1
|
Lin Y, Zheng Y. Structural Dynamics of Rho GTPases. J Mol Biol 2025; 437:168919. [PMID: 39708912 DOI: 10.1016/j.jmb.2024.168919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Rho family GTPases are a part of the Ras superfamily and are signaling hubs for many cellular processes. While the detailed understanding of Ras structure and function has led to tremendous progress in oncogenic Ras-targeted drug discovery, studies of the related Rho GTPases are still catching up as the recurrent cancer-related Rho GTPase mutations have only been discovered in the last decade. Like that of Ras, an in-depth understanding of the structural basis of how Rho GTPases and their mutants behave as key oncogenic drivers benefits the development of clinically effective therapies. Recent studies of structure dynamics in Rho GTPase structure-function relationship have added new twists to the conventional wisdom of Rho GTPase signaling mechanism.
Collapse
Affiliation(s)
- Yuan Lin
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
2
|
Liu Y, Geng N, Huang X. Molecular regulators of chemotaxis in human hematopoietic stem cells. Biochem Soc Trans 2024; 52:2427-2437. [PMID: 39584478 DOI: 10.1042/bst20240288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/26/2024]
Abstract
Hematopoietic stem cells (HSCs), essential for lifelong blood cell regeneration, are clinically utilized to treat various hematological disorders. These cells originate in the aorta-gonad-mesonephros region, expand in the fetal liver, and mature in the bone marrow. Chemotaxis, involving gradient sensing, polarization, and migration, directs HSCs and is crucial for their homing and mobilization. The molecular regulation of HSC chemotaxis involves chemokines, chemokine receptors, signaling pathways, and cytoskeletal proteins. Recent advances in understanding these regulatory mechanisms have deepened insights into HSC development and hematopoiesis, offering new avenues for therapeutic innovations. Strategies including glucocorticoid receptor activation, modulation of histone acetylation, stimulation of nitric oxide signaling, and interference with m6A RNA modification have shown potential in enhancing CXCR4 expression, thereby improving the chemotactic response and homing capabilities of human HSCs. This review synthesizes current knowledge on the molecular regulation of human HSC chemotaxis and its implications for health and disease.
Collapse
Affiliation(s)
- Yining Liu
- Zhongshan-Xuhui Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Nanxi Geng
- Zhongshan-Xuhui Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xinxin Huang
- Zhongshan-Xuhui Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
3
|
Zhang Y, Wang X, Huang J, Zhang X, Bu L, Zhang Y, Liang F, Wu S, Zhang M, Zhang L, Zhang L. CASIN exerts anti-aging effects through RPL4 on the skin of naturally aging mice. Aging Cell 2024; 23:e14333. [PMID: 39289787 PMCID: PMC11634736 DOI: 10.1111/acel.14333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Skin aging has been associated with the onset of various skin issues, and recent studies have identified an increase in Cdc42 activity in naturally aging mice. While previous literature has suggested that CASIN, a specific inhibitor of Cdc42 activity, may possess anti-aging properties, its specific effects on the epidermis and dermis, as well as the underlying mechanisms in naturally aging mice, remain unclear. Our study revealed that CASIN demonstrated the ability to increase epidermal and dermal thickness, enhance dermal-epidermal junction, and stimulate collagen and elastic fiber synthesis in 9-, 15-, and 24-month-old C57BL/6 mice in vivo. Moreover, CASIN was found to enhance the proliferation, differentiation, and colony formation and restore the cytoskeletal morphology of primary keratinocytes in naturally aging skin in vitro. Furthermore, the anti-aging properties of CASIN on primary fibroblasts in aging mice were mediated by the ribosomal protein RPL4 using proteomic sequencing, influencing collagen synthesis and cytoskeletal morphology both in vitro and in vivo. Meanwhile, both subcutaneous injection and topical application exhibited anti-aging effects for a duration of 21 days. Additionally, CASIN exhibited anti-inflammatory properties, while reduced expression of RPL4 was associated with increased inflammation in the skin of naturally aging mice. Taken together, our results unveil a novel function of RPL4 in skin aging, providing a foundational basis for future investigations into ribosomal proteins. And CASIN shows promise as a potential anti-aging agent for naturally aging mouse skin, suggesting potential applications in the field.
Collapse
Affiliation(s)
- Yijia Zhang
- GDMPA Key Laboratory of key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Histology and Embryology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Xueer Wang
- GDMPA Key Laboratory of key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Histology and Embryology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Jianyuan Huang
- GDMPA Key Laboratory of key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Histology and Embryology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Xinyue Zhang
- GDMPA Key Laboratory of key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Histology and Embryology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Lingwei Bu
- GDMPA Key Laboratory of key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Histology and Embryology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Yarui Zhang
- GDMPA Key Laboratory of key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Histology and Embryology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Fengting Liang
- GDMPA Key Laboratory of key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Histology and Embryology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Shenhua Wu
- GDMPA Key Laboratory of key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Histology and Embryology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Min Zhang
- GDMPA Key Laboratory of key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Histology and Embryology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Lu Zhang
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Center for Orthopaedic Surgery of the Third Affiliated Hospital, Guangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceSouthern Medical UniversityGuangzhouChina
| | - Lin Zhang
- GDMPA Key Laboratory of key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Histology and Embryology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
4
|
Matteini F, Montserrat‐Vazquez S, Florian MC. Rejuvenating aged stem cells: therapeutic strategies to extend health and lifespan. FEBS Lett 2024; 598:2776-2787. [PMID: 38604982 PMCID: PMC11586596 DOI: 10.1002/1873-3468.14865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/03/2024] [Accepted: 03/07/2024] [Indexed: 04/13/2024]
Abstract
Aging is associated with a global decline in stem cell function. To date, several strategies have been proposed to rejuvenate aged stem cells: most of these result in functional improvement of the tissue where the stem cells reside, but the impact on the lifespan of the whole organism has been less clearly established. Here, we review some of the most recent work dealing with interventions that improve the regenerative capacity of aged somatic stem cells in mammals and that might have important translational possibilities. Overall, we underscore that somatic stem cell rejuvenation represents a strategy to improve tissue homeostasis upon aging and present some recent approaches with the potential to affect health span and lifespan of the whole organism.
Collapse
Affiliation(s)
- Francesca Matteini
- Stem Cell Aging Group, Regenerative Medicine ProgramThe Bellvitge Institute for Biomedical Research (IDIBELL)BarcelonaSpain
- Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P‐CMR[C])BarcelonaSpain
| | - Sara Montserrat‐Vazquez
- Stem Cell Aging Group, Regenerative Medicine ProgramThe Bellvitge Institute for Biomedical Research (IDIBELL)BarcelonaSpain
- Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P‐CMR[C])BarcelonaSpain
| | - M. Carolina Florian
- Stem Cell Aging Group, Regenerative Medicine ProgramThe Bellvitge Institute for Biomedical Research (IDIBELL)BarcelonaSpain
- Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P‐CMR[C])BarcelonaSpain
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN)MadridSpain
- The Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
| |
Collapse
|
5
|
Kadyr S, Zhuraliyeva A, Yermekova A, Makhambetova A, Kaldybekov DB, Mun EA, Bulanin D, Askarova SN, Umbayev BA. PLGA-PEG Nanoparticles Loaded with Cdc42 Inhibitor for Colorectal Cancer Targeted Therapy. Pharmaceutics 2024; 16:1301. [PMID: 39458630 PMCID: PMC11510643 DOI: 10.3390/pharmaceutics16101301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: An inhibitor of small Rho GTPase Cdc42, CASIN, has been shown to reduce cancer cell proliferation, migration, and invasion, yet it has several limitations, including rapid drug elimination and low bioavailability, which prevents its systemic administration. In this study, we designed and characterized a nanoparticle-based delivery system for CASIN encapsulated within poly(lactide-co-glycolide)-block-poly(ethylene glycol)-carboxylic acid endcap nanoparticles (PLGA-PEG-COOH NPs) for targeted inhibition of Cdc42 activity in colon cancer. Methods: We applied DLS, TEM, and UV-vis spectroscopy methods to characterize the size, polydispersity index, zeta potential, encapsulation efficiency, loading capacity, and in vitro drug release of the synthesized nanoparticles. The CCK-8 cell viability test was used to study colorectal cancer cell growth in vitro. Results: We showed that CASIN-PLGA-PEG-COOH NPs were smooth, spherical, and had a particle size of 86 ± 1 nm, with an encapsulation efficiency of 66 ± 5% and a drug-loading capacity of 5 ± 1%. CASIN was gradually released from NPs, reaching its peak after 24 h, and could effectively inhibit the proliferation of HT-29 (IC50 = 19.55 µM), SW620 (IC50 = 9.33 µM), and HCT116 (IC50 = 10.45 µM) cells in concentrations ranging between 0.025-0.375 mg/mL. CASIN-PLGA-PEG-COOH NPs demonstrated low hemolytic activity with a hemolytic ratio of less than 1% for all tested concentrations. Conclusion: CASIN-PLGA-PEG-COOH NPs have high encapsulation efficiency, sustained drug release, good hemocompatibility, and antitumor activity in vitro. Our results suggest that PLGA-PEG-COOH nanoparticles loaded with CASIN show potential as a targeted treatment for colorectal cancer and could be recommended for further in vivo evaluation.
Collapse
Affiliation(s)
- Sanazar Kadyr
- School of Medicine, Nazarbayev University, 010000 Astana, Kazakhstan; (S.K.); (D.B.)
| | - Altyn Zhuraliyeva
- Laboratory of Bioengineering and Regenerative Medicine, National Laboratory Astana, Nazarbayev University, 010000 Astana, Kazakhstan; (A.Z.); (A.Y.); (A.M.); (S.N.A.)
| | - Aislu Yermekova
- Laboratory of Bioengineering and Regenerative Medicine, National Laboratory Astana, Nazarbayev University, 010000 Astana, Kazakhstan; (A.Z.); (A.Y.); (A.M.); (S.N.A.)
| | - Aigerim Makhambetova
- Laboratory of Bioengineering and Regenerative Medicine, National Laboratory Astana, Nazarbayev University, 010000 Astana, Kazakhstan; (A.Z.); (A.Y.); (A.M.); (S.N.A.)
| | - Daulet B. Kaldybekov
- Department of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan;
| | - Ellina A. Mun
- School of Sciences and Humanities, Nazarbayev University, 010000 Astana, Kazakhstan;
| | - Denis Bulanin
- School of Medicine, Nazarbayev University, 010000 Astana, Kazakhstan; (S.K.); (D.B.)
| | - Sholpan N. Askarova
- Laboratory of Bioengineering and Regenerative Medicine, National Laboratory Astana, Nazarbayev University, 010000 Astana, Kazakhstan; (A.Z.); (A.Y.); (A.M.); (S.N.A.)
| | - Bauyrzhan A. Umbayev
- Laboratory of Bioengineering and Regenerative Medicine, National Laboratory Astana, Nazarbayev University, 010000 Astana, Kazakhstan; (A.Z.); (A.Y.); (A.M.); (S.N.A.)
| |
Collapse
|
6
|
Shen J, Su X, Wang S, Wang Z, Zhong C, Huang Y, Duan S. RhoJ: an emerging biomarker and target in cancer research and treatment. Cancer Gene Ther 2024; 31:1454-1464. [PMID: 38858534 DOI: 10.1038/s41417-024-00792-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024]
Abstract
RhoJ is a Rho GTPase that belongs to the Cdc42 subfamily and has a molecular weight of approximately 21 kDa. It can activate the p21-activated kinase family either directly or indirectly, influencing the activity of various downstream effectors and playing a role in regulating the cytoskeleton, cell movement, and cell cycle. RhoJ's expression and activity are controlled by multiple upstream factors at different levels, including expression, subcellular localization, and activation. High RhoJ expression is generally associated with a poor prognosis for cancer patients and is mainly due to an increased number of tumor blood vessels and abnormal expression in malignant cells. RhoJ promotes tumor progression through several pathways, particularly in tumor angiogenesis and drug resistance. Clinical data also indicates that high RhoJ expression is closely linked to the pathological features of tumor malignancy. There are various cancer treatment methods that target RhoJ signaling, such as direct binding to inhibit the RhoJ effector pocket, inhibiting RhoJ expression, blocking RhoJ upstream and downstream signals, and indirectly inhibiting RhoJ's effect. RhoJ is an emerging cancer biomarker and a significant target for future cancer clinical research and drug development.
Collapse
Affiliation(s)
- Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Xinming Su
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Shana Wang
- Department of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zehua Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Chenming Zhong
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Yi Huang
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China.
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Brindani N, Vuong LM, La Serra MA, Salvador N, Menichetti A, Acquistapace IM, Ortega JA, Veronesi M, Bertozzi SM, Summa M, Girotto S, Bertorelli R, Armirotti A, Ganesan AK, De Vivo M. Discovery of CDC42 Inhibitors with a Favorable Pharmacokinetic Profile and Anticancer In Vivo Efficacy. J Med Chem 2024; 67:10401-10424. [PMID: 38866385 PMCID: PMC11215724 DOI: 10.1021/acs.jmedchem.4c00855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024]
Abstract
We previously reported trisubstituted pyrimidine lead compounds, namely, ARN22089 and ARN25062, which block the interaction between CDC42 with its specific downstream effector, a PAK protein. This interaction is crucial for the progression of multiple tumor types. Such inhibitors showed anticancer efficacy in vivo. Here, we describe a second class of CDC42 inhibitors with favorable drug-like properties. Out of the 25 compounds here reported, compound 15 (ARN25499) stands out as the best lead compound with an improved pharmacokinetic profile, increased bioavailability, and efficacy in an in vivo PDX tumor mouse model. Our results indicate that these CDC42 inhibitors represent a promising chemical class toward the discovery of anticancer drugs, with ARN25499 as an additional lead candidate for preclinical development.
Collapse
Affiliation(s)
- Nicoletta Brindani
- Molecular
Modeling and Drug Discovery Lab, Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Linh M. Vuong
- Department
of Dermatology, University of California, Irvine, California 92697, United States
| | - Maria Antonietta La Serra
- Molecular
Modeling and Drug Discovery Lab, Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Noel Salvador
- Department
of Dermatology, University of California, Irvine, California 92697, United States
| | - Andrea Menichetti
- Molecular
Modeling and Drug Discovery Lab, Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Isabella Maria Acquistapace
- Molecular
Modeling and Drug Discovery Lab, Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Jose Antonio Ortega
- Molecular
Modeling and Drug Discovery Lab, Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Marina Veronesi
- Structural
Biophysics Facility, Istituto Italiano di
Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Sine Mandrup Bertozzi
- Analytical
Chemistry Facility, Istituto Italiano di
Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Maria Summa
- Translational
Pharmacology Facility, Istituto Italiano
di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Stefania Girotto
- Structural
Biophysics Facility, Istituto Italiano di
Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Rosalia Bertorelli
- Translational
Pharmacology Facility, Istituto Italiano
di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Andrea Armirotti
- Analytical
Chemistry Facility, Istituto Italiano di
Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Anand K. Ganesan
- Department
of Dermatology, University of California, Irvine, California 92697, United States
| | - Marco De Vivo
- Molecular
Modeling and Drug Discovery Lab, Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| |
Collapse
|
8
|
Blake TCA, Fox HM, Urbančič V, Ravishankar R, Wolowczyk A, Allgeyer ES, Mason J, Danuser G, Gallop JL. Filopodial protrusion driven by density-dependent Ena-TOCA-1 interactions. J Cell Sci 2024; 137:jcs261057. [PMID: 38323924 PMCID: PMC11006392 DOI: 10.1242/jcs.261057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024] Open
Abstract
Filopodia are narrow actin-rich protrusions with important roles in neuronal development where membrane-binding adaptor proteins, such as I-BAR- and F-BAR-domain-containing proteins, have emerged as upstream regulators that link membrane interactions to actin regulators such as formins and proteins of the Ena/VASP family. Both the adaptors and their binding partners are part of diverse and redundant protein networks that can functionally compensate for each other. To explore the significance of the F-BAR domain-containing neuronal membrane adaptor TOCA-1 (also known as FNBP1L) in filopodia we performed a quantitative analysis of TOCA-1 and filopodial dynamics in Xenopus retinal ganglion cells, where Ena/VASP proteins have a native role in filopodial extension. Increasing the density of TOCA-1 enhances Ena/VASP protein binding in vitro, and an accumulation of TOCA-1, as well as its coincidence with Ena, correlates with filopodial protrusion in vivo. Two-colour single-molecule localisation microscopy of TOCA-1 and Ena supports their nanoscale association. TOCA-1 clusters promote filopodial protrusion and this depends on a functional TOCA-1 SH3 domain and activation of Cdc42, which we perturbed using the small-molecule inhibitor CASIN. We propose that TOCA-1 clusters act independently of membrane curvature to recruit and promote Ena activity for filopodial protrusion.
Collapse
Affiliation(s)
- Thomas C. A. Blake
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Helen M. Fox
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Vasja Urbančič
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Roshan Ravishankar
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Adam Wolowczyk
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Edward S. Allgeyer
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Julia Mason
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jennifer L. Gallop
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| |
Collapse
|
9
|
Malasala S, Azimian F, Chen YH, Twiss JL, Boykin C, Akhtar SN, Lu Q. Enabling Systemic Identification and Functionality Profiling for Cdc42 Homeostatic Modulators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574351. [PMID: 38260445 PMCID: PMC10802479 DOI: 10.1101/2024.01.05.574351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Homeostatic modulation is pivotal in modern therapeutics. However, the discovery of bioactive materials to achieve this functionality is often random and unpredictive. Here, we enabled a systemic identification and functional classification of chemicals that elicit homeostatic modulation of signaling through Cdc42, a classical small GTPase of Ras superfamily. Rationally designed for high throughput screening, the capture of homeostatic modulators (HMs) along with molecular re-docking uncovered at least five functionally distinct classes of small molecules. This enabling led to partial agonists, hormetic agonists, bona fide activators and inhibitors, and ligand-enhanced agonists. Novel HMs exerted striking functionality in bradykinin-Cdc42 activation of actin remodelingand modified Alzheimer's disease-like behavior in mouse model. This concurrent computer-aided and experimentally empowered HM profiling highlights a model path for predicting HM landscape. One Sentence Summary With concurrent experimental biochemical profiling and in silico computer-aided drug discovery (CADD) analysis, this study enabled a systemic identification and holistic classification of Cdc42 homeostatic modulators (HMs) and demonstrated the power of CADD to predict HM classes that can mimic the pharmacological functionality of interests. Introduction Maintainingbody homeostasisis the ultimate keyto health. Thereare rich resources of bioactive materials for this functionality from both natural and synthetic chemical repertories including partial agonists (PAs) and various allosteric modulators. These homeostatic modulators (HMs) play a unique role in modern therapeutics for human diseases such as mental disorders and drug addiction. Buspirone, for example, acts as a PA for serotonin 5-HT 1A receptor but is an antagonist of the dopamine D 2 receptor. Such medical useto treat general anxietydisorders (GADs) has become one of the most-commonly prescribed medications. However, most HMs in current uses target membrane proteins and are often derived from random discoveries. HMs as therapeutics targeting cytoplasmic proteins are even more rare despite that they are in paramount needs (e. g. targeting Ras superfamily small GTPases). Rationale Cdc42, a classical member of small GTPases of Ras superfamily, regulates PI3K-AKT and Raf-MEK-ERK pathways and has been implicated in various neuropsychiatric and mental disorders as well as addictive diseases and cancer. We previously reported the high-throughput in-silico screening followed by biological characterization of novel small molecule modulators (SMMs) of Cdc42-intersectin (ITSN) protein-protein interactions (PPIs). Based on a serendipitously discovered SMM ZCL278 with PA profile as a model compound, we hypothesized that there are more varieties of such HMs of Cdc42 signaling, and the model HMs can be defined by their distinct Cdc42-ITSN binding mechanisms using computer-aided drug discovery (CADD) analysis. We further reasoned that molecular modeling coupled with experimental profiling can predict HM spectrum and thus open the door for the holistic identification and classification of multifunctional cytoplasmic target-dependent HMs as therapeutics. Results The originally discovered Cdc42 inhibitor ZCL278 displaying PA properties prompted the inquiry whether this finding represented a random encounter of PAs or whether biologically significant PAs can be widely present. The top ranked compounds were initially defined by structural fitness and binding scores to Cdc42. Because higher binding scores do not necessarily translate to higher functionality, we performed exhaustive experimentations with over 2,500 independent Cdc42-GEF (guanine nucleotide exchange factor) assays to profile the GTP loading activities on all 44 top ranked compounds derived from the SMM library. The N-MAR-GTP fluorophore-based Cdc42-GEF assay platform provided the first glimpse of the breadth of HMs. A spectrum of Cdc42 HMs was uncovered that can be categorized into five functionally distinct classes: Class I-partial competitive agonists, Class II-hormetic agonists, Class III- bona fide inhibitors (or inverse agonists), Class IV- bona fide activators or agonists, and Class V-ligand-enhanced agonists. Remarkably, model HMs such as ZCL278, ZCL279, and ZCL367 elicited striking biological functionality in bradykinin-Cdc42 activation of actin remodeling and modified Alzheimer's disease (AD)-like behavior in mouse model. Concurrently, we applied Schrödinger-enabled analyses to perform CADD predicted classification of Cdc42 HMs. We modified the classic molecular docking to instill a preferential binding pocket order (PBPO) of Cdc42-ITSN, which was based on the five binding pockets in interface of Cdc42-ITSN. We additionally applied a structure-based pharmacophore hypothesis generation for the model compounds. Then, using Schrödinger's Phase Shape, 3D ligand alignments assigned HMs to Class I, II, III, IV, and V compounds. In this HM library compounds, PBPO, matching pharmacophoric featuring, and shape alignment, all put ZCL993 in Class II compound category, which was confirmed in the Cdc42-GEF assay. Conclusion HMs can target diseased cells or tissues while minimizing impacts on tissues that are unaffected. Using Cdc42 HM model compounds as a steppingstone, GTPase activation-based screening of SMM library uncovered five functionally distinct Cdc42 HM classes among which novel efficacies towards alleviating dysregulated AD-like features in mice were identified. Furthermore, molecular re-docking of HM model compounds led to the concept of PBPO. The CADD analysis with PBPO revealed similar profile in a color-coded spectrum to these five distinct classes of Cdc42 HMs identified by biochemical functionality-based screening. The current study enabled a systemic identification and holistic classification of Cdc42 HMs and demonstrated the power of CADD to predict an HM category that can mimic the pharmacological functionality of interests. With artificial intelligence/machine learning (AI/ML) on the horizon to mirror experimental pharmacological discovery like AlphaFold for protein structure prediction, our study highlights a model path to actively capture and profile HMs in potentially any PPI landscape. Graphic Abstract Identification and functional classification of Cdc42 homeostatic modulators HMs Using Cdc42 HM model compounds as reference, GTPase activation-based screening of compound libraries uncovered five functionally distinct Cdc42 HM classes. HMs showed novel efficacies towards alleviating dysregulated Alzheimer's disease (AD)-like behavioral and molecular deficits. In parallel, molecular re-docking of HM model compounds established their preferential binding pocket orders (PBPO). PBPO-based profiling (Red reflects the most, whereas green reflects the least, preferable binding pocket) revealed trends of similar pattern to the five classes from the functionality-based classification.
Collapse
|
10
|
Aplan P, Bertoli R, Chung YJ, Difilippantonio M, Wokasch A, Marasco M, Klimaszewski H, Garber S, Zhu Y, Walker R, Cao D, Doroshow J, Meltzer P. 5-Aza-4'-thio-2'-deoxycytidine induces C>G transversions in a specific trinucleotide context and leads to acute lymphoid leukemia. RESEARCH SQUARE 2023:rs.3.rs-3186246. [PMID: 38168433 PMCID: PMC10760231 DOI: 10.21203/rs.3.rs-3186246/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
DNA methyltransferase inhibitors (DNMTi), most commonly cytidine analogs, are compounds that are used clinically to decrease 5'-cytosine methylation, with the aim of re-expression of tumor suppressor genes. We used a murine pre-clinical model of myelodysplastic syndrome based on transplantation of cells expressing a NUP98::HOXD13 transgene to investigate 5-Aza-4'-thio-2'-deoxycytidine (Aza TdCyd or ATC), a thiol substituted DNMTi, as a potential therapy. We found that ATC treatment led to lymphoid leukemia in wild-type recipient cells; further study revealed that healthy mice treated with ATC also developed lymphoid leukemia. Whole exome sequencing revealed thousands of acquired mutations, almost all of which were C > G transversions in a previously unrecognized, specific 5'-NCG-3' context. These mutations involved dozens of genes well-known to be involved in human lymphoid leukemia, such as Notch1, Pten, Pax5, Trp53 , and Nf1 . Treatment of human cells in vitro showed thousands of acquired C > G transversions in a similar context. Deletion of Dck , the rate-limiting enzyme for the cytidine salvage pathway, eliminated C > G transversions. Taken together, these findings demonstrate that DNMTi can be potent mutagens in human and mouse cells, both in vitro and in vivo .
Collapse
|
11
|
Jin JC, Chen BY, Deng CH, Chen JN, Xu F, Tao Y, Hu CL, Xu CH, Chang BH, Wang Y, Fei MY, Liu P, Yu PC, Li ZJ, Li XY, Chen SB, Jiang YL, Chen XC, Zong LJ, Zhang JY, Ren YY, Xu FH, Liu Q, Huang XH, Guo J, He Q, Song LX, Zhou LY, Su JY, Xiao C, Zhang YM, Yan M, Zhang Z, Wu D, Chang CK, Li X, Wang L, Wu LY. ROBO1 deficiency impairs HSPC homeostasis and erythropoiesis via CDC42 and predicts poor prognosis in MDS. SCIENCE ADVANCES 2023; 9:eadi7375. [PMID: 38019913 DOI: 10.1126/sciadv.adi7375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Myelodysplastic syndrome (MDS) is a group of clonal hematopoietic neoplasms originating from hematopoietic stem progenitor cells (HSPCs). We previously identified frequent roundabout guidance receptor 1 (ROBO1) mutations in patients with MDS, while the exact role of ROBO1 in hematopoiesis remains poorly delineated. Here, we report that ROBO1 deficiency confers MDS-like disease with anemia and multilineage dysplasia in mice and predicts poor prognosis in patients with MDS. More specifically, Robo1 deficiency impairs HSPC homeostasis and disrupts HSPC pool, especially the reduction of megakaryocyte erythroid progenitors, which causes a blockage in the early stages of erythropoiesis in mice. Mechanistically, transcriptional profiling indicates that Cdc42, a member of the Rho-guanosine triphosphatase family, acts as a downstream target gene for Robo1 in HSPCs. Overexpression of Cdc42 partially restores the self-renewal and erythropoiesis of HSPCs in Robo1-deficient mice. Collectively, our result implicates the essential role of ROBO1 in maintaining HSPC homeostasis and erythropoiesis via CDC42.
Collapse
Affiliation(s)
- Jia-Cheng Jin
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Bing-Yi Chen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chu-Han Deng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jia-Nan Chen
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Feng Xu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ying Tao
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Cheng-Long Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chun-Hui Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bin-He Chang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yong Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ming-Yue Fei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ping Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Peng-Cheng Yu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zi-Juan Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xi-Ya Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shu-Bei Chen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi-Lun Jiang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xin-Chi Chen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Li-Juan Zong
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jia-Ying Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi-Yi Ren
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fan-Huan Xu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qi Liu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xin-Hui Huang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Juan Guo
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qi He
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lu-Xi Song
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Li-Yu Zhou
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Department of Hematology, Shanghai Eighth People's Hospital, Shanghai, China
| | - Ji-Ying Su
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chao Xiao
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yu-Mei Zhang
- Department of Hematology, Shanghai Eighth People's Hospital, Shanghai, China
| | - Meng Yan
- Department of Hematology, Shanghai Eighth People's Hospital, Shanghai, China
| | - Zheng Zhang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Dong Wu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chun-Kang Chang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiao Li
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ling-Yun Wu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Department of Hematology, Shanghai Eighth People's Hospital, Shanghai, China
| |
Collapse
|
12
|
Yin G, Huang J, Petela J, Jiang H, Zhang Y, Gong S, Wu J, Liu B, Shi J, Gao Y. Targeting small GTPases: emerging grasps on previously untamable targets, pioneered by KRAS. Signal Transduct Target Ther 2023; 8:212. [PMID: 37221195 DOI: 10.1038/s41392-023-01441-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/28/2023] [Accepted: 04/14/2023] [Indexed: 05/25/2023] Open
Abstract
Small GTPases including Ras, Rho, Rab, Arf, and Ran are omnipresent molecular switches in regulating key cellular functions. Their dysregulation is a therapeutic target for tumors, neurodegeneration, cardiomyopathies, and infection. However, small GTPases have been historically recognized as "undruggable". Targeting KRAS, one of the most frequently mutated oncogenes, has only come into reality in the last decade due to the development of breakthrough strategies such as fragment-based screening, covalent ligands, macromolecule inhibitors, and PROTACs. Two KRASG12C covalent inhibitors have obtained accelerated approval for treating KRASG12C mutant lung cancer, and allele-specific hotspot mutations on G12D/S/R have been demonstrated as viable targets. New methods of targeting KRAS are quickly evolving, including transcription, immunogenic neoepitopes, and combinatory targeting with immunotherapy. Nevertheless, the vast majority of small GTPases and hotspot mutations remain elusive, and clinical resistance to G12C inhibitors poses new challenges. In this article, we summarize diversified biological functions, shared structural properties, and complex regulatory mechanisms of small GTPases and their relationships with human diseases. Furthermore, we review the status of drug discovery for targeting small GTPases and the most recent strategic progress focused on targeting KRAS. The discovery of new regulatory mechanisms and development of targeting approaches will together promote drug discovery for small GTPases.
Collapse
Affiliation(s)
- Guowei Yin
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Jing Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Johnny Petela
- Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | - Hongmei Jiang
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuetong Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Siqi Gong
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jiaxin Wu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Bei Liu
- National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, 100871, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology, Chengdu, 610072, China.
| | - Yijun Gao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
13
|
Zhang Y, Li G, Zhao Y. Advances in the development of Rho GTPase inhibitors. Bioorg Med Chem 2023; 90:117337. [PMID: 37253305 DOI: 10.1016/j.bmc.2023.117337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/01/2023]
Abstract
Rho guanosine triphosphatases (Rho GTPases), as members of the Ras superfamily, are GDP/GTP binding proteins that behave as molecular switches for the transduction of signals from external stimuli. Rho GTPases play essential roles in a number of cellular processes including cell cycle, cell polarity as well as cell migration. The dysregulations of Rho GTPases are related with various diseases, especially with cancers. Accumulating evidence supports that Rho GTPases play important roles in cancer development and progression. Rho GTPases become potential therapeutic targets for cancer therapy. And a number of inhibitors targeting Rho GTPases have been developed. In this review, we discuss their structural features, summarize their roles in cancer, and focus on the recent progress of their inhibitors, which are beneficial for the drug discovery targeting Rho GTPases.
Collapse
Affiliation(s)
- Yijing Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Guanyi Li
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yaxue Zhao
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
14
|
Role of a small GTPase Cdc42 in aging and age-related diseases. Biogerontology 2023; 24:27-46. [PMID: 36598630 DOI: 10.1007/s10522-022-10008-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023]
Abstract
A small GTPase, Cdc42 is evolutionarily one of the most ancient members of the Rho family, which is ubiquitously expressed and involved in a wide range of fundamental cellular functions. The crucial role of Cdc42 includes regulation of the actin cytoskeleton, cell polarity, morphology and migration, endocytosis and exocytosis, cell cycle, and proliferation in many different cell types. Many studies have provided compelling yet contradicting evidence that Cdc42 dysregulation plays an important role in cellular and tissue aging. Furthermore, Cdc42 is a critical factor in the development and progression of aging-related pathologies, such as neurodegenerative and cardiovascular disorders, diabetes type 2, and aging-related disorders of the joints and bones, and the inhibition of the Cdc42 demonstrates potentially significant therapeutic and anti-aging effects in animal models of aging and disease. However, regulation of Cdc42 expression and activity is very complex and depends on many factors, such as the origin and complexity of the tissues, hormonal status, etc. Therefore, this review is focused on current advances in understanding the underlying cellular and molecular mechanisms associated with Cdc42 activity and regulation of senescence in different cell types since they may provide a foundation for novel therapeutic strategies and targeted drugs to reverse the aging process and treat aging-associated disorders.
Collapse
|
15
|
Dandamudi A, Akbar H, Cancelas J, Zheng Y. Rho GTPase Signaling in Platelet Regulation and Implication for Antiplatelet Therapies. Int J Mol Sci 2023; 24:ijms24032519. [PMID: 36768837 PMCID: PMC9917354 DOI: 10.3390/ijms24032519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 01/31/2023] Open
Abstract
Platelets play a vital role in regulating hemostasis and thrombosis. Rho GTPases are well known as molecular switches that control various cellular functions via a balanced GTP-binding/GTP-hydrolysis cycle and signaling cascade through downstream effectors. In platelets, Rho GTPases function as critical regulators by mediating signal transduction that drives platelet activation and aggregation. Mostly by gene targeting and pharmacological inhibition approaches, Rho GTPase family members RhoA, Rac1, and Cdc42 have been shown to be indispensable in regulating the actin cytoskeleton dynamics in platelets, affecting platelet shape change, spreading, secretion, and aggregation, leading to thrombus formation. Additionally, studies of Rho GTPase function using platelets as a non-transformed model due to their anucleated nature have revealed valuable information on cell signaling principles. This review provides an updated summary of recent advances in Rho GTPase signaling in platelet regulation. We also highlight pharmacological approaches that effectively inhibited platelet activation to explore their possible development into future antiplatelet therapies.
Collapse
Affiliation(s)
- Akhila Dandamudi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
- Department of Pathology, University of Cincinnati Graduate School, Cincinnati, OH 45267, USA
| | - Huzoor Akbar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Jose Cancelas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
- Hoxworth Blood Center, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
- Department of Pathology, University of Cincinnati Graduate School, Cincinnati, OH 45267, USA
- Correspondence: ; Tel.: +1-513-636-0595
| |
Collapse
|
16
|
Buffa V, Alvarez Vargas JR, Galy A, Spinozzi S, Rocca CJ. Hematopoietic stem and progenitors cells gene editing: Beyond blood disorders. Front Genome Ed 2023; 4:997142. [PMID: 36698790 PMCID: PMC9868335 DOI: 10.3389/fgeed.2022.997142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/19/2022] [Indexed: 01/10/2023] Open
Abstract
Lessons learned from decades-long practice in the transplantation of hematopoietic stem and progenitor cells (HSPCs) to treat severe inherited disorders or cancer, have set the stage for the current ex vivo gene therapies using autologous gene-modified hematopoietic stem and progenitor cells that have treated so far, hundreds of patients with monogenic disorders. With increased knowledge of hematopoietic stem and progenitor cell biology, improved modalities for patient conditioning and with the emergence of new gene editing technologies, a new era of hematopoietic stem and progenitor cell-based gene therapies is poised to emerge. Gene editing has the potential to restore physiological expression of a mutated gene, or to insert a functional gene in a precise locus with reduced off-target activity and toxicity. Advances in patient conditioning has reduced treatment toxicities and may improve the engraftment of gene-modified cells and specific progeny. Thanks to these improvements, new potential treatments of various blood- or immune disorders as well as other inherited diseases will continue to emerge. In the present review, the most recent advances in hematopoietic stem and progenitor cell gene editing will be reported, with a focus on how this approach could be a promising solution to treat non-blood-related inherited disorders and the mechanisms behind the therapeutic actions discussed.
Collapse
Affiliation(s)
- Valentina Buffa
- Genethon, Evry, France,Integrare Research Unit UMR_S951, Université Paris-Saclay, University Evry, Inserm, Genethon, Evry, France
| | - José Roberto Alvarez Vargas
- Genethon, Evry, France,Integrare Research Unit UMR_S951, Université Paris-Saclay, University Evry, Inserm, Genethon, Evry, France
| | - Anne Galy
- Genethon, Evry, France,Integrare Research Unit UMR_S951, Université Paris-Saclay, University Evry, Inserm, Genethon, Evry, France
| | - Simone Spinozzi
- Genethon, Evry, France,Integrare Research Unit UMR_S951, Université Paris-Saclay, University Evry, Inserm, Genethon, Evry, France
| | - Céline J. Rocca
- Genethon, Evry, France,Integrare Research Unit UMR_S951, Université Paris-Saclay, University Evry, Inserm, Genethon, Evry, France,*Correspondence: Céline J. Rocca,
| |
Collapse
|
17
|
Montserrat-Vazquez S, Ali NJ, Matteini F, Lozano J, Zhaowei T, Mejia-Ramirez E, Marka G, Vollmer A, Soller K, Sacma M, Sakk V, Mularoni L, Mallm JP, Plass M, Zheng Y, Geiger H, Florian MC. Transplanting rejuvenated blood stem cells extends lifespan of aged immunocompromised mice. NPJ Regen Med 2022; 7:78. [PMID: 36581635 PMCID: PMC9800381 DOI: 10.1038/s41536-022-00275-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/16/2022] [Indexed: 12/30/2022] Open
Abstract
One goal of regenerative medicine is to rejuvenate tissues and extend lifespan by restoring the function of endogenous aged stem cells. However, evidence that somatic stem cells can be targeted in vivo to extend lifespan is still lacking. Here, we demonstrate that after a short systemic treatment with a specific inhibitor of the small RhoGTPase Cdc42 (CASIN), transplanting aged hematopoietic stem cells (HSCs) from treated mice is sufficient to extend the healthspan and lifespan of aged immunocompromised mice without additional treatment. In detail, we show that systemic CASIN treatment improves strength and endurance of aged mice by increasing the myogenic regenerative potential of aged skeletal muscle stem cells. Further, we show that CASIN modifies niche localization and H4K16ac polarity of HSCs in vivo. Single-cell profiling reveals changes in HSC transcriptome, which underlie enhanced lymphoid and regenerative capacity in serial transplantation assays. Overall, we provide proof-of-concept evidence that a short systemic treatment to decrease Cdc42 activity improves the regenerative capacity of different endogenous aged stem cells in vivo, and that rejuvenated HSCs exert a broad systemic effect sufficient to extend murine health- and lifespan.
Collapse
Affiliation(s)
- Sara Montserrat-Vazquez
- grid.417656.7Stem Cell Aging Group, Regenerative Medicine Program, The Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain ,grid.417656.7Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L’Hospitalet de Llobregat, Barcelona, Spain
| | - Noelle J. Ali
- grid.6582.90000 0004 1936 9748Institute of Molecular Medicine, University of Ulm, Ulm, Germany
| | - Francesca Matteini
- grid.417656.7Stem Cell Aging Group, Regenerative Medicine Program, The Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain ,grid.417656.7Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L’Hospitalet de Llobregat, Barcelona, Spain
| | - Javier Lozano
- grid.417656.7Stem Cell Aging Group, Regenerative Medicine Program, The Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain ,grid.417656.7Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L’Hospitalet de Llobregat, Barcelona, Spain
| | - Tu Zhaowei
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Eva Mejia-Ramirez
- grid.417656.7Stem Cell Aging Group, Regenerative Medicine Program, The Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain ,grid.417656.7Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L’Hospitalet de Llobregat, Barcelona, Spain ,grid.512890.7Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Gina Marka
- grid.6582.90000 0004 1936 9748Institute of Molecular Medicine, University of Ulm, Ulm, Germany
| | - Angelika Vollmer
- grid.6582.90000 0004 1936 9748Institute of Molecular Medicine, University of Ulm, Ulm, Germany
| | - Karin Soller
- grid.6582.90000 0004 1936 9748Institute of Molecular Medicine, University of Ulm, Ulm, Germany
| | - Mehmet Sacma
- grid.6582.90000 0004 1936 9748Institute of Molecular Medicine, University of Ulm, Ulm, Germany
| | - Vadim Sakk
- grid.6582.90000 0004 1936 9748Institute of Molecular Medicine, University of Ulm, Ulm, Germany
| | - Loris Mularoni
- grid.417656.7Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L’Hospitalet de Llobregat, Barcelona, Spain
| | | | - Mireya Plass
- grid.417656.7Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L’Hospitalet de Llobregat, Barcelona, Spain ,grid.512890.7Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain ,grid.417656.7Gene Regulation of Cell Identity Group, Regenerative Medicine Program, The Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Yi Zheng
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Hartmut Geiger
- grid.6582.90000 0004 1936 9748Institute of Molecular Medicine, University of Ulm, Ulm, Germany
| | - M. Carolina Florian
- grid.417656.7Stem Cell Aging Group, Regenerative Medicine Program, The Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain ,grid.417656.7Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L’Hospitalet de Llobregat, Barcelona, Spain ,grid.512890.7Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
18
|
Skulimowska I, Sosniak J, Gonka M, Szade A, Jozkowicz A, Szade K. The biology of hematopoietic stem cells and its clinical implications. FEBS J 2022; 289:7740-7759. [PMID: 34496144 DOI: 10.1111/febs.16192] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/19/2021] [Accepted: 09/07/2021] [Indexed: 01/14/2023]
Abstract
Hematopoietic stem cells (HSCs) give rise to all types of blood cells and self-renew their own population. The regeneration potential of HSCs has already been successfully translated into clinical applications. However, recent studies on the biology of HSCs may further extend their clinical use in future. The roles of HSCs in native hematopoiesis and in transplantation settings may differ. Furthermore, the heterogenic pool of HSCs dynamically changes during aging. These changes also involve the complex interactions of HSCs with the bone marrow niche. Here, we review the opportunities and challenges of these findings to improve the clinical use of HSCs. We describe new methods of HSCs mobilization and conditioning for the transplantation of HSCs. Finally, we highlight the research findings that may lead to overcoming the current limitations of HSC transplantation and broaden the patient group that can benefit from the clinical potential of HSCs.
Collapse
Affiliation(s)
- Izabella Skulimowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Justyna Sosniak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Monika Gonka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Agata Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
19
|
Kalim KW, Yang JQ, Wunderlich M, Modur V, Nguyen P, Li Y, Wen T, Davis AK, Verma R, Lu QR, Jegga AG, Zheng Y, Guo F. Targeting of Cdc42 GTPase in regulatory T cells unleashes antitumor T-cell immunity. J Immunother Cancer 2022; 10:jitc-2022-004806. [PMID: 36427906 PMCID: PMC9703354 DOI: 10.1136/jitc-2022-004806] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Cancer immunotherapy has taken center stage in cancer treatment. However, the current immunotherapies only benefit a small proportion of patients with cancer, necessitating better understanding of the mechanisms of tumor immune evasion and improved cancer immunotherapy strategies. Regulatory T (Treg) cells play an important role in maintaining immune tolerance through inhibiting effector T-cell function. In the tumor microenvironment, Treg cells are used by tumor cells to counteract effector T cell-mediated tumor suppression. Targeting Treg cells may thus unleash the antitumor activity of effector T cells. While systemic depletion of Treg cells can cause excessive effector T-cell responses and subsequent autoimmune diseases, controlled targeting of Treg cells may benefit patients with cancer. METHODS Treg cells from Treg cell-specific heterozygous Cdc42 knockout mice, C57BL/6 mice treated with a Cdc42 inhibitor CASIN, and control mice were examined for their homeostasis and stability by flow cytometry. The autoimmune responses in Treg cell-specific heterozygous Cdc42 knockout mice, CASIN-treated C57BL/6 mice, and control mice were assessed by H&E staining and ELISA. Antitumor T-cell immunity in Treg cell-specific heterozygous Cdc42 knockout mice, CASIN-treated C57BL/6 mice, humanized NSGS mice, and control mice was assessed by challenging the mice with MC38 mouse colon cancer cells, KPC mouse pancreatic cancer cells, or HCT116 human colon cancer cells. RESULTS Treg cell-specific heterozygous deletion or pharmacological targeting of Cdc42 with CASIN does not affect Treg cell numbers but induces Treg cell instability, leading to antitumor T-cell immunity without detectable autoimmune reactions. Cdc42 targeting causes an additive effect on immune checkpoint inhibitor anti-programmed cell death protein-1 antibody-induced T-cell response against mouse and human tumors. Mechanistically, Cdc42 targeting induces Treg cell instability and unleashes antitumor T-cell immunity through carbonic anhydrase I-mediated pH changes. CONCLUSIONS Rational targeting of Cdc42 in Treg cells holds therapeutic promises in cancer immunotherapy.
Collapse
Affiliation(s)
- Khalid W Kalim
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jun-Qi Yang
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Vishnu Modur
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Phuong Nguyen
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Yuan Li
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ting Wen
- Division of Allergy and Immunology, Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ashley Kuenzi Davis
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ravinder Verma
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Qing Richard Lu
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Anil G Jegga
- Division of Biomedical Informatics, Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Fukun Guo
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
20
|
Che JLC, Bode D, Kucinski I, Cull AH, Bain F, Becker HJ, Jassinskaja M, Barile M, Boyd G, Belmonte M, Zeng AGX, Igarashi KJ, Rubio‐Lara J, Shepherd MS, Clay A, Dick JE, Wilkinson AC, Nakauchi H, Yamazaki S, Göttgens B, Kent DG. Identification and characterization of in vitro expanded hematopoietic stem cells. EMBO Rep 2022; 23:e55502. [PMID: 35971894 PMCID: PMC9535767 DOI: 10.15252/embr.202255502] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 12/13/2022] Open
Abstract
Hematopoietic stem cells (HSCs) cultured outside the body are the fundamental component of a wide range of cellular and gene therapies. Recent efforts have achieved > 200-fold expansion of functional HSCs, but their molecular characterization has not been possible since the majority of cells are non-HSCs and single cell-initiated cultures have substantial clone-to-clone variability. Using the Fgd5 reporter mouse in combination with the EPCR surface marker, we report exclusive identification of HSCs from non-HSCs in expansion cultures. By directly linking single-clone functional transplantation data with single-clone gene expression profiling, we show that the molecular profile of expanded HSCs is similar to proliferating fetal HSCs and reveals a gene expression signature, including Esam, Prdm16, Fstl1, and Palld, that can identify functional HSCs from multiple cellular states. This "repopulation signature" (RepopSig) also enriches for HSCs in human datasets. Together, these findings demonstrate the power of integrating functional and molecular datasets to better derive meaningful gene signatures and opens the opportunity for a wide range of functional screening and molecular experiments previously not possible due to limited HSC numbers.
Collapse
Affiliation(s)
- James L C Che
- Wellcome MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
- Department of HaematologyUniversity of CambridgeCambridgeUK
- Department of Biology, York Biomedical Research InstituteUniversity of YorkYorkUK
| | - Daniel Bode
- Wellcome MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
- Department of HaematologyUniversity of CambridgeCambridgeUK
- Department of Biology, York Biomedical Research InstituteUniversity of YorkYorkUK
| | - Iwo Kucinski
- Wellcome MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
- Department of HaematologyUniversity of CambridgeCambridgeUK
| | - Alyssa H Cull
- Department of Biology, York Biomedical Research InstituteUniversity of YorkYorkUK
| | - Fiona Bain
- Department of Biology, York Biomedical Research InstituteUniversity of YorkYorkUK
| | - Hans J Becker
- Division of Stem Cell Biology, Distinguished Professor Unit, The Institute of Medical ScienceThe University of TokyoTokyoJapan
- Institute for Stem Cell Biology and Regenerative MedicineStanford University School of MedicineStanfordCAUSA
| | - Maria Jassinskaja
- Department of Biology, York Biomedical Research InstituteUniversity of YorkYorkUK
| | - Melania Barile
- Wellcome MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
- Department of HaematologyUniversity of CambridgeCambridgeUK
| | - Grace Boyd
- Department of Biology, York Biomedical Research InstituteUniversity of YorkYorkUK
| | - Miriam Belmonte
- Wellcome MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
- Department of HaematologyUniversity of CambridgeCambridgeUK
| | - Andy G X Zeng
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - Kyomi J Igarashi
- Department of GeneticsStanford University School of MedicineStanfordCAUSA
| | - Juan Rubio‐Lara
- Department of Biology, York Biomedical Research InstituteUniversity of YorkYorkUK
| | - Mairi S Shepherd
- Wellcome MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
- Department of HaematologyUniversity of CambridgeCambridgeUK
| | - Anna Clay
- Wellcome MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
| | - John E Dick
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - Adam C Wilkinson
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Hiromitsu Nakauchi
- Division of Stem Cell Biology, Distinguished Professor Unit, The Institute of Medical ScienceThe University of TokyoTokyoJapan
- Institute for Stem Cell Biology and Regenerative MedicineStanford University School of MedicineStanfordCAUSA
- Department of GeneticsStanford University School of MedicineStanfordCAUSA
| | - Satoshi Yamazaki
- Division of Stem Cell Biology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical ScienceThe University of TokyoTokyoJapan
- Laboratory of Stem Cell Therapy, Faculty of MedicineUniversity of TsukubaIbarakiJapan
| | - Berthold Göttgens
- Wellcome MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
- Department of HaematologyUniversity of CambridgeCambridgeUK
| | - David G Kent
- Wellcome MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
- Department of HaematologyUniversity of CambridgeCambridgeUK
- Department of Biology, York Biomedical Research InstituteUniversity of YorkYorkUK
| |
Collapse
|
21
|
Jahid S, Ortega JA, Vuong LM, Acquistapace IM, Hachey SJ, Flesher JL, La Serra MA, Brindani N, La Sala G, Manigrasso J, Arencibia JM, Bertozzi SM, Summa M, Bertorelli R, Armirotti A, Jin R, Liu Z, Chen CF, Edwards R, Hughes CCW, De Vivo M, Ganesan AK. Structure-based design of CDC42 effector interaction inhibitors for the treatment of cancer. Cell Rep 2022; 39:110641. [PMID: 35385746 PMCID: PMC9127750 DOI: 10.1016/j.celrep.2022.110641] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/01/2022] [Accepted: 03/16/2022] [Indexed: 01/21/2023] Open
Abstract
CDC42 family GTPases (RHOJ, RHOQ, CDC42) are upregulated but rarely mutated in cancer and control both the ability of tumor cells to invade surrounding tissues and the ability of endothelial cells to vascularize tumors. Here, we use computer-aided drug design to discover a chemical entity (ARN22089) that has broad activity against a panel of cancer cell lines, inhibits S6 phosphorylation and MAPK activation, activates pro-inflammatory and apoptotic signaling, and blocks tumor growth and angiogenesis in 3D vascularized microtumor models (VMT) in vitro. Additionally, ARN22089 has a favorable pharmacokinetic profile and can inhibit the growth of BRAF mutant mouse melanomas and patient-derived xenografts in vivo. ARN22089 selectively blocks CDC42 effector interactions without affecting the binding between closely related GTPases and their downstream effectors. Taken together, we identify a class of therapeutic agents that influence tumor growth by modulating CDC42 signaling in both the tumor cell and its microenvironment.
Collapse
Affiliation(s)
- Sohail Jahid
- Department of Dermatology, University of California, Irvine, CA 92697, USA
| | - Jose A Ortega
- Laboratory of Molecular Modeling and Drug Design, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Linh M Vuong
- Department of Dermatology, University of California, Irvine, CA 92697, USA
| | - Isabella Maria Acquistapace
- Laboratory of Molecular Modeling and Drug Design, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Stephanie J Hachey
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Jessica L Flesher
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | - Maria Antonietta La Serra
- Laboratory of Molecular Modeling and Drug Design, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Nicoletta Brindani
- Laboratory of Molecular Modeling and Drug Design, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Giuseppina La Sala
- Laboratory of Molecular Modeling and Drug Design, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Jacopo Manigrasso
- Laboratory of Molecular Modeling and Drug Design, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Jose M Arencibia
- Laboratory of Molecular Modeling and Drug Design, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Sine Mandrup Bertozzi
- Analytical Chemistry and Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Maria Summa
- Analytical Chemistry and Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Rosalia Bertorelli
- Analytical Chemistry and Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Andrea Armirotti
- Analytical Chemistry and Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Zheng Liu
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Chi-Fen Chen
- Department of Dermatology, University of California, Irvine, CA 92697, USA
| | - Robert Edwards
- Department of Pathology and Lab Medicine, University of California, Irvine, CA 92697, USA
| | - Christopher C W Hughes
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Marco De Vivo
- Laboratory of Molecular Modeling and Drug Design, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy.
| | - Anand K Ganesan
- Department of Dermatology, University of California, Irvine, CA 92697, USA; Department of Biological Chemistry, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
22
|
Autophagy in mesenchymal progenitors protects mice against bone marrow failure after severe intermittent stress. Blood 2022; 139:690-703. [PMID: 34657154 PMCID: PMC8814682 DOI: 10.1182/blood.2021011775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 10/01/2021] [Indexed: 11/26/2022] Open
Abstract
The cellular mechanisms required to ensure homeostasis of the hematopoietic niche and the ability of this niche to support hematopoiesis upon stress remain elusive. We here identify Wnt5a in Osterix+ mesenchymal progenitor and stem cells (MSPCs) as a critical factor for niche-dependent hematopoiesis. Mice lacking Wnt5a in MSPCs suffer from stress-related bone marrow (BM) failure and increased mortality. Niche cells devoid of Wnt5a show defective actin stress fiber orientation due to an elevated activity of the small GTPase CDC42. This results in incorrect positioning of autophagosomes and lysosomes, thus reducing autophagy and increasing oxidative stress. In MSPCs from patients from BM failure states which share features of peripheral cytopenia and hypocellular BM, we find similar defects in actin stress fiber orientation, reduced and incorrect colocalization of autophagosomes and lysosomes, and CDC42 activation. Strikingly, a short pharmacological intervention to attenuate elevated CDC42 activation in vivo in mice prevents defective actin-anchored autophagy in MSPCs, salvages hematopoiesis and protects against lethal cytopenia upon stress. In summary, our study identifies Wnt5a as a restriction factor for niche homeostasis by affecting CDC42-regulated actin stress-fiber orientation and autophagy upon stress. Our data further imply a critical role for autophagy in MSPCs for adequate support of hematopoiesis by the niche upon stress and in human diseases characterized by peripheral cytopenias and hypocellular BM.
Collapse
|
23
|
Hunziker A, Glas I, Pohl MO, Stertz S. Phosphoproteomic profiling of influenza virus entry reveals infection-triggered filopodia induction counteracted by dynamic cortactin phosphorylation. Cell Rep 2022; 38:110306. [DOI: 10.1016/j.celrep.2022.110306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/19/2021] [Accepted: 01/06/2022] [Indexed: 11/03/2022] Open
|
24
|
Zhang Z, Liu M, Zheng Y. Role of Rho GTPases in stem cell regulation. Biochem Soc Trans 2021; 49:2941-2955. [PMID: 34854916 PMCID: PMC9008577 DOI: 10.1042/bst20211071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 02/05/2023]
Abstract
The future of regenerative medicine relies on our understanding of stem cells which are essential for tissue/organ generation and regeneration to maintain and/or restore tissue homeostasis. Rho family GTPases are known regulators of a wide variety of cellular processes related to cytoskeletal dynamics, polarity and gene transcription. In the last decade, major new advances have been made in understanding the regulatory role and mechanism of Rho GTPases in self-renewal, differentiation, migration, and lineage specification in tissue-specific signaling mechanisms in various stem cell types to regulate embryonic development, adult tissue homeostasis, and tissue regeneration upon stress or damage. Importantly, implication of Rho GTPases and their upstream regulators or downstream effectors in the transformation, migration, invasion and tumorigenesis of diverse cancer stem cells highlights the potential of Rho GTPase targeting in cancer therapy. In this review, we discuss recent evidence of Rho GTPase signaling in the regulation of embryonic stem cells, multiple somatic stem cells, and cancer stem cells. We propose promising areas where Rho GTPase pathways may serve as useful targets for stem cell manipulation and related future therapies.
Collapse
Affiliation(s)
- Zheng Zhang
- Division of Experimental Hematology and Cancer Biology, Children’s Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229, U.S.A
| | - Ming Liu
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Children’s Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229, U.S.A
| |
Collapse
|
25
|
Kandi R, Senger K, Grigoryan A, Soller K, Sakk V, Schuster T, Eiwen K, Menon MB, Gaestel M, Zheng Y, Florian MC, Geiger H. Cdc42-Borg4-Septin7 axis regulates HSC polarity and function. EMBO Rep 2021; 22:e52931. [PMID: 34661963 PMCID: PMC8647144 DOI: 10.15252/embr.202152931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 01/03/2023] Open
Abstract
Aging of hematopoietic stem cells (HSCs) is caused by the elevated activity of the small RhoGTPase Cdc42 and an apolar distribution of proteins. Mechanisms by which Cdc42 activity controls polarity of HSCs are not known. Binder of RhoGTPases proteins (Borgs) are known effector proteins of Cdc42 that are able to regulate the cytoskeletal Septin network. Here, we show that Cdc42 interacts with Borg4, which in turn interacts with Septin7 to regulate the polar distribution of Cdc42, Borg4, and Septin7 within HSCs. Genetic deletion of either Borg4 or Septin7 results in a reduced frequency of HSCs polar for Cdc42 or Borg4 or Septin7, a reduced engraftment potential and decreased lymphoid‐primed multipotent progenitor (LMPP) frequency in the bone marrow. Taken together, our data identify a Cdc42‐Borg4‐Septin7 axis essential for the maintenance of polarity within HSCs and for HSC function and provide a rationale for further investigating the role of Borgs and Septins in the regulation of compartmentalization within stem cells.
Collapse
Affiliation(s)
- Ravinder Kandi
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | | | - Ani Grigoryan
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Karin Soller
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Vadim Sakk
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Tanja Schuster
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Karina Eiwen
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Manoj B Menon
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany.,Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Matthias Gaestel
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Hartmut Geiger
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| |
Collapse
|
26
|
Wu L, Chatla S, Lin Q, Chowdhury FA, Geldenhuys W, Du W. Quinacrine-CASIN combination overcomes chemoresistance in human acute lymphoid leukemia. Nat Commun 2021; 12:6936. [PMID: 34836965 PMCID: PMC8626516 DOI: 10.1038/s41467-021-27300-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 11/11/2021] [Indexed: 01/30/2023] Open
Abstract
Chemoresistance posts a major hurdle for treatment of acute leukemia. There is increasing evidence that prolonged and intensive chemotherapy often fails to eradicate leukemic stem cells, which are protected by the bone marrow niche and can induce relapse. Thus, new therapeutic approaches to overcome chemoresistance are urgently needed. By conducting an ex vivo small molecule screen, here we have identified Quinacrine (QC) as a sensitizer for Cytarabine (AraC) in treating acute lymphoblastic leukemia (ALL). We show that QC enhances AraC-mediated killing of ALL cells, and subsequently abrogates AraC resistance both in vitro and in an ALL-xenograft model. However, while combo AraC+QC treatment prolongs the survival of primary transplanted recipients, the combination exhibits limited efficacy in secondary transplanted recipients, consistent with the survival of niche-protected leukemia stem cells. Introduction of Cdc42 Activity Specific Inhibitor, CASIN, enhances the eradication of ALL leukemia stem cells by AraC+QC and prolongs the survival of both primary and secondary transplanted recipients without affecting normal long-term human hematopoiesis. Together, our findings identify a small-molecule regimen that sensitizes AraC-mediated leukemia eradication and provide a potential therapeutic approach for better ALL treatment.
Collapse
Affiliation(s)
- Limei Wu
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA
| | - Srinivas Chatla
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Qiqi Lin
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA
| | - Fabliha Ahmed Chowdhury
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA
- Molecular Pharmacology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Werner Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA
| | - Wei Du
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA.
- Molecular Pharmacology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, USA.
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
27
|
Targeting small GTPases and their downstream pathways with intracellular macromolecule binders to define alternative therapeutic strategies in cancer. Biochem Soc Trans 2021; 49:2021-2035. [PMID: 34623375 DOI: 10.1042/bst20201059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 11/17/2022]
Abstract
The RAS superfamily of small GTPases regulates major physiological cellular processes. Mutation or deregulation of these small GTPases, their regulators and/or their effectors are associated with many diseases including cancer. Hence, targeting these classes of proteins is an important therapeutic strategy in cancer. This has been recently achieved with the approval of the first KRASG12C covalent inhibitors for the clinic. However, many other mutants and small GTPases are still considered as 'undruggable' with small molecule inhibitors because of a lack of well-defined pocket(s) at their surface. Therefore, alternative therapeutic strategies have been developed to target these proteins. In this review, we discuss the use of intracellular antibodies and derivatives - reagents that bind their antigen inside the cells - for the discovery of novel inhibitory mechanisms, targetable features and therapeutic strategies to inhibit small GTPases and their downstream pathways. These reagents are also versatile tools used to better understand the biological mechanisms regulated by small GTPases and to accelerate the drug discovery process.
Collapse
|
28
|
Borgoni S, Kudryashova KS, Burka K, de Magalhães JP. Targeting immune dysfunction in aging. Ageing Res Rev 2021; 70:101410. [PMID: 34280555 DOI: 10.1016/j.arr.2021.101410] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/28/2021] [Accepted: 07/14/2021] [Indexed: 12/23/2022]
Abstract
Human aging is a multifactorial phenomenon that affects numerous organ systems and cellular processes, with the immune system being one of the most dysregulated. Immunosenescence, the gradual deterioration of the immune system, and inflammaging, a chronic inflammatory state that persists in the elderly, are among the plethora of immune changes that occur during aging. Almost all populations of immune cells change with age in terms of numbers and/or activity. These alterations are in general highly detrimental, resulting in an increased susceptibility to infections, reduced healing abilities, and altered homeostasis that promote the emergence of age-associated diseases such as cancer, diabetes, and other diseases associated with inflammation. Thanks to recent developments, several strategies have been proposed to target central immunological processes or specific immune subpopulations affected by aging. These therapeutic approaches could soon be applied in the clinic to slow down or even reverse specific age-induced immune changes in order to rejuvenate the immune system and prevent or reduce the impact of various diseases. Due to its systemic nature and interconnection with all the other systems in the body, the immune system is an attractive target for aging intervention because relatively targeted modifications to a small set of cells have the potential to improve the health of multiple organ systems. Therefore, anti-aging immune targeting therapies could represent a potent approach for improving healthspan. Here, we review aging changes in the major components of the immune system, we summarize the current immune-targeting therapeutic approaches in the context of aging and discuss the future directions in the field of immune rejuvenation.
Collapse
|
29
|
Duan X, Perveen R, Dandamudi A, Adili R, Johnson J, Funk K, Berryman M, Davis AK, Holinstat M, Zheng Y, Akbar H. Pharmacologic targeting of Cdc42 GTPase by a small molecule Cdc42 activity-specific inhibitor prevents platelet activation and thrombosis. Sci Rep 2021; 11:13170. [PMID: 34162972 PMCID: PMC8222210 DOI: 10.1038/s41598-021-92654-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 05/27/2021] [Indexed: 01/14/2023] Open
Abstract
Gene targeting of Cdc42 GTPase has been shown to inhibit platelet activation. In this study, we investigated a hypothesis that inhibition of Cdc42 activity by CASIN, a small molecule Cdc42 Activity-Specific INhibitor, may down regulate platelet activation and thrombus formation. We investigated the effects of CASIN on platelet activation in vitro and thrombosis in vivo. In human platelets, CASIN, but not its inactive analog Pirl7, blocked collagen induced activation of Cdc42 and inhibited phosphorylation of its downstream effector, PAK1/2. Moreover, addition of CASIN to washed human platelets inhibited platelet spreading on immobilized fibrinogen. Treatment of human platelets with CASIN inhibited collagen or thrombin induced: (a) ATP secretion and platelet aggregation; and (b) phosphorylation of Akt, ERK and p38-MAPK. Pre-incubation of platelets with Pirl7, an inactive analog of CASIN, failed to inhibit collagen induced aggregation. Washing of human platelets after incubation with CASIN eliminated its inhibitory effect on collagen induced aggregation. Intraperitoneal administration of CASIN to wild type mice inhibited ex vivo aggregation induced by collagen but did not affect the murine tail bleeding times. CASIN administration, prior to laser-induced injury in murine cremaster muscle arterioles, resulted in formation of smaller and unstable thrombi compared to control mice without CASIN treatment. These data suggest that pharmacologic targeting of Cdc42 by specific and reversible inhibitors may lead to the discovery of novel antithrombotic agents.
Collapse
Affiliation(s)
- Xin Duan
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Rehana Perveen
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Akhila Dandamudi
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Reheman Adili
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - James Johnson
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Kevin Funk
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Mark Berryman
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Ashley Kuenzi Davis
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Michael Holinstat
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, 45229, USA.
| | - Huzoor Akbar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
30
|
Progress in the therapeutic inhibition of Cdc42 signalling. Biochem Soc Trans 2021; 49:1443-1456. [PMID: 34100887 PMCID: PMC8286826 DOI: 10.1042/bst20210112] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 01/01/2023]
Abstract
Cdc42 is a member of the Rho family of small GTPases and a key regulator of the actin cytoskeleton, controlling cell motility, polarity and cell cycle progression. It signals downstream of the master regulator Ras and is essential for cell transformation by this potent oncogene. Overexpression of Cdc42 is observed in several cancers, where it is linked to poor prognosis. As a regulator of both cell architecture and motility, deregulation of Cdc42 is also linked to tumour metastasis. Like Ras, Cdc42 and other components of the signalling pathways it controls represent important potential targets for cancer therapeutics. In this review, we consider the progress that has been made targeting Cdc42, its regulators and effectors, including new modalities and new approaches to inhibition. Strategies under consideration include inhibition of lipid modification, modulation of Cdc42-GEF, Cdc42-GDI and Cdc42-effector interactions, and direct inhibition of downstream effectors.
Collapse
|
31
|
Kumar S, Nattamai KJ, Hassan A, Amoah A, Karns R, Zhang C, Liang Y, Shimamura A, Florian MC, Bissels U, Luevano M, Bosio A, Davies SM, Mulaw M, Geiger H, Myers KC. Repolarization of HSC attenuates HSCs failure in Shwachman-Diamond syndrome. Leukemia 2021; 35:1751-1762. [PMID: 33077869 PMCID: PMC11334678 DOI: 10.1038/s41375-020-01054-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 08/11/2020] [Accepted: 10/05/2020] [Indexed: 01/01/2023]
Abstract
Shwachman-Diamond syndrome (SDS) is a bone marrow failure (BMF) syndrome associated with an increased risk of myelodysplasia and leukemia. The molecular mechanisms of SDS are not fully understood. We report that primitive hematopoietic cells from SDS patients present with a reduced activity of the small RhoGTPase Cdc42 and concomitantly a reduced frequency of HSCs polar for polarity proteins. The level of apolarity of SDS HSCs correlated with the magnitude of HSC depletion in SDS patients. Importantly, exogenously provided Wnt5a or GDF11 that elevates the activity of Cdc42 restored polarity in SDS HSCs and increased the number of HSCs in SDS patient samples in surrogate ex vivo assays. Single cell level RNA-Seq analyses of SDS HSCs and daughter cells demonstrated that SDS HSC treated with GDF11 are transcriptionally more similar to control than to SDS HSCs. Treatment with GDF11 reverted pathways in SDS HSCs associated with rRNA processing and ribosome function, but also viral infection and immune function, p53-dependent DNA damage, spindle checkpoints, and metabolism, further implying a role of these pathways in HSC failure in SDS. Our data suggest that HSC failure in SDS is driven at least in part by low Cdc42 activity in SDS HSCs. Our data thus identify novel rationale approaches to attenuate HSCs failure in SDS.
Collapse
Affiliation(s)
- Sachin Kumar
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Kalpana J Nattamai
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
| | - Aishlin Hassan
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
| | - Amanda Amoah
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Rebekah Karns
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH, USA
| | - Cuiping Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Health Sciences Research Building, Room 340, 1095 V.A. Drive, Lexington, KY, 40536, USA
| | - Ying Liang
- Department of Toxicology and Cancer Biology, University of Kentucky, Health Sciences Research Building, Room 340, 1095 V.A. Drive, Lexington, KY, 40536, USA
| | - Akiko Shimamura
- Boston Children's Hospital, Dana Farber Cancer Institute, Boston, MA, USA
| | | | - Ute Bissels
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | | | | | - Stella M Davies
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Medhanie Mulaw
- Institute of Experimental Cancer Research, Ulm University, Ulm, Germany
| | - Hartmut Geiger
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA.
| | - Kasiani C Myers
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
32
|
Luo C, Wang L, Wu G, Huang X, Zhang Y, Ma Y, Xie M, Sun Y, Huang Y, Huang Z, Song Q, Li H, Hou Y, Li X, Xu S, Chen J. Comparison of the efficacy of hematopoietic stem cell mobilization regimens: a systematic review and network meta-analysis of preclinical studies. Stem Cell Res Ther 2021; 12:310. [PMID: 34051862 PMCID: PMC8164253 DOI: 10.1186/s13287-021-02379-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mobilization failure may occur when the conventional hematopoietic stem cells (HSCs) mobilization agent granulocyte colony-stimulating factor (G-CSF) is used alone, new regimens were developed to improve mobilization efficacy. Multiple studies have been performed to investigate the efficacy of these regimens via animal models, but the results are inconsistent. We aim to compare the efficacy of different HSC mobilization regimens and identify new promising regimens with a network meta-analysis of preclinical studies. METHODS We searched Medline and Embase databases for the eligible animal studies that compared the efficacy of different HSC mobilization regimens. Primary outcome is the number of total colony-forming cells (CFCs) in per milliliter of peripheral blood (/ml PB), and the secondary outcome is the number of Lin- Sca1+ Kit+ (LSK) cells/ml PB. Bayesian network meta-analyses were performed following the guidelines of the National Institute for Health and Care Excellence Decision Support Unit (NICE DSU) with WinBUGS version 1.4.3. G-CSF-based regimens were classified into the SD (standard dose, 200-250 μg/kg/day) group and the LD (low dose, 100-150 μg/kg/day) group based on doses, and were classified into the short-term (2-3 days) group and the long-term (4-5 days) group based on administration duration. Long-term SD G-CSF was chosen as the reference treatment. Results are presented as the mean differences (MD) with the associated 95% credibility interval (95% CrI) for each regimen. RESULTS We included 95 eligible studies and reviewed the efficacy of 94 mobilization agents. Then 21 studies using the poor mobilizer mice model (C57BL/6 mice) to investigate the efficacy of different mobilization regimens were included for network meta-analysis. Network meta-analyses indicated that compared with long-term SD G-CSF alone, 14 regimens including long-term SD G-CSF + Me6, long-term SD G-CSF + AMD3100 + EP80031, long-term SD G-CSF + AMD3100 + FG-4497, long-term SD G-CSF + ML141, long-term SD G-CSF + desipramine, AMD3100 + meloxicam, long-term SD G-CSF + reboxetine, AMD3100 + VPC01091, long-term SD G-CSF + FG-4497, Me6, long-term SD G-CSF + EP80031, POL5551, long-term SD G-CSF + AMD3100, AMD1300 + EP80031 and long-term LD G-CSF + meloxicam significantly increased the collections of total CFCs. G-CSF + Me6 ranked first among these regimens in consideration of the number of harvested CFCs/ml PB (MD 2168.0, 95% CrI 2062.0-2272.0). In addition, 7 regimens including long-term SD G-CSF + AMD3100, AMD3100 + EP80031, long-term SD G-CSF + EP80031, short-term SD G-CSF + AMD3100 + IL-33, long-term SD G-CSF + ML141, short-term LD G-CSF + ARL67156, and long-term LD G-CSF + meloxicam significantly increased the collections of LSK cells compared with G-CSF alone. Long-term SD G-CSF + AMD3100 ranked first among these regimens in consideration of the number of harvested LSK cells/ml PB (MD 2577.0, 95% CrI 2422.0-2733.0). CONCLUSIONS Considering the number of CFC and LSK cells in PB as outcomes, G-CSF plus AMD3100, Me6, EP80031, ML141, FG-4497, IL-33, ARL67156, meloxicam, desipramine, and reboxetine are all promising mobilizing regimens for future investigation.
Collapse
Affiliation(s)
- Chengxin Luo
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guixian Wu
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Xiangtao Huang
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Yali Zhang
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Yanni Ma
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Mingling Xie
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Yanni Sun
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Yarui Huang
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Zhen Huang
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Qiuyue Song
- Department of Health Statistics, Third Military Medical University, Chongqing, China
| | - Hui Li
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Yu Hou
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Xi Li
- Institute of Infectious Disease, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
| | - Shuangnian Xu
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China. .,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China.
| | - Jieping Chen
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China. .,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China.
| |
Collapse
|
33
|
Lauri A, Fasano G, Venditti M, Dallapiccola B, Tartaglia M. In vivo Functional Genomics for Undiagnosed Patients: The Impact of Small GTPases Signaling Dysregulation at Pan-Embryo Developmental Scale. Front Cell Dev Biol 2021; 9:642235. [PMID: 34124035 PMCID: PMC8194860 DOI: 10.3389/fcell.2021.642235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/12/2021] [Indexed: 12/24/2022] Open
Abstract
While individually rare, disorders affecting development collectively represent a substantial clinical, psychological, and socioeconomic burden to patients, families, and society. Insights into the molecular mechanisms underlying these disorders are required to speed up diagnosis, improve counseling, and optimize management toward targeted therapies. Genome sequencing is now unveiling previously unexplored genetic variations in undiagnosed patients, which require functional validation and mechanistic understanding, particularly when dealing with novel nosologic entities. Functional perturbations of key regulators acting on signals' intersections of evolutionarily conserved pathways in these pathological conditions hinder the fine balance between various developmental inputs governing morphogenesis and homeostasis. However, the distinct mechanisms by which these hubs orchestrate pathways to ensure the developmental coordinates are poorly understood. Integrative functional genomics implementing quantitative in vivo models of embryogenesis with subcellular precision in whole organisms contribute to answering these questions. Here, we review the current knowledge on genes and mechanisms critically involved in developmental syndromes and pediatric cancers, revealed by genomic sequencing and in vivo models such as insects, worms and fish. We focus on the monomeric GTPases of the RAS superfamily and their influence on crucial developmental signals and processes. We next discuss the effectiveness of exponentially growing functional assays employing tractable models to identify regulatory crossroads. Unprecedented sophistications are now possible in zebrafish, i.e., genome editing with single-nucleotide precision, nanoimaging, highly resolved recording of multiple small molecules activity, and simultaneous monitoring of brain circuits and complex behavioral response. These assets permit accurate real-time reporting of dynamic small GTPases-controlled processes in entire organisms, owning the potential to tackle rare disease mechanisms.
Collapse
Affiliation(s)
- Antonella Lauri
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | | | | | | | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| |
Collapse
|
34
|
Guiler W, Koehler A, Boykin C, Lu Q. Pharmacological Modulators of Small GTPases of Rho Family in Neurodegenerative Diseases. Front Cell Neurosci 2021; 15:661612. [PMID: 34054432 PMCID: PMC8149604 DOI: 10.3389/fncel.2021.661612] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/08/2021] [Indexed: 12/22/2022] Open
Abstract
Classical Rho GTPases, including RhoA, Rac1, and Cdc42, are members of the Ras small GTPase superfamily and play essential roles in a variety of cellular functions. Rho GTPase signaling can be turned on and off by specific GEFs and GAPs, respectively. These features empower Rho GTPases and their upstream and downstream modulators as targets for scientific research and therapeutic intervention. Specifically, significant therapeutic potential exists for targeting Rho GTPases in neurodegenerative diseases due to their widespread cellular activity and alterations in neural tissues. This study will explore the roles of Rho GTPases in neurodegenerative diseases with focus on the applications of pharmacological modulators in recent discoveries. There have been exciting developments of small molecules, nonsteroidal anti-inflammatory drugs (NSAIDs), and natural products and toxins for each classical Rho GTPase category. A brief overview of each category followed by examples in their applications will be provided. The literature on their roles in various diseases [e.g., Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), Frontotemporal dementia (FTD), and Multiple sclerosis (MS)] highlights the unique and broad implications targeting Rho GTPases for potential therapeutic intervention. Clearly, there is increasing knowledge of therapeutic promise from the discovery of pharmacological modulators of Rho GTPases for managing and treating these conditions. The progress is also accompanied by the recognition of complex Rho GTPase modulation where targeting its signaling can improve some aspects of pathogenesis while exacerbating others in the same disease model. Future directions should emphasize the importance of elucidating how different Rho GTPases work in concert and how they produce such widespread yet different cellular responses during neurodegenerative disease progression.
Collapse
Affiliation(s)
| | | | | | - Qun Lu
- Department of Anatomy and Cell Biology, The Harriet and John Wooten Laboratory for Alzheimer’s and Neurogenerative Diseases Research, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| |
Collapse
|
35
|
Guidi N, Marka G, Sakk V, Zheng Y, Florian MC, Geiger H. An aged bone marrow niche restrains rejuvenated hematopoietic stem cells. STEM CELLS (DAYTON, OHIO) 2021; 39:1101-1106. [PMID: 33847429 DOI: 10.1002/stem.3372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/19/2021] [Indexed: 11/11/2022]
Abstract
Aging-associated leukemia and aging-associated immune remodeling are in part caused by aging of hematopoietic stem cells (HSCs). An increase in the activity of the small RhoGTPase cell division control protein 42 (Cdc42) within HSCs causes aging of HSCs. Old HSCs, treated ex vivo with a specific inhibitor of Cdc42 activity termed CASIN, stay rejuvenated upon transplantation into young recipients. We determined in this study the influence of an aged niche on the function of ex vivo rejuvenated old HSCs, as the relative contribution of HSCs intrinsic mechanisms vs extrinsic mechanisms (niche) for aging of HSCs still remain unknown. Our results show that an aged niche restrains the function of ex vivo rejuvenated HSCs, which is at least in part linked to a low level of the cytokine osteopontin found in aged niches. The data imply that sustainable rejuvenation of the function of aged HSCs in vivo will need to address the influence of an aged niche on rejuvenated HSCs.
Collapse
Affiliation(s)
- Novella Guidi
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Gina Marka
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Vadim Sakk
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Yi Zheng
- Experimental Hematology and Cancer Biology, CCHMC, Cincinnati, Ohio, USA
| | | | - Hartmut Geiger
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| |
Collapse
|
36
|
Nalapareddy K, Hassan A, Sampson LL, Zheng Y, Geiger H. Suppression of elevated Cdc42 activity promotes the regenerative potential of aged intestinal stem cells. iScience 2021; 24:102362. [PMID: 33870147 PMCID: PMC8044426 DOI: 10.1016/j.isci.2021.102362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 02/08/2021] [Accepted: 03/23/2021] [Indexed: 11/29/2022] Open
Abstract
Homeostasis in the intestinal epithelium is maintained by Lgr5-positive intestinal stem cells (ISCs) located at the base of the crypt. The function of ISCs is reduced upon aging which leads to a decline of regeneration of the intestinal epithelium. We report that aged intestinal crypts present with an elevated activity of the small RhoGTPase Cdc42. Elevation of Cdc42 activity in young animals by genetic means causes premature ISC aging, whereas pharmacological suppression of elevated Cdc42 activity restores organoid formation potential in vitro. Consistent with a critical role of elevated Cdc42 activity in aged ISCs for a reduced regenerative capacity of aged ISCs, suppression of Cdc42 activity in vivo improves crypt regeneration in aged mice. Thus, pharmacological reduction of Cdc42 activity can improve the regeneration of aged intestinal epithelium. Intestinal stem cells show high RhoGTPase Cdc42 activity compared to Paneth cells Cdc42 activity is further increased in aged intestinal stem cells (ISCs) Attenuation of Cdc42 activity ex vivo or in vivo improves the function of aged ISCs
Collapse
Affiliation(s)
- Kodandaramireddy Nalapareddy
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Aishlin Hassan
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Leesa L Sampson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Hartmut Geiger
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| |
Collapse
|
37
|
Tiwari RL, Mishra P, Martin N, George NO, Sakk V, Soller K, Nalapareddy K, Nattamai K, Scharffetter-Kochanek K, Florian MC, Geiger H. A Wnt5a-Cdc42 axis controls aging and rejuvenation of hair-follicle stem cells. Aging (Albany NY) 2021; 13:4778-4793. [PMID: 33629967 PMCID: PMC7950224 DOI: 10.18632/aging.202694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 01/26/2021] [Indexed: 12/30/2022]
Abstract
Normal hair growth occurs in cycles, comprising growth (anagen), cessation (catagen) and rest (telogen). Upon aging, the initiation of anagen is significantly delayed, which results in impaired hair regeneration. Hair regeneration is driven by hair follicle stem cells (HFSCs). We show here that aged HFSCs present with a decrease in canonical Wnt signaling and a shift towards non-canonical Wnt5a driven signaling which antagonizes canonical Wnt signaling. Elevated expression of Wnt5a in HFSCs upon aging results in elevated activity of the small RhoGTPase Cdc42 as well as a change in the spatial distribution of Cdc42 within HFSCs. Treatment of aged HFSC with a specific pharmacological inhibitor of Cdc42 activity termed CASIN to suppress the aging-associated elevated activity of Cdc42 restored canonical Wnt signaling in aged HFSCs. Treatment of aged mice in vivo with CASIN induced anagen onset and increased the percentage of anagen skin areas. Aging-associated functional deficits of HFSCs are at least in part intrinsic to HFSCs and can be restored by rational pharmacological approaches.
Collapse
Affiliation(s)
- Rajiv L Tiwari
- Institute of Molecular Medicine, University of Ulm, Ulm 89081, Germany
| | - Pratibha Mishra
- Institute of Molecular Medicine, University of Ulm, Ulm 89081, Germany
| | - Nicola Martin
- Institute of Molecular Medicine, University of Ulm, Ulm 89081, Germany
| | | | - Vadim Sakk
- Institute of Molecular Medicine, University of Ulm, Ulm 89081, Germany
| | - Karin Soller
- Institute of Molecular Medicine, University of Ulm, Ulm 89081, Germany
| | - Kodandaramireddy Nalapareddy
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH 45229, USA
| | - Kalpana Nattamai
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH 45229, USA
| | | | | | - Hartmut Geiger
- Institute of Molecular Medicine, University of Ulm, Ulm 89081, Germany
| |
Collapse
|
38
|
Tackenberg H, Möller S, Filippi MD, Laskay T. The Small GTPase Cdc42 Negatively Regulates the Formation of Neutrophil Extracellular Traps by Engaging Mitochondria. Front Immunol 2021; 12:564720. [PMID: 33679729 PMCID: PMC7925625 DOI: 10.3389/fimmu.2021.564720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 01/26/2021] [Indexed: 12/16/2022] Open
Abstract
Neutrophil granulocytes represent the first line of defense against invading pathogens. In addition to the production of Reactive Oxygen Species, degranulation, and phagocytosis, these specialized cells are able to extrude Neutrophil Extracellular Traps. Extensive work was done to elucidate the mechanism of this special form of cell death. However, the exact mechanisms are still not fully uncovered. Here we demonstrate that the small GTPase Cdc42 is a negative regulator of NET formation in primary human and murine neutrophils. We present a functional role for Cdc42 activity in NET formation that differs from the already described NETosis pathways. We show that Cdc42 deficiency induces NETs independent of the NADPH-oxidase but dependent on protein kinase C. Furthermore, we demonstrate that Cdc42 deficiency induces NETosis through activation of SK-channels and that mitochondria play a crucial role in this process. Our data therefore suggests a mechanistic role for Cdc42 activity in primary human neutrophils, and identify Cdc42 activity as a target to modulate the formation of Neutrophil Extracellular Traps.
Collapse
Affiliation(s)
- Heidi Tackenberg
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Sonja Möller
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Marie-Dominique Filippi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Tamás Laskay
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
39
|
Mamula D, Korthals M, Hradsky J, Gottfried A, Fischer KD, Tedford K. Arhgef6 (alpha-PIX) cytoskeletal regulator signals to GTPases and Cofilin to couple T cell migration speed and persistence. J Leukoc Biol 2021; 110:839-852. [PMID: 33527537 DOI: 10.1002/jlb.1a1219-719r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 12/10/2020] [Accepted: 01/08/2021] [Indexed: 11/11/2022] Open
Abstract
Immunity is governed by successful T cell migration, optimized to enable a T cell to fully scan its environment without wasted movement by balancing speed and turning. Here we report that the Arhgef6 RhoGEF (aka alpha-PIX; αPIX; Cool-2), an activator of small GTPases, is required to restrain cell migration speed and cell turning during spontaneous migration on 2D surfaces. In Arhgef6-/- T cells, expression of Arhgef7 (beta-PIX; βPIX; Cool-1), a homolog of Arhgef6, was increased and correlated with defective activation and localization of Rac1 and CDC42 GTPases, respectively. Downstream of Arhgef6, PAK2 (p21-activated kinase 2) and LIMK1 phosphorylation was reduced, leading to increased activation of Cofilin, the actin-severing factor. Consistent with defects in these signaling pathways, Arhgef6-/- T cells displayed abnormal bilobed lamellipodia and migrated faster, turned more, and arrested less than wild-type (WT) T cells. Using pharmacologic inhibition of LIMK1 (LIM domain kinase 1) to induce Cofilin activation in WT T cells, we observed increased migration speed but not increased cell turning. In contrast, inhibition of Cdc42 increased cell turning but not speed. These results suggested that the increased speed of the Arhgef6-/- T cells is due to hyperactive Cofilin while the increased turning may be due to abnormal GTPase activation and recruitment. Together, these findings reveal that Arhgef6 acts as a repressor of T cell speed and turning by limiting actin polymerization and lamellipodia formation.
Collapse
Affiliation(s)
- Dejan Mamula
- Institute for Biochemistry and Cell Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Present address: Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Mark Korthals
- Institute for Biochemistry and Cell Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Johannes Hradsky
- Institute for Biochemistry and Cell Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Anna Gottfried
- Institute for Biochemistry and Cell Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Klaus-Dieter Fischer
- Institute for Biochemistry and Cell Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Center for Cellular Imaging and Innovative Disease Models, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Kerry Tedford
- Institute for Biochemistry and Cell Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Center for Cellular Imaging and Innovative Disease Models, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
40
|
Amoah A, Keller A, Emini R, Hoenicka M, Liebold A, Vollmer A, Eiwen K, Soller K, Sakk V, Zheng Y, Florian MC, Geiger H. Aging of human hematopoietic stem cells is linked to changes in Cdc42 activity. Haematologica 2021; 107:393-402. [PMID: 33440922 PMCID: PMC8804569 DOI: 10.3324/haematol.2020.269670] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Indexed: 11/23/2022] Open
Abstract
In this study, we characterize age-related phenotypes of human hematopoietic stem cells (HSC). We report increased frequencies of HSC, hematopoietic progenitor cells and lineage negative cells in the elderly but a decreased frequency of multi-lymphoid progenitors. Aged human HSC further exhibited a delay in initiating division ex vivo though without changes in their division kinetics. The activity of the small RhoGTPase Cdc42 was elevated in aged human hematopoietic cells and we identified a positive correlation between Cdc42 activity and the frequency of HSC upon aging. The frequency of human HSC polar for polarity proteins was, similar to the mouse, decreased upon aging, while inhibition of Cdc42 activity via the specific pharmacological inhibitor of Cdc42 activity, CASIN, resulted in re-polarization of aged human HSC with respect to Cdc42. Elevated activity of Cdc42 in aged HSC thus contributed to age-related changes in HSC. Xenotransplant, using NBSGW mice as recipients, showed elevated chimerism in recipients of aged compared to young HSC. Aged HSC treated with CASIN ex vivo displayed an engraftment profile similar to recipients of young HSC. Taken together, our work reveals strong evidence for a role of elevated Cdc42 activity in driving aging of human HSC, and similar to mice, this presents a likely possibility for attenuation of aging in human HSC.
Collapse
Affiliation(s)
- Amanda Amoah
- Institute of Molecular Medicine, Ulm University, Meyerhofstrasse, 89081 Ulm
| | - Anja Keller
- Institute of Molecular Medicine, Ulm University, Meyerhofstrasse, 89081 Ulm
| | - Ramiz Emini
- Department of Cardiothoracic and Vascular Surgery, Ulm University Hospital, Ulm
| | - Markus Hoenicka
- Department of Cardiothoracic and Vascular Surgery, Ulm University Hospital, Ulm
| | - Andreas Liebold
- Department of Cardiothoracic and Vascular Surgery, Ulm University Hospital, Ulm
| | - Angelika Vollmer
- Institute of Molecular Medicine, Ulm University, Meyerhofstrasse, 89081 Ulm
| | - Karina Eiwen
- Institute of Molecular Medicine, Ulm University, Meyerhofstrasse, 89081 Ulm
| | - Karin Soller
- Institute of Molecular Medicine, Ulm University, Meyerhofstrasse, 89081 Ulm
| | - Vadim Sakk
- Institute of Molecular Medicine, Ulm University, Meyerhofstrasse, 89081 Ulm
| | - Yi Zheng
- Cincinnati Children's Hospital Medical Center and University of Cincinnati
| | | | - Hartmut Geiger
- Institute of Molecular Medicine, Ulm University, Meyerhofstrasse, 89081 Ulm.
| |
Collapse
|
41
|
Florian MC, Leins H, Gobs M, Han Y, Marka G, Soller K, Vollmer A, Sakk V, Nattamai KJ, Rayes A, Zhao X, Setchell K, Mulaw M, Wagner W, Zheng Y, Geiger H. Inhibition of Cdc42 activity extends lifespan and decreases circulating inflammatory cytokines in aged female C57BL/6 mice. Aging Cell 2020; 19:e13208. [PMID: 32755011 PMCID: PMC7511875 DOI: 10.1111/acel.13208] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 04/27/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Cdc42 is a small RhoGTPase regulating multiple functions in eukaryotic cells. The activity of Cdc42 is significantly elevated in several tissues of aged mice, while the Cdc42 gain‐of‐activity mouse model presents with a premature aging‐like phenotype and with decreased lifespan. These data suggest a causal connection between elevated activity of Cdc42, aging, and reduced lifespan. Here, we demonstrate that systemic treatment of aged (75‐week‐old) female C57BL/6 mice with a Cdc42 activity‐specific inhibitor (CASIN) for 4 consecutive days significantly extends average and maximum lifespan. Moreover, aged CASIN‐treated animals displayed a youthful level of the aging‐associated cytokines IL‐1β, IL‐1α, and INFγ in serum and a significantly younger epigenetic clock as based on DNA methylation levels in blood cells. Overall, our data show that systemic administration of CASIN to reduce Cdc42 activity in aged mice extends murine lifespan.
Collapse
Affiliation(s)
- Maria Carolina Florian
- Program of Regenerative Medicine, IDIBELL, Barcelona, Spain.,Institute of Molecular Medicine and Stem Cell Aging, Ulm University, Ulm, Germany
| | - Hanna Leins
- Institute of Molecular Medicine and Stem Cell Aging, Ulm University, Ulm, Germany
| | - Michael Gobs
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Yang Han
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Gina Marka
- Institute of Molecular Medicine and Stem Cell Aging, Ulm University, Ulm, Germany
| | - Karin Soller
- Institute of Molecular Medicine and Stem Cell Aging, Ulm University, Ulm, Germany
| | - Angelika Vollmer
- Institute of Molecular Medicine and Stem Cell Aging, Ulm University, Ulm, Germany
| | - Vadim Sakk
- Institute of Molecular Medicine and Stem Cell Aging, Ulm University, Ulm, Germany
| | - Kalpana J Nattamai
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ahmad Rayes
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Xueheng Zhao
- Division of Pathology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kenneth Setchell
- Division of Pathology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Medhanie Mulaw
- Institute of Experimental Cancer Research, Medical Faculty, University of Ulm, Ulm, Germany
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Hartmut Geiger
- Institute of Molecular Medicine and Stem Cell Aging, Ulm University, Ulm, Germany
| |
Collapse
|
42
|
Hormones Secretion and Rho GTPases in Neuroendocrine Tumors. Cancers (Basel) 2020; 12:cancers12071859. [PMID: 32664294 PMCID: PMC7408961 DOI: 10.3390/cancers12071859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
Neuroendocrine tumors (NETs) belong to a heterogeneous group of neoplasms arising from hormone secreting cells. These tumors are often associated with a dysfunction of their secretory activity. Neuroendocrine secretion occurs through calcium-regulated exocytosis, a process that is tightly controlled by Rho GTPases family members. In this review, we compiled the numerous mutations and modification of expression levels of Rho GTPases or their regulators (Rho guanine nucleotide-exchange factors and Rho GTPase-activating proteins) that have been identified in NETs. We discussed how they might regulate neuroendocrine secretion.
Collapse
|
43
|
Tackenberg H, Möller S, Filippi MD, Laskay T. The Small GTPase Cdc42 Is a Major Regulator of Neutrophil Effector Functions. Front Immunol 2020; 11:1197. [PMID: 32595647 PMCID: PMC7304460 DOI: 10.3389/fimmu.2020.01197] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
Neutrophil granulocytes are key components of the innate immune system. As the first responders to inflammatory cues, they rapidly migrate toward the site of infection or inflammation and fulfill diverse effector functions. Since these effector functions can be both beneficial and harmful to the host and surrounding tissue, they require a strict control. The small GTPase Cdc42 is known to regulate neutrophil locomotion by controlling cytoskeleton rearrangement in murine neutrophils. However, the role of Cdc42 in other neutrophil functions in human neutrophils is still poorly understood. Here we demonstrate that in primary human neutrophils, Cdc42 controls directed and random migration, activation, and degranulation as well as the formation of reactive oxygen species, in a stimulus dependent manner. In addition, we show that Cdc42 regulates pathogen killing efficiency, both in murine and human neutrophils. Cdc42 regulation of neutrophil functions is linked to differential regulation of Akt, p38, and p42/44. Our data, therefore, suggests a mechanistic role for Cdc42 activity in primary human neutrophil biology, and identify Cdc42 activity as a target to modulate neutrophil effector mechanisms and killing efficacy.
Collapse
Affiliation(s)
- Heidi Tackenberg
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Sonja Möller
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Marie-Dominique Filippi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Tamás Laskay
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
44
|
Maldonado MDM, Medina JI, Velazquez L, Dharmawardhane S. Targeting Rac and Cdc42 GEFs in Metastatic Cancer. Front Cell Dev Biol 2020; 8:201. [PMID: 32322580 PMCID: PMC7156542 DOI: 10.3389/fcell.2020.00201] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
The Rho family GTPases Rho, Rac, and Cdc42 have emerged as key players in cancer metastasis, due to their essential roles in regulating cell division and actin cytoskeletal rearrangements; and thus, cell growth, migration/invasion, polarity, and adhesion. This review will focus on the close homologs Rac and Cdc42, which have been established as drivers of metastasis and therapy resistance in multiple cancer types. Rac and Cdc42 are often dysregulated in cancer due to hyperactivation by guanine nucleotide exchange factors (GEFs), belonging to both the diffuse B-cell lymphoma (Dbl) and dedicator of cytokinesis (DOCK) families. Rac/Cdc42 GEFs are activated by a myriad of oncogenic cell surface receptors, such as growth factor receptors, G-protein coupled receptors, cytokine receptors, and integrins; consequently, a number of Rac/Cdc42 GEFs have been implicated in metastatic cancer. Hence, inhibiting GEF-mediated Rac/Cdc42 activation represents a promising strategy for targeted metastatic cancer therapy. Herein, we focus on the role of oncogenic Rac/Cdc42 GEFs and discuss the recent advancements in the development of Rac and Cdc42 GEF-interacting inhibitors as targeted therapy for metastatic cancer, as well as their potential for overcoming cancer therapy resistance.
Collapse
Affiliation(s)
- Maria Del Mar Maldonado
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Julia Isabel Medina
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Luis Velazquez
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Suranganie Dharmawardhane
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| |
Collapse
|
45
|
Kalkan BM, Akgol S, Ak D, Yucel D, Guney Esken G, Kocabas F. CASIN and AMD3100 enhance endothelial cell proliferation, tube formation and sprouting. Microvasc Res 2020; 130:104001. [PMID: 32198058 DOI: 10.1016/j.mvr.2020.104001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/27/2020] [Accepted: 03/14/2020] [Indexed: 01/12/2023]
Abstract
Endothelial dysfunction is prominent in atherosclerosis, hypertension, diabetes, peripheral and cardiovascular diseases, and stroke. Novel therapeutic approaches to these conditions often involve development of tissue-engineered veins with ex vivo expanded endothelial cells. However, high cell number requirements limit these approaches to become applicable to clinical applications and highlight the requirement of technologies that accelerate expansion of vascular-forming cells. We have previously shown that novel small molecules could induce hematopoietic stem cell expansion ex vivo. We hypothesized that various small molecules targeting hematopoietic stem cell quiescence and mobilization could be used to induce endothelial cell expansion and angiogenesis due to common origin and shared characteristics of endothelial and hematopoietic cells. Here, we have screened thirty-five small molecules and found that CASIN and AMD3100 increase endothelial cell expansion up to two-fold and induce tube formation and ex vivo sprouting. In addition, we have studied how CASIN and AMD3100 affect cell migration, apoptosis and cell cycle of endothelial cells. CASIN and AMD3100 upregulate key endothelial marker genes and downregulate a number of cyclin dependent kinase inhibitors. These findings suggest that CASIN and AMD3100 could be further tested in the development of artificial vascular systems and vascular gene editing technologies. Furthermore, these findings may have potential to contribute to the development of alternative treatment methods for diseases that cause endothelial damage.
Collapse
Affiliation(s)
- Batuhan Mert Kalkan
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey; Koc University, Istanbul, Turkey
| | - Sezer Akgol
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Deniz Ak
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey; Middle East Technical University, Ankara, Turkey
| | - Dogacan Yucel
- Faculty of Medicine, University of Minnesota, MN, USA
| | - Gulen Guney Esken
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Fatih Kocabas
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
46
|
Guan X, Guan X, Dong C, Jiao Z. Rho GTPases and related signaling complexes in cell migration and invasion. Exp Cell Res 2020; 388:111824. [PMID: 31926148 DOI: 10.1016/j.yexcr.2020.111824] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/16/2022]
Abstract
Cell migration and invasion play an important role in the development of cancer. Cell migration is associated with several specific actin filament-based structures, including lamellipodia, filopodia, invadopodia and blebs, and with cell-cell adhesion, cell-extracellular matrix adhesion. Migration occurs via different modes, human epithelial cancer cells mainly migrate collectively, while in vivo imaging studies in laboratory animals have found that most cells migrate as single cells. Rho GTPases play an important role in the process of cell migration, and several Rho GTPase-related signaling complexes are also involved. However, the exact mechanism by which these signaling complexes act remains unclear. This paper reviews how Rho GTPases and related signaling complexes interact with other proteins, how their expression is regulated, how tumor microenvironment-related factors play a role in invasion and metastasis, and the mechanism of these complex signaling networks in cell migration and invasion.
Collapse
Affiliation(s)
- Xiaoying Guan
- Pathology Department, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Xiaoli Guan
- General Medicine Department, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Chi Dong
- Pathology Department, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Zuoyi Jiao
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
47
|
Acute Myeloid Leukemia: Aging and Epigenetics. Cancers (Basel) 2019; 12:cancers12010103. [PMID: 31906064 PMCID: PMC7017261 DOI: 10.3390/cancers12010103] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 12/15/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological disorder mainly affecting people of older age. AML initiation is primarily attributed to mutations in crucial cellular regulators such as epigenetic factors, transcription factors, and signaling genes. AML’s aggressiveness and responsiveness to treatment depends on the specific cell type where leukemia first arose. Aged hematopoietic cells are often genetically and/or epigenetically altered and, therefore, present with a completely different cellular context for AML development compared to young cells. In this review, we summarize key aspects of AML development, and we focus, in particular, on the contribution of cellular aging to leukemogenesis and on current treatment options for elderly AML patients. Hematological disorders and leukemia grow exponentially with age. So far, with conventional induction therapy, many elderly patients experience a very poor overall survival rate requiring substantial social and medical costs during the relatively few remaining months of life. The global population’s age is increasing rapidly without an acceptable equal growth in therapeutic management of AML in the elderly; this is in sharp contrast to the increase in successful therapies for leukemia in younger patients. Therefore, a focus on the understanding of the biology of aging in the hematopoietic system, the development of appropriate research models, and new therapeutic approaches are urged.
Collapse
|
48
|
Nguyen P, Chakrabarti J, Li Y, Kalim KW, Zhang M, Zhang L, Zheng Y, Guo F. Rational Targeting of Cdc42 Overcomes Drug Resistance of Multiple Myeloma. Front Oncol 2019; 9:958. [PMID: 31632904 PMCID: PMC6779689 DOI: 10.3389/fonc.2019.00958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/10/2019] [Indexed: 12/03/2022] Open
Abstract
Multiple myeloma (MM) drug resistance highlights a need for alternative therapeutic strategies. In this study, we show that CASIN, a selective inhibitor of cell division cycle 42 (Cdc42) GTPase, inhibited proliferation and survival of melphalan/bortezomib-resistant MM cells more profoundly than that of the sensitive cells. Furthermore, CASIN was more potent than melphalan/bortezomib in inhibiting melphalan/bortezomib-resistant cells. In addition, CASIN sensitized melphalan/bortezomib-resistant cells to this drug combination. Mechanistically, Cdc42 activity was higher in melphalan/bortezomib-resistant cells than that in the sensitive cells. CASIN inhibited mono-ubiquitination of Fanconi anemia (FA) complementation group D2 (FANCD2) of the FA DNA damage repair pathway in melphalan-resistant but not melphalan-sensitive cells, thereby sensitizing melphalan-resistant cells to DNA damage. CASIN suppressed epidermal growth factor receptor (EGFR), signal transducer and activator of transcription 3 (STAT3), and extracellular signal-regulated kinase (ERK) activities to a larger extent in bortezomib-resistant than in melphalan-sensitive cells. Reconstitution of ERK activity partially protected CASIN-treated bortezomib-resistant cells from death, suggesting that CASIN-induced killing is attributable to suppression of ERK. Importantly, CASIN extended the lifespan of mouse xenografts of bortezomib-resistant cells and caused apoptosis of myeloma cells from bortezomib-resistant MM patients. Finally, CASIN had negligible side effects on peripheral blood mononuclear cells (PBMC) from healthy human subjects and normal B cells. Our data provide a proof of concept demonstration that rational targeting of Cdc42 represents a promising approach to overcome MM drug resistance.
Collapse
Affiliation(s)
- Phuong Nguyen
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Jayati Chakrabarti
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Yuan Li
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Khalid W Kalim
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Mengnan Zhang
- Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lin Zhang
- Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Fukun Guo
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|