1
|
Zhu X, Wu J, Chen X, Shi D, Hui P, Wang H, Wu Z, Wu S, Bao W, Fan H. DNA ligase III mediates deoxynivalenol exposure-induced DNA damage in intestinal epithelial cells by regulating oxidative stress and interaction with PCNA. Int J Biol Macromol 2024; 282:137137. [PMID: 39505167 DOI: 10.1016/j.ijbiomac.2024.137137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024]
Abstract
Deoxynivalenol (DON) is a widely distributed mycotoxin that is severely cytotoxic and genotoxic to animals and humans. The gut is the initial site of DON exposure and absorption, which can cause severe intestinal damage. However, the underlying mechanisms and effective therapeutic approaches remain unknown. Here, the study indicated that DON exposure caused significant DNA damage in intestinal porcine epithelial cells (IPEC-J2), enhanced significantly the expression of γ-H2AX and 8-hydroxy-2'-deoxyguanosine, and altered the mRNA expression of key genes in the DNA repair pathway. Among them, ligases3 (LIG3) is the key DNA damage/repair gene and the only ligase responsible for the replication and maintenance of mitochondrial DNA. The expression of LIG3 was significantly decreased after DON exposure and showed a dose-dependent effect, decreased expression of LIG3 exacerbates DON-induced cytotoxicity and genotoxicity, decreased cell viability, induced apoptosis and cell cycle arrest, activation of inflammatory factors and MAPK pathway. Furthermore, LIG3 directly binds and regulates PCNA and play a positive regulatory role in the cellular cytotoxicity and genotoxicity upon DON exposure. Collectively, the findings elucidate the regulatory function of LIG3 in DON-induced DNA damage, providing valuable insights into identifying molecular targets for the comprehensive prevention and control of DON contamination.
Collapse
Affiliation(s)
- Xiaoyang Zhu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, college of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jiayun Wu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China
| | - Xiaolei Chen
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, college of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Dongfeng Shi
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, college of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Peng Hui
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, college of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Haifei Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, college of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint international Research Laboratory of Agriculture & Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Jiangsu, Yangzhou 225009, China
| | - Zhengchang Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, college of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shenglong Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, college of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint international Research Laboratory of Agriculture & Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Jiangsu, Yangzhou 225009, China
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, college of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint international Research Laboratory of Agriculture & Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Jiangsu, Yangzhou 225009, China
| | - Hairui Fan
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, college of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| |
Collapse
|
2
|
Fonsi M, Fulbert J, Billat PA, Arbitrio M, Tagliaferri P, Tassone P, Di Martino MT. Scaling approaches for the prediction of human clearance of LNA-i-mir-221: A retrospective validation. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 7:100197. [PMID: 39188553 PMCID: PMC11345919 DOI: 10.1016/j.crphar.2024.100197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/08/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024] Open
Abstract
LNA-i-miR-221 is a novel microRNA(miRNA)-221 inhibitor designed for the treatment of human malignancies. It has recently undergone phase 1 clinical trial (P1CT) and early pharmacokinetics (PKs) data in cancer patients are now available. We previously used multiple allometric interspecies scaling methods to draw inferences about LNA-i-miR-221 PKs in humans and estimated the patient dose based on the safe and pharmacodynamic (PD) active dose observed in mice, therefore providing a framework for the definition of safe starting and escalation doses for the P1CT. The preliminary data collected during the P1CT showed that the LNA-i-miR-221 anticipated doses, according to our human PK estimation approach, were indeed well tolerated and effective. PD data demonstrated concentration-dependent downregulation of miR-221 and upregulation of its CDKN1B/p27 and PTEN canonical targets as well as stable disease in 8 (50.0%) patients and partial response in 1 (6.3%) colorectal cancer case. Here, we detail the experimentally evaluated PK parameters of LNA-i-miR-221 in human, using both a non-compartmental and a population PKs approach. The population approach was adequately described by a three-compartments model with first-order elimination. The recorded age, sex and body weight of patients were evaluated as potential covariates. The estimated typical population parameter values were clearance (CL = 200 mL/h/kg), central volume of distribution (V1 = 45 mL/kg), peripheral volume of distribution (V2 = 200 mL/kg, volume of the second peripheral compartment V3 = 930 mL/h/kg) and inter-compartmental clearance (Q2 = 480 mL/h/kg and Q3 = 68 mL/h/kg). Age was found to be a predictor of Q3, with a statistically significant correlation. This work aimed also at retrospectively comparing the measured plasmatic clearance values with those predicted by different allometric scaling approaches. Our comparative analysis showed that the most accurate prediction was achieved by applying the single species allometric scaling approach and that the use of more than one species in allometric scaling to predict therapeutic oligonucleotides PKs would not necessarily generate the best prediction. Finally, our predictive approach was found accurate not only in predicting the main PK parameters in human but suggesting the range of effective and safe dose to be applied in the next clinic phase 2.
Collapse
Affiliation(s)
| | | | | | - Mariamena Arbitrio
- Institute of Research and Biomedical Innovation (IRIB), Italian National Council (CNR), 88100, Catanzaro, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
| | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
| |
Collapse
|
3
|
Campo C, Gangemi S, Pioggia G, Allegra A. Beneficial Effect of Olive Oil and Its Derivates: Focus on Hematological Neoplasm. Life (Basel) 2024; 14:583. [PMID: 38792604 PMCID: PMC11122568 DOI: 10.3390/life14050583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Olive oil (Olea europaea) is one of the major components of the Mediterranean diet and is composed of a greater percentage of monounsaturated fatty acids, such as oleic acid; polyunsaturated fatty acids, such as linoleic acid; and minor compounds, such as phenolic compounds, and particularly hydroxytyrosol. The latter, in fact, are of greater interest since they have found widespread use in popular medicine. In recent years, it has been documented that phenolic acids and in particular hydroxytyrosol have anti-inflammatory, antioxidant, and antiproliferative action and therefore interest in their possible use in clinical practice and in particular in neoplasms, both solid and hematological, has arisen. This work aims to summarize and analyze the studies present in the literature, both in vitro and in vivo, on the possible use of minor components of olive oil in some hematological neoplasms. In recent years, in fact, interest in nutraceutical science has expanded as a possible adjuvant in the treatment of neoplastic pathologies. Although it is worth underlining that, regarding the object of our study, there are still few preclinical and clinical studies, it is, however, possible to document a role of possible interest in clinical practice.
Collapse
Affiliation(s)
- Chiara Campo
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 9815 Messina, Italy;
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department and Experimental Medicine, University of Messina, 98122 Messina, Italy;
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98158 Messina, Italy;
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 9815 Messina, Italy;
| |
Collapse
|
4
|
Tonon G. Myeloma and DNA damage. Blood 2024; 143:488-495. [PMID: 37992215 DOI: 10.1182/blood.2023021384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/24/2023] Open
Abstract
ABSTRACT DNA-damaging agents have represented the first effective treatment for the blood cancer multiple myeloma, and after 65 years since their introduction to the clinic, they remain one of the mainstay therapies for this disease. Myeloma is a cancer of plasma cells. Despite exceedingly slow proliferation, myeloma cells present extended genomic rearrangements and intense genomic instability, starting at the premalignant stage of the disease. Where does such DNA damage stem from? A reliable model argues that the powerful oncogenes activated in myeloma as well the phenotypic peculiarities of cancer plasma cells, including the dependency on the proteasome for survival and the constant presence of oxidative stress, all converge on modulating DNA damage and repair. Beleaguered by these contraposing forces, myeloma cells survive in a precarious balance, in which the robust engagement of DNA repair mechanisms to guarantee cell survival is continuously challenged by rampant genomic instability, essential for cancer cells to withstand hostile selective pressures. Shattering this delicate equilibrium has been the goal of the extensive use of DNA-damaging agents since their introduction in the clinic, now enriched by novel approaches that leverage upon synthetic lethality paradigms. Exploiting the impairment of homologous recombination caused by myeloma genetic lesions or treatments, it is now possible to design therapeutic combinations that could target myeloma cells more effectively. Furthermore, DNA-damaging agents, as demonstrated in solid tumors, may sensitize cells to immune therapies. In all, targeting DNA damage and repair remains as central as ever in myeloma, even for the foreseeable future.
Collapse
Affiliation(s)
- Giovanni Tonon
- Università Vita-Salute San Raffaele, Milan, Italy
- Division of Experimental Oncology and Center for Omics Sciences, Functional Genomics of Cancer Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
5
|
Ismail NH, Mussa A, Al-Khreisat MJ, Mohamed Yusoff S, Husin A, Al-Jamal HAN, Johan MF, Islam MA. Dysregulation of Non-Coding RNAs: Roles of miRNAs and lncRNAs in the Pathogenesis of Multiple Myeloma. Noncoding RNA 2023; 9:68. [PMID: 37987364 PMCID: PMC10660696 DOI: 10.3390/ncrna9060068] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
The dysregulation of non-coding RNAs (ncRNAs), specifically microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), leads to the development and advancement of multiple myeloma (MM). miRNAs, in particular, are paramount in post-transcriptional gene regulation, promoting mRNA degradation and translational inhibition. As a result, miRNAs can serve as oncogenes or tumor suppressors depending on the target genes. In MM, miRNA disruption could result in abnormal gene expression responsible for cell growth, apoptosis, and other biological processes pertinent to cancer development. The dysregulated miRNAs inhibit the activity of tumor suppressor genes, contributing to disease progression. Nonetheless, several miRNAs are downregulated in MM and have been identified as gene regulators implicated in extracellular matrix remodeling and cell adhesion. miRNA depletion potentially facilitates the tumor advancement and resistance of therapeutic drugs. Additionally, lncRNAs are key regulators of numerous cellular processes, such as gene expression, chromatin remodeling, protein trafficking, and recently linked MM development. The lncRNAs are uniquely expressed and influence gene expression that supports MM growth, in addition to facilitating cellular proliferation and viability via multiple molecular pathways. miRNA and lncRNA alterations potentially result in anomalous gene expression and interfere with the regular functioning of MM. Thus, this review aims to highlight the dysregulation of these ncRNAs, which engender novel therapeutic modalities for the treatment of MM.
Collapse
Affiliation(s)
- Nor Hayati Ismail
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Ali Mussa
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Biology, Faculty of Education, Omdurman Islamic University, Omdurman 11111, Sudan
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Mutaz Jamal Al-Khreisat
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Shafini Mohamed Yusoff
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Azlan Husin
- Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Hamid Ali Nagi Al-Jamal
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Kuala Nerus 21300, Terengganu, Malaysia
| | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Md Asiful Islam
- WHO Collaborating Centre for Global Women’s Health, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
6
|
Petrilla C, Galloway J, Kudalkar R, Ismael A, Cottini F. Understanding DNA Damage Response and DNA Repair in Multiple Myeloma. Cancers (Basel) 2023; 15:4155. [PMID: 37627183 PMCID: PMC10453069 DOI: 10.3390/cancers15164155] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Multiple myeloma (MM) is a plasma cell malignancy characterized by several genetic abnormalities, including chromosomal translocations, genomic deletions and gains, and point mutations. DNA damage response (DDR) and DNA repair mechanisms are altered in MM to allow for tumor development, progression, and resistance to therapies. Damaged DNA rarely induces an apoptotic response, given the presence of ataxia-telangiectasia mutated (ATM) loss-of-function or mutations, as well as deletions, mutations, or downregulation of tumor protein p53 (TP53) and tumor protein p73 (TP73). Moreover, DNA repair mechanisms are either hyperactive or defective to allow for rapid correction of the damage or permissive survival. Medications used to treat patients with MM can induce DNA damage, by either direct effects (mono-adducts induced by melphalan), or as a result of reactive oxygen species (ROS) production by proteasome inhibitors such as bortezomib. In this review, we will describe the mechanisms of DDR and DNA repair in normal tissues, the contribution of these pathways to MM disease progression and other phenotypes, and the potential therapeutic opportunities for patients with MM.
Collapse
Affiliation(s)
| | | | | | | | - Francesca Cottini
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Alipoor SD, Chang H. Exosomal miRNAs in the Tumor Microenvironment of Multiple Myeloma. Cells 2023; 12:cells12071030. [PMID: 37048103 PMCID: PMC10092980 DOI: 10.3390/cells12071030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Multiple myeloma (MM) is a malignancy of plasma cells in the bone marrow and is characterized by the clonal proliferation of B-cells producing defective monoclonal immunoglobulins. Despite the latest developments in treatment, drug resistance remains one of the major challenges in the therapy of MM. The crosstalk between MM cells and other components within the bone marrow microenvironment (BME) is the major determinant of disease phenotypes. Exosomes have emerged as the critical drivers of this crosstalk by allowing the delivery of informational cargo comprising multiple components from miniature peptides to nucleic acids. Such material transfers have now been shown to perpetuate drug-resistance development and disease progression in MM. MicroRNAs(miRNAs) specifically play a crucial role in this communication considering their small size that allows them to be readily packed within the exosomes and widespread potency that impacts the developmental trajectory of the disease inside the tumor microenvironment (TME). In this review, we aim to provide an overview of the current understanding of the role of exosomal miRNAs in the epigenetic modifications inside the TME and its pathogenic influence on the developmental phenotypes and prognosis of MM.
Collapse
Affiliation(s)
- Shamila D. Alipoor
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran P5X9+7F9, Iran
| | - Hong Chang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Laboratory Hematology, Laboratory Medicine Program, University Health Network, Toronto, ON M5G 2M9, Canada
- Correspondence:
| |
Collapse
|
8
|
Scionti F, Juli G, Rocca R, Polerà N, Nadai M, Grillone K, Caracciolo D, Riillo C, Altomare E, Ascrizzi S, Caparello B, Cerra M, Arbitrio M, Richter SN, Artese A, Alcaro S, Tagliaferri P, Tassone P, Di Martino MT. TERRA G-quadruplex stabilization as a new therapeutic strategy for multiple myeloma. J Exp Clin Cancer Res 2023; 42:71. [PMID: 36967378 PMCID: PMC10041726 DOI: 10.1186/s13046-023-02633-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 02/28/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a hematologic malignancy characterized by high genomic instability, and telomere dysfunction is an important cause of acquired genomic alterations. Telomeric repeat-containing RNA (TERRA) transcripts are long non-coding RNAs involved in telomere stability through the interaction with shelterin complex. Dysregulation of TERRAs has been reported across several cancer types. We recently identified a small molecule, hit 17, which stabilizes the secondary structure of TERRA. In this study, we investigated in vitro and in vivo anti-MM activities of hit 17. METHODS Anti-proliferative activity of hit 17 was evaluated in different MM cell lines by cell proliferation assay, and the apoptotic process was analyzed by flow cytometry. Gene and protein expressions were detected by RT-qPCR and western blotting, respectively. Microarray analysis was used to analyze the transcriptome profile. The effect of hit 17 on telomeric structure was evaluated by chromatin immunoprecipitation. Further evaluation in vivo was proceeded upon NCI-H929 and AMO-1 xenograft models. RESULTS TERRA G4 stabilization induced in vitro dissociation of telomeric repeat-binding factor 2 (TRF2) from telomeres leading to the activation of ATM-dependent DNA damage response, cell cycle arrest, proliferation block, and apoptotic death in MM cell lines. In addition, up-regulation of TERRA transcription was observed upon DNA damage and TRF2 loss. Transcriptome analysis followed by gene set enrichment analysis (GSEA) confirmed the involvement of the above-mentioned processes and other pathways such as E2F, MYC, oxidative phosphorylation, and DNA repair genes as early events following hit 17-induced TERRA stabilization. Moreover, hit 17 exerted anti-tumor activity against MM xenograft models. CONCLUSION Our findings provide evidence that targeting TERRA by hit 17 could represent a promising strategy for a novel therapeutic approach to MM.
Collapse
Affiliation(s)
- Francesca Scionti
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Giada Juli
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Roberta Rocca
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
- Net4science Srl, Università degli Studi "Magna Graecia" di Catanzaro, Catanzaro, Italy
| | - Nicoletta Polerà
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Matteo Nadai
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121, Padua, Italy
| | - Katia Grillone
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Caterina Riillo
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Emanuela Altomare
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Serena Ascrizzi
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Basilio Caparello
- Presidio Ospedaliero "Giovanni Paolo II", Lamezia Terme, Catanzaro, Italy
| | - Maria Cerra
- Presidio Ospedaliero "Giovanni Paolo II", Lamezia Terme, Catanzaro, Italy
| | - Mariamena Arbitrio
- Institute of Research and Biomedical Innovation (IRIB), Italian National Council (CNR), 88100, Catanzaro, Italy
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121, Padua, Italy
| | - Anna Artese
- Net4science Srl, Università degli Studi "Magna Graecia" di Catanzaro, Catanzaro, Italy
- Department of Health Sciences, Magna Graecia University of Catanzaro, Campus "Salvatore Venuta", Viale Europa, 88100, Catanzaro, Italy
| | - Stefano Alcaro
- Net4science Srl, Università degli Studi "Magna Graecia" di Catanzaro, Catanzaro, Italy
- Department of Health Sciences, Magna Graecia University of Catanzaro, Campus "Salvatore Venuta", Viale Europa, 88100, Catanzaro, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy.
| | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy.
| |
Collapse
|
9
|
Jia X, Wang G, Wu L, Pan H, Ling L, Zhang J, Wen Q, Cui J, He Z, Qi B, Zhang S, Luo L, Zheng G. XBP1-elicited environment by chemotherapy potentiates repopulation of tongue cancer cells by enhancing miR-22/lncRNA/KAT6B-dependent NF-κB signalling. Clin Transl Med 2023; 13:e1166. [PMID: 36639835 PMCID: PMC9839876 DOI: 10.1002/ctm2.1166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Tumour repopulation initiated by residual tumour cells in response to cytotoxic therapy has been described clinically and biologically, but the mechanisms are unclear. Here, we aimed to investigate the mechanisms for the tumour-promoting effect in dying cells and for tumour repopulation in surviving tongue cancer cells. METHODS Tumour repopulation in vitro and in vivo was represented by luciferase activities. The differentially expressed cytokines in the conditioned medium (CM) were identified using a cytokine array. Gain or loss of function was investigated using inhibitors, neutralising antibodies, shRNAs and ectopic overexpression strategies. RESULTS We found that dying tumour cells undergoing cytotoxic therapy increase the growth of living tongue cancer cells in vitro and in vivo. Dying tumour cells create amphiregulin (AREG)- and basic fibroblast growth factor (bFGF)-based extracellular environments via cytotoxic treatment-induced endoplasmic reticulum stress. This environment stimulates growth by activating lysine acetyltransferase 6B (KAT6B)-dependent nuclear factor-kappa B (NF-κB) signalling in living tumour cells. As direct targets of NF-κB, miR-22 targets KAT6B to repress its expression, but long noncoding RNAs (lncRNAs) (XLOC_003973 and XLOC_010383) counter the effect of miR-22 to enhance KAT6B expression. Moreover, we detected increased AREG and bFGF protein levels in the blood of tongue cancer patients with X-box binding protein-1 (XBP1) activation in tumours under cytotoxic therapy and found that XBP1 activation is associated with poor prognosis of patients. We also detected activation of miR-22/lncRNA/KAT6B/NF-κB signalling in recurrent cancers compared to paired primary tongue cancers. CONCLUSIONS We identified the molecular mechanisms of cell death-induced tumour repopulation in tongue cancer. Such insights provide new avenues to identify predictive biomarkers and effective strategies to address cancer progression.
Collapse
Affiliation(s)
- Xiaoting Jia
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationThe State Key Laboratory of RespiratoryGuangzhouGuangdongChina
| | - Ge Wang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationThe State Key Laboratory of RespiratoryGuangzhouGuangdongChina
| | - Lihong Wu
- Affiliated Stomatology Hospital of Guangzhou Medical UniversityInstitute of Oral DiseaseGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Hao Pan
- Department of Periodontics & Oral Mucosal SectionXiangya Stomatological Hospital & Xiangya School of Stomatology & Hunan Key Laboratory of Oral Health ResearchCentral South UniversityChangshaChina
| | - Li Ling
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationThe State Key Laboratory of RespiratoryGuangzhouGuangdongChina
| | - Jianlei Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationThe State Key Laboratory of RespiratoryGuangzhouGuangdongChina
| | - Qingquan Wen
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationThe State Key Laboratory of RespiratoryGuangzhouGuangdongChina
| | - Jie Cui
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationThe State Key Laboratory of RespiratoryGuangzhouGuangdongChina
| | - Zhimin He
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationThe State Key Laboratory of RespiratoryGuangzhouGuangdongChina
| | - Bin Qi
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationThe State Key Laboratory of RespiratoryGuangzhouGuangdongChina
| | - Shuxu Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationThe State Key Laboratory of RespiratoryGuangzhouGuangdongChina
| | - Liyun Luo
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationThe State Key Laboratory of RespiratoryGuangzhouGuangdongChina
| | - Guopei Zheng
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationThe State Key Laboratory of RespiratoryGuangzhouGuangdongChina
| |
Collapse
|
10
|
Caracciolo D, Juli G, Riillo C, Coricello A, Vasile F, Pollastri S, Rocca R, Scionti F, Polerà N, Grillone K, Arbitrio M, Staropoli N, Caparello B, Britti D, Loprete G, Costa G, Di Martino MT, Alcaro S, Tagliaferri P, Tassone P. Exploiting DNA Ligase III addiction of multiple myeloma by flavonoid Rhamnetin. Lab Invest 2022; 20:482. [PMID: 36273153 PMCID: PMC9588242 DOI: 10.1186/s12967-022-03705-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/11/2022] [Indexed: 11/28/2022]
Abstract
Background DNA ligases are crucial for DNA repair and cell replication since they catalyze the final steps in which DNA breaks are joined. DNA Ligase III (LIG3) exerts a pivotal role in Alternative-Non-Homologous End Joining Repair (Alt-NHEJ), an error-prone DNA repair pathway often up-regulated in genomically unstable cancer, such as Multiple Myeloma (MM). Based on the three-dimensional (3D) LIG3 structure, we performed a computational screening to identify LIG3-targeting natural compounds as potential candidates to counteract Alt-NHEJ activity in MM. Methods Virtual screening was conducted by interrogating the Phenol Explorer database. Validation of binding to LIG3 recombinant protein was performed by Saturation Transfer Difference (STD)—nuclear magnetic resonance (NMR) experiments. Cell viability was analyzed by Cell Titer-Glo assay; apoptosis was evaluated by flow cytometric analysis following Annexin V-7AAD staining. Alt-NHEJ repair modulation was evaluated using plasmid re-joining assay and Cytoscan HD. DNA Damage Response protein levels were analyzed by Western blot of whole and fractionated protein extracts and immunofluorescence analysis. The mitochondrial DNA (mtDNA) copy number was determined by qPCR. In vivo activity was evaluated in NOD-SCID mice subcutaneously engrafted with MM cells. Results Here, we provide evidence that a natural flavonoid Rhamnetin (RHM), selected by a computational approach, counteracts LIG3 activity and killed Alt-NHEJ-dependent MM cells. Indeed, Nuclear Magnetic Resonance (NMR) showed binding of RHM to LIG3 protein and functional experiments revealed that RHM interferes with LIG3-driven nuclear and mitochondrial DNA repair, leading to significant anti-MM activity in vitro and in vivo. Conclusion Taken together, our findings provide proof of concept that RHM targets LIG3 addiction in MM and may represent therefore a novel promising anti-tumor natural agent to be investigated in an early clinical setting. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03705-z.
Collapse
Affiliation(s)
- Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Giada Juli
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Caterina Riillo
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Adriana Coricello
- Department of Health Science, Magna Græcia University, Catanzaro, Italy.,Net4Science Academic Spin-Off, Magna Græcia University, Campus "Salvatore Venuta", Catanzaro, Italy
| | | | - Sara Pollastri
- Department of Chemistry, University of Milan, Milan, Italy
| | - Roberta Rocca
- Department of Health Science, Magna Græcia University, Catanzaro, Italy.,Net4Science Academic Spin-Off, Magna Græcia University, Campus "Salvatore Venuta", Catanzaro, Italy
| | - Francesca Scionti
- Institute of Research and Biomedical Innovation (IRIB), Italian National Council (CNR), Messina, Italy
| | - Nicoletta Polerà
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Katia Grillone
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Mariamena Arbitrio
- Institute of Research and Biomedical Innovation (IRIB), Italian National Council (CNR), Catanzaro, Italy
| | | | - Basilio Caparello
- Presidio Ospedaliero Giovanni Paolo II Lamezia Terme, Catanzaro, Italy
| | - Domenico Britti
- Department of Health Science, Magna Græcia University, Catanzaro, Italy
| | - Giovanni Loprete
- Department of Health Science, Magna Græcia University, Catanzaro, Italy
| | - Giosuè Costa
- Department of Health Science, Magna Græcia University, Catanzaro, Italy.,Net4Science Academic Spin-Off, Magna Græcia University, Campus "Salvatore Venuta", Catanzaro, Italy
| | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Stefano Alcaro
- Department of Health Science, Magna Græcia University, Catanzaro, Italy.,Net4Science Academic Spin-Off, Magna Græcia University, Campus "Salvatore Venuta", Catanzaro, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy. .,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Wang H, Hu M, Shen Z, Zhou X, Yang S, He K, Li X, Yan F, Zhao A. A Specific microRNA Targets an Elongase of Very Long Chain Fatty Acids to Regulate Fatty Acid Composition and Mitochondrial Morphology of Skeletal Muscle Cells. Animals (Basel) 2022; 12:ani12172274. [PMID: 36077994 PMCID: PMC9454801 DOI: 10.3390/ani12172274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Recently, miR-22 has been suggested to be an important microRNA (miRNA) affecting meat quality. Studies have shown that muscle fatty acid composition and mitochondrial function are closely related to meat quality. The regulatory mechanism of miR-22 on skeletal muscle fatty acid composition and mitochondrial function is not well characterized. Therefore, we aimed to explore the effects of miR-22 on fatty acid composition and mitochondrial function in C2C12 cells. Here, it demonstrate that elevated expression of miR-22 significantly repressed fatty acid elongation and mitochondrial morphology in C2C12 myoblasts, while the knockdown of miR-22 showed opposite results. Furthermore, miR-22 targets the elongase of very long chain fatty acids 6 (ELOVL6) and represses its expression in muscle cells. Knockdown of ELOVL6 mimicked the effect of miR-22 on fatty acid composition and mitochondrial function, while overexpression of ELOVL6 restored the effects of miR-22. These findings indicate that miR-22 downregulates the elongation of fatty acids and mitochondrial morphology by inhibiting ELOVL6 expression in muscle cells, which may provide some useful information for controlling muscle lipid accumulation and mitochondrial function in livestock in the future.
Collapse
|
12
|
Deng T, Jiang X, He Z, Cai M, Chen C, Xu Z. Centromere protein U (CENPU) promotes gastric cancer cell proliferation and glycolysis by regulating high mobility group box 2 (HMGB2). Bioengineered 2021; 12:10194-10202. [PMID: 34872447 PMCID: PMC8810026 DOI: 10.1080/21655979.2021.2002018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Gastric cancer is one of the most common malignancy with a leading mortality rate worldwide. Despite the progress in the diagnosis and therapeutic strategy, the associated mortality is still growing. It is of great significance to understand molecular mechanisms of the development of gastric cancer. Glycolysis is a main source of ATP provision for cancer cells including gastric cancer, and targeting glycolysis is a promising therapeutic strategy. Centromere protein U (CENPU) has been found to be overexpressed in many types of cancer. Downregulation of CENPU suppresses the proliferation and invasion of cancer cells. High mobility group box 2 (HMGB2) is identified as a biomarker to diagnose of gastric cancer. Knockdown of HMGB2 inhibits proliferation and glycolysis in gastric cancer cells. In this work, we identified that CENPU was upregulated in gastric cancer. Knockdown of CENPU was able to suppress the proliferation and glycolysis of gastric cancer cells. Further the results showed that the anti-cancer effect of CENPU was HMGB2-dependent. Taken together, CENPU is an upstream factor of HMGB2, which regulates proliferation and glycolysis of gastric cancer.
Collapse
Affiliation(s)
- Taozhi Deng
- Department of Gastroenterology, Hainan Cancer Hospital, Haikou, Hainan Province, China
| | - Xuemei Jiang
- Department of Gastroenterology, Hainan General Hospital, Haikou, Hainan Province, China
| | - Zhoutao He
- Department of Gastroenterology, Hainan General Hospital, Haikou, Hainan Province, China
| | - Manni Cai
- Department of Gastroenterology, Hainan General Hospital, Haikou, Hainan Province, China
| | - Chaochao Chen
- Department of Gastroenterology, Hainan General Hospital, Haikou, Hainan Province, China
| | - Zewen Xu
- Department of Gastroenterology, Hainan General Hospital, Haikou, Hainan Province, China
| |
Collapse
|
13
|
miR-22 Modulates Lenalidomide Activity by Counteracting MYC Addiction in Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13174365. [PMID: 34503175 PMCID: PMC8431372 DOI: 10.3390/cancers13174365] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 11/25/2022] Open
Abstract
Simple Summary MYC-driven deregulation of microRNAs represents a critical event in human malignancies, including multiple myeloma (MM). Although the introduction of new therapeutic strategies has prolonged survival of patients, MM remains an incurable disease, often due to the onset of drug resistance. MYC hyperactivation is involved in the development of resistance to immunomodulatory imide drugs (IMiDs), but the mechanism is still unclear. Here, we report that MYC represses the transcription of tumor suppressor miR-22 in MM, and that low miR-22 expression is associated with IMiD resistance in MM patients. By in silico and in vitro analysis, we show that miR-22 mimics affect MYC signaling, leading to MM cell death in MYC proficient cells. Furthermore, we demonstrate here that lenalidomide treatment enhances miR-22 activity by reducing the MYC inhibitory effect, and that the combination of lenalidomide with miR-22 mimics restores drug sensitivity, leading to synergistic anti-MM activity. Abstract Background: MYC is a master regulator of multiple myeloma (MM) by orchestrating several pro-tumoral pathways, including reprograming of the miRNA transcriptome. MYC is also involved in the acquirement of resistance to anti-MM drugs, including immunomodulatory imide drugs (IMiDs). Methods: In silico analysis was performed on MM proprietary and on public MMRF-CoMMpass datasets. Western blot and chromatin immunoprecipitation (ChIP) experiments were performed to validate miR-22 repression induced by MYC. Cell viability and apoptosis assays were used to evaluate lenalidomide sensitization after miR-22 overexpression. Results: We found an inverse correlation between MYC and miR-22 expression, which is associated with poor outcome in IMiD-treated MM patients. Mechanistically, we showed that MYC represses transcription of miR-22, which, in turn, targets MYC, thus establishing a feed-forward loop. Interestingly, we found that IMiD lenalidomide increases miR-22 expression by reducing MYC repression and, most importantly, that the combination of lenalidomide with miR-22 mimics results in a synergistic direct and NK-mediated cytotoxic activity. Conclusions: Taken together, our findings indicate that: (1) low miR-22 expression could represent a potential predictive biomarker of poor lenalidomide response in MM patients; and (2) miR-22 reduces MYC oncogenic activity, thus triggering a novel synthetic lethality loop, which sensitizes MM cells to lenalidomide.
Collapse
|
14
|
Bian R, Dang W, Song X, Liu L, Jiang C, Yang Y, Li Y, Li L, Li X, Hu Y, Bao R, Liu Y. Rac GTPase activating protein 1 promotes gallbladder cancer via binding DNA ligase 3 to reduce apoptosis. Int J Biol Sci 2021; 17:2167-2180. [PMID: 34239347 PMCID: PMC8241731 DOI: 10.7150/ijbs.58857] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/30/2021] [Indexed: 11/09/2022] Open
Abstract
Rac GTPase activating protein 1 (RACGAP1) has been characterized in the pathogenesis and progression of several malignancies, however, little is known regarding its role in the development of gallbladder cancer (GBC). This investigation seeks to describe the role of RACGAP1 and its associated molecular mechanisms in GBC. It was found that RACGAP1 was highly expressed in human GBC tissues, which was associated to poorer overall survival (OS). Gene knockdown of RACGAP1 hindered tumor cell proliferation and survival both in vitro and in vivo. We further identified that RACGAP1 was involved in DNA repair through its binding with DNA ligase 3 (LIG3), a crucial component of the alternative-non-homologous end joining (Alt-NHEJ) pathway. RACGAP1 regulated LIG3 expression independent of RhoA activity. RACGAP1 knockdown resulted in LIG3-dependent repair dysfunction, accumulated DNA damage and Poly(ADP-ribosyl) modification (PARylation) enhancement, leading to increased apoptosis and suppressed cell growth. We conclude that RACGAP1 exerts a tumor-promoting role via binding LIG3 to reduce apoptosis and facilitate cell growth in GBC, pointing to RACGAP1 as a potential therapeutic target for GBC.
Collapse
Affiliation(s)
- Rui Bian
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200092, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Dang
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200092, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoling Song
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200092, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liguo Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200092, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chengkai Jiang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200092, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yang Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200092, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yongsheng Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200092, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lin Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200092, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuechuan Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200092, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yunping Hu
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200092, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Runfa Bao
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200092, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200092, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
15
|
Nejati K, Alivand M, Arabzadeh A. MicroRNA-22 in female malignancies: Focusing on breast, cervical, and ovarian cancers. Pathol Res Pract 2021; 223:153452. [PMID: 33993061 DOI: 10.1016/j.prp.2021.153452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs), a novelty-defined class of regulatory genes, have revolutionized principles of classical bimolecular. These RNAs regulate the expression of a gene through inhibition of translational initiation or targeting mRNAs for degradation. MiRNAs act in several biological operations, including proliferation, differentiation, and cell death, and their expression is often abnormal in human diseases such as cancer. In recent years, miR-22 has attracted much attention from researchers. Its expression is downregulated in female malignancies such as breast, cervical, and ovarian cancers, exhibiting that miR-22 plays a tumor-suppressive function in these cancers. Also, different reports exist about the involvement of miR-22 in non-tumor diseases. In the present review, we report the results of performed studies on the potential roles of miR-22 in female malignancies with a focus on breast, cervical, and ovarian cancers. Also, we summary its predicted target genes in various cancers. In conclusion, it is effective for researchers to understand the role of miR-22 in different cellular operations.
Collapse
Affiliation(s)
- Kazem Nejati
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - MohammadReza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - AmirAhmad Arabzadeh
- Department of Surgery, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
16
|
Huang WQ, Zhuang QR, He ZJ. ILF3-AS1 promotes the aerobic glycolysis and proliferation of melanoma cells by regulating miR-493-5p/PDK1 pathway. Ital J Dermatol Venerol 2021; 157:173-181. [PMID: 33913671 DOI: 10.23736/s2784-8671.21.06906-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND To investigate the role of ILF3-AS1 in regulating the survival of melanoma and its molecular mechanism. METHODS The relative expression level of ILF3-AS1 in melanoma was assessed by qPCR. The effect of ILF3-AS1 and PDK1 on the cell viability was tested by MTT assay. Glucose uptake colorimetric assay, lactate assay, the measurements of extracellular acidification rate (ECAR) and Oxygen consumption rate (OCR) were performed to test the effect of ILF3-AS1 and PDK1 on the cellular glycolysis. Luciferase assay was conducted to detect the interactions of ILF3-AS1, miR-493-5p and PDK1. RNA immunoprecipitation chip (RIP) assay was used to detect the enrichments of ILF3-AS1 and miR-493-5p in the complex. Protein level of PDK1 was detected by western blot analysis. RESULTS qPCR revealed that ILF3-AS1 was upregulated in human melanoma cell lines. MTT assay showed that ILF3-AS1 knockdown blunted cell proliferation, which was rescued by the overexpression of PDK1. Glucose uptake colorimetric assay, lactate assay, the measurements of ECAR and OCR indicated that ILF3-AS1 promoted glycolysis through PDK1. Western blotting results showed that ILF3-AS1 overexpression promoted PDK1 expression, which was prevented by miR-493-5p overexpression in SK-MEL-1 cells. CONCLUSIONS ILF3-AS1 promotes the aerobic glycolysis and survival of melanoma cells involving miR-493-5p/PDK1 pathway.
Collapse
Affiliation(s)
- Wen Q Huang
- Department of Pulmonary and Critical Care Medicine, Maoming People's Hospital, Maoming City, China
| | - Qian R Zhuang
- Department of Oncology, Maoming People's Hospital, Maoming City, China -
| | - Zhi J He
- Department of Oncology, Maoming People's Hospital, Maoming City, China
| |
Collapse
|
17
|
Taiana E, Gallo Cantafio ME, Favasuli VK, Bandini C, Viglietto G, Piva R, Neri A, Amodio N. Genomic Instability in Multiple Myeloma: A "Non-Coding RNA" Perspective. Cancers (Basel) 2021; 13:cancers13092127. [PMID: 33924959 PMCID: PMC8125142 DOI: 10.3390/cancers13092127] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Genomic instability (GI) plays an important role in the pathobiology of multiple myeloma (MM) by promoting the acquisition of several tumor hallmarks. Molecular determinants of GI in MM are continuously emerging and will be herein discussed, with specific regard to non-coding RNAs. Targeting non-coding RNA molecules known to be involved in GI indeed provides novel routes to dampen such oncogenic mechanisms in MM. Abstract Multiple myeloma (MM) is a complex hematological malignancy characterized by abnormal proliferation of malignant plasma cells (PCs) within a permissive bone marrow microenvironment. The pathogenesis of MM is unequivocally linked to the acquisition of genomic instability (GI), which indicates the tendency of tumor cells to accumulate a wide repertoire of genetic alterations. Such alterations can even be detected at the premalignant stages of monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM) and, overall, contribute to the acquisition of the malignant traits underlying disease progression. The molecular basis of GI remains unclear, with replication stress and deregulation of DNA damage repair pathways representing the most documented mechanisms. The discovery that non-coding RNA molecules are deeply dysregulated in MM and can target pivotal components of GI pathways has introduced a further layer of complexity to the GI scenario in this disease. In this review, we will summarize available information on the molecular determinants of GI in MM, focusing on the role of non-coding RNAs as novel means to tackle GI for therapeutic intervention.
Collapse
Affiliation(s)
- Elisa Taiana
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (E.T.); (V.K.F.)
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy
| | - Maria Eugenia Gallo Cantafio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (M.E.G.C.); (G.V.)
| | - Vanessa Katia Favasuli
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (E.T.); (V.K.F.)
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy
| | - Cecilia Bandini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (C.B.); (R.P.)
- Città Della Salute e della Scienza Hospital, 10126 Torino, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (M.E.G.C.); (G.V.)
| | - Roberto Piva
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (C.B.); (R.P.)
- Città Della Salute e della Scienza Hospital, 10126 Torino, Italy
| | - Antonino Neri
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (E.T.); (V.K.F.)
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy
- Correspondence: (A.N.); (N.A.)
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (M.E.G.C.); (G.V.)
- Correspondence: (A.N.); (N.A.)
| |
Collapse
|
18
|
Caracciolo D, Riillo C, Di Martino MT, Tagliaferri P, Tassone P. Alternative Non-Homologous End-Joining: Error-Prone DNA Repair as Cancer's Achilles' Heel. Cancers (Basel) 2021; 13:cancers13061392. [PMID: 33808562 PMCID: PMC8003480 DOI: 10.3390/cancers13061392] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Cancer onset and progression lead to a high rate of DNA damage, due to replicative and metabolic stress. To survive in this dangerous condition, cancer cells switch the DNA repair machinery from faithful systems to error-prone pathways, strongly increasing the mutational rate that, in turn, supports the disease progression and drug resistance. Although DNA repair de-regulation boosts genomic instability, it represents, at the same time, a critical cancer vulnerability that can be exploited for synthetic lethality-based therapeutic intervention. We here discuss the role of the error-prone DNA repair, named Alternative Non-Homologous End Joining (Alt-NHEJ), as inducer of genomic instability and as a potential therapeutic target. We portray different strategies to drug Alt-NHEJ and discuss future challenges for selecting patients who could benefit from Alt-NHEJ inhibition, with the aim of precision oncology. Abstract Error-prone DNA repair pathways promote genomic instability which leads to the onset of cancer hallmarks by progressive genetic aberrations in tumor cells. The molecular mechanisms which foster this process remain mostly undefined, and breakthrough advancements are eagerly awaited. In this context, the alternative non-homologous end joining (Alt-NHEJ) pathway is considered a leading actor. Indeed, there is experimental evidence that up-regulation of major Alt-NHEJ components, such as LIG3, PolQ, and PARP1, occurs in different tumors, where they are often associated with disease progression and drug resistance. Moreover, the Alt-NHEJ addiction of cancer cells provides a promising target to be exploited by synthetic lethality approaches for the use of DNA damage response (DDR) inhibitors and even as a sensitizer to checkpoint-inhibitors immunotherapy by increasing the mutational load. In this review, we discuss recent findings highlighting the role of Alt-NHEJ as a promoter of genomic instability and, therefore, as new cancer’s Achilles’ heel to be therapeutically exploited in precision oncology.
Collapse
|
19
|
Saitoh T, Oda T. DNA Damage Response in Multiple Myeloma: The Role of the Tumor Microenvironment. Cancers (Basel) 2021; 13:504. [PMID: 33525741 PMCID: PMC7865954 DOI: 10.3390/cancers13030504] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Multiple myeloma (MM) is an incurable plasma cell malignancy characterized by genomic instability. MM cells present various forms of genetic instability, including chromosomal instability, microsatellite instability, and base-pair alterations, as well as changes in chromosome number. The tumor microenvironment and an abnormal DNA repair function affect genetic instability in this disease. In addition, states of the tumor microenvironment itself, such as inflammation and hypoxia, influence the DNA damage response, which includes DNA repair mechanisms, cell cycle checkpoints, and apoptotic pathways. Unrepaired DNA damage in tumor cells has been shown to exacerbate genomic instability and aberrant features that enable MM progression and drug resistance. This review provides an overview of the DNA repair pathways, with a special focus on their function in MM, and discusses the role of the tumor microenvironment in governing DNA repair mechanisms.
Collapse
Affiliation(s)
- Takayuki Saitoh
- Department of Laboratory Sciences, Graduate School of Health Sciences, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Tsukasa Oda
- Laboratory of Molecular Genetics, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma 371-8512, Japan;
| |
Collapse
|
20
|
Caracciolo D, Scionti F, Juli G, Altomare E, Golino G, Todoerti K, Grillone K, Riillo C, Arbitrio M, Iannone M, Morelli E, Amodio N, Di Martino MT, Rossi M, Neri A, Tagliaferri P, Tassone P. Exploiting MYC-induced PARPness to target genomic instability in multiple myeloma. Haematologica 2021; 106:185-195. [PMID: 32079692 PMCID: PMC7776341 DOI: 10.3324/haematol.2019.240713] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/17/2020] [Indexed: 11/09/2022] Open
Abstract
Multiple Myeloma (MM) is a hematologic malignancy strongly characterized by genomic instability, which promotes disease progression and drug resistance. Since we previously demonstrated that LIG3-dependent repair is involved in the genomic instability, drug resistance and survival of MM cells, we here investigated the biological relevance of PARP1, a driver component of Alternative-Non Homologous End Joining (Alt-NHEJ) pathway, in MM. We found a significant correlation between higher PARP1 mRNA expression and poor prognosis of MM patients. PARP1 knockdown or its pharmacological inhibition by Olaparib impaired MM cells viability in vitro and was effective against in vivo xenografts of human MM. Anti-proliferative effects induced by PARP1-inhibition were correlated to increase of DNA double-strand breaks, activation of DNA Damage Response (DDR) and finally apoptosis. Importantly, by comparing a gene expression signature of PARP inhibitors (PARPi) sensitivity to our plasma cell dyscrasia (PC) gene expression profiling (GEP), we identified a subset of MM patients which could benefit from PARP inhibitors. In particular, Gene Set Enrichment Analysis (GSEA) suggested that high MYC expression correlates to PARPi sensitivity in MM. Indeed, we identified MYC as promoter of PARP1-mediated repair in MM and, consistently, we demonstrate that cytotoxic effects induced by PARP inhibition are mostly detectable on MYC-proficient MM cells. Taken together, our findings indicate that MYC-driven MM cells are addicted to PARP1 Alt-NHEJ repair, which represents therefore a druggable target in this still incurable disease.
Collapse
Affiliation(s)
- Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Francesca Scionti
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro
| | - Giada Juli
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro
| | - Emanuela Altomare
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro
| | - Gaetanina Golino
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro
| | - Katia Todoerti
- University of Milan, Fondazione Cà Granda IRCCS Policlinico, Milan
| | - Katia Grillone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro
| | - Caterina Riillo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | | | | | - Eugenio Morelli
- Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute,Boston, USA
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | | | - Marco Rossi
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro
| | - Antonino Neri
- University of Milan, Fondazione Cà Granda IRCCS Policlinico, Milan
| | | | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro
| |
Collapse
|
21
|
Li S, Shi B, Liu X, An HX. Acetylation and Deacetylation of DNA Repair Proteins in Cancers. Front Oncol 2020; 10:573502. [PMID: 33194676 PMCID: PMC7642810 DOI: 10.3389/fonc.2020.573502] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Hundreds of DNA repair proteins coordinate together to remove the diverse damages for ensuring the genomic integrity and stability. The repair system is an extensive network mainly encompassing cell cycle arrest, chromatin remodeling, various repair pathways, and new DNA fragment synthesis. Acetylation on DNA repair proteins is a dynamic epigenetic modification orchestrated by lysine acetyltransferases (HATs) and lysine deacetylases (HDACs), which dramatically affects the protein functions through multiple mechanisms, such as regulation of DNA binding ability, protein activity, post-translational modification (PTM) crosstalk, and protein–protein interaction. Accumulating evidence has indicated that the aberrant acetylation of DNA repair proteins contributes to the dysfunction of DNA repair ability, the pathogenesis and progress of cancer, as well as the chemosensitivity of cancer cells. In the present scenario, targeting epigenetic therapy is being considered as a promising method at par with the conventional cancer therapeutic strategies. This present article provides an overview of the recent progress in the functions and mechanisms of acetylation on DNA repair proteins involved in five major repair pathways, which warrants the possibility of regulating acetylation on repair proteins as a therapeutic target in cancers.
Collapse
Affiliation(s)
- Shiqin Li
- Department of Medical Oncology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Bingbing Shi
- Department of Medical Oncology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Xinli Liu
- Department of Medical Oncology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Han-Xiang An
- Department of Medical Oncology, Xiang'an Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
22
|
Soliman AM, Lin TS, Mahakkanukrauh P, Das S. Role of microRNAs in Diagnosis, Prognosis and Management of Multiple Myeloma. Int J Mol Sci 2020; 21:E7539. [PMID: 33066062 PMCID: PMC7589124 DOI: 10.3390/ijms21207539] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/19/2020] [Accepted: 10/02/2020] [Indexed: 12/18/2022] Open
Abstract
Multiple myeloma (MM) is a cancerous bone disease characterized by malignant transformation of plasma cells in the bone marrow. MM is considered to be the second most common blood malignancy, with 20,000 new cases reported every year in the USA. Extensive research is currently enduring to validate diagnostic and therapeutic means to manage MM. microRNAs (miRNAs) were shown to be dysregulated in MM cases and to have a potential role in either progression or suppression of MM. Therefore, researchers investigated miRNAs levels in MM plasma cells and created tools to test their impact on tumor growth. In the present review, we discuss the most recently discovered miRNAs and their regulation in MM. Furthermore, we emphasized utilizing miRNAs as potential targets in the diagnosis, prognosis and treatment of MM, which can be useful for future clinical management.
Collapse
Affiliation(s)
- Amro M. Soliman
- Department of Biological Sciences—Physiology, Cell and Developmental Biology, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Teoh Seong Lin
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia
| | - Pasuk Mahakkanukrauh
- Department of Anatomy & Excellence in Osteology Research and Training Center (ORTC), Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Srijit Das
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
23
|
Gulla' A, Anderson KC. Multiple myeloma: the (r)evolution of current therapy and a glance into future. Haematologica 2020; 105:2358-2367. [PMID: 33054076 PMCID: PMC7556665 DOI: 10.3324/haematol.2020.247015] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022] Open
Abstract
Over the past 20 years, the regulatory approval of several novel agents to treat multiple myeloma (MM) has prolonged median patient survival from 3 to 8-10 years. Increased understanding of MM biology has translated to advances in diagnosis, prognosis, and response assessment, as well as informed the development of targeted and immune agents. Here we provide an overview of the recent progress in MM, and highlight research areas of greatest promise to further improve patient outcome in the future.
Collapse
Affiliation(s)
| | - Kenneth C. Anderson
- Division of Hematologic Neoplasia, Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Franzoni S, Morbioli L, Turtoro A, Solazzo L, Greco A, Arbitrio M, Tagliaferri P, Tassone P, Di Martino MT, Breda M. Development and validation of bioanalytical methods for LNA-i-miR-221 quantification in human plasma and urine by LC-MS/MS. J Pharm Biomed Anal 2020; 188:113451. [PMID: 32659676 DOI: 10.1016/j.jpba.2020.113451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/14/2022]
Abstract
LNA-i-miR-221, a 13-mer oligonucleotide, has proved favorable efficacy and safety profiles in the preclinical studies, leading to being approved for use in clinical trials by regulatory authorities. The objective of this study was to develop and validate LC-MS/MS methods to quantify LNA-i-miR-221 in human plasma and urine. Chromatographic separation was performed with a gradient system on HALO C18 column using hexafluoro-2-propanol/triethylamine buffer and methanol as mobile phase. LNA-i-miR-221 was detected on tandem mass spectrometer with electrospray ionization source in negative ion mode. The methods showed good linearity within the calibration range of 50-25000 ng/mL and 50-50000 ng/mL for human plasma and urine, respectively. The methods proved to be accurate, precise and selective in both human matrices. These validated methods are reliable and are currently in use to support a first-in-human clinical trial of LNA-i-miR-221 in patients affected by refractory multiple myeloma and advanced solid tumors.
Collapse
Affiliation(s)
- Samantha Franzoni
- ADME and Bioanalytical Sciences Department, Aptuit (Verona) Srl, An Evotec Company, Via A. Fleming, 4, Verona, Italy
| | - Lisa Morbioli
- ADME and Bioanalytical Sciences Department, Aptuit (Verona) Srl, An Evotec Company, Via A. Fleming, 4, Verona, Italy
| | - Antonio Turtoro
- ADME and Bioanalytical Sciences Department, Aptuit (Verona) Srl, An Evotec Company, Via A. Fleming, 4, Verona, Italy
| | - Lara Solazzo
- ADME and Bioanalytical Sciences Department, Aptuit (Verona) Srl, An Evotec Company, Via A. Fleming, 4, Verona, Italy
| | - Alessandro Greco
- ADME and Bioanalytical Sciences Department, Aptuit (Verona) Srl, An Evotec Company, Via A. Fleming, 4, Verona, Italy
| | - Mariamena Arbitrio
- CNR-Institute for Biomedical Research and Innovation, Catanzaro 88100, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy.
| | - Massimo Breda
- ADME and Bioanalytical Sciences Department, Aptuit (Verona) Srl, An Evotec Company, Via A. Fleming, 4, Verona, Italy.
| |
Collapse
|
25
|
Grillone K, Riillo C, Scionti F, Rocca R, Tradigo G, Guzzi PH, Alcaro S, Di Martino MT, Tagliaferri P, Tassone P. Non-coding RNAs in cancer: platforms and strategies for investigating the genomic "dark matter". J Exp Clin Cancer Res 2020; 39:117. [PMID: 32563270 PMCID: PMC7305591 DOI: 10.1186/s13046-020-01622-x] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/11/2020] [Indexed: 12/18/2022] Open
Abstract
The discovery of the role of non-coding RNAs (ncRNAs) in the onset and progression of malignancies is a promising frontier of cancer genetics. It is clear that ncRNAs are candidates for therapeutic intervention, since they may act as biomarkers or key regulators of cancer gene network. Recently, profiling and sequencing of ncRNAs disclosed deep deregulation in human cancers mostly due to aberrant mechanisms of ncRNAs biogenesis, such as amplification, deletion, abnormal epigenetic or transcriptional regulation. Although dysregulated ncRNAs may promote hallmarks of cancer as oncogenes or antagonize them as tumor suppressors, the mechanisms behind these events remain to be clarified. The development of new bioinformatic tools as well as novel molecular technologies is a challenging opportunity to disclose the role of the "dark matter" of the genome. In this review, we focus on currently available platforms, computational analyses and experimental strategies to investigate ncRNAs in cancer. We highlight the differences among experimental approaches aimed to dissect miRNAs and lncRNAs, which are the most studied ncRNAs. These two classes indeed need different investigation taking into account their intrinsic characteristics, such as length, structures and also the interacting molecules. Finally, we discuss the relevance of ncRNAs in clinical practice by considering promises and challenges behind the bench to bedside translation.
Collapse
Affiliation(s)
- Katia Grillone
- Laboratory of Translational Medical Oncology, Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
| | - Caterina Riillo
- Laboratory of Translational Medical Oncology, Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
- Medical and Translational Oncology Units, AOU Mater Domini, 88100 Catanzaro, Italy
| | - Francesca Scionti
- Laboratory of Translational Medical Oncology, Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
| | - Roberta Rocca
- Laboratory of Translational Medical Oncology, Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
- Net4science srl, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
| | - Giuseppe Tradigo
- Laboratory of Bioinformatics, Department of Medical and Surgical Sciences, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
| | - Pietro Hiram Guzzi
- Laboratory of Bioinformatics, Department of Medical and Surgical Sciences, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
| | - Stefano Alcaro
- Net4science srl, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
- Department of Health Sciences, Magna Græcia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
| | - Maria Teresa Di Martino
- Laboratory of Translational Medical Oncology, Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
- Medical and Translational Oncology Units, AOU Mater Domini, 88100 Catanzaro, Italy
| | - Pierosandro Tagliaferri
- Laboratory of Translational Medical Oncology, Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
- Medical and Translational Oncology Units, AOU Mater Domini, 88100 Catanzaro, Italy
| | - Pierfrancesco Tassone
- Laboratory of Translational Medical Oncology, Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
- Medical and Translational Oncology Units, AOU Mater Domini, 88100 Catanzaro, Italy
| |
Collapse
|
26
|
Caracciolo D, Riillo C, Arbitrio M, Di Martino MT, Tagliaferri P, Tassone P. Error-prone DNA repair pathways as determinants of immunotherapy activity: an emerging scenario for cancer treatment. Int J Cancer 2020; 147:2658-2668. [PMID: 32383203 DOI: 10.1002/ijc.33038] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/18/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022]
Abstract
Defects in DNA repair machinery play a critical role in the pathogenesis and progression of human cancer. When they occur, the tumor cells activate error-prone mechanisms which lead to genomic instability and high mutation rate. These defects represent, therefore, a cancer Achilles'heel which could be therapeutically exploited by the use of DNA damage response inhibitors. Moreover, experimental and clinical evidence indicates that DNA repair deregulation has a pivotal role also in promoting immune recognition and immune destruction of cancer cells. Indeed, immune checkpoint inhibitors have received regulatory approval in tumors characterized by high genomic instability, such as melanomas and lung cancer. Here, we discuss how deregulation of DNA repair, through activation of error-prone mechanisms, increases immune activation against cancer. Finally, we address the potential strategies to use DNA repair components as biomarkers and/or therapeutic targets to empower immune-oncology treatment of human cancer.
Collapse
Affiliation(s)
- Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Caterina Riillo
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | | | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
27
|
Stratigopoulou M, van Dam TP, Guikema JEJ. Base Excision Repair in the Immune System: Small DNA Lesions With Big Consequences. Front Immunol 2020; 11:1084. [PMID: 32547565 PMCID: PMC7272602 DOI: 10.3389/fimmu.2020.01084] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
The integrity of the genome is under constant threat of environmental and endogenous agents that cause DNA damage. Endogenous damage is particularly pervasive, occurring at an estimated rate of 10,000–30,000 per cell/per day, and mostly involves chemical DNA base lesions caused by oxidation, depurination, alkylation, and deamination. The base excision repair (BER) pathway is primary responsible for removing and repairing these small base lesions that would otherwise lead to mutations or DNA breaks during replication. Next to preventing DNA mutations and damage, the BER pathway is also involved in mutagenic processes in B cells during immunoglobulin (Ig) class switch recombination (CSR) and somatic hypermutation (SHM), which are instigated by uracil (U) lesions derived from activation-induced cytidine deaminase (AID) activity. BER is required for the processing of AID-induced lesions into DNA double strand breaks (DSB) that are required for CSR, and is of pivotal importance for determining the mutagenic outcome of uracil lesions during SHM. Although uracils are generally efficiently repaired by error-free BER, this process is surprisingly error-prone at the Ig loci in proliferating B cells. Breakdown of this high-fidelity process outside of the Ig loci has been linked to mutations observed in B-cell tumors and DNA breaks and chromosomal translocations in activated B cells. Next to its role in preventing cancer, BER has also been implicated in immune tolerance. Several defects in BER components have been associated with autoimmune diseases, and animal models have shown that BER defects can cause autoimmunity in a B-cell intrinsic and extrinsic fashion. In this review we discuss the contribution of BER to genomic integrity in the context of immune receptor diversification, cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Maria Stratigopoulou
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Tijmen P van Dam
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jeroen E J Guikema
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
28
|
Ma Y, Qiao T, Meng Y. Increased expression of miR-22 corresponds to the high-risk subtypes of myelodysplastic syndromes and lower OS rate. Leuk Lymphoma 2020; 61:1763-1765. [PMID: 32141334 DOI: 10.1080/10428194.2020.1734591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Yanna Ma
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital of Fudan University, Shanghai, China
| | - Tiankui Qiao
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital of Fudan University, Shanghai, China
| | - Yuesheng Meng
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital of Fudan University, Shanghai, China
| |
Collapse
|
29
|
Di Martino MT, Meschini S, Scotlandi K, Riganti C, De Smaele E, Zazzeroni F, Donadelli M, Leonetti C, Caraglia M. From single gene analysis to single cell profiling: a new era for precision medicine. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:48. [PMID: 32138788 PMCID: PMC7059661 DOI: 10.1186/s13046-020-01549-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/14/2020] [Indexed: 12/20/2022]
Abstract
Molecular profiling of DNA and RNA has provided valuable new insights into the genetic basis of non-malignant and malignant disorders, as well as an increased understanding of basic mechanisms that regulate human disease. Recent technological advances have enabled the analyses of alterations in gene-based structure or function in a comprehensive, high-throughput fashion showing that each tumor type typically exhibits distinct constellations of genetic alterations targeting one or more key cellular pathways that regulate cell growth and proliferation, evasion of the immune system, and other aspects of cancer behavior. These advances have important implications for future research and clinical practice in areas as molecular diagnostics, the implementation of gene or pathway-directed targeted therapy, and the use of such information to drive drug discovery. The 1st international and 32nd Annual Conference of Italian Association of Cell Cultures (AICC) conference wanted to offer the opportunity to match technological solutions and clinical needs in the era of precision medicine.
Collapse
Affiliation(s)
- Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Catanzaro, Italy.
| | - Stefania Meschini
- National Center for Drug Research and Evaluation, National Institute of Health, Rome, Italy
| | - Katia Scotlandi
- IRCCS Istituto Ortopedico Rizzoli, Experimental Oncology Lab, Bologna, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, Turin, Italy
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Carlo Leonetti
- UOSD SAFU, IRCCS-Regina Elena National Cancer Institute, Rome, Italy.
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples and Biogem Scarl, Institute of Genetic Research, Laboratory of Precision and Molecular Oncology, Ariano Irpino, Italy
| |
Collapse
|
30
|
Di Martino MT, Arbitrio M, Caracciolo D, Scionti F, Tagliaferri P, Tassone P. Dose-Finding Study and Pharmacokinetics Profile of the Novel 13-Mer Antisense miR-221 Inhibitor in Sprague-Dawley Rats. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 20:73-85. [PMID: 32146420 PMCID: PMC7058714 DOI: 10.1016/j.omtn.2020.01.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 12/29/2022]
Abstract
miR-221 is overexpressed in several malignancies where it promotes tumor growth and survival by interfering with gene transcripts, including p27Kip1, PUMA, PTEN, and p57Kip2. We previously demonstrated that a novel 13-mer miR-221 inhibitor (locked nucleic acid [LNA]-i-miR-221) exerts antitumor activity against human cancer with a pilot-favorable pharmacokinetics and safety profile in mice and non-naive monkeys. In this study, we report a non-good laboratory practice (GLP)/GLP dose-finding investigation of LNA-i-miR-221 in Sprague-Dawley rats. The safety of the intravenous dose (125 mg/kg/day) for 4 consecutive days, two treatment cycles, was investigated by a first non-GLP study. The toxicokinetics profile of LNA-i-miR-221 was next explored in a GLP study at three different doses (5, 12.5, and 125 mg/kg/day). Slight changes in blood parameters and histological findings in kidney were observed at the highest dose. These effects were reversible and consistent with an in vivo antisense oligonucleotide (ASO) class effect. The no-observed-adverse-effect level (NOAEL) was established at 5 mg/kg/day. The plasma exposure of LNA-i-miR-221, based on C0 (estimated concentration at time 0 after bolus intravenous administration) and area under the curve (AUC), suggested no differential sex effect. Slight accumulation occurred between cycles 1 and 2 but was not observed after four consecutive administrations. Taken together, our findings demonstrate a safety profile of LNA-i-miR-221 in Sprague-Dawley rats and provide a reference translational framework and path for the development of other LNA miR inhibitors in phase I clinical study.
Collapse
Affiliation(s)
- Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy.
| | | | - Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Francesca Scionti
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy.
| |
Collapse
|
31
|
The Non-Coding RNA Landscape of Plasma Cell Dyscrasias. Cancers (Basel) 2020; 12:cancers12020320. [PMID: 32019064 PMCID: PMC7072200 DOI: 10.3390/cancers12020320] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/14/2022] Open
Abstract
Despite substantial advancements have been done in the understanding of the pathogenesis of plasma cell (PC) disorders, these malignancies remain hard-to-treat. The discovery and subsequent characterization of non-coding transcripts, which include several members with diverse length and mode of action, has unraveled novel mechanisms of gene expression regulation often malfunctioning in cancer. Increasing evidence indicates that such non-coding molecules also feature in the pathobiology of PC dyscrasias, where they are endowed with strong therapeutic and/or prognostic potential. In this review, we aim to summarize the most relevant findings on the biological and clinical features of the non-coding RNA landscape of malignant PCs, with major focus on multiple myeloma. The most relevant classes of non-coding RNAs will be examined, along with the mechanisms accounting for their dysregulation and the recent strategies used for their targeting in PC dyscrasias. It is hoped these insights may lead to clinical applications of non-coding RNA molecules as biomarkers or therapeutic targets/agents in the near future.
Collapse
|
32
|
Frassanito MA, Desantis V, Di Marzo L, Craparotta I, Beltrame L, Marchini S, Annese T, Visino F, Arciuli M, Saltarella I, Lamanuzzi A, Solimando AG, Nico B, De Angelis M, Racanelli V, Mariggiò MA, Chiacchio R, Pizzuti M, Gallone A, Fumarulo R, D'Incalci M, Vacca A. Bone marrow fibroblasts overexpress miR-27b and miR-214 in step with multiple myeloma progression, dependent on tumour cell-derived exosomes. J Pathol 2019; 247:241-253. [PMID: 30357841 DOI: 10.1002/path.5187] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/31/2018] [Accepted: 10/22/2018] [Indexed: 12/16/2022]
Abstract
Aberrant microRNA (miR) expression has an important role in tumour progression, but its involvement in bone marrow fibroblasts of multiple myeloma patients remains undefined. We demonstrate that a specific miR profile in bone marrow fibroblasts parallels the transition from monoclonal gammopathy of undetermined significance (MGUS) to myeloma. Overexpression of miR-27b-3p and miR-214-3p triggers proliferation and apoptosis resistance in myeloma fibroblasts via the FBXW7 and PTEN/AKT/GSK3 pathways, respectively. Transient transfection of miR-27b-3p and miR-214-3p inhibitors demonstrates a cooperation between these two miRNAs in the expression of the anti-apoptotic factor MCL1, suggesting that miR-27b-3p and miR-214-3p negatively regulate myeloma fibroblast apoptosis. Furthermore, myeloma cells modulate miR-27b-3p and miR-214-3p expression in fibroblasts through the release of exosomes. Indeed, tumour cell-derived exosomes induce an overexpression of both miRNAs in MGUS fibroblasts not through a simple transfer mechanism but by de novo synthesis triggered by the transfer of exosomal WWC2 protein that regulates the Hippo pathway. Increased levels of miR-27b-3p and miR-214-3p in MGUS fibroblasts co-cultured with myeloma cell-derived exosomes enhance the expression of fibroblast activation markers αSMA and FAP. These data show that the MGUS-to-myeloma transition entails an aberrant miRNA profile in marrow fibroblasts and highlight a key role of myeloma cells in modifying the bone marrow microenvironment by reprogramming the marrow fibroblasts' behaviour. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Maria Antonia Frassanito
- Department of Biomedical Sciences and Human Oncology, Unit of General Pathology, University of Bari Aldo Moro Medical School, Bari, Italy
| | - Vanessa Desantis
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro Medical School, Bari, Italy
| | - Lucia Di Marzo
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro Medical School, Bari, Italy
| | - Ilaria Craparotta
- IRCCS - "Istituto di Ricerche Farmacologiche" Mario Negri, Milan, Italy
| | - Luca Beltrame
- IRCCS - "Istituto di Ricerche Farmacologiche" Mario Negri, Milan, Italy
| | - Sergio Marchini
- IRCCS - "Istituto di Ricerche Farmacologiche" Mario Negri, Milan, Italy
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro Medical School, Bari, Italy
| | - Fabrizio Visino
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro Medical School, Bari, Italy
| | - Marcella Arciuli
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro Medical School, Bari, Italy
| | - Ilaria Saltarella
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro Medical School, Bari, Italy
| | - Aurelia Lamanuzzi
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro Medical School, Bari, Italy
| | - Antonio G Solimando
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro Medical School, Bari, Italy
| | - Beatrice Nico
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro Medical School, Bari, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro Medical School, Bari, Italy
| | - Maria A Mariggiò
- Department of Biomedical Sciences and Human Oncology, Unit of General Pathology, University of Bari Aldo Moro Medical School, Bari, Italy
| | - Rosistella Chiacchio
- Unit of Pathologic Anatomy and Cytodiagnosis, San Carlo Hospital, Potenza, Italy
| | | | - Anna Gallone
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro Medical School, Bari, Italy
| | - Ruggiero Fumarulo
- Department of Biomedical Sciences and Human Oncology, Unit of General Pathology, University of Bari Aldo Moro Medical School, Bari, Italy
| | | | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro Medical School, Bari, Italy
| |
Collapse
|
33
|
Pourhanifeh MH, Mahjoubin-Tehran M, Shafiee A, Hajighadimi S, Moradizarmehri S, Mirzaei H, Asemi Z. MicroRNAs and exosomes: Small molecules with big actions in multiple myeloma pathogenesis. IUBMB Life 2019; 72:314-333. [PMID: 31828868 DOI: 10.1002/iub.2211] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 11/22/2019] [Indexed: 12/17/2022]
Abstract
Multiple myeloma (MM), an incurable hematologic malignancy of plasma cells increasing in the bone marrow (BM), has a complex microenvironment made to support proliferation, survival, and drug resistance of tumor cells. MicroRNAs (miRNAs), short non-coding RNAs regulating genes expression at posttranscriptional level, have been indicated to be functionally deregulated or abnormally expressed in MM cells. Moreover, by means of miRNAs, tumor microenvironment also modulates the function of MM cells. Consistently, it has been demonstrated that miRNA levels regulation impairs their interaction with the microenvironment of BM as well as create considerable antitumor feature even capable of overcoming the protective BM milieu. Communication between cancer stromal cells and cancer cells is a key factor in tumor progression. Finding out this interaction is important to develop effective approaches that reverse bone diseases. Exosomes, nano-vehicles having crucial roles in cell-to-cell communication, through targeting their cargos (i.e., miRNAs, mRNAs, DNAs, and proteins), are implicated in MM pathogenesis.
Collapse
Affiliation(s)
- Mohammad H Pourhanifeh
- Halal Research Center of IRI, FDA, Tehran, Iran.,Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alimohammad Shafiee
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Sarah Hajighadimi
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Sanaz Moradizarmehri
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
34
|
Cheng J, Wei K, Xin Y, Zhao P, Zhang J, Jia W, Zheng B. Lack of associations between LIG3 gene polymorphisms and neuroblastoma susceptibility in Chinese children. J Cancer 2019; 10:5722-5726. [PMID: 31737108 PMCID: PMC6843871 DOI: 10.7150/jca.33605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 07/28/2019] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence suggests that dysregulation of the DNA non-homologous end-joining (NHEJ) repair system is a causative factor in many cancers, including high-risk neuroblastoma. A number of studies have shown that polymorphisms in the DNA ligase III (LIG3) gene, one of the key genes in the error-prone alternative NHEJ (a-NHEJ) pathway for DNA double-strand break (DSB) repair, are associated with a variety of cancers. Nevertheless, whether LIG3 polymorphisms contribute to neuroblastoma risk remains unknown. We investigated the correlation between neuroblastoma susceptibility and two LIG3 polymorphisms (rs1052536 C>T and rs4796030 A>C) among 469 neuroblastoma patients and 998 healthy controls from China. Our results failed to detect any relationship between the analyzed SNPs and neuroblastoma risk in either overall analysis or stratification analysis. These results suggest that rs1052536 C>T and rs4796030 A>C are unrelated to neuroblastoma susceptibility in the Chinese population. Further studies with larger sample sizes and multiple ethnicities are necessary to verify our results.
Collapse
Affiliation(s)
- Jiwen Cheng
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Kongmei Wei
- Department of Clinical Laboratory, LanShi Hospital of Lanzhou, Lanzhou 730050, Gansu, China
| | - Yijuan Xin
- Clinical Laboratory Medicine Center of PLA, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, China
| | - Pu Zhao
- Department of Neonatology, Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi, China
| | - Jiao Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Wei Jia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Baijun Zheng
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| |
Collapse
|
35
|
Juli G, Oliverio M, Bellizzi D, Gallo Cantafio ME, Grillone K, Passarino G, Colica C, Nardi M, Rossi M, Procopio A, Tagliaferri P, Tassone P, Amodio N. Anti-tumor Activity and Epigenetic Impact of the Polyphenol Oleacein in Multiple Myeloma. Cancers (Basel) 2019; 11:cancers11070990. [PMID: 31315220 PMCID: PMC6679356 DOI: 10.3390/cancers11070990] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 12/16/2022] Open
Abstract
Olive oil contains different biologically active polyphenols, among which oleacein, the most abundant secoiridoid, has recently emerged for its beneficial properties in various disease contexts. By using in vitro models of human multiple myeloma (MM), we here investigated the anti-tumor potential of oleacein and the underlying bio-molecular sequelae. Within a low micromolar range, oleacein reduced the viability of MM primary samples and cell lines even in the presence of bone marrow stromal cells (BMSCs), while sparing healthy peripheral blood mononuclear cells. We also demonstrated that oleacein inhibited MM cell clonogenicity, prompted cell cycle blockade and triggered apoptosis. We evaluated the epigenetic impact of oleacein on MM cells, and observed dose-dependent accumulation of both acetylated histones and α-tubulin, along with down-regulation of several class I/II histone deacetylases (HDACs) both at the mRNA and protein level, providing evidence of the HDAC inhibitory activity of this compound; conversely, no effect on global DNA methylation was found. Mechanistically, HDACs inhibition by oleacein was associated with down-regulation of Sp1, the major transactivator of HDACs promoter, via Caspase 8 activation. Of potential translational significance, oleacein synergistically enhanced the in vitro anti-MM activity of the proteasome inhibitor carfilzomib. Altogether, these results indicate that oleacein is endowed with HDAC inhibitory properties, which associate with significant anti-MM activity both as single agent or in combination with carfilzomib. These findings may pave the way to novel potential anti-MM epi-therapeutic approaches based on natural agents.
Collapse
Affiliation(s)
- Giada Juli
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Manuela Oliverio
- Department of Health Science, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Dina Bellizzi
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Arcavacata di Rende, Italy
| | | | - Katia Grillone
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Carmela Colica
- CNR, IBFM UOS of Germaneto, Magna Graecia University of Catanzaro, 88100, Catanzaro Italy
| | - Monica Nardi
- Department of Health Science, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Marco Rossi
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Procopio
- Department of Health Science, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy.
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy.
| |
Collapse
|
36
|
Janz S, Zhan F, Sun F, Cheng Y, Pisano M, Yang Y, Goldschmidt H, Hari P. Germline Risk Contribution to Genomic Instability in Multiple Myeloma. Front Genet 2019; 10:424. [PMID: 31139207 PMCID: PMC6518313 DOI: 10.3389/fgene.2019.00424] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 04/17/2019] [Indexed: 12/14/2022] Open
Abstract
Genomic instability, a well-established hallmark of human cancer, is also a driving force in the natural history of multiple myeloma (MM) - a difficult to treat and in most cases fatal neoplasm of immunoglobulin producing plasma cells that reside in the hematopoietic bone marrow. Long recognized manifestations of genomic instability in myeloma at the cytogenetic level include abnormal chromosome numbers (aneuploidy) caused by trisomy of odd-numbered chromosomes; recurrent oncogene-activating chromosomal translocations that involve immunoglobulin loci; and large-scale amplifications, inversions, and insertions/deletions (indels) of genetic material. Catastrophic genetic rearrangements that either shatter and illegitimately reassemble a single chromosome (chromotripsis) or lead to disordered segmental rearrangements of multiple chromosomes (chromoplexy) also occur. Genomic instability at the nucleotide level results in base substitution mutations and small indels that affect both the coding and non-coding genome. Sometimes this generates a distinctive signature of somatic mutations that can be attributed to defects in DNA repair pathways, the DNA damage response (DDR) or aberrant activity of mutator genes including members of the APOBEC family. In addition to myeloma development and progression, genomic instability promotes acquisition of drug resistance in patients with myeloma. Here we review recent findings on the genetic predisposition to myeloma, including newly identified candidate genes suggesting linkage of germline risk and compromised genomic stability control. The role of ethnic and familial risk factors for myeloma is highlighted. We address current research gaps that concern the lack of studies on the mechanism by which germline risk alleles promote genomic instability in myeloma, including the open question whether genetic modifiers of myeloma development act in tumor cells, the tumor microenvironment (TME), or in both. We conclude with a brief proposition for future research directions, which concentrate on the biological function of myeloma risk and genetic instability alleles, the potential links between the germline genome and somatic changes in myeloma, and the need to elucidate genetic modifiers in the TME.
Collapse
Affiliation(s)
- Siegfried Janz
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Fenghuang Zhan
- Department of Internal Medicine, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, United States.,Holden Comprehensive Cancer Center, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, United States
| | - Fumou Sun
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Yan Cheng
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michael Pisano
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, United States.,Interdisciplinary Graduate Program in Immunology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, United States
| | - Ye Yang
- The Third Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, China.,Ministry of Education's Key Laboratory of Acupuncture and Medicine Research, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hartmut Goldschmidt
- Medizinische Klinik V, Universitätsklinikum Heidelberg, Heidelberg, Germany.,Nationales Centrum für Tumorerkrankungen, Heidelberg, Germany
| | - Parameswaran Hari
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
37
|
Cucè M, Gallo Cantafio ME, Siciliano MA, Riillo C, Caracciolo D, Scionti F, Staropoli N, Zuccalà V, Maltese L, Di Vito A, Grillone K, Barbieri V, Arbitrio M, Di Martino MT, Rossi M, Amodio N, Tagliaferri P, Tassone P, Botta C. Trabectedin triggers direct and NK-mediated cytotoxicity in multiple myeloma. J Hematol Oncol 2019; 12:32. [PMID: 30898137 PMCID: PMC6429746 DOI: 10.1186/s13045-019-0714-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/26/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Genomic instability is a feature of multiple myeloma (MM), and impairment in DNA damaging response (DDR) has an established role in disease pathobiology. Indeed, a deregulation of DNA repair pathways may contribute to genomic instability, to the establishment of drug resistance to genotoxic agents, and to the escape from immune surveillance. On these bases, we evaluated the role of different DDR pathways in MM and investigated, for the first time, the direct and immune-mediated anti-MM activity of the nucleotide excision repair (NER)-dependent agent trabectedin. METHODS Gene-expression profiling (GEP) was carried out with HTA2.0 Affymetrix array. Evaluation of apoptosis, cell cycle, and changes in cytokine production and release have been performed in 2D and 3D Matrigel-spheroid models through flow cytometry on MM cell lines and patients-derived primary MM cells exposed to increasing nanomolar concentrations of trabectedin. DNA-damage response has been evaluated through Western blot, immunofluorescence, and DNA fragmentation assay. Trabectedin-induced activation of NK has been assessed by CD107a degranulation. miRNAs quantification has been done through RT-PCR. RESULTS By comparing GEP meta-analysis of normal and MM plasma cells (PCs), we observed an enrichment in DNA NER genes in poor prognosis MM. Trabectedin triggered apoptosis in primary MM cells and MM cell lines in both 2D and 3D in vitro assays. Moreover, trabectedin induced DDR activation, cellular stress with ROS production, and cell cycle arrest. Additionally, a significant reduction of MCP1 cytokine and VEGF-A in U266-monocytes co-cultures was observed, confirming the impairment of MM-promoting milieu. Drug-induced cell stress in MM cells led to upregulation of NK activating receptors ligands (i.e., NKG2D), which translated into increased NK activation and degranulation. Mechanistically, this effect was linked to trabectedin-induced inhibition of NKG2D-ligands negative regulators IRF4 and IKZF1, as well as to miR-17 family downregulation in MM cells. CONCLUSIONS Taken together, our findings indicate a pleiotropic activity of NER-targeting agent trabectedin, which appears a promising candidate for novel anti-MM therapeutic strategies.
Collapse
Affiliation(s)
- Maria Cucè
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
| | - Maria Eugenia Gallo Cantafio
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
| | - Maria Anna Siciliano
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
| | - Caterina Riillo
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
| | - Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
| | - Francesca Scionti
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
| | - Nicoletta Staropoli
- Medical and Translational Oncology Units, AOU Mater Domini, Catanzaro, Italy
| | | | | | - Anna Di Vito
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
| | - Katia Grillone
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
| | - Vito Barbieri
- Medical and Translational Oncology Units, AOU Mater Domini, Catanzaro, Italy
| | - Mariamena Arbitrio
- Institute of Neurological Sciences, UOS of Pharmacology, Catanzaro, Italy
| | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
- Medical and Translational Oncology Units, AOU Mater Domini, Catanzaro, Italy
| | - Marco Rossi
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
- Medical and Translational Oncology Units, AOU Mater Domini, Catanzaro, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
- Medical and Translational Oncology Units, AOU Mater Domini, Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy.
- Medical and Translational Oncology Units, AOU Mater Domini, Catanzaro, Italy.
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.
| | - Cirino Botta
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
| |
Collapse
|
38
|
Amodio N, Gallo Cantafio ME, Botta C, Agosti V, Federico C, Caracciolo D, Ronchetti D, Rossi M, Driessen C, Neri A, Tagliaferri P, Tassone P. Replacement of miR-155 Elicits Tumor Suppressive Activity and Antagonizes Bortezomib Resistance in Multiple Myeloma. Cancers (Basel) 2019; 11:cancers11020236. [PMID: 30781685 PMCID: PMC6406286 DOI: 10.3390/cancers11020236] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/03/2019] [Accepted: 02/14/2019] [Indexed: 12/12/2022] Open
Abstract
Aberrant expression of microRNAs (miRNAs) has been associated to the pathogenesis of multiple myeloma (MM). While miR-155 is considered a therapeutic target in several malignancies, its role in MM is still unclear. The analysis of miR-155 expression indicates its down-regulation in MM patient-derived as compared to healthy plasma cells, thus pointing to a tumor suppressor role in this malignancy. On this finding, we investigated miR-155 replacement as a potential anti-tumor strategy in MM. The miR-155 enforced expression triggered anti-proliferative and pro-apoptotic effects in vitro. Given the lower miR-155 levels in bortezomib-resistant as compared to sensitive MM cells, we analyzed the possible involvement of miR-155 in bortezomib resistance. Importantly, miR-155 replacement enhanced bortezomib anti-tumor activity both in vitro and in vivo in a xenograft model of human MM. In primary MM cells, we observed an inverse correlation between miR-155 and the mRNA encoding the proteasome subunit gene PSMβ5, whose dysregulation has been largely implicated in bortezomib resistance, and we validated PSMβ5 3′UTR mRNA targeting, along with reduced proteasome activity, by miR-155. Collectively, our findings demonstrate that miR-155 elicits anti-MM activity, likely via proteasome inhibition, providing the framework for miR-155-based anti-MM therapeutic strategies.
Collapse
Affiliation(s)
- Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy.
| | - Maria Eugenia Gallo Cantafio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy.
| | - Cirino Botta
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy.
| | - Valter Agosti
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy.
| | - Cinzia Federico
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy.
| | - Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy.
| | - Domenica Ronchetti
- Department of Oncology and Hemato-oncology, University of Milan and Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy.
| | - Marco Rossi
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy.
| | - Christoph Driessen
- Department of Hematology and Oncology, Cantonal Hospital St. Gallen, 9000 St. Gallen, Switzerland.
| | - Antonino Neri
- Department of Oncology and Hemato-oncology, University of Milan and Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy.
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy.
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy.
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA.
| |
Collapse
|
39
|
Caracciolo D, Montesano M, Altomare E, Scionti F, Di Martino MT, Tagliaferri P, Tassone P. The potential role of miRNAs in multiple myeloma therapy. Expert Rev Hematol 2018; 11:793-803. [DOI: 10.1080/17474086.2018.1517041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Martina Montesano
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Emanuela Altomare
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Francesca Scionti
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| |
Collapse
|