1
|
Teymouri F, Dasanu CA. Selecting appropriate therapy for lower-risk myelodysplastic syndromes: current state and future prospects. Expert Opin Pharmacother 2024; 25:1975-1977. [PMID: 39387446 DOI: 10.1080/14656566.2024.2415714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Affiliation(s)
- Farzad Teymouri
- Department of Medicine, Eisenhower Health, Rancho Mirage, CA, USA
| | - Constantin A Dasanu
- Lucy Curci Cancer Center, Eisenhower Health, Rancho Mirage, CA, USA
- Department of Medical Oncology and Hematology, UC San Diego Health System, San Diego, CA, USA
| |
Collapse
|
2
|
Kannan S, Vedia RA, Molldrem JJ. The immunobiology of myelodysplastic neoplasms: a mini-review. Front Immunol 2024; 15:1419807. [PMID: 39355256 PMCID: PMC11443505 DOI: 10.3389/fimmu.2024.1419807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/27/2024] [Indexed: 10/03/2024] Open
Abstract
This mini review summarizes the immunobiology of myelodysplastic syndromes, specifically focusing on the interactions between immune cells, cytokines, and dysplastic cells within the tumor microenvironment in the bone marrow. We elucidate in detail how immune dysregulation and evasion influence the initiation and progression of myelodysplastic syndromes, as well as resistance to therapy and progression to AML. In addition, we highlight a range of therapeutic strategies, including the most recent breakthroughs and experimental therapies for treating MDS. Finally, we address the existing knowledge gaps in the understanding of the immunobiology of MDS and propose future research directions, promising advancements toward enhancing clinical outcomes and survival for patients with MDS.
Collapse
Affiliation(s)
- Shruthi Kannan
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rolando A Vedia
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jeffrey J Molldrem
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Evolution of Cancer, Leukemia, and Immunity Post Stem cEll transplant (ECLIPSE), Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Stem Cell Transplantation and Cellular Therapy, Division of Cancer Medicine, UT MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
3
|
Bauer M, Monecke A, Hackl H, Wilfer A, Jaekel N, Bläker H, Al-Ali HK, Seliger B, Wickenhauser C. Association of immune evasion in myeloid sarcomas with disease manifestation and patients' survival. Front Immunol 2024; 15:1396187. [PMID: 39170623 PMCID: PMC11336574 DOI: 10.3389/fimmu.2024.1396187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Introduction Myeloid sarcomas (MS) comprise rare extramedullary manifestations of myeloid neoplasms with poor patients' outcome. While the clinical relevance of the tumor microenvironment (TME) is well established in many malignancies, there exists limited information in MS. Methods The expression of the human leukocyte antigen class I (HLA-I) antigens, HLA-I antigen processing and presenting machinery (APM) components and the composition of the TME of 45 MS and paired bone marrow (BM) samples from two independent cohorts were assessed by immunohistochemistry, multispectral imaging, and RNA sequencing (RNAseq). Results A significant downregulation of the HLA-I heavy chain (HC; 67.5%) and ß2-microglobulin (ß2M; 64.8%), but an upregulation of HLA-G was found in MS compared to BM samples, which was confirmed in a publicly available dataset. Moreover, MS tumors showed a predominantly immune cell excluded TME with decreased numbers of tissue infiltrating lymphocytes (TILs) (9.5%) compared to paired BM (22.9%). RNAseq analysis of a subset of 10 MS patients with preserved and reduced HLA-I HC expression revealed 150 differentially expressed genes and a significantly reduced expression of inflammatory response genes was found in samples with preserved HLA-I expression. Furthermore, low HLA-I expression and low TIL numbers in the TME of MS cases were linked to an inferior patients' outcome. Discussion This study demonstrated a high prevalence of immune escape strategies in the pathogenesis and extramedullary spread of MS, which was also found in patients without evidence of any BM pathology, which yields the rational for the development of novel individually tailored therapies for MS patients.
Collapse
Affiliation(s)
- Marcus Bauer
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Astrid Monecke
- Institute of Pathology, University Leipzig, Leipzig, Germany
| | - Hubert Hackl
- Institute of Bioinformatics, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Andreas Wilfer
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle, Germany
- Krukenberg Cancer Center Halle, University Hospital Halle, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Nadja Jaekel
- Department of Hematology, University Hospital Halle, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Hendrik Bläker
- Institute of Pathology, University Leipzig, Leipzig, Germany
| | - Haifa Kathrin Al-Ali
- Krukenberg Cancer Center Halle, University Hospital Halle, Martin Luther University Halle-Wittenberg, Halle, Germany
- Department of Hematology, University Hospital Halle, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Barbara Seliger
- Medical Faculty, Martin Luther University Halle-Wittenberg, Halle, Germany
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- Institute of Translational Immunology, Medical School “Theodor Fontane”, Brandenburg an der Havel, Germany
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
4
|
Mosna F. The Immunotherapy of Acute Myeloid Leukemia: A Clinical Point of View. Cancers (Basel) 2024; 16:2359. [PMID: 39001421 PMCID: PMC11240611 DOI: 10.3390/cancers16132359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/16/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
The potential of the immune system to eradicate leukemic cells has been consistently demonstrated by the Graft vs. Leukemia effect occurring after allo-HSCT and in the context of donor leukocyte infusions. Various immunotherapeutic approaches, ranging from the use of antibodies, antibody-drug conjugates, bispecific T-cell engagers, chimeric antigen receptor (CAR) T-cells, and therapeutic infusions of NK cells, are thus currently being tested with promising, yet conflicting, results. This review will concentrate on various types of immunotherapies in preclinical and clinical development, from the point of view of a clinical hematologist. The most promising therapies for clinical translation are the use of bispecific T-cell engagers and CAR-T cells aimed at lineage-restricted antigens, where overall responses (ORR) ranging from 20 to 40% can be achieved in a small series of heavily pretreated patients affected by refractory or relapsing leukemia. Toxicity consists mainly in the occurrence of cytokine-release syndrome, which is mostly manageable with step-up dosing, the early use of cytokine-blocking agents and corticosteroids, and myelosuppression. Various cytokine-enhanced natural killer products are also being tested, mainly as allogeneic off-the-shelf therapies, with a good tolerability profile and promising results (ORR: 20-37.5% in small trials). The in vivo activation of T lymphocytes and NK cells via the inhibition of their immune checkpoints also yielded interesting, yet limited, results (ORR: 33-59%) but with an increased risk of severe Graft vs. Host disease in transplanted patients. Therefore, there are still several hurdles to overcome before the widespread clinical use of these novel compounds.
Collapse
Affiliation(s)
- Federico Mosna
- Hematology and Bone Marrow Transplantation Unit (BMTU), Hospital of Bolzano (SABES-ASDAA), Teaching Hospital of Paracelsus Medical University (PMU), 39100 Bolzano, Italy
| |
Collapse
|
5
|
Zhan Y, Ma S, Zhang T, Zhang L, Zhao P, Yang X, Liu M, Cheng W, Li Y, Wang J. Identification of a novel monocyte/macrophage-related gene signature for predicting survival and immune response in acute myeloid leukemia. Sci Rep 2024; 14:14012. [PMID: 38890346 PMCID: PMC11189543 DOI: 10.1038/s41598-024-64567-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematological tumor with poor immunotherapy effect. This study was to develop a monocyte/macrophage-related prognostic risk score (MMrisk) and identify new therapeutic biomarkers for AML. We utilized differentially expressed genes (DEGs) in combination with single-cell RNA sequencing to identify monocyte/macrophage-related genes (MMGs). Eight genes were selected for the construction of a MMrisk model using univariate Cox regression analysis and LASSO regression analysis. We then validated the MMrisk on two GEO datasets. Lastly, we investigated the immunologic characteristics and advantages of immunotherapy and potential targeted drugs for MMrisk groups. Our study identified that the MMrisk is composed of eight MMGs, including HOPX, CSTB, MAP3K1, LGALS1, CFD, MXD1, CASP1 and BCL2A1. The low MMrisk group survived longer than high MMrisk group (P < 0.001). The high MMrisk group was positively correlated with B cells, plasma cells, CD4 memory cells, Mast cells, CAFs, monocytes, M2 macrophages, Endothelial, tumor mutation, and most immune checkpoints (PD1, Tim-3, CTLA4, LAG3). Furthermore, drug sensitivity analysis showed that AZD.2281, Axitinib, AUY922, ABT.888, and ATRA were effective in high-risk MM patients. Our research shows that MMrisk is a potential biomarker which is helpful to identify the molecular characteristics of AML immunology.
Collapse
Affiliation(s)
- Yun Zhan
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
- Department of Clinical Medical School, Guizhou Medical University, Guiyang, 550004, People's Republic of China
- Guizhou Province Institute of Hematology, Guizhou Province Hematopoietic Stem Cell Transplantation Center, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Sixing Ma
- Department of Clinical Medical School, Guizhou Medical University, Guiyang, 550004, People's Republic of China
- Department of Vascular Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Tianzhuo Zhang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
- Guizhou Province Institute of Hematology, Guizhou Province Hematopoietic Stem Cell Transplantation Center, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Luxin Zhang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
- Guizhou Province Institute of Hematology, Guizhou Province Hematopoietic Stem Cell Transplantation Center, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Peng Zhao
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
- Guizhou Province Institute of Hematology, Guizhou Province Hematopoietic Stem Cell Transplantation Center, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Xueying Yang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
- Guizhou Province Institute of Hematology, Guizhou Province Hematopoietic Stem Cell Transplantation Center, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Min Liu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
- Guizhou Province Institute of Hematology, Guizhou Province Hematopoietic Stem Cell Transplantation Center, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Weiwei Cheng
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
- Guizhou Province Institute of Hematology, Guizhou Province Hematopoietic Stem Cell Transplantation Center, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Ya Li
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
- Guizhou Province Institute of Hematology, Guizhou Province Hematopoietic Stem Cell Transplantation Center, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Jishi Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China.
- Department of Clinical Medical School, Guizhou Medical University, Guiyang, 550004, People's Republic of China.
- Guizhou Province Institute of Hematology, Guizhou Province Hematopoietic Stem Cell Transplantation Center, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China.
| |
Collapse
|
6
|
Russo S, Feola S, Feodoroff M, Chiaro J, Antignani G, Fusciello M, D’Alessio F, Hamdan F, Pellinen T, Mölsä R, Tripodi L, Pastore L, Grönholm M, Cerullo V. Low-dose decitabine enhances the efficacy of viral cancer vaccines for immunotherapy. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200766. [PMID: 38596301 PMCID: PMC10869747 DOI: 10.1016/j.omton.2024.200766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/16/2023] [Accepted: 01/18/2024] [Indexed: 04/11/2024]
Abstract
Cancer immunotherapy requires a specific antitumor CD8+ T cell-driven immune response; however, upon genetic and epigenetic alterations of the antigen processing and presenting components, cancer cells escape the CD8+ T cell recognition. As a result, poorly immunogenic tumors are refractory to conventional immunotherapy. In this context, the use of viral cancer vaccines in combination with hypomethylating agents represents a promising strategy to prevent cancer from escaping immune system recognition. In this study, we evaluated the sensitivity of melanoma (B16-expressing ovalbumin) and metastatic triple-negative breast cancer (4T1) cell lines to FDA-approved low-dose decitabine in combination with PeptiCRAd, an adenoviral anticancer vaccine. The two models showed different sensitivity to decitabine in vitro and in vivo when combined with PeptiCRAd. In particular, mice bearing syngeneic 4T1 cancer showed higher tumor growth control when receiving the combinatorial treatment compared to single controls in association with a higher expression of MHC class I on cancer cells and reduction in Tregs within the tumor microenvironment. Furthermore, remodeling of the CD8+ T cell infiltration and cytotoxic activity toward cancer cells confirmed the effect of decitabine in enhancing anticancer vaccines in immunotherapy regimens.
Collapse
Affiliation(s)
- Salvatore Russo
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, 00710 Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014 Helsinki, Finland
| | - Sara Feola
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, 00710 Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014 Helsinki, Finland
| | - Michaela Feodoroff
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, 00710 Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014 Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jacopo Chiaro
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, 00710 Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014 Helsinki, Finland
| | - Gabriella Antignani
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, 00710 Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014 Helsinki, Finland
| | - Manlio Fusciello
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, 00710 Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014 Helsinki, Finland
| | - Federica D’Alessio
- Department of Molecular Medicine and Medical Biotechnology and CEINGE, Naples University, 24 Federico II, 80131 Naples, Italy
| | - Firas Hamdan
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, 00710 Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014 Helsinki, Finland
| | - Teijo Pellinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Riikka Mölsä
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, 00710 Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014 Helsinki, Finland
| | - Lorella Tripodi
- Department of Molecular Medicine and Medical Biotechnology and CEINGE, Naples University, 24 Federico II, 80131 Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore s.c.a.r.l, 80131 Naples, Italy
| | - Lucio Pastore
- Department of Molecular Medicine and Medical Biotechnology and CEINGE, Naples University, 24 Federico II, 80131 Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore s.c.a.r.l, 80131 Naples, Italy
| | - Mikaela Grönholm
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, 00710 Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014 Helsinki, Finland
| | - Vincenzo Cerullo
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, 00710 Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014 Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Molecular Medicine and Medical Biotechnology and CEINGE, Naples University, 24 Federico II, 80131 Naples, Italy
| |
Collapse
|
7
|
Verma A, Chi YY, Malvar J, Lamble A, Chaudhury S, Agarwal A, Li HT, Liang G, Leong R, Brown PA, Kaplan J, Schafer ES, Slone T, Pauly M, Chang BH, Stieglitz E, Wayne AS, Hijiya N, Bhojwani D. Nivolumab Plus 5-Azacitidine in Pediatric Relapsed/Refractory Acute Myeloid Leukemia (AML): Phase I/II Trial Results from the Therapeutic Advances in Childhood Leukemia and Lymphoma (TACL) Consortium. Cancers (Basel) 2024; 16:496. [PMID: 38339248 PMCID: PMC10854518 DOI: 10.3390/cancers16030496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Improvements in survival have been made over the past two decades for childhood acute myeloid leukemia (AML), but the approximately 40% of patients who relapse continue to have poor outcomes. A combination of checkpoint-inhibitor nivolumab and azacitidine has demonstrated improvements in median survival in adults with AML. This phase I/II study with nivolumab and azacitidine in children with relapsed/refractory AML (NCT03825367) was conducted through the Therapeutic Advances in Childhood Leukemia & Lymphoma consortium. Thirteen patients, median age 13.7 years, were enrolled. Patients had refractory disease with multiple reinduction attempts. Twelve evaluable patients were treated at the recommended phase II dose (established at dose level 1, 3 mg/kg/dose). Four patients (33%) maintained stable disease. This combination was well tolerated, with no dose-limiting toxicities observed. Grade 3-4 adverse events (AEs) were primarily hematological. Febrile neutropenia was the most common AE ≥ grade 3. A trend to improved quality of life was noted. Increases in CD8+ T cells and reductions in CD4+/CD8+ T cells and demethylation were observed. The combination was well tolerated and had an acceptable safety profile in pediatric patients with relapsed/refractory AML. Future studies might explore this combination for the maintenance of remission in children with AML at high risk of relapse.
Collapse
Affiliation(s)
- Anupam Verma
- Center for Cancer and Blood Disorders, Pediatric Hematology Oncology Branch, Children’s National Hospital, Washington, DC 20010, USA
- Division of Pediatric Hematology Oncology, Primary Children’s Hospital, University of Utah, Salt Lake City, UT 84113, USA
| | - Yueh-Yun Chi
- Division of Hematology-Oncology, Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA; (Y.-Y.C.); (A.S.W.); (D.B.)
| | - Jemily Malvar
- Division of Hematology-Oncology, Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (J.M.)
| | - Adam Lamble
- Department of Pediatric Hematology Oncology, Seattle Children’s Hospital, Seattle, WA 98105, USA;
| | - Sonali Chaudhury
- Department of Pediatric Hematology Oncology, Ann and Robert Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA;
| | - Archana Agarwal
- Department of Pathology, University of Utah and ARUP Laboratories, Salt Lake City, UT 84108, USA;
| | - Hong-Tao Li
- Department of Urology, University of Southern California, Los Angeles, CA 90033, USA; (H.-T.L.); (G.L.)
| | - Gangning Liang
- Department of Urology, University of Southern California, Los Angeles, CA 90033, USA; (H.-T.L.); (G.L.)
| | - Roy Leong
- Division of Hematology-Oncology, Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (J.M.)
| | | | - Joel Kaplan
- Department of Pediatric Hematology Oncology, Atrium Health Levine Children’s Hospital, Wake Forrest University, Charlotte, NC 28203, USA;
| | - Eric S. Schafer
- Division of Pediatric Hematology/Oncology, Baylor College of Medicine, Texas Children’s Cancer and Hematology Center, Houston, TX 77030, USA;
| | - Tamra Slone
- Department of Pediatric Hematology Oncology, UT Southwestern, Dallas, TX 75235, USA;
| | - Melinda Pauly
- Department of Pediatric Hematology Oncology, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA;
| | - Bill H. Chang
- Division of Pediatric Hematology Oncology, Oregon Health and Science University, Portland, OR 97239, USA;
| | - Elliot Stieglitz
- Department of Pediatric Oncology, University of California, San Francisco Benioff Children’s Hospitals, San Francisco, CA 94158, USA;
| | - Alan S. Wayne
- Division of Hematology-Oncology, Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA; (Y.-Y.C.); (A.S.W.); (D.B.)
| | - Nobuko Hijiya
- Division of Pediatric Hematology Oncology and Stem Cell Transplant, Columbia University Medical Center, New York, NY 10032, USA;
| | - Deepa Bhojwani
- Division of Hematology-Oncology, Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA; (Y.-Y.C.); (A.S.W.); (D.B.)
| |
Collapse
|
8
|
Bołkun Ł, Starosz A, Krętowska-Grunwald A, Wasiluk T, Walewska A, Wierzbowska A, Moniuszko M, Grubczak K. Effects of Combinatory In Vitro Treatment with Immune Checkpoint Inhibitors and Cytarabine on the Anti-Cancer Immune Microenvironment in De Novo AML Patients. Cancers (Basel) 2024; 16:462. [PMID: 38275902 PMCID: PMC10814928 DOI: 10.3390/cancers16020462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
Despite substantial progress in the diagnostic and therapeutic procedures, acute myeloid leukaemia (AML) still constitutes a significant problem for patients suffering from its relapses. A comprehensive knowledge of the disease's molecular background has led to the development of targeted therapies, including immune checkpoint inhibitors, and demonstrated beneficial effects on several types of cancer. Here, we aimed to assess in vitro the potential of the immune checkpoint blockage for supporting anti-cancer responses to the AML backbone therapy with cytarabine. PBMCs of AML patients were collected at admission and, following the therapy, eight complete remission (CR) and eight non-responders (NR) subjects were selected. We assessed the effects of the in vitro treatment of the cells with cytarabine and the immune checkpoint inhibitors: anti-CTLA-4, anti-PD-1, anti-PD-L1. The study protocol allowed us to evaluate the viability of the cancer and the immune cells, proliferation status, phenotype, and cytokine release. Anti-PD-L1 antibodies were found to exert the most beneficial effect on the activation of T cells, with a concomitant regulation of the immune balance through Treg induction. There was no direct influence on the blast cells; however, the modulation of the PD-1/PD-L1 axis supported the expansion of lymphocytes. Changes in the response between CR and NR patients might result from the differential expression of PD-1 and PD-L1, with lower levels in the latter group. The tested blockers appear to support the anti-cancer immune responses rather than directly improve the effects of cytarabine. In conclusion, checkpoint proteins' modulators might improve the anti-cancer responses in the tumour environment.
Collapse
Affiliation(s)
- Łukasz Bołkun
- Department of Haematology, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - Aleksandra Starosz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, J. Waszyngtona 13, 15-269 Bialystok, Poland; (A.S.); (A.K.-G.); (A.W.); (M.M.)
| | - Anna Krętowska-Grunwald
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, J. Waszyngtona 13, 15-269 Bialystok, Poland; (A.S.); (A.K.-G.); (A.W.); (M.M.)
- Department of Pediatric Oncology and Hematology, Medical University of Bialystok, J. Waszyngtona 17, 15-274 Bialystok, Poland
| | - Tomasz Wasiluk
- Regional Centre for Transfusion Medicine, M. Sklodowskiej-Curie 23, 15-950 Bialystok, Poland;
| | - Alicja Walewska
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, J. Waszyngtona 13, 15-269 Bialystok, Poland; (A.S.); (A.K.-G.); (A.W.); (M.M.)
| | - Agnieszka Wierzbowska
- Department of Hematology, Medical University of Lodz, Pabianicka 62, 93-513 Lodz, Poland;
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, J. Waszyngtona 13, 15-269 Bialystok, Poland; (A.S.); (A.K.-G.); (A.W.); (M.M.)
- Department of Allergology and Internal Medicine, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - Kamil Grubczak
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, J. Waszyngtona 13, 15-269 Bialystok, Poland; (A.S.); (A.K.-G.); (A.W.); (M.M.)
| |
Collapse
|
9
|
Subaramaniyam U, Ramalingam D, Balan R, Paital B, Sar P, Ramalingam N. Annonaceous acetogenins as promising DNA methylation inhibitors to prevent and treat leukemogenesis - an in silico approach. J Biomol Struct Dyn 2023:1-14. [PMID: 38149859 DOI: 10.1080/07391102.2023.2297010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/10/2023] [Indexed: 12/28/2023]
Abstract
Leukemia is a haematological malignancy affecting blood and bone marrow, ranking 10th among the other common cancers. DNA methylation is an epigenetic dysregulation that plays a critical role in leukemogenesis. DNA methyltransferases (DNMTs) such as DNMT1, DNMT3A and DNMT3B are the key enzymes catalysing DNA methylation. Inhibition of DNMT1 with secondary metabolites from medicinal plants helps reverse DNA methylation. The present study focuses on inhibiting DNMT1 protein (PDB ID: 3PTA) with annonaceous acetogenins through in-silico studies. The docking and molecular dynamic (MD) simulation study was carried out using Schrödinger Maestro and Desmond, respectively. These compounds' drug likeliness, ADMET properties and bioactivity scores were analysed. About 76 different acetogenins were chosen for this study, among which 17 showed the highest binding energy in the range of -8.312 to -10.266 kcal/mol. The compounds with the highest negative binding energy were found to be annohexocin (-10.266 kcal/mol), isoannonacinone (-10.209 kcal/mol) and annonacin (-9.839 kcal/mol). MD simulation results reveal that annonacin remains stable throughout the simulation time of 100 ns and also binds to the catalytic domain of DNMT1 protein. From the above results, it can be concluded that annonacin has the potential to inhibit the DNA methylation process and prevent leukemogenesis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Udayadharshini Subaramaniyam
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Divya Ramalingam
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Ranjini Balan
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Pranati Sar
- Biotechnology Department, Silver Oak Institute of Science, Silver Oak University, Ahmedabad, India
| | - Nirmaladevi Ramalingam
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| |
Collapse
|
10
|
Santinelli E, Pascale MR, Xie Z, Badar T, Stahl MF, Bewersdorf JP, Gurnari C, Zeidan AM. Targeting apoptosis dysregulation in myeloid malignancies - The promise of a therapeutic revolution. Blood Rev 2023; 62:101130. [PMID: 37679263 DOI: 10.1016/j.blre.2023.101130] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
In recent years, the therapeutic landscape of myeloid malignancies has been completely revolutionized by the introduction of several new drugs, targeting molecular alterations or pathways crucial for leukemia cells survival. Particularly, many agents targeting apoptosis have been investigated in both pre-clinical and clinical studies. For instance, venetoclax, a pro-apoptotic agent active on BCL-2 signaling, has been successfully used in the treatment of acute myeloid leukemia (AML). The impressive results achieved in this context have made the apoptotic pathway an attractive target also in other myeloid neoplasms, translating the experience of AML. Therefore, several drugs are now under investigation either as single or in combination strategies, due to their synergistic efficacy and capacity to overcome resistance. In this paper, we will review the mechanisms of apoptosis and the specific drugs currently used and under investigation for the treatment of myeloid neoplasia, identifying critical research necessities for the upcoming years.
Collapse
Affiliation(s)
- Enrico Santinelli
- Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, 00133 Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Maria Rosaria Pascale
- Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Zhuoer Xie
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Talha Badar
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Maximilian F Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Jan P Bewersdorf
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Carmelo Gurnari
- Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, 00133 Rome, Italy; Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT, USA.
| |
Collapse
|
11
|
Rausch J, Ullrich E, Kühn MW. Epigenetic targeting to enhance acute myeloid leukemia-directed immunotherapy. Front Immunol 2023; 14:1269012. [PMID: 37809078 PMCID: PMC10556528 DOI: 10.3389/fimmu.2023.1269012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
AML is a malignant disease of hematopoietic progenitor cells with unsatisfactory treatment outcome, especially in patients that are ineligible for intensive chemotherapy. Immunotherapy, comprising checkpoint inhibition, T-cell engaging antibody constructs, and cellular therapies, has dramatically improved the outcome of patients with solid tumors and lymphatic neoplasms. In AML, these approaches have been far less successful. Discussed reasons are the relatively low mutational burden of AML blasts and the difficulty in defining AML-specific antigens not expressed on hematopoietic progenitor cells. On the other hand, epigenetic dysregulation is an essential driver of leukemogenesis, and non-selective hypomethylating agents (HMAs) are the current backbone of non-intensive treatment. The first clinical trials that evaluated whether HMAs may improve immune checkpoint inhibitors' efficacy showed modest efficacy except for the anti-CD47 antibody that was substantially more efficient against AML when combined with azacitidine. Combining bispecific antibodies or cellular treatments with HMAs is subject to ongoing clinical investigation, and efficacy data are awaited shortly. More selective second-generation inhibitors targeting specific chromatin regulators have demonstrated promising preclinical activity against AML and are currently evaluated in clinical trials. These drugs that commonly cause leukemia cell differentiation potentially sensitize AML to immune-based treatments by co-regulating immune checkpoints, providing a pro-inflammatory environment, and inducing (neo)-antigen expression. Combining selective targeted epigenetic drugs with (cellular) immunotherapy is, therefore, a promising approach to avoid unintended effects and augment efficacy. Future studies will provide detailed information on how these compounds influence specific immune functions that may enable translation into clinical assessment.
Collapse
Affiliation(s)
- Johanna Rausch
- Department of Hematology and Medical Oncology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
- German Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Evelyn Ullrich
- German Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Children’s Hospital, Experimental Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
- University Cancer Center (UCT), Frankfurt, Germany
| | - Michael W.M. Kühn
- Department of Hematology and Medical Oncology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
- German Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
12
|
Shah NA. Donor lymphocyte infusion in Acute Myeloid Leukemia. Best Pract Res Clin Haematol 2023; 36:101484. [PMID: 37612002 DOI: 10.1016/j.beha.2023.101484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 08/25/2023]
Abstract
Donor lymphocyte infusion (DLI) is an important treatment modality in the management of relapsed hematological malignancies after allogeneic hematopoietic cell transplantation (allo-HCT). Donor T lymphocytes can be used in a therapeutic, pre-emptive or prophylactic manner in an attempt to stimulate a graft versus leukemia (GVL) effect and eradicate residual disease or even prevent relapse in a high-risk setting. DLIs are not without complications, however, graft versus host disease (GVHD) in particular. Data to date is limited to retrospective and small prospective studies. This review summarizes the available literature on approaches to managing relapse, dosing and timing of DLI, complications and potential future therapies.
Collapse
|
13
|
Wu YH, Xiao HY, Quan RC, Tang XD, Liu WY, Lyu Y, Chen Z, Liu C, Hu XM. Comparing Arsenic-Containing Qinghuang Powder and Low-Intensity Chemotherapy in Elderly Patients with Acute Myeloid Leukemia. Chin J Integr Med 2023; 29:832-837. [PMID: 37222831 DOI: 10.1007/s11655-023-3603-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 05/25/2023]
Abstract
OBJECTIVE To compare the clinical effect of arsenic-containing Qinghuang Powder (QHP) and low-intensity chemotherapy (LIC) in treatment of elderly acute myeloid leukemia (eAML) patients. METHODS Clinical data of 80 eAML patients treated at Xiyuan Hospital of China Academy of Chinese Medical Sciences from January 2015 to December 2020 were retrospectively analyzed. The treatment scheme was designed by real world study according to patients' preference, and patients were divided into a QHP group (35 cases) and a LIC group (45 cases). The median overall survival (mOS), 1-, 2-, and 3-year OS rates, and incidence of adverse events were compared between the two groups. RESULTS The mOS of 80 patients was 11 months, and the 1-, 2-, and 3-year OS rates were 45.51%, 17.96%, and 11.05%, respectively. The QHP and LIC groups demonstrated no significant difference in mOS (12 months vs. 10 months), 1- (48.57% vs. 39.65%), 2- (11.43% vs. 20.04%), and 3-year OS rates (5.71% vs. 13.27%, all P>0.05). Moreover, the related factors of mOS demonstrated no significant difference in patients with age>75 years (11 months vs. 8 months), secondary AML (11 months vs. 8 months), poor genetic prognosis (9 months vs. 7 months), Eastern Cooperative Oncology Group performance status score ⩾ 3 (10 months vs. 7 months) and hematopoietic stem cell transplant comorbidity index ⩾ 4 (11 months vs. 7 months) between the QHP and LIC groups (all P>0.05). However, the incidence of myelosuppression was significantly lower in the QHP group than that in the LIC group (28.57% vs. 73.33%, P<0.01). CONCLUSIONS QHP and LIC had similar survival rates in eAML patients, but QHP had a lower myelosuppression incidence. Hence, QHP can be an alternative for eAML patients who do not tolerate LIC.
Collapse
Affiliation(s)
- Yu-He Wu
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hai-Yan Xiao
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Ri-Cheng Quan
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Xu-Dong Tang
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Wei-Yi Liu
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yan Lyu
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Zhuo Chen
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Chi Liu
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Xiao-Mei Hu
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
14
|
Spillane DR, Assouline S. Immunotherapy for myelodysplastic syndrome and acute myeloid leukemia: where do we stand? Expert Rev Hematol 2023; 16:819-834. [PMID: 37819154 DOI: 10.1080/17474086.2023.2268273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023]
Abstract
INTRODUCTION Myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) are generally characterized by a poor prognosis with currently available therapies. Immunotherapies have already seen success in treating a variety of malignant disorders, and their role in managing myeloid cancers is evolving rapidly. AREAS COVERED This is a review of the immunotherapies tested in MDS and AML, including immune checkpoint inhibitors, bispecific antibodies, and cell therapies such as chimeric antigen receptor (CAR) T cell therapy, T cell receptor (TCR) engineered T cells, and natural killer (NK) cells, with a focus on clinical trials conducted to date and future directions. EXPERT OPINION Initial clinical trials exploring checkpoint inhibitors in MDS and AML have demonstrated high toxicity and disappointing efficacy. However, ongoing trials adding novel checkpoint inhibitors to standard therapy are more promising. Technological advances are improving the outlook for bispecific antibodies, and cellular therapies like adoptive NK cell infusion have favorable efficacy and tolerability in early trials. As our understanding of the immune microenvironment in MDS and AML improves, the role for immunotherapy in the treatment of these diseases will become clearer.
Collapse
Affiliation(s)
- David R Spillane
- Jewish General Hospital, McGill University, Montreal, Québec, Canada
| | - Sarit Assouline
- Jewish General Hospital, McGill University, Montreal, Québec, Canada
| |
Collapse
|
15
|
Lee SE, Wang F, Grefe M, Trujillo-Ocampo A, Ruiz-Vasquez W, Takahashi K, Abbas HA, Borges P, Antunes DA, Al-Atrash G, Daver N, Molldrem JJ, Futreal A, Garcia-Manero G, Im JS. Immunologic Predictors for Clinical Responses during Immune Checkpoint Blockade in Patients with Myelodysplastic Syndromes. Clin Cancer Res 2023; 29:1938-1951. [PMID: 36988276 PMCID: PMC10192218 DOI: 10.1158/1078-0432.ccr-22-2601] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/10/2022] [Accepted: 02/27/2023] [Indexed: 03/30/2023]
Abstract
PURPOSE The aim of this study is to determine immune-related biomarkers to predict effective antitumor immunity in myelodysplastic syndrome (MDS) during immunotherapy (IMT, αCTLA-4, and/or αPD-1 antibodies) and/or hypomethylating agent (HMA). EXPERIMENTAL DESIGN Peripheral blood samples from 55 patients with MDS were assessed for immune subsets, T-cell receptor (TCR) repertoire, mutations in 295 acute myeloid leukemia (AML)/MDS-related genes, and immune-related gene expression profiling before and after the first treatment. RESULTS Clinical responders treated with IMT ± HMA but not HMA alone showed a significant expansion of central memory (CM) CD8+ T cells, diverse TCRβ repertoire pretreatment with increased clonality and emergence of novel clones after the initial treatment, and a higher mutation burden pretreatment with subsequent reduction posttreatment. Autophagy, TGFβ, and Th1 differentiation pathways were the most downregulated in nonresponders after treatment, while upregulated in responders. Finally, CTLA-4 but not PD-1 blockade attributed to favorable changes in immune landscape. CONCLUSIONS Analysis of tumor-immune landscape in MDS during immunotherapy provides clinical response biomarkers.
Collapse
Affiliation(s)
- Sung-Eun Lee
- Department of Stem Cell Transplantation and Cellular Therapy, Division of Cancer Medicine, The University of Texas M.D. Anderson Cancer Center
- Department of Hematology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea
| | - Feng Wang
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas M.D. Anderson Cancer Center
| | - Maison Grefe
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, The University of Texas M.D, Anderson Cancer Center
| | - Abel Trujillo-Ocampo
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, The University of Texas M.D, Anderson Cancer Center
| | - Wilfredo Ruiz-Vasquez
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, The University of Texas M.D, Anderson Cancer Center
| | - Koichi Takahashi
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas M.D. Anderson Cancer Center
- Department of Leukemia, Division of Cancer Medicine, The University of Texas M.D. Anderson Cancer Center
| | - Hussein A. Abbas
- Department of Leukemia, Division of Cancer Medicine, The University of Texas M.D. Anderson Cancer Center
| | - Pamella Borges
- Department of Leukemia, Division of Cancer Medicine, The University of Texas M.D. Anderson Cancer Center
- Department of Biology and Biochemistry, The University of Houston
| | | | - Gheath Al-Atrash
- Department of Stem Cell Transplantation and Cellular Therapy, Division of Cancer Medicine, The University of Texas M.D. Anderson Cancer Center
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, The University of Texas M.D, Anderson Cancer Center
- Department of Leukemia, Division of Cancer Medicine, The University of Texas M.D. Anderson Cancer Center
| | - Navel Daver
- Department of Leukemia, Division of Cancer Medicine, The University of Texas M.D. Anderson Cancer Center
| | - Jeffrey J. Molldrem
- Department of Stem Cell Transplantation and Cellular Therapy, Division of Cancer Medicine, The University of Texas M.D. Anderson Cancer Center
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, The University of Texas M.D, Anderson Cancer Center
- Department of Leukemia, Division of Cancer Medicine, The University of Texas M.D. Anderson Cancer Center
| | - Andrew Futreal
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas M.D. Anderson Cancer Center
| | - Guillermo Garcia-Manero
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, The University of Texas M.D, Anderson Cancer Center
| | - Jin S. Im
- Department of Stem Cell Transplantation and Cellular Therapy, Division of Cancer Medicine, The University of Texas M.D. Anderson Cancer Center
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, The University of Texas M.D, Anderson Cancer Center
- Department of Leukemia, Division of Cancer Medicine, The University of Texas M.D. Anderson Cancer Center
| |
Collapse
|
16
|
Pophali P, Desai SR, Shastri A. Therapeutic Targets in Myelodysplastic Neoplasms: Beyond Hypomethylating Agents. Curr Hematol Malig Rep 2023; 18:56-67. [PMID: 37052811 DOI: 10.1007/s11899-023-00693-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 04/14/2023]
Abstract
PURPOSE OF REVIEW To discuss novel targeted therapies under investigation for treatment of myelodysplastic neoplasms (MDS). RECENT FINDINGS Over the last few years, results of phase 3 trials assessing novel therapies for high-risk MDS have been largely disappointing. Pevonedistat (NEDD-8 inhibitor) and APR-246 (TP53 reactivator) both did not meet trial endpoints. However, early phase trials of BCL-2, TIM3, and CD47 inhibitors have shown exciting data and are currently under phase 3 investigation. Moreover, combination of hypomethylating agents (HMA) with novel therapies targeting the mutational (IDH, FLT3, spliceosome complex) or immune (PD-1/PDL-1, TIM-3, IRAK-4) pathways are being investigated in early phase clinical trials and have shown adequate safety and promising efficacy. Myelodysplastic neoplasms (MDS) are a group of hematopoietic neoplasms defined by cytopenias and morphological dysplasia. They are characterized by clonal proliferation of aberrant hematopoietic stem cells caused by recurrent genetic abnormalities. This leads to ineffective erythropoiesis, peripheral blood cytopenias, abnormal cell maturation, and a high risk of transformation into acute myeloid leukemia (AML). Allogeneic hematopoietic stem cell transplantation is the only curative therapy; however, it is not a suitable option for majority patients due to their age, comorbidities, and the high rate of treatment-related complications. HMAs remain the only FDA-approved treatment option for high-risk MDS. Due to intolerance, primary, and secondary resistance to HMA, there is a large unmet need to develop new safe and effective therapies for patients with MDS. In this review, we focus on the current management strategies and novel therapies in development for treatment of high-risk MDS.
Collapse
Affiliation(s)
- Prateek Pophali
- Division of Hematology and Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sudhamsh Reddy Desai
- Department of Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aditi Shastri
- Department of Oncology, Department of Developmental & Molecular Biology, Montefiore Medical Center & Albert Einstein College of Medicine, Chanin 302A, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|
17
|
Zeidan AM, Giagounidis A, Sekeres MA, Xiao Z, Sanz GF, Hoef MV, Ma F, Hertle S, Santini V. STIMULUS-MDS2 design and rationale: a phase III trial with the anti-TIM-3 sabatolimab (MBG453) + azacitidine in higher risk MDS and CMML-2. Future Oncol 2023; 19:631-642. [PMID: 37083373 DOI: 10.2217/fon-2022-1237] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Patients with higher-risk myelodysplastic syndromes (MDS) and chronic myelomonocytic leukemia (CMML) unfit for hematopoietic stem cell transplantation have poor outcomes. Novel therapies that provide durable benefit with favorable tolerability and clinically meaningful improvement in survival are needed. T-cell immunoglobulin domain and mucin domain-3 (TIM-3) is an immuno-myeloid regulator expressed on immune and leukemic stem cells in myeloid malignancies. Sabatolimab is a novel immunotherapy targeting TIM-3 with a potential dual mechanism of reactivating the immune system and directly targeting TIM-3+ leukemic blasts suppressing the growth of cancer cells. Here, we describe the aims and design of the phase III STIMULUS-MDS2 trial, which aims to demonstrate the potential for sabatolimab plus azacitidine to improve survival for patients with higher-risk MDS and CMML-2 (NCT04266301). Clinical Trial Registration: NCT04266301 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Amer M Zeidan
- Yale University & Yale Cancer Center, New Haven, CT 06510, USA
| | | | - Mikkael A Sekeres
- Division of Hematology, Sylvester Cancer Center, University of Miami, Miami, FL 33065, USA
| | - Zhijian Xiao
- Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin, 300020, China
| | - Guillermo F Sanz
- Hospital Universitario y Politécnico La Fe, Valencia, 46026, Spain
- Health Research Institute La Fe (IIS La Fe), Valencia, 46026, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | | | - Fei Ma
- Novartis Pharmaceuticals Corporation, East Hanover, NJ 07936, USA
| | | | - Valeria Santini
- MDS Unit, Hematology, University of Florence, Florence, 50121, Italy
| |
Collapse
|
18
|
High Co-Expression of PDCD1/ TIGIT/ CD47/ KIR3DL2 in Bone Marrow Is Associated with Poor Prognosis for Patients with Myelodysplastic Syndrome. JOURNAL OF ONCOLOGY 2023; 2023:1972127. [PMID: 36816361 PMCID: PMC9931467 DOI: 10.1155/2023/1972127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/18/2022] [Accepted: 11/25/2022] [Indexed: 02/10/2023]
Abstract
Cellular immune disorder is a common characteristic of myelodysplastic syndrome (MDS). Abnormal natural killer (NK) cell function has been reported in MDS patients, and this is closely related to disease progression and poor prognosis. However, little is known about the association between the abnormal immune checkpoint (IC) that results in abnormal immune NK cell function and the prognosis of MDS. In this study, RNA-sequencing data from 80 patients in the GSE114922 dataset and bone marrow (BM) samples from 46 patients with MDS in our clinical center were used for overall survival (OS) analysis and validation. We found that the NK cell-related IC genes PDCD1, TIGIT, CD47, and KIR3DL2 had higher expression and correlated with poor OS for MDS patients. High expression of PDCD1 or TIGIT was significantly associated with poor OS for MDS patients younger than 60 years of age. Moreover, co-expression of PDCD1 and TIGIT had the greatest contribution to OS prediction. Interestingly, PDCD1, TIGIT, CD47, and KIR3DL2 and risk stratification based on the Revised International Prognostic Scoring System were used to construct a nomogram model, which could visually predict the 1-, 2-, and 3-year survival rates of MDS patients. In summary, high expression of IC receptors in the BM of MDS patients was associated with poor OS. The co-expression patterns of PDCD1, TIGIT, CD47, and KIR3DL2 might provide novel insights into designing combined targeted therapies for MDS.
Collapse
|
19
|
Yu S, Ren X, Meng F, Guo X, Tao J, Zhang W, Liu Z, Fu R, Li L. TIM3/CEACAM1 pathway involves in myeloid-derived suppressor cells induced CD8 + T cells exhaustion and bone marrow inflammatory microenvironment in myelodysplastic syndrome. Immunology 2023; 168:273-289. [PMID: 35470423 DOI: 10.1111/imm.13488] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/24/2022] [Indexed: 01/21/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSC) induced cellular immune deficiency and bone marrow inflammatory microenvironment play an important role in the pathogenesis and progression of myelodysplastic syndrome (MDS), but the underlying mechanism remains unclear. Here, we revealed that immune checkpoint protein TIM3 and CEACAM1 were highly demonstrated on MDSC and CD8+ T cells in MDS patients. CD8+ T cells were reduced in number and function and presented a exhaustion state. The levels of pro-inflammatory cytokines (IL-1β, IL-18) and CEACAM1 were raised in bone marrow supernatants and MDSC culture supernatants. Blocking or neutralizing TIM3/CEACAM1 and IL-1β/IL-18 partially reversed exhaustion of CD8+ T cells. Moreover, TIM3 correlated with NF-κB /NLRP3 inflammatory pathway. The levels of NF-κB/NLRP3/Caspase-1/IL-1β and IL-18 were all increased in MDSC of MDS. Co-culturing MDSC from MDS patients with rhCEACAM1 enhanced NF-κB/NLRP3/Caspase-1/IL-1β and IL-18 levels, whereas blocking TIM3 could partially reverse the above manifestations. These results indicated that TIM3/CEACAM1 pathway involved in CD8+ T cells exhaustion and might activate the NF-κB/NLRP3/Caspase-1 pathway in MDSC, increasing pro-inflammatory cytokines secretion in MDS bone marrow microenvironment. This study provided a basis for applying immune checkpoint inhibitors that could simultaneously modulate pro-inflammatory cytokine secretion and enhance anti-tumour immune function in the treatment of MDS.
Collapse
Affiliation(s)
- Shunjie Yu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China. Address:Heping District 154 Anshan Road, Tianjin, China
| | - Xiaotong Ren
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China. Address:Heping District 154 Anshan Road, Tianjin, China
| | - Fanqiao Meng
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China. Address:Heping District 154 Anshan Road, Tianjin, China
| | - Xinyu Guo
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China. Address:Heping District 154 Anshan Road, Tianjin, China
| | - Jinglian Tao
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China. Address:Heping District 154 Anshan Road, Tianjin, China
| | - Wei Zhang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China. Address:Heping District 154 Anshan Road, Tianjin, China
| | - Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China. Address:Heping District 154 Anshan Road, Tianjin, China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China. Address:Heping District 154 Anshan Road, Tianjin, China
| | - Lijuan Li
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China. Address:Heping District 154 Anshan Road, Tianjin, China
| |
Collapse
|
20
|
Assouline S, Michaelis LC, Othus M, Hay AE, Walter RB, Jacoby MA, Schroeder MA, Uy GL, Law LY, Cheema F, Sweet KL, Asch AS, Liu J(J, Moseley AB, Maher T, Kingsbury LL, Fang M, Radich J, Little RF, Erba HP. A randomized phase II/III study of 'novel therapeutics' versus azacitidine in newly diagnosed patients with acute myeloid leukemia (AML), high-risk myelodysplastic syndrome (MDS), or chronic myelomonocytic leukemia (CMML), age 60 or older: a report of the comparison of azacitidine and nivolumab to azacitidine: SWOG S1612. Leuk Lymphoma 2023; 64:473-477. [PMID: 36517990 PMCID: PMC10652187 DOI: 10.1080/10428194.2022.2148212] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 12/23/2022]
MESH Headings
- Humans
- Middle Aged
- Leukemia, Myelomonocytic, Chronic/diagnosis
- Leukemia, Myelomonocytic, Chronic/drug therapy
- Azacitidine/adverse effects
- Nivolumab/therapeutic use
- Myelodysplastic Syndromes/diagnosis
- Myelodysplastic Syndromes/drug therapy
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/chemically induced
Collapse
Affiliation(s)
- Sarit Assouline
- McGill University – Jewish General Hospital, Montreal, QC, Canada
| | | | - Megan Othus
- SWOG Statistics and Data Management Center, Seattle, WA
| | | | | | | | | | | | | | | | | | | | | | | | - Tracy Maher
- SWOG Data Operations Center/ Cancer Research And Biostatistics, Seattle, WA
| | - Laura L. Kingsbury
- SWOG Data Operations Center/ Cancer Research And Biostatistics, Seattle, WA
| | - Min Fang
- Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | - Richard F. Little
- National Cancer Institute, Cancer Therapy and Evaluation Program (CTEP), Bethesda, MD
| | - Harry P. Erba
- Duke University Medical Center, Duke Cancer Institute, Durham, NC
| |
Collapse
|
21
|
Aru B, Pehlivanoğlu C, Dal Z, Dereli-Çalışkan NN, Gürlü E, Yanıkkaya-Demirel G. A potential area of use for immune checkpoint inhibitors: Targeting bone marrow microenvironment in acute myeloid leukemia. Front Immunol 2023; 14:1108200. [PMID: 36742324 PMCID: PMC9895857 DOI: 10.3389/fimmu.2023.1108200] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/03/2023] [Indexed: 01/22/2023] Open
Abstract
Acute myeloid leukemia (AML) arises from the cells of myeloid lineage and is the most frequent leukemia type in adulthood accounting for about 80% of all cases. The most common treatment strategy for the treatment of AML includes chemotherapy, in rare cases radiotherapy and stem cell and bone marrow transplantation are considered. Immune checkpoint proteins involve in the negative regulation of immune cells, leading to an escape from immune surveillance, in turn, causing failure of tumor cell elimination. Immune checkpoint inhibitors (ICIs) target the negative regulation of the immune cells and support the immune system in terms of anti-tumor immunity. Bone marrow microenvironment (BMM) bears various blood cell lineages and the interactions between these lineages and the noncellular components of BMM are considered important for AML development and progression. Administration of ICIs for the AML treatment may be a promising option by regulating BMM. In this review, we summarize the current treatment options in AML treatment and discuss the possible application of ICIs in AML treatment from the perspective of the regulation of BMM.
Collapse
Affiliation(s)
- Başak Aru
- Immunology Department, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Cemil Pehlivanoğlu
- Immunology Department, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Zeynep Dal
- School of Medicine, Yeditepe University, Istanbul, Türkiye
| | | | - Ege Gürlü
- School of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Gülderen Yanıkkaya-Demirel
- Immunology Department, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye,*Correspondence: Gülderen Yanıkkaya-Demirel,
| |
Collapse
|
22
|
Brunner AM, Leitch HA, van de Loosdrecht AA, Bonadies N. Management of patients with lower-risk myelodysplastic syndromes. Blood Cancer J 2022; 12:166. [PMID: 36517487 PMCID: PMC9751093 DOI: 10.1038/s41408-022-00765-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of hematopoietic stem cell disorders characterized by ineffective hematopoiesis with abnormal blood cell development (dysplasia) leading to cytopenias and an increased risk for progression to acute myeloid leukemia (AML). Patients with MDS can generally be classified as lower- (LR-MDS) or higher-risk (HR-MDS). As treatment goals for patients with LR-MDS and those with HR-MDS differ significantly, appropriate diagnosis, classification, and follow-up are critical for correct disease management. In this review, we focus on the diagnosis, prognosis, and treatment options, as well as the prediction of the disease course and monitoring of treatment response in patients with LR-MDS. We discuss how next-generation sequencing, increasing knowledge on mechanisms of MDS pathogenesis, and novel therapies may change the current treatment landscape in LR-MDS and why structured assessments of responses, toxicities, and patient-reported outcomes should be incorporated into routine clinical practice.
Collapse
Affiliation(s)
| | - Heather A Leitch
- Hematology, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Arjan A van de Loosdrecht
- Department of Hematology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University Amsterdam, Amsterdam, Netherlands
| | - Nicolas Bonadies
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
23
|
Abstract
Myelodysplastic syndromes (MDS) are a family of myeloid cancers with diverse genotypes and phenotypes characterized by ineffective haematopoiesis and risk of transformation to acute myeloid leukaemia (AML). Some epidemiological data indicate that MDS incidence is increasing in resource-rich regions but this is controversial. Most MDS cases are caused by randomly acquired somatic mutations. In some patients, the phenotype and/or genotype of MDS overlaps with that of bone marrow failure disorders such as aplastic anaemia, paroxysmal nocturnal haemoglobinuria (PNH) and AML. Prognostic systems, such as the revised International Prognostic Scoring System (IPSS-R), provide reasonably accurate predictions of survival at the population level. Therapeutic goals in individuals with lower-risk MDS include improving quality of life and minimizing erythrocyte and platelet transfusions. Therapeutic goals in people with higher-risk MDS include decreasing the risk of AML transformation and prolonging survival. Haematopoietic cell transplantation (HCT) can cure MDS, yet fewer than 10% of affected individuals receive this treatment. However, how, when and in which patients with HCT for MDS should be performed remains controversial, with some studies suggesting HCT is preferred in some individuals with higher-risk MDS. Advances in the understanding of MDS biology offer the prospect of new therapeutic approaches.
Collapse
|
24
|
Morozova EV, Tsvetkov NY, Barabanshchikova MV, Yurovskaya KS, Moiseev IS. New perspectives in the treatment of patients with intermediate-2 and high-risk myelodysplastic syndrome. ONCOHEMATOLOGY 2022. [DOI: 10.17650/1818-8346-2022-17-4-106-117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- E. V. Morozova
- Raisa Gorbacheva Memorial Research Institute for Pediatric Oncology, Hematology and Transplantation, I.P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia
| | - N. Yu. Tsvetkov
- Raisa Gorbacheva Memorial Research Institute for Pediatric Oncology, Hematology and Transplantation, I.P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia
| | - M. V. Barabanshchikova
- Raisa Gorbacheva Memorial Research Institute for Pediatric Oncology, Hematology and Transplantation, I.P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia
| | - K. S. Yurovskaya
- Raisa Gorbacheva Memorial Research Institute for Pediatric Oncology, Hematology and Transplantation, I.P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia
| | - I. S. Moiseev
- Raisa Gorbacheva Memorial Research Institute for Pediatric Oncology, Hematology and Transplantation, I.P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia
| |
Collapse
|
25
|
Wurster S, Watowich SS, Kontoyiannis DP. Checkpoint inhibitors as immunotherapy for fungal infections: Promises, challenges, and unanswered questions. Front Immunol 2022; 13:1018202. [PMID: 36389687 PMCID: PMC9640966 DOI: 10.3389/fimmu.2022.1018202] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/11/2022] [Indexed: 09/22/2023] Open
Abstract
Opportunistic fungal infections have high mortality in patients with severe immune dysfunction. Growing evidence suggests that the immune environment of invasive fungal infections and cancers share common features of immune cell exhaustion through activation of immune checkpoint pathways. This observation gave rise to several preclinical studies and clinical case reports describing blockade of the Programmed Cell Death Protein 1 and Cytotoxic T-Lymphocyte Antigen 4 immune checkpoint pathways as an adjunct immune enhancement strategy to treat opportunistic fungal infections. The first part of this review summarizes the emerging evidence for contributions of checkpoint pathways to the immunopathology of fungal sepsis, opportunistic mold infections, and dimorphic fungal infections. We then review the potential merits of immune checkpoint inhibitors (ICIs) as an antifungal immunotherapy, including the incomplete knowledge of the mechanisms involved in both immuno-protective effects and toxicities. In the second part of this review, we discuss the limitations of the current evidence and the many unknowns about ICIs as an antifungal immune enhancement strategy. Based on these gaps of knowledge and lessons learned from cancer immunology studies, we outline a research agenda to determine a "sweet spot" for ICIs in medical mycology. We specifically discuss the importance of more nuanced animal models, the need to study ICI-based combination therapy, potential ICI resistance, the role of the immune microenvironment, and the impact of ICIs given as part of oncological therapies on the natural immunity to various pathogenic fungi.
Collapse
Affiliation(s)
- Sebastian Wurster
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Stephanie S. Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Dimitrios P. Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
26
|
Zhao F, Lin Q, Xiang X, Xiang W. A damage-associated molecular patterns-related gene signature for the prediction of prognosis and immune microenvironment in children stage III acute lymphoblastic leukemia. Front Pediatr 2022; 10:999684. [PMID: 36340735 PMCID: PMC9631945 DOI: 10.3389/fped.2022.999684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background Immunogenic cell death (ICD)-mediated immune response provides a strong rationale to overcome immune evasion in acute lymphoblastic leukemia (ALL). ICD will produce damage-associated molecular patterns (DAMPs) in tumor microenvironment. However, there are few studies on the application of DAMPs-related molecular subtypes in clinically predicting stage III of ALL prognosis. The current study is to identify the DAMPs-associated genes and their molecular subtypes in the stage III of ALL and construct a reliable risk model for prognosis as well as exploring the potential immune-related mechanism. Materials and methods We used Target and EBI database for differentially expressed genes (DEGs) analysis of the stage III pediatric ALL samples. Three clusters were identified based on a consistent clustering analysis. By using Cox regression and LASSO analysis, we determined DEGs that attribute to survival benefit. In addition, the Gene Set Enrichment Analysis (GSEA) was performed to identify potential molecular pathways regulated by the DAMPs-related gene signatures. ESTIMATE was employed for evaluating the composition of immune cell populations. Results A sum of 146 DAMPs-associated DEGs in ALL were determined and seven transcripts among them were selected to establish a risk model. The DAMPs-associated gene signature significantly contributed to worse prognosis in the high-risk group. We also found that the high-risk group exhibited low immune cell infiltration and high expression of immune checkpoints. Conclusion In summary, our study showed that the DAMPs-related DEGs in the stage III of children ALL could be used to predict their prognosis. The risk model of DAMPs we established may be more sensitive to immunotherapy prediction.
Collapse
Affiliation(s)
- Feng Zhao
- Hengyang Medical College, University of South China, Hengyang, China
- Department of Pediatrics, Hengyang Maternal and Child Health Hospital, Hengyang, China
| | - Qiuyu Lin
- Department of Pediatrics, Hainan Women and Children’s Medical Center, Haikou, China
| | - Xiayu Xiang
- Peng Cheng Laboratory, Shenzhen, Guangdong, China
| | - Wei Xiang
- Department of Pediatrics, Hainan Women and Children’s Medical Center, Haikou, China
- Commission Key Laboratory of Tropical Disease Control, Haikou, China
| |
Collapse
|
27
|
Wang R, Xu P, Chang LL, Zhang SZ, Zhu HH. Targeted therapy in NPM1-mutated AML: Knowns and unknowns. Front Oncol 2022; 12:972606. [PMID: 36237321 PMCID: PMC9552319 DOI: 10.3389/fonc.2022.972606] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/13/2022] [Indexed: 12/02/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease characterized by malignant proliferation of myeloid hematopoietic stem/progenitor cells. NPM1 represents the most frequently mutated gene in AML and approximately 30% of AML cases carry NPM1 mutations. Mutated NPM1 result in the cytoplasmic localization of NPM1 (NPM1c). NPM1c interacts with other proteins to block myeloid differentiation, promote cell proliferation and impair DNA damage repair. NPM1 is a good prognostic marker, but some patients ultimately relapse or fail to respond to therapy. It is urgent for us to find optimal therapies for NPM1-mutated AML. Efficacy of multiple drugs is under investigation in NPM1-mutated AML, and several clinical trials have been registered. In this review, we summarize the present knowledge of therapy and focus on the possible therapeutic interventions for NPM1-mutated AML.
Collapse
Affiliation(s)
- Rong Wang
- Department of Hematology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | - Pan Xu
- Department of Physiology, Medical College of China Three Gorges University, Yichang, China
| | - Lin-Lin Chang
- Department of Physiology, Medical College of China Three Gorges University, Yichang, China
| | - Shi-Zhong Zhang
- Department of Physiology, Medical College of China Three Gorges University, Yichang, China
- *Correspondence: Hong-Hu Zhu, ; Shi-Zhong Zhang,
| | - Hong-Hu Zhu
- Department of Hematology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
- Department of Physiology, Medical College of China Three Gorges University, Yichang, China
- Zhejiang University Cancer Center, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Hong-Hu Zhu, ; Shi-Zhong Zhang,
| |
Collapse
|
28
|
Peng X, Zhu X, Di T, Tang F, Guo X, Liu Y, Bai J, Li Y, Li L, Zhang L. The yin-yang of immunity: Immune dysregulation in myelodysplastic syndrome with different risk stratification. Front Immunol 2022; 13:994053. [PMID: 36211357 PMCID: PMC9537682 DOI: 10.3389/fimmu.2022.994053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is a heterogeneous group of myeloid clonal diseases with diverse clinical courses, and immune dysregulation plays an important role in the pathogenesis of MDS. However, immune dysregulation is complex and heterogeneous in the development of MDS. Lower-risk MDS (LR-MDS) is mainly characterized by immune hyperfunction and increased apoptosis, and the immunosuppressive therapy shows a good response. Instead, higher-risk MDS (HR-MDS) is characterized by immune suppression and immune escape, and the immune activation therapy may improve the survival of HR-MDS. Furthermore, the immune dysregulation of some MDS changes dynamically which is characterized by the coexistence and mutual transformation of immune hyperfunction and immune suppression. Taken together, the authors think that the immune dysregulation in MDS with different risk stratification can be summarized by an advanced philosophical thought “Yin-Yang theory” in ancient China, meaning that the opposing forces may actually be interdependent and interconvertible. Clarifying the mechanism of immune dysregulation in MDS with different risk stratification can provide the new basis for diagnosis and clinical treatment. This review focuses on the manifestations and roles of immune dysregulation in the different risk MDS, and summarizes the latest progress of immunotherapy in MDS.
Collapse
Affiliation(s)
- Xiaohuan Peng
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Xiaofeng Zhu
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Tianning Di
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Futian Tang
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Xiaojia Guo
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Yang Liu
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Jun Bai
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Yanhong Li
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Lijuan Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- *Correspondence: Lijuan Li, ; Liansheng Zhang,
| | - Liansheng Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- *Correspondence: Lijuan Li, ; Liansheng Zhang,
| |
Collapse
|
29
|
Ding H, Feng Y, Xu J, Lin Z, Huang J, Wang F, Luo H, Gao Y, Zhai X, Wang X, Zhang L, Niu T, Zheng Y. A novel immune prognostic model of non-M3 acute myeloid leukemia. Am J Transl Res 2022; 14:5308-5325. [PMID: 36105048 PMCID: PMC9452334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Acute myeloid leukemia (AML) is a common hematological malignancy in adults. AML patients exhibit clinical heterogeneity with complications of molecular basis. The leukemogenesis of AML involves immune escape, and the immunosuppression status of the patient might have great impact on AML treatment outcome. In this study, we established an immune prognostic model of AML using bioinformatics tools. With the data in the TCGA and GTEx datasets, we analyzed differentially expressed genes (DEGs) in non-M3 AML and identified 420 immune-related DEGs. Among which, 49 genes' expression was found to be related to AML prognosis based on univariate Cox regression analysis. Next, we established a prognostic model with these 49 genes in AML by LASSO regression and multivariate Cox regression analyses. In our model, the expressions of 5 immune genes, MIF, DEF6, OSM, MPO, AVPR1B, were used to stratify non-M3 AML patients' treatment outcome. A patient's risk score could be calculated as Risk Score=0.40081 × MIF (MIF expression) - 0.15201 × MPO + 0.78073 × DEF6 - 0.45192 × AVPR1B + 0.25912 × OSM. The area under the curve of the risk score signature was 0.8, 0.8, and 0.96 at 1 year, 3 years, and 5 years, respectively. The prognostic model was then validated internally by TCGA data and externally by GEO data. At last, the result of single-sample gene-set enrichment analysis demonstrated that compared with healthy samples, the abundance of non-turmeric immune cells was significantly repressed in AML. To summarize, we presented an immune-related 5-gene signature prognostic model in AML.
Collapse
Affiliation(s)
- Hong Ding
- Department of Hematology, West China Hospital, Sichuan UniversityChengdu 610041, Sichuan, China
| | - Yu Feng
- Department of Hematology, West China Hospital, Sichuan UniversityChengdu 610041, Sichuan, China
| | - Juan Xu
- Department of Hematology, West China Hospital, Sichuan UniversityChengdu 610041, Sichuan, China
| | - Zhimei Lin
- Department of Hematology, West China Hospital, Sichuan UniversityChengdu 610041, Sichuan, China
- Department of Hematology, The Affiliated Hospital of Chengdu UniversityChengdu 610081, Sichuan, China
| | - Jingcao Huang
- Department of Hematology, West China Hospital, Sichuan UniversityChengdu 610041, Sichuan, China
| | - Fangfang Wang
- Department of Hematology, West China Hospital, Sichuan UniversityChengdu 610041, Sichuan, China
| | - Hongmei Luo
- Department of Hematology, West China Hospital, Sichuan UniversityChengdu 610041, Sichuan, China
| | - Yuhan Gao
- Department of Hematology, West China Hospital, Sichuan UniversityChengdu 610041, Sichuan, China
| | - Xinyu Zhai
- Department of Hematology, West China Hospital, Sichuan UniversityChengdu 610041, Sichuan, China
| | - Xin Wang
- Department of Hematology, West China Hospital, Sichuan UniversityChengdu 610041, Sichuan, China
| | - Li Zhang
- Department of Hematology, West China Hospital, Sichuan UniversityChengdu 610041, Sichuan, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan UniversityChengdu 610041, Sichuan, China
| | - Yuhuan Zheng
- Department of Hematology, West China Hospital, Sichuan UniversityChengdu 610041, Sichuan, China
| |
Collapse
|
30
|
Zheng D, Hou X, Yu J, He X. Combinatorial Strategies With PD-1/PD-L1 Immune Checkpoint Blockade for Breast Cancer Therapy: Mechanisms and Clinical Outcomes. Front Pharmacol 2022; 13:928369. [PMID: 35935874 PMCID: PMC9355550 DOI: 10.3389/fphar.2022.928369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
As an emerging antitumor strategy, immune checkpoint therapy is one of the most promising anticancer therapies due to its long response duration. Antibodies against the programmed death-1 (PD-1) and programmed death ligand-1 (PD-L1) axis have been extensively applied to various cancers and have demonstrated unprecedented efficacy. Nevertheless, a poor response to monotherapy with anti-PD-1/PD-L1 has been observed in metastatic breast cancer. Combination therapy with other standard treatments is expected to overcome this limitation of PD-1/PD-L1 blockade in the treatment of breast cancer. In the present review, we first illustrate the biological functions of PD-1/PD-L1 and their role in maintaining immune homeostasis as well as protecting against immune-mediated tissue damage in a variety of microenvironments. Several combination therapy strategies for the combination of PD-1/PD-L1 blockade with standard treatment modalities have been proposed to solve the limitations of anti-PD-1/PD-L1 treatment, including chemotherapy, radiotherapy, targeted therapy, antiangiogenic therapy, and other immunotherapies. The corresponding clinical trials provide valuable estimates of treatment effects. Notably, several combination options significantly improve the response and efficacy of PD-1/PD-L1 blockade. This review provides a PD-1/PD-L1 clinical trial landscape survey in breast cancer to guide the development of more effective and less toxic combination therapies.
Collapse
Affiliation(s)
- Dan Zheng
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Xiaolin Hou
- Department of Neurosurgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Yu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Xiujing He
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
- *Correspondence: Xiujing He,
| |
Collapse
|
31
|
Angenendt L, Mikesch JH, Schliemann C. Emerging antibody-based therapies for the treatment of acute myeloid leukemia. Cancer Treat Rev 2022; 108:102409. [DOI: 10.1016/j.ctrv.2022.102409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/24/2022]
|
32
|
Sun Z, Wang X, Vedell P, Kocher J. DNA methylation signature predicts cancer response to demethylation agents from profiling diverse cancer cell lines. CANCER COMMUNICATIONS (LONDON, ENGLAND) 2022; 42:789-792. [PMID: 35716010 PMCID: PMC9395315 DOI: 10.1002/cac2.12326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 05/10/2022] [Accepted: 06/10/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Zhifu Sun
- Division of Computational BiologyDepartment of Quantitative Health SciencesMayo ClinicRochesterMN55905USA
| | - Xuewei Wang
- Division of Computational BiologyDepartment of Quantitative Health SciencesMayo ClinicRochesterMN55905USA
| | - Pete Vedell
- Division of Computational BiologyDepartment of Quantitative Health SciencesMayo ClinicRochesterMN55905USA
| | - Jean‐Pierre Kocher
- Division of Computational BiologyDepartment of Quantitative Health SciencesMayo ClinicRochesterMN55905USA
| |
Collapse
|
33
|
Cheng P, Chen X, Dalton R, Calescibetta A, So T, Gilvary D, Ward G, Smith V, Eckard S, Fox JA, Guenot J, Markowitz J, Cleveland JL, Wright KL, List AF, Wei S, Eksioglu EA. Immunodepletion of MDSC by AMV564, a novel bivalent, bispecific CD33/CD3 T cell engager, ex vivo in MDS and melanoma. Mol Ther 2022; 30:2315-2326. [PMID: 35150889 PMCID: PMC9171150 DOI: 10.1016/j.ymthe.2022.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/11/2021] [Accepted: 02/04/2022] [Indexed: 10/19/2022] Open
Abstract
We have reported previously that CD33hi myeloid-derived suppressor cells (MDSCs) play a direct role in the pathogenesis of myelodysplastic syndromes (MDSs) and that their sustained activation contributes to hematopoietic and immune impairment, including modulation of PD1/PDL1. MDSCs can also limit the clinical activity of immune checkpoint inhibition in solid malignancies. We hypothesized that depletion of MDSCs may ameliorate resistance to checkpoint inhibitors and, hence, targeted them with AMV564 combined with anti-PD1 in MDS bone marrow (BM) mononuclear cells (MNCs) enhanced activation of cytotoxic T cells. AMV564 was active in vivo in a leukemia xenograft model when co-administered with healthy donor peripheral blood MNCs (PBMCs). Our findings provide a strong rationale for clinical investigation of AMV564 as a single agent or in combination with an anti-PD1 antibody and in particular for treatment of cancers resistant to checkpoint inhibitors.
Collapse
Affiliation(s)
- Pingyan Cheng
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Xianghong Chen
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Robert Dalton
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Alexandra Calescibetta
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Tina So
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Danielle Gilvary
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Grace Ward
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Victoria Smith
- Amphivena Therapeutics, Inc., South San Francisco, CA 94080, USA
| | - Sterling Eckard
- Amphivena Therapeutics, Inc., South San Francisco, CA 94080, USA
| | - Judith A Fox
- Amphivena Therapeutics, Inc., South San Francisco, CA 94080, USA
| | - Jeanmarie Guenot
- Amphivena Therapeutics, Inc., South San Francisco, CA 94080, USA
| | - Joseph Markowitz
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - John L Cleveland
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Kenneth L Wright
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Alan F List
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Precision BioSciences, Durham, NC 27701, USA
| | - Sheng Wei
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Erika A Eksioglu
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
34
|
Spallone A, Alotaibi AS, Jiang Y, Daver N, Kontoyiannis DP. Infectious Complications Among Patients With AML Treated With Immune Checkpoint Inhibitors. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:305-310. [PMID: 34810120 DOI: 10.1016/j.clml.2021.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The incidence and spectrum of infections in acute myeloid leukemia (AML) patients treated with immune checkpoint inhibitors (CPIs) in combination with a hypomethylating agents (HMAs) is not known. Nivolumab is a PD-1 checkpoint inhibitor approved in many solid tumors and lymphoma. MATERIALS/METHODS We performed a retrospective cohort study of 75 adult patients at MD Anderson Cancer Center with relapsed/refractory AML treated with azacitidine and nivolumab or with nivolumab and ipilimumab from March 2016 through March 2020 and described the infectious complications that occurred during their treatment. RESULTS Sixty-four (85%) patients developed an infection during the study period, and bacterial infections were by far the most common type of infection. A comparison of risk factors and characteristic between the 75 patients on CPIs who developed infection and those who did not found that corticosteroid use (odds ratio [OR], 28; 95% confidence interval [CI], 1.6-490; P =.02) and lymphopenia (OR, 4; 95% CI, 1-15.5; P =.04) were significantly associated with infections. CONCLUSION Patient with relapsed/refractory AML treated with salvage CPI-based therapy were more likely to develop infections when treated with corticosteroids in the setting of an immune-related adverse event, compared to those who were not.
Collapse
Affiliation(s)
- Amy Spallone
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ahmad S Alotaibi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ying Jiang
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Dimitrios P Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
35
|
Prebet T, Goldberg AD, Jurcic JG, Khaled S, Dail M, Feng Y, Green C, Li C, Ma C, Medeiros BC, Yan M, Grunwald MR. A phase 1b study of atezolizumab in combination with guadecitabine for the treatment of acute myeloid leukemia. Leuk Lymphoma 2022; 63:2180-2188. [DOI: 10.1080/10428194.2022.2057484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Thomas Prebet
- Hematology, Yale University, New Haven, Connecticut, United States
| | - Aaron D. Goldberg
- Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | - Joseph G. Jurcic
- Columbia University Irving Medical Center, New York, New York, United States
| | | | - Monique Dail
- Genentech, Inc, South San Francisco, California, United States
| | - Yuning Feng
- Genentech, Inc, South San Francisco, California, United States
| | - Cherie Green
- Genentech, Inc, South San Francisco, California, United States
| | - Chunze Li
- Genentech, Inc, South San Francisco, California, United States
| | - Connie Ma
- Genentech, Inc, South San Francisco, California, United States
| | | | - Mark Yan
- Hoffmann-La Roche Ltd, Mississauga, Ontario, Canada
| | - Michael R. Grunwald
- Levine Cancer Institute, Atrium Health, Charlotte, North Carolina, United States
| |
Collapse
|
36
|
Short NJ, Borthakur G, Pemmaraju N, Dinardo CD, Kadia TM, Jabbour E, Konopleva M, Macaron W, Ning J, Ma J, Pierce S, Alvarado Y, Sasaki K, Takahashi K, Estrov Z, Masarova L, Issa GC, Montalban-Bravo G, Andreeff M, Burger JA, Miller D, Alexander L, Naing A, Garcia-Manero G, Ravandi F, Daver N. A multi-arm phase Ib/II study designed for rapid, parallel evaluation of novel immunotherapy combinations in relapsed/refractory acute myeloid leukemia. Leuk Lymphoma 2022; 63:2161-2170. [PMID: 35442137 DOI: 10.1080/10428194.2022.2062345] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We conducted a phase Ib/II multi-arm, parallel cohort study to simultaneously evaluate various immunotherapeutic agents and combinations in relapsed/refractory acute myeloid leukemia (AML). Overall, 50 patients were enrolled into one of 6 arms: (A) single agent PF-04518600 (OX40 agonist monoclonal antibody), (B) azacitidine + venetoclax + gemtuzumab ozogamicin (GO), (C) azacitidine + avelumab (anti-PD-L1 monoclonal antibody) + GO, (D) azacitidine + venetoclax + avelumab, (E) azacitidine + avelumab + PF-04518600, and (F) glasdegib + GO. Among all regimens evaluated, azacitidine + venetoclax + GO appeared most promising. In this arm, the CR/CRi rates among venetoclax-naïve and prior venetoclax-exposed patients were 50% and 22%, respectively, and the 1-year OS rate was 31%. This study shows the feasibility of a conducting a multi-arm trial to efficiently and simultaneously evaluate novel therapies in AML, a needed strategy in light of the plethora of emerging therapies. This trial was registered at www.clinicaltrials.gov as NCT03390296.
Collapse
Affiliation(s)
- Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Courtney D Dinardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tapan M Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Walid Macaron
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Ning
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Junsheng Ma
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sherry Pierce
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yesid Alvarado
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Koji Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zeev Estrov
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lucia Masarova
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ghayas C Issa
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Michael Andreeff
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jan A Burger
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Darla Miller
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lynette Alexander
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aung Naing
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
37
|
Andreozzi F, Massaro F, Wittnebel S, Spilleboudt C, Lewalle P, Salaroli A. New Perspectives in Treating Acute Myeloid Leukemia: Driving towards a Patient-Tailored Strategy. Int J Mol Sci 2022; 23:3887. [PMID: 35409248 PMCID: PMC8999556 DOI: 10.3390/ijms23073887] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 12/16/2022] Open
Abstract
For decades, intensive chemotherapy (IC) has been considered the best therapeutic option for treating acute myeloid leukemia (AML), with no curative option available for patients who are not eligible for IC or who have had failed IC. Over the last few years, several new drugs have enriched the therapeutic arsenal of AML treatment for both fit and unfit patients, raising new opportunities but also new challenges. These include the already approved venetoclax, the IDH1/2 inhibitors enasidenib and ivosidenib, gemtuzumab ozogamicin, the liposomal daunorubicin/cytarabine formulation CPX-351, and oral azacitidine. Venetoclax, an anti BCL2-inhibitor, in combination with hypomethylating agents (HMAs), has markedly improved the management of unfit and elderly patients from the perspective of improved quality of life and better survival. Venetoclax is currently under investigation in combination with other old and new drugs in early phase trials. Recently developed drugs with different mechanisms of action and new technologies that have already been investigated in other settings (BiTE and CAR-T cells) are currently being explored in AML, and ongoing trials should determine promising agents, more synergic combinations, and better treatment strategies. Access to new drugs and inclusion in clinical trials should be strongly encouraged to provide scientific evidence and to define the future standard of treatment in AML.
Collapse
Affiliation(s)
- Fabio Andreozzi
- Hematology Department, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Bruxelles, Belgium; (F.M.); (S.W.); (C.S.); (P.L.); (A.S.)
| | - Fulvio Massaro
- Hematology Department, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Bruxelles, Belgium; (F.M.); (S.W.); (C.S.); (P.L.); (A.S.)
- PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Sebastian Wittnebel
- Hematology Department, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Bruxelles, Belgium; (F.M.); (S.W.); (C.S.); (P.L.); (A.S.)
| | - Chloé Spilleboudt
- Hematology Department, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Bruxelles, Belgium; (F.M.); (S.W.); (C.S.); (P.L.); (A.S.)
| | - Philippe Lewalle
- Hematology Department, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Bruxelles, Belgium; (F.M.); (S.W.); (C.S.); (P.L.); (A.S.)
| | - Adriano Salaroli
- Hematology Department, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Bruxelles, Belgium; (F.M.); (S.W.); (C.S.); (P.L.); (A.S.)
| |
Collapse
|
38
|
Tang Y, Zhou Z, Yan H, You Y. Case Report: Preemptive Treatment With Low-Dose PD-1 Blockade and Azacitidine for Molecular Relapsed Acute Myeloid Leukemia With RUNX1-RUNX1T1 After Allogeneic Hematopoietic Stem Cell Transplantation. Front Immunol 2022; 13:810284. [PMID: 35185899 PMCID: PMC8847388 DOI: 10.3389/fimmu.2022.810284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/17/2022] [Indexed: 11/25/2022] Open
Abstract
Acute myeloid leukemia (AML) patients who develop hematological relapse (HR) after allogeneic hematopoietic stem cell transplantation (allo-HSCT) generally have dismal clinical outcomes. Measurable residual disease (MRD)-directed preemptive interventions are effective approaches to prevent disease progression and improve prognosis for molecular relapsed patients with warning signs of impending HR. In this situation, boosting the graft-vs-leukemia (GVL) effect with immune checkpoint inhibitors (ICIs) might be a promising prevention strategy, despite the potential for causing severe graft-vs-host disease (GVHD). In the present study, we reported for the first time an AML patient with RUNX1-RUNX1T1 who underwent preemptive treatment with the combined application of tislelizumab (an anti-PD-1 antibody) and azacitidine to avoid HR following allo-HSCT. On day +81, molecular relapse with MRD depicted by RUNX1-RUN1T1-positivity as well as mixed donor chimerism occurred in the patient. On day +95, with no signs of GVHD and an excellent eastern cooperative oncology group performance status (ECOG PS), the patient thus was administered with 100 mg of tislelizumab on day 1 and 100 mg of azacitidine on days 1-7. After the combination therapy, complete remission was successfully achieved with significant improvement in hematologic response, and the MRD marker RUNX1-RUNX1T1 turned negative, along with a complete donor chimerism in bone marrow. Meanwhile, the patient experienced moderate GVHD and immune-related adverse events (irAEs), successively involving the lung, liver, lower digestive tract and urinary system, which were well controlled by immunosuppressive therapies. As far as we know, this case is the first one to report the use of tislelizumab in combination with azacitidine to prevent post-transplant relapse in AML. In summary, the application of ICIs in MRD positive patients might be an attractive strategy for immune modulation in the future to reduce the incidence of HR in the post-transplant setting, but safer clinical application schedules need to be explored.
Collapse
Affiliation(s)
- Yutong Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenyang Zhou
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Han Yan
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong You
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
39
|
Increasing Role of Targeted Immunotherapies in the Treatment of AML. Int J Mol Sci 2022; 23:ijms23063304. [PMID: 35328721 PMCID: PMC8953556 DOI: 10.3390/ijms23063304] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/11/2022] Open
Abstract
Acute myeloid leukemia (AML) is the most common acute leukemia in adults. The standard of care in medically and physically fit patients is intensive induction therapy. The majority of these intensively treated patients achieve a complete remission. However, a high number of these patients will experience relapse. In patients older than 60 years, the results are even worse. Therefore, new therapeutic approaches are desperately needed. One promising approach in high-risk leukemia to prevent relapse is the induction of the immune system simultaneously or after reduction of the initial tumor burden. Different immunotherapeutic approaches such as allogenic stem cell transplantation or donor lymphocyte infusions are already standard therapies, but other options for AML treatment are in the pipeline. Moreover, the therapeutic landscape in AML is rapidly changing, and in the last years, a number of immunogenic targets structures eligible for specific therapy, risk assessment or evaluation of disease course were determined. For example, leukemia-associated antigens (LAA) showed to be critical as biomarkers of disease state and survival, as well as markers of minimal residual disease (MRD). Yet many mechanisms and properties are still insufficiently understood, which also represents a great potential for this form of therapy. Therefore, targeted therapy as immunotherapy could turn into an efficient tool to clear residual disease, improve the outcome of AML patients and reduce the relapse risk. In this review, established but also emerging immunotherapeutic approaches for AML patients will be discussed.
Collapse
|
40
|
Martin P, Bartlett NL, Chavez JC, Reagan JL, Smith SM, LaCasce AS, Jones J, Drew J, Wu C, Mulvey E, Revuelta MV, Cerchietti L, Leonard JP. Phase 1 study of oral azacitidine (CC-486) plus R-CHOP in previously untreated intermediate- to high-risk DLBCL. Blood 2022; 139:1147-1159. [PMID: 34428285 PMCID: PMC9211445 DOI: 10.1182/blood.2021011679] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/30/2021] [Indexed: 11/20/2022] Open
Abstract
Resistance to standard immunochemotherapy remains an unmet challenge in diffuse large B-cell lymphoma (DLBCL), and aberrant DNA methylation may contribute to chemoresistance. Promising early-phase results were reported with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) plus subcutaneous azacitidine, a hypomethylating agent. In this phase 1 study, we evaluated CC-486 (oral azacitidine) plus 6 cycles of R-CHOP in patients with previously untreated intermediate- to high-risk DLBCL or grade 3B/transformed follicular lymphoma. CC-486 doses of 100, 150, 200, or 300 mg given 7 days before cycle 1 and on days 8-21 of cycles 1-5 were evaluated; additional patients were enrolled in the expansion phase to examine preliminary efficacy. The primary objectives were to determine the safety and the maximum tolerated dose (MTD) of CC-486 in combination with R-CHOP. The most common grade 3/4 toxicities were hematologic, including neutropenia (62.7%) and febrile neutropenia (25.4%); grade 3/4 nonhematologic toxicities were uncommon (<7%). The MTD was not established; 2 patients had dose-limiting toxicities (1 with grade 4 febrile neutropenia; 1 with grade 4 prolonged neutropenia). The recommended phase 2 dose was established as 300 mg. The overall response rate was 94.9%, with 52 patients (88.1%) achieving complete responses. With a median follow-up of 28.9 months, estimated 1- and 2-year progression-free survival rates were 84.1% and 78.6%, respectively. Overall, epigenetic priming with CC-486 before R-CHOP can be delivered with acceptable safety to patients with previously untreated intermediate- to high-risk DLBCL or grade 3B/transformed follicular lymphoma. ClinicalTrials.gov: NCT02343536.
Collapse
Affiliation(s)
| | | | | | - John L Reagan
- The Warren Alpert Medical School of Brown University, Providence, RI
| | - Sonali M Smith
- University of Chicago Comprehensive Cancer Center, Chicago, IL
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Salhotra A, Stein AS. Role of Radiation Based Conditioning Regimens in Patients With High-Risk AML Undergoing Allogenic Transplantation in Remission or Active Disease and Mechanisms of Post-Transplant Relapse. Front Oncol 2022; 12:802648. [PMID: 35242706 PMCID: PMC8886676 DOI: 10.3389/fonc.2022.802648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/21/2022] [Indexed: 11/25/2022] Open
Abstract
In the two decades there has been a consistent improvement in the clinical outcomes of patients diagnosed with acute leukemia undergoing allogenic stem cell transplantation. These improvements have been made possible by advancements in supportive care practices, more precise risk stratification of leukemia patients by genetic testing at diagnosis, accurate disease assessment by measurable residual disease (MRD) in pretransplant marrow and attempts to clear residual disease clones prior to transplant. Availability of targeted therapies, immunotherapies, and approval of novel drug combinations with BCL-2 inhibitors has also improved remission rates for patients who are undergoing transplant. For patients who are unable to achieve a morphologic or MRD- remission prior to transplant, the risk of relapse post-transplant remains high. Total body irradiation (TBI) based intensification of transplant conditioning may be able to overcome risk of increased relapse rate in this clinical setting by improving clearance of leukemic clones. However, in the past increased nonrelapse mortality (NRM) associated with escalation of conditioning intensity has neutralized any potential benefit of decreasing relapse rate in HCT patient resulting in no significant improvement in overall survival. In this review we discuss incorporation of newer radiation techniques such as total marrow irradiation (TMI) to safely deliver targeted doses of radiation at higher doses to improve outcomes of patients with active leukemia. We also discuss the mechanisms associated with leukemia relapse and treatment options available in post allo-HCT relapse setting despite use of intensified conditioning regimens.
Collapse
Affiliation(s)
- Amandeep Salhotra
- Department of Hematology/Hematopoietic Cell Transplant (HCT), City of Hope National Cancer Center, Duarte, CA, United States
| | | |
Collapse
|
42
|
Azacitidine-induced reconstitution of the bone marrow T cell repertoire is associated with superior survival in AML patients. Blood Cancer J 2022; 12:19. [PMID: 35091554 PMCID: PMC8799690 DOI: 10.1038/s41408-022-00615-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/09/2022] [Accepted: 01/13/2022] [Indexed: 12/31/2022] Open
Abstract
Hypomethylating agents (HMA) like azacitidine are licensed for the treatment of acute myeloid leukemia (AML) patients ineligible for allogeneic hematopoietic stem cell transplantation. Biomarker-driven identification of HMA-responsive patients may facilitate the choice of treatment, especially in the challenging subgroup above 60 years of age. Since HMA possesses immunomodulatory functions that constitute part of their anti-tumor effect, we set out to analyze the bone marrow (BM) immune environment by next-generation sequencing of T cell receptor beta (TRB) repertoires in 51 AML patients treated within the RAS-AZIC trial. Patients with elevated pretreatment T cell diversity (11 out of 41 patients) and those with a boost of TRB richness on day 15 after azacitidine treatment (12 out of 46 patients) had longer event-free and overall survival. Both pretreatment and dynamic BM T cell metrics proved to be better predictors of outcome than other established risk factors. The favorable broadening of the BM T cell space appeared to be driven by antigen since these patients showed significant skewing of TRBV gene usage. Our data suggest that one course of AZA can cause reconstitution to a more physiological T cell BM niche and that the T cell space plays an underestimated prognostic role in AML. Trial registration: DRKS identifier: DRKS00004519
Collapse
|
43
|
Abou Dalle I, Atoui A, Bazarbachi A. The Elephant in The Room: AML Relapse Post Allogeneic Hematopoietic Cell Transplantation. Front Oncol 2022; 11:793274. [PMID: 35047405 PMCID: PMC8761806 DOI: 10.3389/fonc.2021.793274] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/09/2021] [Indexed: 12/19/2022] Open
Abstract
Relapsed acute myeloid leukemia (AML) following allogeneic hematopoietic cell transplantation (allo-HCT) is an unfavorable event associated with a poor prognosis, particularly for patients with early relapses. It usually arises from resistant leukemic blasts that escaped both preparative chemotherapy regimen and the graft-versus-leukemia (GVL) effect. Independent from the choice of salvage treatment, only minority of patients can achieve durable remissions. In recent years, better understanding of the disease relapse biology post allo-HCT allowed the application of newer strategies that could induce higher rates of remission, and potential longer survival. Those strategies aim at optimizing drugs that have a direct anti-leukemia activity by targeting different oncogenic mutations, metabolism pathways or surface antigens, and concurrently enhancing the immune microenvironment to promote GVL effect. This review discusses the current treatment landscape of AML relapse post allo-HCT.
Collapse
Affiliation(s)
- Iman Abou Dalle
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ali Atoui
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ali Bazarbachi
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
44
|
Goswami M, Gui G, Dillon LW, Lindblad KE, Thompson J, Valdez J, Kim DY, Ghannam JY, Oetjen KA, Destefano CB, Smith DM, Tekleab H, Li Y, Dagur P, Hughes T, Marté JL, Del Rivero J, Klubo-Gwiezdzinksa J, Gulley JL, Calvo KR, Lai C, Hourigan CS. Pembrolizumab and decitabine for refractory or relapsed acute myeloid leukemia. J Immunother Cancer 2022; 10:jitc-2021-003392. [PMID: 35017151 PMCID: PMC8753450 DOI: 10.1136/jitc-2021-003392] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2021] [Indexed: 12/11/2022] Open
Abstract
Background The powerful ‘graft versus leukemia’ effect thought partly responsible for the therapeutic effect of allogeneic hematopoietic cell transplantation in acute myeloid leukemia (AML) provides rationale for investigation of immune-based therapies in this high-risk blood cancer. There is considerable preclinical evidence for potential synergy between PD-1 immune checkpoint blockade and the hypomethylating agents already commonly used for this disease. Methods We report here the results of 17 H-0026 (PD-AML, NCT02996474), an investigator sponsored, single-institution, single-arm open-label 10-subject pilot study to test the feasibility of the first-in-human combination of pembrolizumab and decitabine in adult patients with refractory or relapsed AML (R-AML). Results In this cohort of previously treated patients, this novel combination of anti-PD-1 and hypomethylating therapy was feasible and associated with a best response of stable disease or better in 6 of 10 patients. Considerable immunological changes were identified using T cell receptor β sequencing as well as single-cell immunophenotypic and RNA expression analyses on sorted CD3+ T cells in patients who developed immune-related adverse events (irAEs) during treatment. Clonal T cell expansions occurred at irAE onset; single-cell sequencing demonstrated that these expanded clones were predominately CD8+ effector memory T cells with high cell surface PD-1 expression and transcriptional profiles indicative of activation and cytotoxicity. In contrast, no such distinctive immune changes were detectable in those experiencing a measurable antileukemic response during treatment. Conclusion Addition of pembrolizumab to 10-day decitabine therapy was clinically feasible in patients with R-AML, with immunological changes from PD-1 blockade observed in patients experiencing irAEs.
Collapse
Affiliation(s)
- Meghali Goswami
- National Heart Lung and Blood Institute, Bethesda, Maryland, USA.,National Cancer Institute, Bethesda, Maryland, USA
| | - Gege Gui
- National Heart Lung and Blood Institute, Bethesda, Maryland, USA
| | - Laura W Dillon
- National Heart Lung and Blood Institute, Bethesda, Maryland, USA
| | | | - Julie Thompson
- National Heart Lung and Blood Institute, Bethesda, Maryland, USA
| | - Janet Valdez
- National Heart Lung and Blood Institute, Bethesda, Maryland, USA
| | - Dong-Yun Kim
- National Heart Lung and Blood Institute, Bethesda, Maryland, USA
| | - Jack Y Ghannam
- National Heart Lung and Blood Institute, Bethesda, Maryland, USA
| | - Karolyn A Oetjen
- National Heart Lung and Blood Institute, Bethesda, Maryland, USA
| | | | - Dana M Smith
- Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Hanna Tekleab
- National Heart Lung and Blood Institute, Bethesda, Maryland, USA
| | - Yeusheng Li
- National Heart Lung and Blood Institute, Bethesda, Maryland, USA
| | - Pradeep Dagur
- National Heart Lung and Blood Institute, Bethesda, Maryland, USA
| | - Thomas Hughes
- National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | | | | | | | | | - Katherine R Calvo
- National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - Catherine Lai
- National Heart Lung and Blood Institute, Bethesda, Maryland, USA
| | - Christopher S Hourigan
- National Heart Lung and Blood Institute, Bethesda, Maryland, USA .,Trans-NIH Center for Human Immunology, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
45
|
Webster JA, Luznik L, Gojo I. Treatment of AML Relapse After Allo-HCT. Front Oncol 2022; 11:812207. [PMID: 34976845 PMCID: PMC8716583 DOI: 10.3389/fonc.2021.812207] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/25/2021] [Indexed: 01/02/2023] Open
Abstract
With advances in allogeneic hematopoietic stem cell transplant (allo-HCT), disease relapse has replaced transplant-related mortality as the primary cause of treatment failure for patients with acute myeloid leukemia (AML). The efficacy of allo-HCT in AML is a consequence of a graft-versus-leukemia (GVL) effect that is mediated by T lymphocytes, and unique mechanisms of immune evasion underlying post-allo-HCT AML relapses have recently been characterized. Relapsed AML following allo-HCT presents a particularly vexing clinical challenge because transplant-related toxicities, such as graft-versus-host (GVHD) and infections, increase the risk of treatment-related morbidity and mortality. In general, the prognosis of relapsed AML following allo-HCT is poor with most patients failing to achieve a subsequent remission and 2-year survival consistently <15%. The two factors that have been found to predict a better prognosis are a longer duration of post-transplant remission prior to relapse and a lower disease burden at the time of relapse. When considered in combination with a patient's age; co-morbidities; and performance status, these factors can help to inform the appropriate therapy for the treatment of post-transplant relapse. This review discusses the options for the treatment of post-transplant AML relapse with a focus on the options to achieve a subsequent remission and consolidation with cellular immunotherapy, such as a second transplant or donor lymphocyte infusion (DLI). While intensive reinduction therapy and less intensive approaches with hypomethylating agents have long represented the two primary options for the initial treatment of post-transplant relapse, molecularly targeted therapies and immunotherapy are emerging as potential alternative options to achieve remission. Herein, we highlight response and survival outcomes achieved specifically in the post-transplant setting using each of these approaches and discuss how some therapies may overcome the immunologic mechanisms that have been implicated in post-transplant relapse. As long-term survival in post-transplant relapse necessarily involves consolidation with cellular immunotherapy, we present data on the efficacy and toxicity of both DLI and second allo-HCT including when such therapies are integrated with reinduction. Finally, we provide our general approach to the treatment of post-transplant relapse, integrating both novel therapies and our improved understanding of the mechanisms underlying post-transplant relapse.
Collapse
Affiliation(s)
- Jonathan A Webster
- Hematologic Malignancies and Bone Marrow Transplantation Program, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Leo Luznik
- Hematologic Malignancies and Bone Marrow Transplantation Program, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ivana Gojo
- Hematologic Malignancies and Bone Marrow Transplantation Program, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
46
|
Haddad F, Daver N. An Update on Immune Based Therapies in Acute Myeloid Leukemia: 2021 and Beyond! ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1342:273-295. [PMID: 34972969 DOI: 10.1007/978-3-030-79308-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite advances in the treatment of acute myeloid leukemia (AML), relapse is still widely observed and represents the major cause of death among patients with AML. Treatment options in the relapse setting are limited, still relying predominantly on allogeneic hematopoietic stem cell transplantation (allo-HSCT) and cytotoxic chemotherapy, with poor outcomes. Novel targeted and venetoclax-based combinations are being investigated and have shown encouraging results. Immune checkpoint inhibitors in combination with low-intensity chemotherapy demonstrated encouraging response rates and survival among patients with relapsed and/or refractory (R/R) AML, especially in the pre- and post-allo-HSCT setting. Blocking the CD47/SIRPα pathway is another strategy that showed robust anti-leukemic activity, with a response rate of around 70% and an encouraging median overall survival in patients with newly diagnosed, higher-risk myelodysplastic syndrome and patients with AML with a TP53 mutation. One approach that was proven to be very effective in the relapsed setting of lymphoid malignancies is chimeric antigen receptor (CAR) T cells. It relies on the infusion of genetically engineered T cells capable of recognizing specific epitopes on the surface of leukemia cells. In AML, different CAR constructs with different target antigens have been evaluated and demonstrated safety and feasibility in the R/R setting. However, the difficulty of potently targeting leukemic blasts in AML while sparing normal cells represents a major limitation to their use, and strategies are being tested to overcome this obstacle. A different approach is based on endogenously redirecting the patient's system cells to target and destroy leukemic cells via bispecific T-cell engagers (BiTEs) or dual antigen receptor targeting (DARTs). Early results have demonstrated the safety and feasibility of these agents, and research is ongoing to develop BiTEs with longer half-life, allowing for less frequent administration schedules and developing them in earlier and lower disease burden settings.
Collapse
Affiliation(s)
- Fadi Haddad
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
47
|
Checkpoint Inhibitors and Other Immune-Based Therapies in Acute Myeloid Leukemia. Cancer J 2022; 28:43-50. [DOI: 10.1097/ppo.0000000000000573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Neoantigen reactive T cells correlate with the low mutational burden in hematological malignancies. Leukemia 2022; 36:2734-2738. [PMID: 36209321 PMCID: PMC9613475 DOI: 10.1038/s41375-022-01705-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/08/2022]
|
49
|
Immune-Based Therapeutic Strategies for Acute Myeloid Leukemia. Cancers (Basel) 2021; 14:cancers14010105. [PMID: 35008269 PMCID: PMC8744886 DOI: 10.3390/cancers14010105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary This review summarizes various therapeutic immune approaches representing their targets, the efficacy and toxicity in the treatment of acute myeloid leukemia. In particular, immune checkpoint inhibitors, bispecific T-cell engager antibodies and chimeric antigen receptor-T-cell approaches are highlighted. Abstract The development and design of immune-based strategies have become an increasingly important topic during the last few years in acute myeloid leukemia (AML), based on successful immunotherapies in solid cancer. The spectrum ranges from antibody drug conjugates, immune checkpoint inhibitors blocking programmed cell death protein 1 (PD1), cytotoxic T lymphocyte antigen 4 (CTLA4) or T cell immunoglobulin and mucin domain containing-3 (TIM3), to T-cell based monoclonal and bispecific T-cell engager antibodies, chimeric antigen receptor-T-cell (CAR-T) approaches and leukemia vaccines. Currently, there are many substances in development and multiple phase I/II studies are ongoing. These trials will help us to deepen our understanding of the pathogenesis of AML and facilitate the best immunotherapeutic strategy in AML. We discuss here the mode of action of immune-based therapies and provide an overview of the available data.
Collapse
|
50
|
Chao Y, Zhang L. Biomimetic design of inhibitors of immune checkpoint LILRB4. Biophys Chem 2021; 282:106746. [PMID: 34963077 DOI: 10.1016/j.bpc.2021.106746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/10/2021] [Accepted: 12/17/2021] [Indexed: 12/20/2022]
Abstract
Immune checkpoint inhibitors have become a hot spot in the treatment of acute myeloid leukemia (AML), the most common acute leukemia (blood cancer) in adults. In the present study, molecular insights into the molecular interactions between an immune checkpoint leukocyte immunoglobulin-like receptor b4 (LILRB4) and its mAb h128-3 was explored using molecular dynamics (MD) simulation for the biomimetic design of peptide inhibitor of LILRB4. Both hydrophobic interaction and electrostatic interaction were found favorable for the binding of the mAb h128-3 on LILRB4, and hydrophobic interaction was identified as the main driving force. The key amino acid residues for the binding of mAb h128-3 on LILRB4 were identified as Y93, D94, D106, Y34, S103, W107, Y61, N30, E27, Y33, Y59, W95, S92 through MM-PBSA (molecular mechanics-Poisson-Boltzmann surface area) method. Based on this, an inhibitor library with the sequence of SXDXYXSY (Where X is an arbitrary amino acid residue) were designed. Two peptide inhibitors, SADHYHSY and SVDWYHSY were obtained through screening using molecular docking and MD simulations, and then validated by successful blocking of LILRB4 through the covering of LILRB4 surface by these inhibitors. These results would be helpful for the research and development of therapies for AML.
Collapse
Affiliation(s)
- Yuanyuan Chao
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Lin Zhang
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| |
Collapse
|