeastern University, Shenyang110004, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Yunhe Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao266237, China
| | - Jifu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Linlin Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Yuxiang Mao
- School of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, China
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Jun Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Runzeng Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaoting Jin
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao266071, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- School of Environmental Studies, China University of Geosciences, Wuhan430074, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Guibin Jiang
- College of Sciences, Northeastern University, Shenyang110004, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| |
Collapse
|
5
|
Kumar V, Sharma N, Sharma P, Pasrija R, Kaur K, Umesh M, Thazeem B. Toxicity analysis of endocrine disrupting pesticides on non-target organisms: A critical analysis on toxicity mechanisms. Toxicol Appl Pharmacol 2023; 474:116623. [PMID: 37414290 DOI: 10.1016/j.taap.2023.116623] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/19/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Endocrine disrupting compounds are the chemicals which mimics the natural endocrine hormones and bind to the receptors made for the hormones. Upon binding they activate the cascade of reaction which leads to permanent activating of the signalling cycle and ultimately leads to uncontrolled growth. Pesticides are one of the endocrine disrupting chemicals which cause cancer, congenital birth defects, and reproductive defects in non-target organisms. Non-target organisms are keen on exposing to these pesticides. Although several studies have reported about the pesticide toxicity. But a critical analysis of pesticide toxicity and its role as endocrine disruptor is lacking. Therefore, the presented review literature is an endeavour to understand the role of the pesticides as endocrine disruptors. In addition, it discusses about the endocrine disruption, neurological disruption, genotoxicity, and ROS induced pesticide toxicity. Moreover, biochemical mechanisms of pesticide toxicity on non-target organisms have been presented. An insight on the chlorpyrifos toxicity on non-target organisms along with species names have been presented.
Collapse
Affiliation(s)
- Vinay Kumar
- Bioconversion and Tissue Engineering Laboratory, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam-602105, India.
| | - Neha Sharma
- Metagenomics and Bioprocess Design Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Preeti Sharma
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Ritu Pasrija
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Komalpreet Kaur
- Punjab Agricultural University, Institute of Agriculture, Gurdaspur 143521, India
| | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560029, Karnataka, India
| | - Basheer Thazeem
- Waste Management Division, Integrated Rural Technology Centre (IRTC), Palakkad 678592, Kerala, India
| |
Collapse
|
6
|
Schmidtkunz C, Gries W, Küpper K, Leng G. A "dilute-and-shoot" column-switching UHPLC-MS/MS procedure for the rapid determination of branched nonylphenol in human urine: method optimisation and some fundamental aspects of nonylphenol analysis. Anal Bioanal Chem 2023; 415:975-989. [PMID: 36633620 DOI: 10.1007/s00216-022-04495-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/13/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023]
Abstract
Technical grade branched nonylphenol (NP) was determined in human urine by online solid phase extraction-ultra high-performance liquid chromatography-tandem mass spectrometry (SPE-UHPLC-MS/MS). Prior to analysis, urine specimens were simply diluted and enzymatically deconjugated. The run time of the chromatography, including SPE and re-equilibration, was 9 min per injection. The enzymatic cleavage of NP conjugates was optimised with incurred sample material from a human metabolism study: the highest recoveries were obtained with β-glucuronidase from E. coli K 12 in 0.1 M ammonium acetate at pH 6.5, within a minimal hydrolysis time of 30 to 60 min. Using sodium acetate instead of ammonium acetate led to systematically decreased recovery rates. The analytical method was validated regarding its precision (coefficients of variation: 2.9-7.4%), accuracy (relative recovery rates: 93-105%), robustness (relative recovery rates in individual urine matrices: 92-117%), selectivity, and limit of quantification (1.0 μg L-1). Fundamental aspects in the analysis of technical product mixtures such as NP, comprising various isomers and homologues, were considered. Validation results, an exposure scenario and the application of the procedure to real samples, show that it enables a rugged monitoring of NP exposures above, at, and significantly below health-based guidance values, corresponding to daily NP intakes in the low μg kg-1 d-1 range. On the other hand, background levels in non-specifically exposed populations cannot be detected with this method. Hence, while alternative approaches should be pursued for NP analysis at environmental trace level, the speed and simplicity of our method are ideal for high-throughput human biomonitoring in occupational medicine.
Collapse
Affiliation(s)
- Christoph Schmidtkunz
- Currenta GmbH & Co. OHG, Institute of Biomonitoring, Chempark Gebäude Q 18, 51368, Leverkusen, Germany.
| | - Wolfgang Gries
- Currenta GmbH & Co. OHG, Institute of Biomonitoring, Chempark Gebäude Q 18, 51368, Leverkusen, Germany.,Currenta GmbH & Co. OHG, Environmental Analytics, Chempark Gebäude R 800, 47829, Krefeld-Uerdingen, Germany
| | - Katja Küpper
- Currenta GmbH & Co. OHG, Institute of Biomonitoring, Chempark Gebäude Q 18, 51368, Leverkusen, Germany
| | - Gabriele Leng
- Currenta GmbH & Co. OHG, Institute of Biomonitoring, Chempark Gebäude Q 18, 51368, Leverkusen, Germany
| |
Collapse
|
7
|
Jeong J, Kim D, Choi J. Application of ToxCast/Tox21 data for toxicity mechanism-based evaluation and prioritization of environmental chemicals: Perspective and limitations. Toxicol In Vitro 2022; 84:105451. [PMID: 35921976 DOI: 10.1016/j.tiv.2022.105451] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/28/2022] [Indexed: 01/28/2023]
Abstract
In response to the need to minimize the use of experimental animals, new approach methodologies (NAMs) using advanced technology have emerged in the 21st century. ToxCast/Tox21 aims to evaluate the adverse effects of chemicals quickly and efficiently using a high-throughput screening and to transform the paradigm of toxicity assessment into mechanism-based toxicity prediction. The ToxCast/Tox21 database, which contains extensive data from over 1400 assays with numerous biological targets and activity data for over 9000 chemicals, can be used for various purposes in the field of chemical prioritization and toxicity prediction. In this study, an overview of the database was explored to aid mechanism-based chemical prioritization and toxicity prediction. Implications for the utilization of the ToxCast/Tox21 database in chemical prioritization and toxicity prediction were derived. The research trends in ToxCast/Tox21 assay data were reviewed in the context of toxicity mechanism identification, chemical priority, environmental monitoring, assay development, and toxicity prediction. Finally, the potential applications and limitations of using ToxCast/Tox21 assay data in chemical risk assessment were discussed. The analysis of the toxicity mechanism-based assays of ToxCast/Tox21 will help in chemical prioritization and regulatory applications without the use of laboratory animals.
Collapse
Affiliation(s)
- Jaeseong Jeong
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Donghyeon Kim
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea.
| |
Collapse
|
8
|
Mo X, Cai J, Lin Y, Liu Q, Xu M, Zhang J, Liu S, Wei C, Wei Y, Huang S, Mai T, Tan D, Lu H, Luo T, Gou R, Zhang Z, Qin J. Correlation between urinary contents of some metals and fasting plasma glucose levels: A cross-sectional study in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112976. [PMID: 34781133 DOI: 10.1016/j.ecoenv.2021.112976] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Many metals are involved in the pathogenesis of diabetes, but most of existing studies focused on single metals. The study of mixtures represents real-life exposure scenarios and deserves attention. This study aimed to explore the potential relationship of urinary copper (Cu), zinc (Zn), arsenic (As), selenium (Se), and strontium (Sr) contents with fasting plasma glucose (FPG) levels in 2766 participants. The levels of metals in urine were determined by inductively coupled plasma-mass spectrometry. We used linear regression models and the Bayesian kernel machine regression (BKMR) to evaluate the association between metals and FPG levels. In the multiple metals linear regression, Zn (β = 0.434), Se (β = 0.172), and Sr (β = -0.143) showed significant association with FPG levels (all P < 0.05). The BKMR model analysis showed that the results of single metal association were consistent with the multiple metals linear regression. The mixture of five metals had a positive over-all effect on FPG levels, and Zn (PIP = 1.000) contributed the most to the FPG levels. Cu and As were negatively correlated with FPG levels in women. The potential interaction effect between Cu and Sr was observed in participants aged ≥ 60 years old (Pinteraction = 0.035). In summary, our results suggested that multiple metals in urine are associated with FPG levels. Further studies are needed to confirm these findings and clarify the underlying mechanisms.
Collapse
Affiliation(s)
- Xiaoting Mo
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Jiansheng Cai
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, Guangxi, China
| | - Yinxia Lin
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Qiumei Liu
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Min Xu
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Junling Zhang
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Shuzhen Liu
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Chunmei Wei
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Yanfei Wei
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Shenxiang Huang
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Tingyu Mai
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Guilin 541004, Guangxi, China
| | - Dechan Tan
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Guilin 541004, Guangxi, China
| | - Huaxiang Lu
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Tingyu Luo
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Guilin 541004, Guangxi, China
| | - Ruoyu Gou
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Guilin 541004, Guangxi, China
| | - Zhiyong Zhang
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Guilin 541004, Guangxi, China.
| | - Jian Qin
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.
| |
Collapse
|