1
|
Faiz M, Riedemann M, Jutzi JS, Mullally A. Mutant Calreticulin in MPN: Mechanistic Insights and Therapeutic Implications. Curr Hematol Malig Rep 2025; 20:4. [PMID: 39775969 DOI: 10.1007/s11899-024-00749-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2024] [Indexed: 01/11/2025]
Abstract
PURPOSE OF REVIEW More than a decade following the discovery of Calreticulin (CALR) mutations as drivers of myeloproliferative neoplasms (MPN), advances in the understanding of CALR-mutant MPN continue to emerge. Here, we summarize recent advances in mehanistic understanding and in targeted therapies for CALR-mutant MPN. RECENT FINDINGS Structural insights revealed that the mutant CALR-MPL complex is a tetramer and the mutant CALR C-terminus is exposed on the cell surface. Targeting mutant CALR utilizing antibodies is the leading therapeutic approach, while mutant CALR-directed vaccines are also in early clinical trials. Additionally, chimeric antigen receptor (CAR) T-cells directed against mutant CALR are under evaluation in preclinical models. Approaches addressing the cellular effects of mutant CALR beyond MPL-JAK-STAT activation, such as targeting the unfolded protein response, proteasome, and N-glycosylation pathways, have been tested in preclinical models. In CALR-mutant MPN, the path from discovery to mechanistic understanding to direct therapeutic targeting has advanced rapidly. The longer-term goal remains clonally-selective therapies that modify the disease course in patients.
Collapse
Affiliation(s)
- Mifra Faiz
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Institute of Medicine, Boston, MA, 02115, USA
| | - Merle Riedemann
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Institute of Medicine, Boston, MA, 02115, USA
| | - Jonas S Jutzi
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Institute of Medicine, Boston, MA, 02115, USA
| | - Ann Mullally
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Hematology Division, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA.
| |
Collapse
|
2
|
Kramer F, Mullally A. Antibody targeting of mutant calreticulin in myeloproliferative neoplasms. J Cell Mol Med 2024; 28:e17896. [PMID: 37551061 PMCID: PMC10902560 DOI: 10.1111/jcmm.17896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023] Open
Abstract
Mutations in calreticulin are one of the key disease-initiating mutations in myeloproliferative neoplasms (MPN). In MPN, mutant calreticulin translates with a novel C-terminus that leads to aberrant binding to the extracellular domain of the thrombopoietin receptor, MPL. This cell surface neoantigen has become an attractive target for immunological intervention. Here, we summarize recent advances in the development of mutant calreticulin targeting antibodies as a novel therapeutic approach in MPN.
Collapse
Affiliation(s)
- Frederike Kramer
- Division of Hematology, Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Ann Mullally
- Division of Hematology, Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Broad InstituteCambridgeMassachusettsUSA
| |
Collapse
|
3
|
Morishita S, Komatsu N. Diagnosis- and Prognosis-Related Gene Alterations in BCR::ABL1-Negative Myeloproliferative Neoplasms. Int J Mol Sci 2023; 24:13008. [PMID: 37629188 PMCID: PMC10455804 DOI: 10.3390/ijms241613008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
BCR::ABL1-negative myeloproliferative neoplasms (MPNs) are a group of hematopoietic malignancies in which somatic mutations are acquired in hematopoietic stem/progenitor cells, resulting in an abnormal increase in blood cells in peripheral blood and fibrosis in bone marrow. Mutations in JAK2, MPL, and CALR are frequently found in BCR::ABL1-negative MPNs, and detecting typical mutations in these three genes has become essential for the diagnosis of BCR::ABL1-negative MPNs. Furthermore, comprehensive gene mutation and expression analyses performed using massively parallel sequencing have identified gene mutations associated with the prognosis of BCR::ABL1-negative MPNs such as ASXL1, EZH2, IDH1/2, SRSF2, and U2AF1. Furthermore, single-cell analyses have partially elucidated the effect of the order of mutation acquisition on the phenotype of BCR::ABL1-negative MPNs and the mechanism of the pathogenesis of BCR::ABL1-negative MPNs. Recently, specific CREB3L1 overexpression has been identified in megakaryocytes and platelets in BCR::ABL1-negative MPNs, which may be promising for the development of diagnostic applications. In this review, we describe the genetic mutations found in BCR::ABL1-negative MPNs, including the results of analyses conducted by our group.
Collapse
Affiliation(s)
- Soji Morishita
- Development of Therapies against MPNs, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Advanced Hematology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkuo-ku, Tokyo 113-8421, Japan
| | - Norio Komatsu
- Development of Therapies against MPNs, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Advanced Hematology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkuo-ku, Tokyo 113-8421, Japan
- PharmaEssentia Japan, Akasaka Center Building 12 Fl, 1-3-13 Motoakasaka, Minato-ku, Tokyo 107-0051, Japan
| |
Collapse
|
4
|
Papadopoulos N, Nédélec A, Derenne A, Şulea TA, Pecquet C, Chachoua I, Vertenoeil G, Tilmant T, Petrescu AJ, Mazzucchelli G, Iorga BI, Vertommen D, Constantinescu SN. Oncogenic CALR mutant C-terminus mediates dual binding to the thrombopoietin receptor triggering complex dimerization and activation. Nat Commun 2023; 14:1881. [PMID: 37019903 PMCID: PMC10076285 DOI: 10.1038/s41467-023-37277-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 03/04/2023] [Indexed: 04/07/2023] Open
Abstract
Calreticulin (CALR) frameshift mutations represent the second cause of myeloproliferative neoplasms (MPN). In healthy cells, CALR transiently and non-specifically interacts with immature N-glycosylated proteins through its N-terminal domain. Conversely, CALR frameshift mutants turn into rogue cytokines by stably and specifically interacting with the Thrombopoietin Receptor (TpoR), inducing its constitutive activation. Here, we identify the basis of the acquired specificity of CALR mutants for TpoR and define the mechanisms by which complex formation triggers TpoR dimerization and activation. Our work reveals that CALR mutant C-terminus unmasks CALR N-terminal domain, rendering it more accessible to bind immature N-glycans on TpoR. We further find that the basic mutant C-terminus is partially α-helical and define how its α-helical segment concomitantly binds acidic patches of TpoR extracellular domain and induces dimerization of both CALR mutant and TpoR. Finally, we propose a model of the tetrameric TpoR-CALR mutant complex and identify potentially targetable sites.
Collapse
Affiliation(s)
- Nicolas Papadopoulos
- Ludwig Institute for Cancer Research Brussels, Brussels, Belgium
- Université catholique de Louvain and de Duve Institute, Brussels, Belgium
| | - Audrey Nédélec
- Ludwig Institute for Cancer Research Brussels, Brussels, Belgium
- Université catholique de Louvain and de Duve Institute, Brussels, Belgium
| | - Allison Derenne
- Spectralys Biotech SRL, rue Auguste Piccard 48, 6041, Gosselies, Belgium
| | - Teodor Asvadur Şulea
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Splaiul Independentei 296, Bucharest, 060031, Romania
| | - Christian Pecquet
- Ludwig Institute for Cancer Research Brussels, Brussels, Belgium
- Université catholique de Louvain and de Duve Institute, Brussels, Belgium
| | - Ilyas Chachoua
- Ludwig Institute for Cancer Research Brussels, Brussels, Belgium
- Université catholique de Louvain and de Duve Institute, Brussels, Belgium
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Gaëlle Vertenoeil
- Ludwig Institute for Cancer Research Brussels, Brussels, Belgium
- Université catholique de Louvain and de Duve Institute, Brussels, Belgium
| | - Thomas Tilmant
- Mass Spectrometry Laboratory, MolSys Research Unit, Universiy of Liège, 4000, Liège, Belgium
| | - Andrei-Jose Petrescu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Splaiul Independentei 296, Bucharest, 060031, Romania
| | - Gabriel Mazzucchelli
- Mass Spectrometry Laboratory, MolSys Research Unit, Universiy of Liège, 4000, Liège, Belgium
| | - Bogdan I Iorga
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette, France
| | - Didier Vertommen
- Université catholique de Louvain and de Duve Institute, Brussels, Belgium
- de Duve Institute and MASSPROT platform, Brussels, Belgium
| | - Stefan N Constantinescu
- Ludwig Institute for Cancer Research Brussels, Brussels, Belgium.
- Université catholique de Louvain and de Duve Institute, Brussels, Belgium.
- Walloon Excelence in Life Sciences and Biotechnology, WELBIO, avenue Pasteur, 6, 1300, Wavre, Belgium.
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, Oxford University, Oxford, UK.
| |
Collapse
|
5
|
Desikan H, Kaur A, Pogozheva ID, Raghavan M. Effects of calreticulin mutations on cell transformation and immunity. J Cell Mol Med 2023; 27:1032-1044. [PMID: 36916035 PMCID: PMC10098294 DOI: 10.1111/jcmm.17713] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs) are cancers involving dysregulated production and function of myeloid lineage hematopoietic cells. Among MPNs, Essential thrombocythemia (ET), Polycythemia Vera (PV) and Myelofibrosis (MF), are driven by mutations that activate the JAK-STAT signalling pathway. Somatic mutations of calreticulin (CRT), an endoplasmic reticulum (ER)-localized lectin chaperone, are driver mutations in approximately 25% of ET and 35% of MF patients. The MPN-linked mutant CRT proteins have novel frameshifted carboxy-domain sequences and lack an ER retention motif, resulting in their secretion. Wild type CRT is a regulator of ER calcium homeostasis and plays a key role in the assembly of major histocompatibility complex (MHC) class I molecules, which are the ligands for antigen receptors of CD8+ T cells. Mutant CRT-linked oncogenesis results from the dysregulation of calcium signalling in cells and the formation of stable complexes of mutant CRT with myeloproliferative leukemia (MPL) protein, followed by downstream activation of the JAK-STAT signalling pathway. The intricate participation of CRT in ER protein folding, calcium homeostasis and immunity suggests the involvement of multiple mechanisms of mutant CRT-linked oncogenesis. In this review, we highlight recent findings related to the role of MPN-linked CRT mutations in the dysregulation of calcium homeostasis, MPL activation and immunity.
Collapse
Affiliation(s)
- Harini Desikan
- Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Amanpreet Kaur
- Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Irina D. Pogozheva
- Department of Medicinal ChemistryCollege of Pharmacy, University of MichiganAnn ArborMichiganUSA
| | - Malini Raghavan
- Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| |
Collapse
|
6
|
Structural and Dynamic Differences between Calreticulin Mutants Associated with Essential Thrombocythemia. Biomolecules 2023; 13:biom13030509. [PMID: 36979444 PMCID: PMC10046389 DOI: 10.3390/biom13030509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
Essential thrombocythemia (ET) is a blood cancer. ET is characterized by an overproduction of platelets that can lead to thrombosis formation. Platelet overproduction occurs in megakaryocytes through a signaling pathway that could involve JAK2, MPL, or CALR proteins. CALR mutations are associated with 25–30% of ET patients; CALR variants must be dimerized to induce ET. We classified these variants into five classes named A to E; classes A and B are the most frequent classes in patients with ET. The dynamic properties of these five classes using structural models of CALR’s C-domain were analyzed using molecular dynamics simulations. Classes A, B, and C are associated with frameshifts in the C-domain. Their dimers can be stable only if a disulfide bond is formed; otherwise, the two monomers repulse each other. Classes D and E cannot be stable as dimers due to the absence of disulfide bonds. Class E and wild-type CALR have similar dynamic properties. These results suggest that the disulfide bond newly formed in classes A, B, and C may be essential for the pathogenicity of these variants. They also underline that class E cannot be directly related to ET but corresponds to human polymorphisms.
Collapse
|
7
|
Pecquet C, Papadopoulos N, Balligand T, Chachoua I, Tisserand A, Vertenoeil G, Nédélec A, Vertommen D, Roy A, Marty C, Nivarthi H, Defour JP, El-Khoury M, Hug E, Majoros A, Xu E, Zagrijtschuk O, Fertig TE, Marta DS, Gisslinger H, Gisslinger B, Schalling M, Casetti I, Rumi E, Pietra D, Cavalloni C, Arcaini L, Cazzola M, Komatsu N, Kihara Y, Sunami Y, Edahiro Y, Araki M, Lesyk R, Buxhofer-Ausch V, Heibl S, Pasquier F, Havelange V, Plo I, Vainchenker W, Kralovics R, Constantinescu SN. Secreted mutant calreticulins as rogue cytokines in myeloproliferative neoplasms. Blood 2023; 141:917-929. [PMID: 36356299 PMCID: PMC10651872 DOI: 10.1182/blood.2022016846] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/05/2022] [Accepted: 10/17/2022] [Indexed: 11/12/2022] Open
Abstract
Mutant calreticulin (CALR) proteins resulting from a -1/+2 frameshifting mutation of the CALR exon 9 carry a novel C-terminal amino acid sequence and drive the development of myeloproliferative neoplasms (MPNs). Mutant CALRs were shown to interact with and activate the thrombopoietin receptor (TpoR/MPL) in the same cell. We report that mutant CALR proteins are secreted and can be found in patient plasma at levels up to 160 ng/mL, with a mean of 25.64 ng/mL. Plasma mutant CALR is found in complex with soluble transferrin receptor 1 (sTFR1) that acts as a carrier protein and increases mutant CALR half-life. Recombinant mutant CALR proteins bound and activated the TpoR in cell lines and primary megakaryocytic progenitors from patients with mutated CALR in which they drive thrombopoietin-independent colony formation. Importantly, the CALR-sTFR1 complex remains functional for TpoR activation. By bioluminescence resonance energy transfer assay, we show that mutant CALR proteins produced in 1 cell can specifically interact in trans with the TpoR on a target cell. In comparison with cells that only carry TpoR, cells that carry both TpoR and mutant CALR are hypersensitive to exogenous mutant CALR proteins and respond to levels of mutant CALR proteins similar to those in patient plasma. This is consistent with CALR-mutated cells that expose TpoR carrying immature N-linked sugars at the cell surface. Thus, secreted mutant CALR proteins will act more specifically on the MPN clone. In conclusion, a chaperone, CALR, can turn into a rogue cytokine through somatic mutation of its encoding gene.
Collapse
Affiliation(s)
- Christian Pecquet
- Ludwig Cancer Research, Brussels, Belgium
- Université Catholique de Louvain and de Duve Institute, SIGN Unit, Brussels, Belgium
| | - Nicolas Papadopoulos
- Ludwig Cancer Research, Brussels, Belgium
- Université Catholique de Louvain and de Duve Institute, SIGN Unit, Brussels, Belgium
| | - Thomas Balligand
- Ludwig Cancer Research, Brussels, Belgium
- Université Catholique de Louvain and de Duve Institute, SIGN Unit, Brussels, Belgium
| | - Ilyas Chachoua
- Ludwig Cancer Research, Brussels, Belgium
- Université Catholique de Louvain and de Duve Institute, SIGN Unit, Brussels, Belgium
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Amandine Tisserand
- INSERM, Unité Mixte de Recherche (UMR) 1287, Gustave Roussy, Villejuif, France
- Université Paris Cité, UMR 1287, Gustave Roussy, Villejuif, France
- UMR 1287, Gustave Roussy, Villejuif, France
| | - Gaëlle Vertenoeil
- Ludwig Cancer Research, Brussels, Belgium
- Université Catholique de Louvain and de Duve Institute, SIGN Unit, Brussels, Belgium
| | - Audrey Nédélec
- Ludwig Cancer Research, Brussels, Belgium
- Université Catholique de Louvain and de Duve Institute, SIGN Unit, Brussels, Belgium
| | - Didier Vertommen
- Université Catholique de Louvain and de Duve Institute, SIGN Unit, Brussels, Belgium
| | - Anita Roy
- Ludwig Cancer Research, Brussels, Belgium
- Université Catholique de Louvain and de Duve Institute, SIGN Unit, Brussels, Belgium
| | - Caroline Marty
- INSERM, Unité Mixte de Recherche (UMR) 1287, Gustave Roussy, Villejuif, France
- UMR 1287, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, UMR 1287, Gustave Roussy, Villejuif, France
| | - Harini Nivarthi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Jean-Philippe Defour
- Ludwig Cancer Research, Brussels, Belgium
- Université Catholique de Louvain and de Duve Institute, SIGN Unit, Brussels, Belgium
| | - Mira El-Khoury
- INSERM, Unité Mixte de Recherche (UMR) 1287, Gustave Roussy, Villejuif, France
- UMR 1287, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, UMR 1287, Gustave Roussy, Villejuif, France
| | - Eva Hug
- MyeloPro Diagnostics and Research GmbH, Vienna, Austria
| | | | - Erica Xu
- MyeloPro Diagnostics and Research GmbH, Vienna, Austria
| | | | | | - Daciana S. Marta
- Ultrastructural Pathology Lab and Bioimaging, Institute of Pathology Victor Babeș, Bucharest, Romania
| | - Heinz Gisslinger
- Division of Hematology and Blood Coagulation, Department of Internal Medicine I, Division of Hematology and Blood Coagulation, Medical University of Vienna, Vienna, Austria
| | - Bettina Gisslinger
- Division of Hematology and Blood Coagulation, Department of Internal Medicine I, Division of Hematology and Blood Coagulation, Medical University of Vienna, Vienna, Austria
| | - Martin Schalling
- Division of Hematology and Blood Coagulation, Department of Internal Medicine I, Division of Hematology and Blood Coagulation, Medical University of Vienna, Vienna, Austria
| | - Ilaria Casetti
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Elisa Rumi
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Daniela Pietra
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Chiara Cavalloni
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Luca Arcaini
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Mario Cazzola
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Norio Komatsu
- Department of Hematology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yoshihiko Kihara
- Department of Hematology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yoshitaka Sunami
- Department of Hematology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yoko Edahiro
- Department of Hematology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Marito Araki
- Department of Transfusion Medicine and Stem Cell Regulation, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Roman Lesyk
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Rzeszow, Poland
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Veronika Buxhofer-Ausch
- Department of Internal Medicine I with Hematology, Ordensklinikum Linz Elisabethinen, Stem Cell Transplantation Hemostaseology and Medical Oncology, Linz, Austria
- Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Sonja Heibl
- Department of Internal Medicine IV, Klinikum Wels-Grieskirchen, Wels, Austria
| | - Florence Pasquier
- INSERM, Unité Mixte de Recherche (UMR) 1287, Gustave Roussy, Villejuif, France
- Université Paris Cité, UMR 1287, Gustave Roussy, Villejuif, France
- UMR 1287, Gustave Roussy, Villejuif, France
- Department of Hematology, Gustave Roussy, Villejuif, France
| | - Violaine Havelange
- Université Catholique de Louvain and de Duve Institute, SIGN Unit, Brussels, Belgium
- Department of Hematology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Isabelle Plo
- INSERM, Unité Mixte de Recherche (UMR) 1287, Gustave Roussy, Villejuif, France
- UMR 1287, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, UMR 1287, Gustave Roussy, Villejuif, France
| | - William Vainchenker
- INSERM, Unité Mixte de Recherche (UMR) 1287, Gustave Roussy, Villejuif, France
- UMR 1287, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, UMR 1287, Gustave Roussy, Villejuif, France
| | - Robert Kralovics
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Stefan N. Constantinescu
- Ludwig Cancer Research, Brussels, Belgium
- Université Catholique de Louvain and de Duve Institute, SIGN Unit, Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology, Brussels, Belgium
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
| |
Collapse
|
8
|
Foßelteder J, Pabst G, Sconocchia T, Schlacher A, Auinger L, Kashofer K, Beham-Schmid C, Trajanoski S, Waskow C, Schöll W, Sill H, Zebisch A, Wölfler A, Thomas D, Reinisch A. Human gene-engineered calreticulin mutant stem cells recapitulate MPN hallmarks and identify targetable vulnerabilities. Leukemia 2023; 37:843-853. [PMID: 36813992 PMCID: PMC10079532 DOI: 10.1038/s41375-023-01848-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
Calreticulin (CALR) mutations present the main oncogenic drivers in JAK2 wildtype (WT) myeloproliferative neoplasms (MPN), including essential thrombocythemia and myelofibrosis, where mutant (MUT) CALR is increasingly recognized as a suitable mutation-specific drug target. However, our current understanding of its mechanism-of-action is derived from mouse models or immortalized cell lines, where cross-species differences, ectopic over-expression and lack of disease penetrance are hampering translational research. Here, we describe the first human gene-engineered model of CALR MUT MPN using a CRISPR/Cas9 and adeno-associated viral vector-mediated knock-in strategy in primary human hematopoietic stem and progenitor cells (HSPCs) to establish a reproducible and trackable phenotype in vitro and in xenografted mice. Our humanized model recapitulates many disease hallmarks: thrombopoietin-independent megakaryopoiesis, myeloid-lineage skewing, splenomegaly, bone marrow fibrosis, and expansion of megakaryocyte-primed CD41+ progenitors. Strikingly, introduction of CALR mutations enforced early reprogramming of human HSPCs and the induction of an endoplasmic reticulum stress response. The observed compensatory upregulation of chaperones revealed novel mutation-specific vulnerabilities with preferential sensitivity of CALR mutant cells to inhibition of the BiP chaperone and the proteasome. Overall, our humanized model improves purely murine models and provides a readily usable basis for testing of novel therapeutic strategies in a human setting.
Collapse
Affiliation(s)
- Johannes Foßelteder
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria
| | - Gabriel Pabst
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria.,Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.,Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria
| | - Tommaso Sconocchia
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria
| | - Angelika Schlacher
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria
| | - Lisa Auinger
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria
| | - Karl Kashofer
- Diagnostic & Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | | | - Slave Trajanoski
- Core Facility Computational Bioanalytics, Medical University of Graz, Graz, Austria
| | - Claudia Waskow
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany.,Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich-Schiller-University, Jena, Germany
| | - Wolfgang Schöll
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Heinz Sill
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria
| | - Armin Zebisch
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria.,Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Albert Wölfler
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria
| | - Daniel Thomas
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Andreas Reinisch
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria. .,Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria.
| |
Collapse
|
9
|
Watari H, Kageyama H, Masubuchi N, Nakajima H, Onodera K, Focia PJ, Oshiro T, Matsui T, Kodera Y, Ogawa T, Yokoyama T, Hirayama M, Hori K, Freymann DM, Imai M, Komatsu N, Araki M, Tanaka Y, Sakai R. A marine sponge-derived lectin reveals hidden pathway for thrombopoietin receptor activation. Nat Commun 2022; 13:7262. [PMID: 36433967 PMCID: PMC9700728 DOI: 10.1038/s41467-022-34921-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 11/07/2022] [Indexed: 11/26/2022] Open
Abstract
N-glycan-mediated activation of the thrombopoietin receptor (MPL) under pathological conditions has been implicated in myeloproliferative neoplasms induced by mutant calreticulin, which forms an endogenous receptor-agonist complex that traffics to the cell surface and constitutively activates the receptor. However, the molecular basis for this mechanism is elusive because oncogenic activation occurs only in the cell-intrinsic complex and is thus cannot be replicated with external agonists. Here, we describe the structure and function of a marine sponge-derived MPL agonist, thrombocorticin (ThC), a homodimerized lectin with calcium-dependent fucose-binding properties. In-depth characterization of lectin-induced activation showed that, similar to oncogenic activation, sugar chain-mediated activation persists due to limited receptor internalization. The strong synergy between ThC and thrombopoietin suggests that ThC catalyzes the formation of receptor dimers on the cell surface. Overall, the existence of sugar-mediated MPL activation, in which the mode of activation is different from the original ligand, suggests that receptor activation is unpredictably diverse in living organisms.
Collapse
Affiliation(s)
- Hiromi Watari
- grid.39158.360000 0001 2173 7691Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Hiromu Kageyama
- grid.69566.3a0000 0001 2248 6943Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Nami Masubuchi
- grid.258269.20000 0004 1762 2738Laboratory for the Development of Therapies against MPN, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroya Nakajima
- grid.39158.360000 0001 2173 7691Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Kako Onodera
- grid.69566.3a0000 0001 2248 6943Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Pamela J. Focia
- grid.16753.360000 0001 2299 3507Department of Biochemistry & Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Takumi Oshiro
- grid.410786.c0000 0000 9206 2938Department of Physics, School of Science, Kitasato University, Sagamihara, Japan
| | - Takashi Matsui
- grid.410786.c0000 0000 9206 2938Department of Physics, School of Science, Kitasato University, Sagamihara, Japan ,grid.410786.c0000 0000 9206 2938Center for Disease Proteomics, School of Science, Kitasato University, Sagamihara, Japan
| | - Yoshio Kodera
- grid.410786.c0000 0000 9206 2938Department of Physics, School of Science, Kitasato University, Sagamihara, Japan ,grid.410786.c0000 0000 9206 2938Center for Disease Proteomics, School of Science, Kitasato University, Sagamihara, Japan
| | - Tomohisa Ogawa
- grid.69566.3a0000 0001 2248 6943Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Takeshi Yokoyama
- grid.69566.3a0000 0001 2248 6943Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Makoto Hirayama
- grid.257022.00000 0000 8711 3200Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Kanji Hori
- grid.257022.00000 0000 8711 3200Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Douglas M. Freymann
- grid.16753.360000 0001 2299 3507Department of Biochemistry & Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Misa Imai
- grid.258269.20000 0004 1762 2738Laboratory for the Development of Therapies against MPN, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Norio Komatsu
- grid.258269.20000 0004 1762 2738Laboratory for the Development of Therapies against MPN, Juntendo University Graduate School of Medicine, Tokyo, Japan ,grid.258269.20000 0004 1762 2738Department of Advanced Hematology, Juntendo University Graduate School of Medicine, Tokyo, Japan ,grid.258269.20000 0004 1762 2738Department of Hematology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Marito Araki
- grid.258269.20000 0004 1762 2738Laboratory for the Development of Therapies against MPN, Juntendo University Graduate School of Medicine, Tokyo, Japan ,grid.258269.20000 0004 1762 2738Department of Advanced Hematology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshikazu Tanaka
- grid.69566.3a0000 0001 2248 6943Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Ryuichi Sakai
- grid.39158.360000 0001 2173 7691Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| |
Collapse
|
10
|
De Marchi F, Okuda M, Morishita S, Imai M, Baba T, Horino M, Mori Y, Furuya C, Ogata S, Yang Y, Ando J, Ando M, Araki M, Komatsu N. Clinical and biological relevance of CREB3L1 in Philadelphia chromosome-negative myeloproliferative neoplasms. Leuk Res 2022; 119:106883. [DOI: 10.1016/j.leukres.2022.106883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 10/18/2022]
|
11
|
Tvorogov D, Thompson‐Peach CAL, Foßelteder J, Dottore M, Stomski F, Onnesha SA, Lim K, Moretti PAB, Pitson SM, Ross DM, Reinisch A, Thomas D, Lopez AF. Targeting human CALR-mutated MPN progenitors with a neoepitope-directed monoclonal antibody. EMBO Rep 2022; 23:e52904. [PMID: 35156745 PMCID: PMC8982588 DOI: 10.15252/embr.202152904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 01/02/2023] Open
Abstract
Calreticulin (CALR) is recurrently mutated in myelofibrosis via a frameshift that removes an endoplasmic reticulum retention signal, creating a neoepitope potentially targetable by immunotherapeutic approaches. We developed a specific rat monoclonal IgG2α antibody, 4D7, directed against the common sequence encoded by both insertion and deletion mutations. 4D7 selectively bound to cells co-expressing mutant CALR and thrombopoietin receptor (TpoR) and blocked JAK-STAT signalling, TPO-independent proliferation and megakaryocyte differentiation of mutant CALR myelofibrosis progenitors by disrupting the binding of CALR dimers to TpoR. Importantly, 4D7 inhibited proliferation of patient samples with both insertion and deletion CALR mutations but not JAK2 V617F and prolonged survival in xenografted bone marrow models of mutant CALR-dependent myeloproliferation. Together, our data demonstrate a novel therapeutic approach to target a problematic disease driven by a recurrent somatic mutation that would normally be considered undruggable.
Collapse
Affiliation(s)
- Denis Tvorogov
- Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSAAustralia
| | - Chloe A L Thompson‐Peach
- Cancer ProgramPrecision Medicine ThemeSouth Australian Health and Medical Research Institute (SAHMRI)University of AdelaideAdelaideSAAustralia
- Discipline of MedicineAdelaide Medical SchoolThe University of AdelaideAdelaideSAAustralia
| | - Johannes Foßelteder
- Department of Internal MedicineDivision of HaematologyMedical University of GrazGrazAustria
| | - Mara Dottore
- Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSAAustralia
| | - Frank Stomski
- Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSAAustralia
| | - Suraiya A Onnesha
- Cancer ProgramPrecision Medicine ThemeSouth Australian Health and Medical Research Institute (SAHMRI)University of AdelaideAdelaideSAAustralia
- Discipline of MedicineAdelaide Medical SchoolThe University of AdelaideAdelaideSAAustralia
| | - Kelly Lim
- Cancer ProgramPrecision Medicine ThemeSouth Australian Health and Medical Research Institute (SAHMRI)University of AdelaideAdelaideSAAustralia
- Discipline of MedicineAdelaide Medical SchoolThe University of AdelaideAdelaideSAAustralia
| | - Paul A B Moretti
- Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSAAustralia
| | - Stuart M Pitson
- Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSAAustralia
- Discipline of MedicineAdelaide Medical SchoolThe University of AdelaideAdelaideSAAustralia
| | - David M Ross
- Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSAAustralia
- Cancer ProgramPrecision Medicine ThemeSouth Australian Health and Medical Research Institute (SAHMRI)University of AdelaideAdelaideSAAustralia
- Department of HaematologyFlinders University and Medical CentreAdelaideSAAustralia
| | - Andreas Reinisch
- Department of Internal MedicineDivision of HaematologyMedical University of GrazGrazAustria
- Department of Blood Group Serology and Transfusion MedicineMedical University of GrazGrazAustria
| | - Daniel Thomas
- Cancer ProgramPrecision Medicine ThemeSouth Australian Health and Medical Research Institute (SAHMRI)University of AdelaideAdelaideSAAustralia
- Discipline of MedicineAdelaide Medical SchoolThe University of AdelaideAdelaideSAAustralia
| | - Angel F Lopez
- Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSAAustralia
- Discipline of MedicineAdelaide Medical SchoolThe University of AdelaideAdelaideSAAustralia
| |
Collapse
|
12
|
Genovese E, Mirabile M, Rontauroli S, Sartini S, Fantini S, Tavernari L, Maccaferri M, Guglielmelli P, Bianchi E, Parenti S, Carretta C, Mallia S, Castellano S, Colasante C, Balliu M, Bartalucci N, Palmieri R, Ottone T, Mora B, Potenza L, Passamonti F, Voso MT, Luppi M, Vannucchi AM, Tagliafico E, Manfredini R. The Response to Oxidative Damage Correlates with Driver Mutations and Clinical Outcome in Patients with Myelofibrosis. Antioxidants (Basel) 2022; 11:antiox11010113. [PMID: 35052617 PMCID: PMC8772737 DOI: 10.3390/antiox11010113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/29/2021] [Accepted: 01/01/2022] [Indexed: 12/12/2022] Open
Abstract
Myelofibrosis (MF) is the Philadelphia-negative myeloproliferative neoplasm characterized by the worst prognosis and no response to conventional therapy. Driver mutations in JAK2 and CALR impact on JAK-STAT pathway activation but also on the production of reactive oxygen species (ROS). ROS play a pivotal role in inflammation-induced oxidative damage to cellular components including DNA, therefore leading to greater genomic instability and promoting cell transformation. In order to unveil the role of driver mutations in oxidative stress, we assessed ROS levels in CD34+ hematopoietic stem/progenitor cells of MF patients. Our results demonstrated that ROS production in CD34+ cells from CALR-mutated MF patients is far greater compared with patients harboring JAK2 mutation, and this leads to increased oxidative DNA damage. Moreover, CALR-mutant cells show less superoxide dismutase (SOD) antioxidant activity than JAK2-mutated ones. Here, we show that high plasma levels of total antioxidant capacity (TAC) correlate with detrimental clinical features, such as high levels of lactate dehydrogenase (LDH) and circulating CD34+ cells. Moreover, in JAK2-mutated patients, high plasma level of TAC is also associated with a poor overall survival (OS), and multivariate analysis demonstrated that high TAC classification is an independent prognostic factor allowing the identification of patients with inferior OS in both DIPSS lowest and highest categories. Altogether, our data suggest that a different capability to respond to oxidative stress can be one of the mechanisms underlying disease progression of myelofibrosis.
Collapse
Affiliation(s)
- Elena Genovese
- Centre for Regenerative Medicine, Life Sciences Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.G.); (M.M.); (S.R.); (S.S.); (S.F.); (L.T.); (E.B.); (S.P.); (C.C.); (S.M.)
| | - Margherita Mirabile
- Centre for Regenerative Medicine, Life Sciences Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.G.); (M.M.); (S.R.); (S.S.); (S.F.); (L.T.); (E.B.); (S.P.); (C.C.); (S.M.)
| | - Sebastiano Rontauroli
- Centre for Regenerative Medicine, Life Sciences Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.G.); (M.M.); (S.R.); (S.S.); (S.F.); (L.T.); (E.B.); (S.P.); (C.C.); (S.M.)
| | - Stefano Sartini
- Centre for Regenerative Medicine, Life Sciences Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.G.); (M.M.); (S.R.); (S.S.); (S.F.); (L.T.); (E.B.); (S.P.); (C.C.); (S.M.)
| | - Sebastian Fantini
- Centre for Regenerative Medicine, Life Sciences Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.G.); (M.M.); (S.R.); (S.S.); (S.F.); (L.T.); (E.B.); (S.P.); (C.C.); (S.M.)
| | - Lara Tavernari
- Centre for Regenerative Medicine, Life Sciences Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.G.); (M.M.); (S.R.); (S.S.); (S.F.); (L.T.); (E.B.); (S.P.); (C.C.); (S.M.)
| | - Monica Maccaferri
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy;
| | - Paola Guglielmelli
- Center of Research and Innovation of Myeloproliferative Neoplasms (CRIMM), Department of Experimental and Clinical Medicine, University of Florence, Careggi University Hospital, 50134 Florence, Italy; (P.G.); (M.B.); (N.B.); (A.M.V.)
| | - Elisa Bianchi
- Centre for Regenerative Medicine, Life Sciences Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.G.); (M.M.); (S.R.); (S.S.); (S.F.); (L.T.); (E.B.); (S.P.); (C.C.); (S.M.)
| | - Sandra Parenti
- Centre for Regenerative Medicine, Life Sciences Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.G.); (M.M.); (S.R.); (S.S.); (S.F.); (L.T.); (E.B.); (S.P.); (C.C.); (S.M.)
| | - Chiara Carretta
- Centre for Regenerative Medicine, Life Sciences Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.G.); (M.M.); (S.R.); (S.S.); (S.F.); (L.T.); (E.B.); (S.P.); (C.C.); (S.M.)
| | - Selene Mallia
- Centre for Regenerative Medicine, Life Sciences Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.G.); (M.M.); (S.R.); (S.S.); (S.F.); (L.T.); (E.B.); (S.P.); (C.C.); (S.M.)
| | - Sara Castellano
- Center for Genome Research, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.C.); (E.T.)
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AUSL/AOU Policlinico, 41124 Modena, Italy; (C.C.); (L.P.); (M.L.)
- PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Corrado Colasante
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AUSL/AOU Policlinico, 41124 Modena, Italy; (C.C.); (L.P.); (M.L.)
| | - Manjola Balliu
- Center of Research and Innovation of Myeloproliferative Neoplasms (CRIMM), Department of Experimental and Clinical Medicine, University of Florence, Careggi University Hospital, 50134 Florence, Italy; (P.G.); (M.B.); (N.B.); (A.M.V.)
| | - Niccolò Bartalucci
- Center of Research and Innovation of Myeloproliferative Neoplasms (CRIMM), Department of Experimental and Clinical Medicine, University of Florence, Careggi University Hospital, 50134 Florence, Italy; (P.G.); (M.B.); (N.B.); (A.M.V.)
| | - Raffaele Palmieri
- Department of Biomedicine and Prevention, University of Tor Vergata, 00133 Rome, Italy; (R.P.); (T.O.); (M.T.V.)
| | - Tiziana Ottone
- Department of Biomedicine and Prevention, University of Tor Vergata, 00133 Rome, Italy; (R.P.); (T.O.); (M.T.V.)
- Santa Lucia Foundation, I.R.C.C.S., Neuro-Oncohematology, 00179 Rome, Italy
| | - Barbara Mora
- Division of Hematology, Ospedale ASST Sette Laghi, University of Insubria, 21110 Varese, Italy; (B.M.); (F.P.)
| | - Leonardo Potenza
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AUSL/AOU Policlinico, 41124 Modena, Italy; (C.C.); (L.P.); (M.L.)
| | - Francesco Passamonti
- Division of Hematology, Ospedale ASST Sette Laghi, University of Insubria, 21110 Varese, Italy; (B.M.); (F.P.)
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Tor Vergata, 00133 Rome, Italy; (R.P.); (T.O.); (M.T.V.)
- Santa Lucia Foundation, I.R.C.C.S., Neuro-Oncohematology, 00179 Rome, Italy
| | - Mario Luppi
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AUSL/AOU Policlinico, 41124 Modena, Italy; (C.C.); (L.P.); (M.L.)
| | - Alessandro Maria Vannucchi
- Center of Research and Innovation of Myeloproliferative Neoplasms (CRIMM), Department of Experimental and Clinical Medicine, University of Florence, Careggi University Hospital, 50134 Florence, Italy; (P.G.); (M.B.); (N.B.); (A.M.V.)
| | - Enrico Tagliafico
- Center for Genome Research, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.C.); (E.T.)
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AUSL/AOU Policlinico, 41124 Modena, Italy; (C.C.); (L.P.); (M.L.)
| | - Rossella Manfredini
- Centre for Regenerative Medicine, Life Sciences Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.G.); (M.M.); (S.R.); (S.S.); (S.F.); (L.T.); (E.B.); (S.P.); (C.C.); (S.M.)
- Correspondence:
| | | |
Collapse
|
13
|
Olschok K, Han L, de Toledo MAS, Böhnke J, Graßhoff M, Costa IG, Theocharides A, Maurer A, Schüler HM, Buhl EM, Pannen K, Baumeister J, Kalmer M, Gupta S, Boor P, Gezer D, Brümmendorf TH, Zenke M, Chatain N, Koschmieder S. CALR frameshift mutations in MPN patient-derived iPSCs accelerate maturation of megakaryocytes. Stem Cell Reports 2021; 16:2768-2783. [PMID: 34678208 PMCID: PMC8581168 DOI: 10.1016/j.stemcr.2021.09.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
Calreticulin (CALR) mutations are driver mutations in myeloproliferative neoplasms (MPNs), leading to activation of the thrombopoietin receptor and causing abnormal megakaryopoiesis. Here, we generated patient-derived CALRins5- or CALRdel52-positive induced pluripotent stem cells (iPSCs) to establish an MPN disease model for molecular and mechanistic studies. We demonstrated myeloperoxidase deficiency in granulocytic cells derived from homozygous CALR mutant iPSCs, rescued by repairing the mutation using CRISPR/Cas9. iPSC-derived megakaryocytes showed characteristics of primary megakaryocytes such as formation of demarcation membrane system and cytoplasmic pro-platelet protrusions. Importantly, CALR mutations led to enhanced megakaryopoiesis and accelerated megakaryocytic development in a thrombopoietin-independent manner. Mechanistically, our study identified differentially regulated pathways in mutated versus unmutated megakaryocytes, such as hypoxia signaling, which represents a potential target for therapeutic intervention. Altogether, we demonstrate key aspects of mutated CALR-driven pathogenesis dependent on its zygosity, and found novel therapeutic targets, making our model a valuable tool for clinical drug screening in MPNs. CALR-mutated iPSCs allow efficient modeling of human MPN disease CRISPR-mediated repair of CALR mutations rescues normal iPSC function Megakaryopoiesis in CALR-mutated iPSCs is hyperplastic and accelerated Transcriptome screen of mutated megakaryocytes identifies novel therapeutic options
Collapse
Affiliation(s)
- Kathrin Olschok
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Lijuan Han
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany; Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Marcelo A S de Toledo
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Janik Böhnke
- Institute for Biomedical Engineering, Department of Cell Biology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Martin Graßhoff
- Institute for Computational Genomics Joint Research Center for Computational Biomedicine, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Ivan G Costa
- Institute for Computational Genomics Joint Research Center for Computational Biomedicine, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Alexandre Theocharides
- Division of Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Angela Maurer
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Herdit M Schüler
- Institute for Human Genetics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Eva Miriam Buhl
- Institute for Pathology, Electron Microscopy Facility, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Kristina Pannen
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Julian Baumeister
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Milena Kalmer
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Siddharth Gupta
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Peter Boor
- Institute for Pathology, Electron Microscopy Facility, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Deniz Gezer
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Tim H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Martin Zenke
- Institute for Biomedical Engineering, Department of Cell Biology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Nicolas Chatain
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany.
| |
Collapse
|
14
|
Cell-autonomous megakaryopoiesis associated with polyclonal hematopoiesis in triple-negative essential thrombocythemia. Sci Rep 2021; 11:17702. [PMID: 34489506 PMCID: PMC8421373 DOI: 10.1038/s41598-021-97106-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/20/2021] [Indexed: 01/14/2023] Open
Abstract
A subset of essential thrombocythemia (ET) cases are negative for disease-defining mutations on JAK2, MPL, and CALR and defined as triple negative (TN). The lack of recurrent mutations in TN-ET patients makes its pathogenesis ambiguous. Here, we screened 483 patients with suspected ET in a single institution, centrally reviewed bone marrow specimens, and identified 23 TN-ET patients. Analysis of clinical records revealed that TN-ET patients were mostly young female, without a history of thrombosis or progression to secondary myelofibrosis and leukemia. Sequencing analysis and human androgen receptor assays revealed that the majority of TN-ET patients exhibited polyclonal hematopoiesis, suggesting a possibility of reactive thrombocytosis in TN-ET. However, the serum levels of thrombopoietin (TPO) and interleukin-6 in TN-ET patients were not significantly different from those in ET patients with canonical mutations and healthy individuals. Rather, CD34-positive cells from TN-ET patients showed a capacity to form megakaryocytic colonies, even in the absence of TPO. No signs of thrombocytosis were observed before TN-ET development, denying the possibility of hereditary thrombocytosis in TN-ET. Overall, these findings indicate that TN-ET is a distinctive disease entity associated with polyclonal hematopoiesis and is paradoxically caused by hematopoietic stem cells harboring a capacity for cell-autonomous megakaryopoiesis.
Collapse
|
15
|
Roy A, Shrivastva S, Naseer S. In and out: Traffic and dynamics of thrombopoietin receptor. J Cell Mol Med 2021; 25:9073-9083. [PMID: 34448528 PMCID: PMC8500957 DOI: 10.1111/jcmm.16878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/27/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022] Open
Abstract
Thrombopoiesis had long been a challenging area of study due to the rarity of megakaryocyte precursors in the bone marrow and the incomplete understanding of its regulatory cytokines. A breakthrough was achieved in the early 1990s with the discovery of the thrombopoietin receptor (TpoR) and its ligand thrombopoietin (TPO). This accelerated research in thrombopoiesis, including the uncovering of the molecular basis of myeloproliferative neoplasms (MPN) and the advent of drugs to treat thrombocytopenic purpura. TpoR mutations affecting its membrane dynamics or transport were increasingly associated with pathologies such as MPN and thrombocytosis. It also became apparent that TpoR affected hematopoietic stem cell (HSC) quiescence while priming hematopoietic stem cells (HSCs) towards the megakaryocyte lineage. Thorough knowledge of TpoR surface localization, dimerization, dynamics and stability is therefore crucial to understanding thrombopoiesis and related pathologies. In this review, we will discuss the mechanisms of TpoR traffic. We will focus on the recent progress in TpoR membrane dynamics and highlight the areas that remain unexplored.
Collapse
Affiliation(s)
- Anita Roy
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| | - Saurabh Shrivastva
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| | - Saadia Naseer
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| |
Collapse
|
16
|
Impact of Calreticulin and Its Mutants on Endoplasmic Reticulum Function in Health and Disease. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021. [PMID: 34050866 DOI: 10.1007/978-3-030-67696-4_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2024]
Abstract
The endoplasmic reticulum (ER) performs key cellular functions including protein synthesis, lipid metabolism and signaling. While these functions are spatially isolated in structurally distinct regions of the ER, there is cross-talk between the pathways. One vital player that is involved in ER function is the ER-resident protein calreticulin (CALR). It is a calcium ion-dependent lectin chaperone that primarily assists in glycoprotein synthesis in the ER as part of the protein quality control machinery. CALR also buffers calcium ion release and mediates other glycan-independent protein interactions. Mutations in CALR have been reported in a subset of chronic blood tumors called myeloproliferative neoplasms. The mutations consist of insertions or deletions in the CALR gene that all cause a + 1 bp shift in the reading frame and lead to a dramatic alteration of the amino acid sequence of the C-terminal domain of CALR. This alters CALR function and affects cell homeostasis. This chapter will discuss how CALR and mutant CALR affect ER health and disease.
Collapse
|
17
|
Mapping human calreticulin regions important for structural stability. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140710. [PMID: 34358706 DOI: 10.1016/j.bbapap.2021.140710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/24/2021] [Accepted: 08/02/2021] [Indexed: 12/28/2022]
Abstract
Calreticulin (CALR) is a highly conserved multifunctional chaperone protein primarily present in the endoplasmic reticulum, where it regulates Ca2+ homeostasis. Recently, CALR has gained special interest for its diverse functions outside the endoplasmic reticulum, including the cell surface and extracellular space. Although high-resolution structures of CALR exist, it has not yet been established how different regions and individual amino acid residues contribute to structural stability of the protein. In the present study, we have identified key residues determining the structural stability of CALR. We used a Saccharomyces cerevisiae expression system to express and purify 50 human CALR mutants, which were analysed for several parameters including secretion titer, melting temperature (Tm), stability and oligomeric state. Our results revealed the importance of a previously identified small patch of conserved surface residues, amino acids 166-187 ("cluster 2") for structural stability of the human CALR protein. Two residues, Tyr172 and Asp187, were critical for maintaining the native structure of the protein. Mutant D187A revealed a severe drop in secretion titer, it was thermally unstable, prone to degradation, and oligomer formation. Tyr172 was critical for thermal stability of CALR and interacted with the third free Cys163 residue. This illustrates an unusual thermal stability of CALR dominated by Asp187, Tyr172 and Cys163, which may interact as part of a conserved structural unit. Besides structural clusters, we found a correlation of some measured parameter values in groups of CALR mutants that cause myeloproliferative neoplasms (MPN) and in mutants that may be associated with sudden unexpected death (SUD).
Collapse
|
18
|
Bergmann AC, Kyllesbech C, Slibinskas R, Ciplys E, Højrup P, Trier NH, Houen G. Epitope Mapping of Monoclonal Antibodies to Calreticulin Reveals That Charged Amino Acids Are Essential for Antibody Binding. Antibodies (Basel) 2021; 10:antib10030031. [PMID: 34449535 PMCID: PMC8395503 DOI: 10.3390/antib10030031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/25/2021] [Accepted: 07/30/2021] [Indexed: 02/01/2023] Open
Abstract
Calreticulin is a chaperone protein, which is associated with myeloproliferative diseases. In this study, we used resin-bound peptides to characterize two monoclonal antibodies (mAbs) directed to calreticulin, mAb FMC 75 and mAb 16, which both have significantly contributed to understanding the biological function of calreticulin. The antigenicity of the resin-bound peptides was determined by modified enzyme-linked immunosorbent assay. Specific binding was determined to an 8-mer epitope located in the N-terminal (amino acids 34–41) and to a 12-mer peptide located in the C-terminal (amino acids 362–373). Using truncated peptides, the epitopes were identified as TSRWIESK and DEEQRLKEEED for mAb FMC 75 and mAb 16, respectively, where, especially the charged amino acids, were found to have a central role for a stable binding. Further studies indicated that the epitope of mAb FMC 75 is assessable in the oligomeric structure of calreticulin, making this epitope a potential therapeutic target.
Collapse
Affiliation(s)
| | - Cecilie Kyllesbech
- Department of Neurology, Rigshospitalet Glostrup, 2600 Glostrup, Denmark;
| | - Rimantas Slibinskas
- Institute of Biotechnology, University of Vilnius, 01513 Vilnius, Lithuania; (R.S.); (E.C.)
| | - Evaldas Ciplys
- Institute of Biotechnology, University of Vilnius, 01513 Vilnius, Lithuania; (R.S.); (E.C.)
| | - Peter Højrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark;
| | - Nicole Hartwig Trier
- Department of Neurology, Rigshospitalet Glostrup, 2600 Glostrup, Denmark;
- Correspondence: (N.H.T.); (G.H.)
| | - Gunnar Houen
- Department of Neurology, Rigshospitalet Glostrup, 2600 Glostrup, Denmark;
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark;
- Correspondence: (N.H.T.); (G.H.)
| |
Collapse
|
19
|
Shide K. Calreticulin mutations in myeloproliferative neoplasms. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 365:179-226. [PMID: 34756244 DOI: 10.1016/bs.ircmb.2021.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Calreticulin (CALR) is a chaperone present in the endoplasmic reticulum, which is involved in the quality control of N-glycosylated proteins and storage of calcium ions. In 2013, the C-terminal mutation in CALR was identified in half of the patients with essential thrombocythemia and primary myelofibrosis who did not have a JAK2 or MPL mutation. The results of 8 years of intensive research are changing the clinical practice associated with treating myeloproliferative neoplasms (MPNs). The presence or absence of CALR mutations and their mutation types already provide important information for diagnosis and treatment decision making. In addition, the interaction with the thrombopoietin receptor MPL, which is the main mechanism of transformation by CALR mutation, and the expression of the mutant protein on the cell surface have a great potential as targets for molecular-targeted drugs and immunotherapy. This chapter presents recent findings on the clinical significance of the CALR mutation and the molecular basis by which this mutation drives MPNs.
Collapse
Affiliation(s)
- Kotaro Shide
- Division of Haematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.
| |
Collapse
|
20
|
Yasuda S, Aoyama S, Yoshimoto R, Li H, Watanabe D, Akiyama H, Yamamoto K, Fujiwara T, Najima Y, Doki N, Sakaida E, Edahiro Y, Imai M, Araki M, Komatsu N, Miura O, Kawamata N. MPL overexpression induces a high level of mutant-CALR/MPL complex: a novel mechanism of ruxolitinib resistance in myeloproliferative neoplasms with CALR mutations. Int J Hematol 2021; 114:424-440. [PMID: 34165774 DOI: 10.1007/s12185-021-03180-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 11/26/2022]
Abstract
Ruxolitinib (RUX), a JAK1/2-inhibitor, is effective for myeloproliferative neoplasm (MPN) with both JAK2V617 F and calreticulin (CALR) mutations. However, many MPN patients develop resistance to RUX. Although mechanisms of RUX-resistance in cells with JAK2V617 F have already been characterized, those in cells with CALR mutations remain to be elucidated. In this study, we established RUX-resistant human cell lines with CALR mutations and characterized mechanisms of RUX-resistance. Here, we found that RUX-resistant cells had high levels of MPL transcripts, overexpression of both MPL and JAK2, and increased phosphorylation of JAK2 and STAT5. We also found that mature MPL proteins were more stable in RUX-resistant cells. Knockdown of MPL in RUX-resistant cells by shRNAs decreased JAK/STAT signaling. Immunoprecipitation assays showed that binding of mutant CALR to MPL was increased in RUX-resistant cells. Reduction of mutated CALR decreased proliferation of the resistant cells. When resistant cells were cultured in the absence of RUX, the RUX-resistance was reversed, with reduction of the mutant-CALR/MPL complex. In conclusion, MPL overexpression induces higher levels of a mutant-CALR/MPL complex, which may cause RUX-resistance in cells with CALR mutations. This mechanism may be a new therapeutic target to overcome RUX-resistance.
Collapse
Affiliation(s)
- Shunichiro Yasuda
- Department of Immunotherapy for Hematopoietic Disorders, Tokyo Medical and Dental University, TMDU, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Department of Hematology, TMDU, Tokyo, Japan
| | - Satoru Aoyama
- Department of Immunotherapy for Hematopoietic Disorders, Tokyo Medical and Dental University, TMDU, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Department of Hematology, TMDU, Tokyo, Japan
| | | | - Huixin Li
- Department of Immunotherapy for Hematopoietic Disorders, Tokyo Medical and Dental University, TMDU, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Daisuke Watanabe
- Department of Immunotherapy for Hematopoietic Disorders, Tokyo Medical and Dental University, TMDU, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Department of Hematology, TMDU, Tokyo, Japan
| | | | | | - Takeo Fujiwara
- Department of Global Health Promotion, TMDU, Tokyo, Japan
| | - Yuho Najima
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Noriko Doki
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Emiko Sakaida
- Department of Hematology, Chiba University, Chiba, Japan
| | - Yoko Edahiro
- Department of Hematology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Misa Imai
- Department of Hematology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Leading center for the development and Research of Cancer Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Marito Araki
- Department of Transfusion Medicine and Stem Cell Regulation, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Norio Komatsu
- Department of Hematology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Osamu Miura
- Department of Hematology, TMDU, Tokyo, Japan
| | - Norihiko Kawamata
- Department of Immunotherapy for Hematopoietic Disorders, Tokyo Medical and Dental University, TMDU, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
21
|
Induced Pluripotent Stem Cells Enable Disease Modeling and Drug Screening in Calreticulin del52 and ins5 Myeloproliferative Neoplasms. Hemasphere 2021; 5:e593. [PMID: 34131633 PMCID: PMC8196125 DOI: 10.1097/hs9.0000000000000593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
Mutations in the calreticulin (CALR) gene are seen in about 30% of essential thrombocythemia and primary myelofibrosis patients. To address the contribution of the human CALR mutants to the pathogenesis of myeloproliferative neoplasms (MPNs) in an endogenous context, we modeled the CALRdel52 and CALRins5 mutants by induced pluripotent stem cell (iPSC) technology using CD34+ progenitors from 4 patients. We describe here the generation of several clones of iPSC carrying heterozygous CALRdel52 or CALRins5 mutations. We showed that CALRdel52 induces a stronger increase in progenitors than CALRins5 and that both CALRdel52 and CALRins5 mutants favor an expansion of the megakaryocytic lineage. Moreover, we found that both CALRdel52 and CALRins5 mutants rendered colony forming unit–megakaryocyte (CFU-MK) independent from thrombopoietin (TPO), and promoted a mild constitutive activation level of signal transducer and activator of transcription 3 in megakaryocytes. Unexpectedly, a mild increase in the sensitivity of colony forming unit-granulocyte (CFU-G) to granulocyte-colony stimulating factor was also observed in iPSC CALRdel52 and CALRins5 compared with control iPSC. Moreover, CALRdel52-induced megakaryocytic spontaneous growth is more dependent on Janus kinase 2/phosphoinositide 3-kinase/extracellular signal-regulated kinase than TPO-mediated growth and opens a therapeutic window for treatments in CALR-mutated MPN. The iPSC models described here represent an interesting platform for testing newly developed inhibitors. Altogether, this study shows that CALR-mutated iPSC recapitulate MPN phenotypes in vitro and may be used for drug screening.
Collapse
|
22
|
Functional Consequences of Mutations in Myeloproliferative Neoplasms. Hemasphere 2021; 5:e578. [PMID: 34095761 PMCID: PMC8171364 DOI: 10.1097/hs9.0000000000000578] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/13/2021] [Indexed: 01/14/2023] Open
Abstract
Driver mutations occur in Janus kinase 2 (JAK2), thrombopoietin receptor (MPL), and calreticulin (CALR) in BCR-ABL1 negative myeloproliferative neoplasms (MPNs). From mutations leading to one amino acid substitution in JAK2 or MPL, to frameshift mutations in CALR resulting in a protein with a different C-terminus, all the mutated proteins lead to pathologic and persistent JAK2-STAT5 activation. The most prevalent mutation, JAK2 V617F, is associated with the 3 entities polycythemia vera (PV), essential thrombocythemia (ET), and myelofibrosis (MF), while CALR and MPL mutations are associated only with ET and MF. Triple negative ET and MF patients may harbor noncanonical mutations in JAK2 or MPL. One major fundamental question is whether the conformations of JAK2 V617F, MPL W515K/L/A, or CALR mutants differ from those of their wild type counterparts so that a specific treatment could target the clone carrying the mutated driver and spare physiological hematopoiesis. Of great interest, a set of epigenetic mutations can co-exist with the phenotypic driver mutations in 35%–40% of MPNs. These epigenetic mutations, such as TET2, EZH2, ASXL1, or DNMT3A mutations, promote clonal hematopoiesis and increased fitness of aged hematopoietic stem cells in both clonal hematopoiesis of indeterminate potential (CHIP) and MPNs. Importantly, the main MPN driver mutation JAK2 V617F is also associated with CHIP. Accumulation of several epigenetic and splicing mutations favors progression of MPNs to secondary acute myeloid leukemia. Another major fundamental question is how epigenetic rewiring due to these mutations interacts with persistent JAK2-STAT5 signaling. Answers to these questions are required for better therapeutic interventions aimed at preventing progression of ET and PV to MF, and transformation of these MPNs in secondary acute myeloid leukemia.
Collapse
|
23
|
CALR mutant protein rescues the response of MPL p.R464G variant associated with CAMT to eltrombopag. Blood 2021; 138:480-485. [PMID: 34010413 DOI: 10.1182/blood.2020010567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/20/2021] [Indexed: 11/20/2022] Open
Abstract
Congenital amegakaryocytic thrombocytopenia (CAMT) is a severe inherited thrombocytopenia due to loss-of-function mutations affecting the thrombopoietin (TPO) receptor, MPL. Here, we report a new homozygous MPL variant responsible for CAMT in one consanguineous family. The propositus and her sister presented with severe thrombocytopenia associated with mild anemia. NGS revealed the presence of a homozygous MPLR464G mutation resulting in a weak cell surface expression of the receptor in platelets. In cell lines, we observed a defect in MPLR464G maturation associated to its retention in the endoplasmic reticulum. The low cell surface expression of MPLR464G induced very limited signaling with TPO stimulation, leading to survival and reduced proliferation of cells. Overexpression of a myeloproliferative neoplasm-associated calreticulin mutant did not rescue trafficking of MPLR464G to the cell surface and did not induce constitutive signaling. However, it unexpectedly restored a normal response to eltrombopag (ELT), but not to TPO. This effect was only partially mimicked by the purified recombinant calreticulin mutant protein. Finally, the endogenous calreticulin mutant was able to restore the megakaryocyte differentiation of patient CD34+ cells carrying MPLR464G in response to ELT.
Collapse
|
24
|
Venkatesan A, Geng J, Kandarpa M, Wijeyesakere SJ, Bhide A, Talpaz M, Pogozheva ID, Raghavan M. Mechanism of mutant calreticulin-mediated activation of the thrombopoietin receptor in cancers. J Cell Biol 2021; 220:212031. [PMID: 33909030 PMCID: PMC8085772 DOI: 10.1083/jcb.202009179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/10/2021] [Accepted: 03/17/2021] [Indexed: 12/21/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are frequently driven by mutations within the C-terminal domain (C-domain) of calreticulin (CRT). CRTDel52 and CRTIns5 are recurrent mutations. Oncogenic transformation requires both mutated CRT and the thrombopoietin receptor (Mpl), but the molecular mechanism of CRT-mediated constitutive activation of Mpl is unknown. We show that the acquired C-domain of CRTDel52 mediates both Mpl binding and disulfide-linked CRTDel52 dimerization. Cysteine mutations within the novel C-domain (C400A and C404A) and the conserved N-terminal domain (N-domain; C163A) of CRTDel52 are required to reduce disulfide-mediated dimers and multimers of CRTDel52. Based on these data and published structures of CRT oligomers, we identify an N-domain dimerization interface relevant to both WT CRT and CRTDel52. Elimination of disulfide bonds and ionic interactions at both N-domain and C-domain dimerization interfaces is required to abrogate the ability of CRTDel52 to mediate cell proliferation via Mpl. Thus, MPNs exploit a natural dimerization interface of CRT combined with C-domain gain of function to achieve cell transformation.
Collapse
Affiliation(s)
- Arunkumar Venkatesan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI
| | - Jie Geng
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI
| | - Malathi Kandarpa
- Department of Internal Medicine/Division of Hematology/Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, MI
| | | | - Ashwini Bhide
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI
| | - Moshe Talpaz
- Department of Internal Medicine/Division of Hematology/Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, MI
| | - Irina D Pogozheva
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI
| | - Malini Raghavan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
25
|
Rivera JF, Baral AJ, Nadat F, Boyd G, Smyth R, Patel H, Burman EL, Alameer G, Boxall SA, Jackson BR, Baxter EJ, Laslo P, Green AR, Kent DG, Mullally A, Chen E. Zinc-dependent multimerization of mutant calreticulin is required for MPL binding and MPN pathogenesis. Blood Adv 2021; 5:1922-1932. [PMID: 33821991 PMCID: PMC8045488 DOI: 10.1182/bloodadvances.2020002402] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 02/17/2021] [Indexed: 01/30/2023] Open
Abstract
Calreticulin (CALR) is mutated in the majority of JAK2/MPL-unmutated myeloproliferative neoplasms (MPNs). Mutant CALR (CALRdel52) exerts its effect by binding to the thrombopoietin receptor MPL to cause constitutive activation of JAK-STAT signaling. In this study, we performed an extensive mutagenesis screen of the CALR globular N-domain and revealed 2 motifs critical for CALRdel52 oncogenic activity: (1) the glycan-binding lectin motif and (2) the zinc-binding domain. Further analysis demonstrated that the zinc-binding domain was essential for formation of CALRdel52 multimers, which was a co-requisite for MPL binding. CALRdel52 variants incapable of binding zinc were unable to homomultimerize, form CALRdel52-MPL heteromeric complexes, or stimulate JAK-STAT signaling. Finally, treatment with zinc chelation disrupted CALRdel52-MPL complexes in hematopoietic cells in conjunction with preferential eradication of cells expressing CALRdel52 relative to cells expressing other MPN oncogenes. In addition, zinc chelators exhibited a therapeutic effect in preferentially impairing growth of CALRdel52-mutant erythroblasts relative to unmutated erythroblasts in primary cultures of MPN patients. Together, our data implicate zinc as an essential cofactor for CALRdel52 oncogenic activity by enabling CALRdel52 multimerization and interaction with MPL, and suggests that perturbation of intracellular zinc levels may represent a new approach to abrogate the oncogenic activity of CALRdel52 in the treatment of MPNs.
Collapse
Affiliation(s)
- Jeanne F Rivera
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and
- Division of Haematology and Immunology, Leeds Institute for Medical Research, St. James's University Hospital, University of Leeds, Leeds, United Kingdom
| | - April J Baral
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and
| | - Fatima Nadat
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and
| | - Grace Boyd
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Rachael Smyth
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and
| | - Hershna Patel
- School of Life Sciences, University of Westminster, London, United Kingdom
| | - Emma L Burman
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and
| | - Ghadah Alameer
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and
| | - Sally A Boxall
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and
| | - Brian R Jackson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and
| | - E Joanna Baxter
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Peter Laslo
- Division of Haematology and Immunology, Leeds Institute for Medical Research, St. James's University Hospital, University of Leeds, Leeds, United Kingdom
| | - Anthony R Green
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Wellcome MRC Cambridge Stem Cell Institute and
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - David G Kent
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Ann Mullally
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Broad Institute, Cambridge, MA; and
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Edwin Chen
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and
- School of Life Sciences, University of Westminster, London, United Kingdom
| |
Collapse
|
26
|
Hematoxylin binds to mutant calreticulin and disrupts its abnormal interaction with thrombopoietin receptor. Blood 2021; 137:1920-1931. [PMID: 33202418 DOI: 10.1182/blood.2020006264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 11/05/2020] [Indexed: 12/21/2022] Open
Abstract
Somatic mutations of calreticulin (CALR) have been identified as a main disease driver of myeloproliferative neoplasms, suggesting that development of drugs targeting mutant CALR is of great significance. Site-directed mutagenesis in the N-glycan binding domain (GBD) abolishes the ability of mutant CALR to oncogenically activate the thrombopoietin receptor (MPL). We therefore hypothesized that a small molecule targeting the GBD might inhibit the oncogenicity of the mutant CALR. Using an in silico molecular docking study, we identified candidate binders to the GBD of CALR. Further experimental validation of the hits identified a group of catechols inducing a selective growth inhibitory effect on cells that depend on oncogenic CALR for survival and proliferation. Apoptosis-inducing effects by the compound were significantly higher in the CALR-mutated cells than in CALR wild-type cells. Additionally, knockout or C-terminal truncation of CALR eliminated drug hypersensitivity in CALR-mutated cells. We experimentally confirmed the direct binding of the selected compound to CALR, disruption of the mutant CALR-MPL interaction, inhibition of the JAK2-STAT5 pathway, and reduction at the intracellular level of mutant CALR upon drug treatment. Our data indicate that small molecules targeting the GBD of CALR can selectively kill CALR-mutated cells by disrupting the CALR-MPL interaction and inhibiting oncogenic signaling.
Collapse
|
27
|
The Contemporary Approach to CALR-Positive Myeloproliferative Neoplasms. Int J Mol Sci 2021; 22:ijms22073371. [PMID: 33806036 PMCID: PMC8038093 DOI: 10.3390/ijms22073371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 12/20/2022] Open
Abstract
CALR mutations are a revolutionary discovery and represent an important hallmark of myeloproliferative neoplasms (MPN), especially essential thrombocythemia and primary myelofibrosis. To date, several CALR mutations were identified, with only frameshift mutations linked to the diseased phenotype. It is of diagnostic and prognostic importance to properly define the type of CALR mutation and subclassify it according to its structural similarities to the classical mutations, a 52-bp deletion (type 1 mutation) and a 5-bp insertion (type 2 mutation), using a statistical approximation algorithm (AGADIR). Today, the knowledge on the pathogenesis of CALR-positive MPN is expanding and several cellular mechanisms have been recognized that finally cause a clonal hematopoietic expansion. In this review, we discuss the current basis of the cellular effects of CALR mutants and the understanding of its implementation in the current diagnostic laboratorial and medical practice. Different methods of CALR detection are explained and a diagnostic algorithm is shown that aids in the approach to CALR-positive MPN. Finally, contemporary methods joining artificial intelligence in accordance with molecular-genetic biomarkers in the approach to MPN are presented.
Collapse
|
28
|
Abstract
Megakaryocytes give rise to platelets, which have a wide variety of functions in coagulation, immune response, inflammation, and tissue repair. Dysregulation of megakaryocytes is a key feature of in the myeloproliferative neoplasms, especially myelofibrosis. Megakaryocytes are among the main drivers of myelofibrosis by promoting myeloproliferation and bone marrow fibrosis. In vivo targeting of megakaryocytes by genetic and pharmacologic approaches ameliorates the disease, underscoring the important role of megakaryocytes in myeloproliferative neoplasms. Here we review the current knowledge of the function of megakaryocytes in the JAK2, CALR, and MPL-mutant myeloproliferative neoplasms.
Collapse
|
29
|
Roles of Calreticulin in Protein Folding, Immunity, Calcium Signaling and Cell Transformation. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 59:145-162. [PMID: 34050865 DOI: 10.1007/978-3-030-67696-4_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The endoplasmic reticulum (ER) is an organelle that mediates the proper folding and assembly of proteins destined for the cell surface, the extracellular space and subcellular compartments such as the lysosomes. The ER contains a wide range of molecular chaperones to handle the folding requirements of a diverse set of proteins that traffic through this compartment. The lectin-like chaperones calreticulin and calnexin are an important class of structurally-related chaperones relevant for the folding and assembly of many N-linked glycoproteins. Despite the conserved mechanism of action of these two chaperones in nascent protein recognition and folding, calreticulin has unique functions in cellular calcium signaling and in the immune response. The ER-related functions of calreticulin in the assembly of major histocompatibility complex (MHC) class I molecules are well-studied and provide many insights into the modes of substrate and co-chaperone recognition by calreticulin. Calreticulin is also detectable on the cell surface under some conditions, where it induces the phagocytosis of apoptotic cells. Furthermore, mutations of calreticulin induce cell transformation in myeloproliferative neoplasms (MPN). Studies of the functions of the mutant calreticulin in cell transformation and immunity have provided many insights into the normal biology of calreticulin, which are discussed.
Collapse
|
30
|
MPN: The Molecular Drivers of Disease Initiation, Progression and Transformation and their Effect on Treatment. Cells 2020; 9:cells9081901. [PMID: 32823933 PMCID: PMC7465511 DOI: 10.3390/cells9081901] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs) constitute a group of disorders identified by an overproduction of cells derived from myeloid lineage. The majority of MPNs have an identifiable driver mutation responsible for cytokine-independent proliferative signalling. The acquisition of coexisting mutations in chromatin modifiers, spliceosome complex components, DNA methylation modifiers, tumour suppressors and transcriptional regulators have been identified as major pathways for disease progression and leukemic transformation. They also confer different sensitivities to therapeutic options. This review will explore the molecular basis of MPN pathogenesis and specifically examine the impact of coexisting mutations on disease biology and therapeutic options.
Collapse
|
31
|
Kjær L. Clonal Hematopoiesis and Mutations of Myeloproliferative Neoplasms. Cancers (Basel) 2020; 12:cancers12082100. [PMID: 32731609 PMCID: PMC7464548 DOI: 10.3390/cancers12082100] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/17/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are associated with the fewest number of mutations among known cancers. The mutations propelling these malignancies are phenotypic drivers providing an important implement for diagnosis, treatment response monitoring, and gaining insight into the disease biology. The phenotypic drivers of Philadelphia chromosome negative MPN include mutations in JAK2, CALR, and MPL. The most prevalent driver mutation JAK2V617F can cause disease entities such as essential thrombocythemia (ET) and polycythemia vera (PV). The divergent development is considered to be influenced by the acquisition order of the phenotypic driver mutation relative to other MPN-related mutations such as TET2 and DNMT3A. Advances in molecular biology revealed emergence of clonal hematopoiesis (CH) to be inevitable with aging and associated with risk factors beyond the development of blood cancers. In addition to its well-established role in thrombosis, the JAK2V617F mutation is particularly connected to the risk of developing cardiovascular disease (CVD), a pertinent issue, as deep molecular screening has revealed the prevalence of the mutation to be much higher in the background population than previously anticipated. Recent findings suggest a profound under-diagnosis of MPNs, and considering the impact of CVD on society, this calls for early detection of phenotypic driver mutations and clinical intervention.
Collapse
Affiliation(s)
- Lasse Kjær
- Department of Hematology, Zealand University Hospital, Vestermarksvej 7-9, DK-4000 Roskilde, Denmark
| |
Collapse
|
32
|
Verger E, Maslah N, Schlageter M, Chomienne C, Kiladjian J, Giraudier S, Cassinat B. Pitfalls in CALR exon 9 mutation detection: A single‐center experience in 571 positive patients. Int J Lab Hematol 2020; 42:827-832. [DOI: 10.1111/ijlh.13282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/02/2020] [Accepted: 06/10/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Emmanuelle Verger
- Laboratoire de Biologie Cellulaire AP‐HP Hopital Saint‐Louis Paris France
- Université de Paris U1131 INSERM IRSL Paris France
| | - Nabih Maslah
- Laboratoire de Biologie Cellulaire AP‐HP Hopital Saint‐Louis Paris France
- Université de Paris U1131 INSERM IRSL Paris France
| | - Marie‐Helene Schlageter
- Laboratoire de Biologie Cellulaire AP‐HP Hopital Saint‐Louis Paris France
- Université de Paris U1131 INSERM IRSL Paris France
| | - Christine Chomienne
- Laboratoire de Biologie Cellulaire AP‐HP Hopital Saint‐Louis Paris France
- Université de Paris U1131 INSERM IRSL Paris France
| | - Jean‐Jacques Kiladjian
- Université de Paris U1131 INSERM IRSL Paris France
- Laboratoire d’Excellence GR‐Ex Paris France
- Centre d’Investigations Cliniques Hopital Saint‐Louis Paris France
| | - Stephane Giraudier
- Laboratoire de Biologie Cellulaire AP‐HP Hopital Saint‐Louis Paris France
- Université de Paris U1131 INSERM IRSL Paris France
- Laboratoire d’Excellence GR‐Ex Paris France
| | - Bruno Cassinat
- Laboratoire de Biologie Cellulaire AP‐HP Hopital Saint‐Louis Paris France
- Université de Paris U1131 INSERM IRSL Paris France
- Laboratoire d’Excellence GR‐Ex Paris France
| |
Collapse
|
33
|
Edahiro Y, Araki M, Komatsu N. Mechanism underlying the development of myeloproliferative neoplasms through mutant calreticulin. Cancer Sci 2020; 111:2682-2688. [PMID: 32462673 PMCID: PMC7419020 DOI: 10.1111/cas.14503] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/12/2020] [Accepted: 05/22/2020] [Indexed: 01/14/2023] Open
Abstract
Deregulation of cytokine signaling is frequently associated with various pathological conditions, including malignancies. In patients with myeloproliferative neoplasms (MPNs), recurrent somatic mutations in the calreticulin (CALR) gene, which encodes a molecular chaperone that resides in the endoplasmic reticulum, have been reported. Studies have defined mutant CALR as an oncogene promoting the development of MPN, and deciphered a novel molecular mechanism by which mutant CALR constitutively activates thrombopoietin receptor MPL and its downstream molecules to induce cellular transformation. The mechanism of interaction and activation of MPL by mutant CALR is unique, not only due to the latter forming a homomultimeric complex through a novel mutant‐specific sequence generated by frameshift mutation, but also for its ability to interact with immature asparagine‐linked glycan for eventual engagement with immature MPL in the endoplasmic reticulum. The complex formed between mutant CALR and MPL is then transported to the cell surface, where it induces constitutive activation of downstream kinase JAK2 bound to MPL. Refined structural and cell biological studies can provide an in‐depth understanding of this unusual mechanism of receptor activation by a mutant molecular chaperone. Mutant CALR is also involved in modulation of the immune response, transcription, and intracellular homeostasis, which could contribute to the development of MPN. In the present article, we comprehensively review the current understanding of the underlying molecular mechanisms for mutant molecular chaperone‐induced cellular transformation.
Collapse
Affiliation(s)
- Yoko Edahiro
- Department of Hematology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Marito Araki
- Department of Transfusion Medicine and Stem Cell Regulation, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Norio Komatsu
- Department of Hematology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
34
|
Defective interaction of mutant calreticulin and SOCE in megakaryocytes from patients with myeloproliferative neoplasms. Blood 2020; 135:133-144. [PMID: 31697806 DOI: 10.1182/blood.2019001103] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022] Open
Abstract
Approximately one-fourth of patients with essential thrombocythemia or primary myelofibrosis carry a somatic mutation of the calreticulin gene (CALR), the gene encoding for calreticulin. A 52-bp deletion (type I mutation) and a 5-bp insertion (type II mutation) are the most frequent genetic lesions. The mechanism(s) by which a CALR mutation leads to a myeloproliferative phenotype has been clarified only in part. We studied the interaction between calreticulin and store-operated calcium (Ca2+) entry (SOCE) machinery in megakaryocytes (Mks) from healthy individuals and from patients with CALR-mutated myeloproliferative neoplasms (MPNs). In Mks from healthy subjects, binding of recombinant human thrombopoietin to c-Mpl induced the activation of signal transducer and activator of transcription 5, AKT, and extracellular signal-regulated kinase 1/2, determining inositol triphosphate-dependent Ca2+ release from the endoplasmic reticulum (ER). This resulted in the dissociation of the ER protein 57 (ERp57)-mediated complex between calreticulin and stromal interaction molecule 1 (STIM1), a protein of the SOCE machinery that leads to Ca2+ mobilization. In Mks from patients with CALR-mutated MPNs, defective interactions between mutant calreticulin, ERp57, and STIM1 activated SOCE and generated spontaneous cytosolic Ca2+ flows. In turn, this resulted in abnormal Mk proliferation that was reverted using a specific SOCE inhibitor. In summary, the abnormal SOCE regulation of Ca2+ flows in Mks contributes to the pathophysiology of CALR-mutated MPNs. In perspective, SOCE may represent a new therapeutic target to counteract Mk proliferation and its clinical consequences in MPNs.
Collapse
|
35
|
Mutant calreticulin in myeloproliferative neoplasms. Blood 2020; 134:2242-2248. [PMID: 31562135 DOI: 10.1182/blood.2019000622] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 09/19/2019] [Indexed: 01/03/2023] Open
Abstract
Recurrent mutations in calreticulin are present in ∼20% of patients with myeloproliferative neoplasms (MPNs). Since its discovery in 2013, we now have a more precise understanding of how mutant CALR, an endoplasmic reticulum chaperone protein, activates the JAK/STAT signaling pathway via a pathogenic binding interaction with the thrombopoietin receptor MPL to induce MPNs. In this Spotlight article, we review the current understanding of the biology underpinning mutant CALR-driven MPNs, discuss clinical implications, and highlight future therapeutic approaches.
Collapse
|
36
|
Jia R, Kralovics R. Progress in elucidation of molecular pathophysiology of myeloproliferative neoplasms and its application to therapeutic decisions. Int J Hematol 2020; 111:182-191. [PMID: 31741139 DOI: 10.1007/s12185-019-02778-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 01/14/2023]
Abstract
Myeloproliferative neoplasms (MPNs) are hematological diseases that are driven by somatic mutations in hematopoietic stem and progenitor cells. These mutations include JAK2, CALR and MPL mutations as the main disease drivers, mutations driving clonal expansion, and mutations that contribute to progression of chronic MPNs to myelodysplasia and acute leukemia. JAK-STAT pathway has played a central role in the disease pathogenesis of MPNs. Mutant JAK2, CALR or MPL constitutively activates JAK-STAT pathway independent of the cytokine regulation. Symptomatic management is the primary goal of MPN therapy in ET and low-risk PV patients. JAK2 inhibitors and interferon-α are the established therapies in MF and high-risk PV patients.
Collapse
Affiliation(s)
- Ruochen Jia
- Department of Laboratory Medicine, Medical University of Vienna, 18-20 Währinger Gürtel, 1090, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Robert Kralovics
- Department of Laboratory Medicine, Medical University of Vienna, 18-20 Währinger Gürtel, 1090, Vienna, Austria.
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
37
|
Mutant Calreticulin in the Myeloproliferative Neoplasms. Hemasphere 2020; 4:e333. [PMID: 32382708 PMCID: PMC7000472 DOI: 10.1097/hs9.0000000000000333] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 12/17/2022] Open
Abstract
Mutations in the gene for calreticulin (CALR) were identified in the myeloproliferative neoplasms (MPNs) essential thrombocythaemia (ET) and primary myelofibrosis (MF) in 2013; in combination with previously described mutations in JAK2 and MPL, driver mutations have now been described for the majority of MPN patients. In subsequent years, researchers have begun to unravel the mechanisms by which mutant CALR drives transformation and to understand their clinical implications. Mutant CALR activates the thrombopoietin receptor (MPL), causing constitutive activation of Janus kinase 2 (JAK2) signaling and cytokine independent growth in vitro. Mouse models show increased numbers of hematopoietic stem cells (HSCs) and overproduction of megakaryocytic lineage cells with associated thrombocytosis. In the clinic, detection of CALR mutations has been embedded in World Health Organization and other international diagnostic guidelines. Distinct clinical and laboratory associations of CALR mutations have been identified together with their prognostic significance, with CALR mutant patients showing increased overall survival. The discovery and subsequent study of CALR mutations have illuminated novel aspects of megakaryopoiesis and raised the possibility of new therapeutic approaches.
Collapse
|
38
|
The role of calreticulin mutations in myeloproliferative neoplasms. Int J Hematol 2019; 111:200-205. [DOI: 10.1007/s12185-019-02800-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022]
|
39
|
Mutant calreticulin interacts with MPL in the secretion pathway for activation on the cell surface. Leukemia 2019; 34:499-509. [PMID: 31462733 DOI: 10.1038/s41375-019-0564-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 06/30/2019] [Accepted: 07/15/2019] [Indexed: 01/18/2023]
Abstract
Studies have shown that mutant calreticulin (CALR) constitutively activates the thrombopoietin (TPO) receptor MPL and thus plays a causal role in the development of myeloproliferative neoplasms (MPNs). To further elucidate the molecular mechanism by which mutant CALR promotes MPN development, we studied the subcellular localization of mutant CALR and its importance for the oncogenic properties of mutant CALR. Here, mutant CALR accumulated in the Golgi apparatus, and its entrance into the secretion pathway and capacity to interact with N-glycan were required for its oncogenic capacity via the constitutive activation of MPL. Mutant CALR-dependent MPL activation was resistant to blockade of intracellular protein trafficking, suggesting that MPL is activated before reaching the cell surface. However, removal of MPL from the cell surface with trypsin shut down downstream activation, implying that the surface localization of MPL is required for mutant CALR-dependent activation. Furthermore, we found that mutant CALR and MPL interact on the cell surface. Based on these findings, we propose a model in which mutant CALR induces MPL activation on the cell surface to promote MPN development.
Collapse
|
40
|
|
41
|
Vainchenker W, Plo I, Marty C, Varghese LN, Constantinescu SN. The role of the thrombopoietin receptor MPL in myeloproliferative neoplasms: recent findings and potential therapeutic applications. Expert Rev Hematol 2019; 12:437-448. [PMID: 31092065 DOI: 10.1080/17474086.2019.1617129] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Classical Myeloproliferative Neoplasms (MPNs) include three disorders: Polycythemia Vera (PV), Essential Thrombocythemia (ET) and Primary Myelofibrosis (PMF). MPNs are associated with constitutive activation of JAK2 leading to persistent cell signaling downstream of the dimeric myeloid cytokine receptors due to mutations in three genes encoding JAK2, calreticulin (CALR) and the thrombopoietin (TPO) receptor (MPL or TPOR). CALR and MPL mutants induce JAK2 activation that depends on MPL expression, thus explaining why they induce megakaryocyte pathologies including ET and PMF, but not PV. In contrast, JAK2 V617F drives all three diseases as it induces persistent signaling via EPOR, G-CSFR (CSF3R) and MPL. Areas Covered: Here, we review how different pathogenic mutations of MPL are translated into active receptors by inducing stable dimerization. We focus on the unique role of MPL on the hematopoietic stem cell (HSC), explaining why MPL is indispensable for the development of all MPNs. Last but not least, we describe how CALR mutants are pathogenic via binding and activation of MPL. Expert Opinion: Altogether, we believe that MPL is an important, but challenging, therapeutic target in MPNs that requires novel strategies to interrupt the specific conformational changes induced by each mutation or pathologic interaction without compromising the key functions of wild type MPL.
Collapse
Affiliation(s)
- William Vainchenker
- a UMR1170 , INSERM , Villejuif , France.,b Université Paris-Saclay , Villejuif , France
| | - Isabelle Plo
- a UMR1170 , INSERM , Villejuif , France.,b Université Paris-Saclay , Villejuif , France
| | - Caroline Marty
- a UMR1170 , INSERM , Villejuif , France.,b Université Paris-Saclay , Villejuif , France
| | - Leila N Varghese
- c Ludwig Institute for Cancer Research Brussels , Brussels , Belgium.,d de Duve Institute, Université catholique de Louvain , Brussels , Belgium
| | - Stefan N Constantinescu
- c Ludwig Institute for Cancer Research Brussels , Brussels , Belgium.,d de Duve Institute, Université catholique de Louvain , Brussels , Belgium.,e WELBIO (Walloon Excellence in Life Sciences and Biotechnology) , Brussels , Belgium
| |
Collapse
|
42
|
Floss DM, Scheller J. Naturally occurring and synthetic constitutive-active cytokine receptors in disease and therapy. Cytokine Growth Factor Rev 2019; 47:1-20. [PMID: 31147158 DOI: 10.1016/j.cytogfr.2019.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023]
Abstract
Cytokines control immune related events and are critically involved in a plethora of patho-physiological processes including autoimmunity and cancer development. Mutations which cause ligand-independent, constitutive activation of cytokine receptors are quite frequently found in diseases. Many constitutive-active cytokine receptor variants have been directly connected to disease development and mechanistically analyzed. Nature's solutions to generate constitutive cytokine receptors has been recently adopted by synthetic cytokine receptor biology, with the goal to optimize immune therapeutics. Here, CAR T cell immmunotherapy represents the first example to combine synthetic biology with genetic engineering during therapy. Hence, constitutive-active cytokine receptors are therapeutic targets, but also emerging tools to improve or modulate immunotherapeutic strategies. This review gives a comprehensive insight into the field of naturally occurring and synthetic constitutive-active cytokine receptors.
Collapse
Affiliation(s)
- Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
43
|
Mice with Calr mutations homologous to human CALR mutations only exhibit mild thrombocytosis. Blood Cancer J 2019; 9:42. [PMID: 30926777 PMCID: PMC6440999 DOI: 10.1038/s41408-019-0202-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 12/27/2022] Open
Abstract
Calreticulin (CALR) exon 9 frameshift mutations, commonly detected in essential thrombocythemia (ET) and primary myelofibrosis patients, activate signal transducer and activator of transcription (STAT) proteins in the presence of Myeloproliferative Leukemia Virus (MPL) and induce ET in vivo. Loss of the KDEL motif, an endoplasmic reticulum retention signal, and generation of many positively charged amino acids (AAs) in the mutated C-terminus are thought to be important for disease induction. To test this hypothesis, we generated mice harboring a Calr frameshift mutation using the CRISPR/Cas9 system. Deletion of 19-base pairs in exon 9 (c.1099-1117del), designated the del19 mutation, induced loss of the KDEL motif and generated many positively charged AAs, similar to human mutants. Calr del19 mice exhibited mild thrombocytosis, slightly increased megakaryocytes, and mild splenomegaly. In vitro experiments revealed that the murine CALR del19 mutant had a weaker ability to combine with murine MPL than the human CALR del52 mutant. Consequently, STAT5 activation was also very weak downstream of the murine mutant and murine MPL, and may be the reason for the mild disease severity. In summary, loss of the KDEL motif and positively charged AAs in the C-terminus of CALR is insufficient for MPL binding and ET development.
Collapse
|
44
|
Calreticulin mutants as oncogenic rogue chaperones for TpoR and traffic-defective pathogenic TpoR mutants. Blood 2019; 133:2669-2681. [PMID: 30902807 DOI: 10.1182/blood-2018-09-874578] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 03/12/2019] [Indexed: 01/22/2023] Open
Abstract
Calreticulin (CALR) +1 frameshift mutations in exon 9 are prevalent in myeloproliferative neoplasms. Mutant CALRs possess a new C-terminal sequence rich in positively charged amino acids, leading to activation of the thrombopoietin receptor (TpoR/MPL). We show that the new sequence endows the mutant CALR with rogue chaperone activity, stabilizing a dimeric state and transporting TpoR and mutants thereof to the cell surface in states that would not pass quality control; this function is absolutely required for oncogenic transformation. Mutant CALRs determine traffic via the secretory pathway of partially immature TpoR, as they protect N117-linked glycans from further processing in the Golgi apparatus. A number of engineered or disease-associated TpoRs such as TpoR/MPL R102P, which causes congenital thrombocytopenia, are rescued for traffic and function by mutant CALRs, which can also overcome endoplasmic reticulum retention signals on TpoR. In addition to requiring N-glycosylation of TpoR, mutant CALRs require a hydrophobic patch located in the extracellular domain of TpoR to induce TpoR thermal stability and initial intracellular activation, whereas full activation requires cell surface localization of TpoR. Thus, mutant CALRs are rogue chaperones for TpoR and traffic-defective TpoR mutants, a function required for the oncogenic effects.
Collapse
|
45
|
Merlinsky TR, Levine RL, Pronier E. Unfolding the Role of Calreticulin in Myeloproliferative Neoplasm Pathogenesis. Clin Cancer Res 2019; 25:2956-2962. [PMID: 30655313 DOI: 10.1158/1078-0432.ccr-18-3777] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/18/2018] [Accepted: 01/14/2019] [Indexed: 12/12/2022]
Abstract
In 2013, two seminal studies identified gain-of-function mutations in the Calreticulin (CALR) gene in a subset of JAK2/MPL-negative myeloproliferative neoplasm (MPN) patients. CALR is an endoplasmic reticulum (ER) chaperone protein that normally binds misfolded proteins in the ER and prevents their export to the Golgi and had never previously been reported mutated in cancer or to be associated with hematologic disorders. Further investigation determined that mutated CALR is able to achieve oncogenic transformation primarily through constitutive activation of the MPL-JAK-STAT signaling axis. Here we review our current understanding of the role of CALR mutations in MPN pathogenesis and how these insights can lead to innovative therapeutics approaches.
Collapse
Affiliation(s)
- Tiffany R Merlinsky
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York. .,Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York.,Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elodie Pronier
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
46
|
Mutant molecular chaperone activates cytokine receptor as a homomultimer. Oncotarget 2018; 9:35201-35202. [PMID: 30443286 PMCID: PMC6219661 DOI: 10.18632/oncotarget.26221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 10/04/2018] [Indexed: 01/14/2023] Open
|