1
|
Toma MM, Skorski T. Star wars against leukemia: attacking the clones. Leukemia 2024; 38:2293-2302. [PMID: 39223295 PMCID: PMC11519008 DOI: 10.1038/s41375-024-02369-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Leukemia, although most likely starts as a monoclonal genetic/epigenetic anomaly, is a polyclonal disease at manifestation. This polyclonal nature results from ongoing evolutionary changes in the genome/epigenome of leukemia cells to promote their survival and proliferation advantages. We discuss here how genetic and/or epigenetic aberrations alter intracellular microenvironment in individual leukemia clones and how extracellular microenvironment selects the best fitted clones. This dynamic polyclonal composition of leukemia makes designing an effective therapy a challenging task especially because individual leukemia clones often display substantial differences in response to treatment. Here, we discuss novel therapeutic approach employing single cell multiomics to identify and eradicate all individual clones in a patient.
Collapse
Affiliation(s)
- Monika M Toma
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Tomasz Skorski
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Pamuk GE, Ehrlich LA. An Overview of Myeloid Blast-Phase Chronic Myeloid Leukemia. Cancers (Basel) 2024; 16:3615. [PMID: 39518058 PMCID: PMC11545322 DOI: 10.3390/cancers16213615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Myeloid blast-phase chronic myeloid leukemia (MBP-CML) is a rare disease with a dismal prognosis. It is twice as common as lymphoid blast-phase CML, and its prognosis is poorer. Despite the success with tyrosine kinase inhibitors in the treatment of chronic-phase CML, the same does not hold true for MBP-CML. In addition to the Philadelphia chromosome, other chromosomal and molecular changes characterize rapid progression. Although some progress in elucidating the biology of MBP-CML has been made, there is need to discover more in order to develop more satisfactory treatment options. Currently, most common treatment options include tyrosine kinase inhibitors (TKIs) as monotherapy or in combination with acute myeloid leukemia-based intensive chemotherapy regimens. Some patients may develop resistance to TKIs via BCR-ABL1-dependent or BCR-ABL1-independent mechanisms. In this paper, we provide an overview of the biology of MBP-CML, the current treatment approaches, and mechanisms of resistance to TKIs. In order to improve treatment responses in these patients, more emphasis should be placed on understanding the biology of myeloid blastic transformation in CML and mechanisms of resistance to TKIs. Although patient numbers are small, randomized clinical trials should be considered.
Collapse
Affiliation(s)
- Gulsum E. Pamuk
- Office of Oncologic Diseases, Center for Drug Evaluation and Research—CDER, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA;
| | | |
Collapse
|
3
|
Zheng FY, Lu AD, Jia YP, Zuo YX, Zeng HM, Jiang Q, Zhang LP. [Research on the clinical characteristics and prognosis of children with chronic myeloid leukemia in the blast phase]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2024; 45:931-936. [PMID: 39622757 PMCID: PMC11579757 DOI: 10.3760/cma.j.cn121090-20240130-00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Indexed: 12/06/2024]
Abstract
Objective: To explore the clinical characteristics and prognosis of children with chronic myeloid leukemia in the blast phase (CML-BP) . Methods: The clinical characteristics, treatment measures, and survival outcomes of 28 children with CML-BP were analyzed in our hospital from January 2008 to November 2022. Results: The male to female ratio of the 28 children with CML-BP was 1.15∶1. The median age of diagnosis of CML-BP was 10 years, and the median follow-up time was 79 months. During the diagnosis of CML, four children were in the BP, one was in the accelerated phase (AP) and 23 children were in the chronic phase (CP). Among the 23 children with CML-CP, 75% had progressed directly from CP to BP without experiencing the AP. Among the children diagnosed with CML-BP, 71.4% were classified as chronic myeloid leukemia lymphoid blast phase (CML-LBP), 25.0% belonged to the chronic myeloid leukemia myeloid blast phase (CML-MBP), and 3.6% belonged to the chronic myeloid leukemia mixed phenotype acute leukemia (CML-MPAL). Treatment with hemaopoietic stem cell transplantation (HSCT) after tyosine kinase inhibitor (TKI) combined with chemotherapy was administered to 19 children, two children received HSCT after TKI alone, and seven children received TKI combined with chemotherapy but without HSCT. The 5-year overall survival of the 28 children with CML-BP was 59.3%. Conclusion: The direct progression of BP from CP is greater in children with CML-BP compared with adults, and the overall prognosis of children with CML-BP is poor.
Collapse
Affiliation(s)
- F Y Zheng
- Peking University People's Hospital, Department of Pediatrics, Beijing 100044, China
| | - A D Lu
- Peking University People's Hospital, Department of Pediatrics, Beijing 100044, China
| | - Y P Jia
- Peking University People's Hospital, Department of Pediatrics, Beijing 100044, China
| | - Y X Zuo
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing 100044, China
| | - H M Zeng
- Peking University People's Hospital, Department of Pediatrics, Beijing 100044, China
| | - Q Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing 100044, China
| | - L P Zhang
- Peking University People's Hospital, Department of Pediatrics, Beijing 100044, China
| |
Collapse
|
4
|
Ozturk K, Panwala R, Sheen J, Ford K, Jayne N, Portell A, Zhang DE, Hutter S, Haferlach T, Ideker T, Mali P, Carter H. Interface-guided phenotyping of coding variants in the transcription factor RUNX1. Cell Rep 2024; 43:114436. [PMID: 38968069 PMCID: PMC11345852 DOI: 10.1016/j.celrep.2024.114436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/15/2024] [Accepted: 06/19/2024] [Indexed: 07/07/2024] Open
Abstract
Single-gene missense mutations remain challenging to interpret. Here, we deploy scalable functional screening by sequencing (SEUSS), a Perturb-seq method, to generate mutations at protein interfaces of RUNX1 and quantify their effect on activities of downstream cellular programs. We evaluate single-cell RNA profiles of 115 mutations in myelogenous leukemia cells and categorize them into three functionally distinct groups, wild-type (WT)-like, loss-of-function (LoF)-like, and hypomorphic, that we validate in orthogonal assays. LoF-like variants dominate the DNA-binding site and are recurrent in cancer; however, recurrence alone does not predict functional impact. Hypomorphic variants share characteristics with LoF-like but favor protein interactions, promoting gene expression indicative of nerve growth factor (NGF) response and cytokine recruitment of neutrophils. Accessible DNA near differentially expressed genes frequently contains RUNX1-binding motifs. Finally, we reclassify 16 variants of uncertain significance and train a classifier to predict 103 more. Our work demonstrates the potential of targeting protein interactions to better define the landscape of phenotypes reachable by missense mutations.
Collapse
Affiliation(s)
- Kivilcim Ozturk
- Division of Medical Genetics, Department of Medicine, University of California, San Diego, La Jolla, CA, USA; Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA
| | - Rebecca Panwala
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Jeanna Sheen
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Kyle Ford
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Nathan Jayne
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Andrew Portell
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Dong-Er Zhang
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Stephan Hutter
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377 Munich, Germany
| | - Torsten Haferlach
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377 Munich, Germany
| | - Trey Ideker
- Division of Medical Genetics, Department of Medicine, University of California, San Diego, La Jolla, CA, USA; Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Prashant Mali
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
| | - Hannah Carter
- Division of Medical Genetics, Department of Medicine, University of California, San Diego, La Jolla, CA, USA; Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
5
|
Adnan Awad S, Dufva O, Klievink J, Karjalainen E, Ianevski A, Pietarinen P, Kim D, Potdar S, Wolf M, Lotfi K, Aittokallio T, Wennerberg K, Porkka K, Mustjoki S. Integrated drug profiling and CRISPR screening identify BCR::ABL1-independent vulnerabilities in chronic myeloid leukemia. Cell Rep Med 2024; 5:101521. [PMID: 38653245 PMCID: PMC11148568 DOI: 10.1016/j.xcrm.2024.101521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/10/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024]
Abstract
BCR::ABL1-independent pathways contribute to primary resistance to tyrosine kinase inhibitor (TKI) treatment in chronic myeloid leukemia (CML) and play a role in leukemic stem cell persistence. Here, we perform ex vivo drug screening of CML CD34+ leukemic stem/progenitor cells using 100 single drugs and TKI-drug combinations and identify sensitivities to Wee1, MDM2, and BCL2 inhibitors. These agents effectively inhibit primitive CD34+CD38- CML cells and demonstrate potent synergies when combined with TKIs. Flow-cytometry-based drug screening identifies mepacrine to induce differentiation of CD34+CD38- cells. We employ genome-wide CRISPR-Cas9 screening for six drugs, and mediator complex, apoptosis, and erythroid-lineage-related genes are identified as key resistance hits for TKIs, whereas the Wee1 inhibitor AZD1775 and mepacrine exhibit distinct resistance profiles. KCTD5, a consistent TKI-resistance-conferring gene, is found to mediate TKI-induced BCR::ABL1 ubiquitination. In summary, we delineate potential mechanisms for primary TKI resistance and non-BCR::ABL1-targeting drugs, offering insights for optimizing CML treatment.
Collapse
MESH Headings
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Protein Kinase Inhibitors/pharmacology
- CRISPR-Cas Systems/genetics
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Proto-Oncogene Proteins c-abl/metabolism
- Proto-Oncogene Proteins c-abl/genetics
- Proto-Oncogene Proteins c-abl/antagonists & inhibitors
- Cell Line, Tumor
Collapse
Affiliation(s)
- Shady Adnan Awad
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; Foundation for the Finnish Cancer Institute, 00290 Helsinki, Finland; Clinical Pathology Department, National Cancer Institute, Cairo University, 11796 Cairo, Egypt.
| | - Olli Dufva
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00014 Helsinki, Finland
| | - Jay Klievink
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland
| | - Ella Karjalainen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute for Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Aleksandr Ianevski
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute for Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Paavo Pietarinen
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland
| | - Daehong Kim
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland
| | - Swapnil Potdar
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute for Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Maija Wolf
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute for Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Kourosh Lotfi
- Department of Medical and Health Sciences, Faculty of Medicine and Health, Linköping University, 58183 Linköping, Sweden
| | - Tero Aittokallio
- Foundation for the Finnish Cancer Institute, 00290 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00014 Helsinki, Finland; Institute for Molecular Medicine Finland (FIMM), Helsinki Institute for Life Science, University of Helsinki, 00014 Helsinki, Finland; Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; Oslo Centre for Biostatistics and Epidemiology, University of Oslo, 0317 Oslo, Norway
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute for Life Science, University of Helsinki, 00014 Helsinki, Finland; Biotech Research & Innovation Centre and Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kimmo Porkka
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00014 Helsinki, Finland
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00014 Helsinki, Finland.
| |
Collapse
|
6
|
Jiang H, Wang Y, Wen D, Yu R, Esa SS, Lv K, Feng Q, Liu J, Li F, He L, Di X, Zhang S. Targeting C21orf58 is a Novel Treatment Strategy of Hepatocellular Carcinoma by Disrupting the Formation of JAK2/C21orf58/STAT3 Complex. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306623. [PMID: 38342622 PMCID: PMC11022693 DOI: 10.1002/advs.202306623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/22/2024] [Indexed: 02/13/2024]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Functionally uncharacterized genes are an attractive repository to explore candidate oncogenes. It is demonstrated that C21orf58 displays an oncogenic role in promoting cell growth, tumorigenesis and sorafenib resistance of HCC cells by abnormal activation of STAT3 signaling. Mechanistically, a novel manner to regulate STAT3 signaling that adaptor C21orf58 forms a ternary complex is reveal with N-terminal domain of STAT3 and SH2 domain of JAK2, by which C21orf58 overactivates wild-type STAT3 by facilitating its phosphorylation mediated by JAK2, and hyper-activates of constitutively mutated STAT3 due to preferred binding with C21orf58 and JAK2. Moreover, it is validated that inhibition of C21orf58 with drug alminoprofen, selected by virtual screening, could effectively repress the viability and tumorigenesis of HCC cells. Therefore, it is identified that C21orf58 functions as an oncogenic adaptor, reveal a novel regulatory mechanism of JAK2/STAT3 signaling, explain the cause of abnormal activity of activated mutants of STAT3, and explore the attractive therapeutic potential by targeting C21orf58 in HCC.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Biomedical InformaticsSchool of Life SciencesCentral South UniversityChangshaHunan410013P. R. China
| | - Yang Wang
- Department of Cell BiologySchool of Life SciencesCentral South UniversityChangshaHunan410013P. R. China
| | - Doudou Wen
- Department of Cell BiologySchool of Life SciencesCentral South UniversityChangshaHunan410013P. R. China
| | - Rongji Yu
- Department of Biomedical InformaticsSchool of Life SciencesCentral South UniversityChangshaHunan410013P. R. China
| | - Sayed S Esa
- Department of Cell BiologySchool of Life SciencesCentral South UniversityChangshaHunan410013P. R. China
| | - Kefeng Lv
- School of Biomedical ScienceHunan UniversityChangshaHunan410013P. R. China
| | - Qing Feng
- School of Biomedical ScienceHunan UniversityChangshaHunan410013P. R. China
| | - Jing Liu
- Department of Biochemistry and Molecular BiologySchool of Life SciencesCentral South UniversityChangsha410013P. R. China
| | - Faxiang Li
- Center for Medical GeneticsSchool of Life SciencesCentral South UniversityChangsha410013P. R. China
| | - Lan He
- School of Biomedical ScienceHunan UniversityChangshaHunan410013P. R. China
| | - Xiaotang Di
- Department of Cell BiologySchool of Life SciencesCentral South UniversityChangshaHunan410013P. R. China
| | - Shubing Zhang
- Department of Cell BiologySchool of Life SciencesCentral South UniversityChangshaHunan410013P. R. China
| |
Collapse
|
7
|
Kubota Y, Gu X, Terkawi L, Bodo J, Przychodzen BP, Awada H, Williams N, Gurnari C, Kawashima N, Aly M, Durmaz A, Mori M, Ponvilawan B, Kewan T, Bahaj W, Meggendorfer M, Jha BK, Visconte V, Rogers HJ, Haferlach T, Maciejewski JP. Molecular and clinical analyses of PHF6 mutant myeloid neoplasia provide their pathogenesis and therapeutic targeting. Nat Commun 2024; 15:1832. [PMID: 38418452 PMCID: PMC10901781 DOI: 10.1038/s41467-024-46134-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 02/12/2024] [Indexed: 03/01/2024] Open
Abstract
PHF6 mutations (PHF6MT) are identified in various myeloid neoplasms (MN). However, little is known about the precise function and consequences of PHF6 in MN. Here we show three main findings in our comprehensive genomic and proteomic study. Firstly, we show a different pattern of genes correlating with PHF6MT in male and female cases. When analyzing male and female cases separately, in only male cases, RUNX1 and U2AF1 are co-mutated with PHF6. In contrast, female cases reveal co-occurrence of ASXL1 mutations and X-chromosome deletions with PHF6MT. Next, proteomics analysis reveals a direct interaction between PHF6 and RUNX1. Both proteins co-localize in active enhancer regions that define the context of lineage differentiation. Finally, we demonstrate a negative prognostic role of PHF6MT, especially in association with RUNX1. The negative effects on survival are additive as PHF6MT cases with RUNX1 mutations have worse outcomes when compared to cases carrying single mutation or wild-type.
Collapse
Affiliation(s)
- Yasuo Kubota
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Xiaorong Gu
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Laila Terkawi
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Juraj Bodo
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Bartlomiej P Przychodzen
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Hussein Awada
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nakisha Williams
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Naomi Kawashima
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mai Aly
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Arda Durmaz
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Minako Mori
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ben Ponvilawan
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Tariq Kewan
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Waled Bahaj
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Babal K Jha
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute (LRI) Cleveland Clinic, Cleveland, OH, USA
| | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Heesun J Rogers
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA
| | | | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
8
|
Shanmuganathan N. Accelerated-phase CML: de novo and transformed. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2023; 2023:459-468. [PMID: 38066863 PMCID: PMC10727052 DOI: 10.1182/hematology.2023000446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Despite the dramatic improvements in outcomes for the majority of chronic myeloid leukemia (CML) patients over the past 2 decades, a similar improvement has not been observed in the more advanced stages of the disease. Blast phase CML (BP-CML), although infrequent, remains poorly understood and inadequately treated. Consequently, the key initial goal of therapy in a newly diagnosed patient with chronic phase CML continues to be prevention of disease progression. Advances in genomic investigation in CML, specifically related to BP-CML, clearly demonstrate we have only scratched the surface in our understanding of the disease biology, a prerequisite to devising more targeted and effective therapeutic approaches to prevention and treatment. Importantly, the introduction of the concept of "CML-like" acute lymphoblastic leukemia (ALL) has the potential to simplify the differentiation between BCR::ABL1-positive ALL from de novo lymphoid BP-CML, optimizing monitoring and therapeutics. The development of novel treatment strategies such as the MATCHPOINT approach for BP-CML, utilizing combination chemotherapy with fludarabine, cytarabine, and idarubicin in addition to dose-modified ponatinib, may also be an important step in improving treatment outcomes. However, identifying patients who are high risk of transformation remains a challenge, and the recent 2022 updates to the international guidelines may add further confusion to this area. Further work is required to clarify the identification and treatment strategy for the patients who require a more aggressive approach than standard chronic phase CML management.
Collapse
Affiliation(s)
- Naranie Shanmuganathan
- Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, Australia
- Department of Haematoloxgy, Royal Adelaide Hospital and SA Pathology, Adelaide, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Department of Genetics and Molecular Pathology & Centre for Cancer Biology, SA Pathology, Adelaide, Australia
| |
Collapse
|
9
|
Gayatri MB, Kancha RK, Behera A, Patchva D, Velugonda N, Gundeti S, Reddy ABM. AMPK-induced novel phosphorylation of RUNX1 inhibits STAT3 activation and overcome imatinib resistance in chronic myelogenous leukemia (CML) subjects. Cell Death Discov 2023; 9:401. [PMID: 37903788 PMCID: PMC10616083 DOI: 10.1038/s41420-023-01700-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 11/01/2023] Open
Abstract
Imatinib resistance remains an unresolved problem in CML disease. Activation of JAK2/STAT3 pathway and increased expression of RUNX1 have become one reason for development of imatinib resistance in CML subjects. Metformin has gained attention as an antileukemic drug in recent times. However, the molecular mechanism remains elusive. The present study shows that RUNX1 is a novel substrate of AMP-activated kinase (AMPK), where AMPK phosphorylates RUNX1 at Ser 94 position. Activation of AMPK by metformin could lead to increased cytoplasmic retention of RUNX1 due to Ser 94 phosphorylation. RUNX1 Ser 94 phosphorylation resulted in increased interaction with STAT3, which was reflected in reduced transcriptional activity of both RUNX1 and STAT3 due to their cytoplasmic retention. The reduced transcriptional activity of STAT3 and RUNX1 resulted in the down-regulation of their signaling targets involved in proliferation and anti-apoptosis. Our cell proliferation assays using in vitro resistant cell line models and PBMCs isolated from CML clinical patients and normal subjects demonstrate that metformin treatment resulted in reduced growth and improved imatinib sensitivity of resistant subjects.
Collapse
Affiliation(s)
- Meher Bolisetti Gayatri
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Rama Krishna Kancha
- Molecular Medicine and Therapeutics Laboratory, CPMB, Osmania University, Hyderabad, 500007, India
| | - Abhayananda Behera
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Dorababu Patchva
- Department of Pharmacology, Apollo Institute of Medical Sciences and Research, Jubilee Hills, Hyderabad, 500033, India
| | - Nagaraj Velugonda
- Department of Medical Oncology, Nizam's Institute of Medical Sciences, Hyderabad, 500082, India
| | - Sadasivudu Gundeti
- Department of Medical Oncology, Nizam's Institute of Medical Sciences, Hyderabad, 500082, India
| | | |
Collapse
|
10
|
Oyogoa E, Streich L, Raess PW, Braun T. Case Report: ASXL1, RUNX1, and IDH1 mutation in tyrosine kinase-independent resistant chronic myeloid leukemia progressing to chronic myelomonocytic leukemia-like accelerated phase. Front Oncol 2023; 13:1217153. [PMID: 37746298 PMCID: PMC10513384 DOI: 10.3389/fonc.2023.1217153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/15/2023] [Indexed: 09/26/2023] Open
Abstract
Although the majority of patients with chronic myeloid leukemia (CML) enjoy an excellent prognosis tyrosine kinase inhibitor (TKI) therapy, resistance remains a significant clinical problem. Resistance can arise from mutations in the kinase domain of ABL preventing drug binding, or due to ill-defined kinase-independent mechanisms. In this case report, we describe the case of a 27-year-old woman with a long-standing history of chronic phase (CP) CML who developed kinase-independent resistance with mutations in ASXL1 and RUNX1. As a consequence of uncontrolled disease, she progressed to a chronic myelomonocytic leukemia-like (CMML) accelerated phase (AP) disease with the acquisition of a mutation in IDH1. This disease progression was associated with the development of an inflammatory serositis, a phenomenon that has been described in CMML but not in AP-CML. This case presents key features of kinase-independent resistance with insight into potential mechanisms, highlights management challenges, and describes a novel systemic inflammatory response that occurred in this patient upon disease progression.
Collapse
Affiliation(s)
- Emmanuella Oyogoa
- Department of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Lukas Streich
- Department of Pathology, Oregon Health & Science University, Portland, OR, United States
| | - Philipp W. Raess
- Department of Pathology, Oregon Health & Science University, Portland, OR, United States
| | - Theodore Braun
- Division of Hematology & Medical Oncology, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
11
|
Yoshimaru R, Minami Y. Genetic Landscape of Chronic Myeloid Leukemia and a Novel Targeted Drug for Overcoming Resistance. Int J Mol Sci 2023; 24:13806. [PMID: 37762109 PMCID: PMC10530602 DOI: 10.3390/ijms241813806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) exemplify the success of molecular targeted therapy for chronic myeloid leukemia (CML). However, some patients do not respond to TKI therapy. Mutations in the kinase domain of BCR::ABL1 are the most extensively studied mechanism of TKI resistance in CML, but BCR::ABL1-independent mechanisms are involved in some cases. There are two known types of mechanisms that contribute to resistance: mutations in known cancer-related genes; and Philadelphia-associated rearrangements, a novel mechanism of genomic heterogeneity that occurs at the time of the Philadelphia chromosome formation. Most chronic-phase and accelerated-phase CML patients who were treated with the third-generation TKI for drug resistance harbored one or more cancer gene mutations. Cancer gene mutations and additional chromosomal abnormalities were found to be independently associated with progression-free survival. The novel agent asciminib specifically inhibits the ABL myristoyl pocket (STAMP) and shows better efficacy and less toxicity than other TKIs due to its high target specificity. In the future, pooled analyses of various studies should address whether additional genetic analyses could guide risk-adapted therapy and lead to a final cure for CML.
Collapse
Affiliation(s)
| | - Yosuke Minami
- Department of Hematology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa-shi 277-8577, Japan;
| |
Collapse
|
12
|
Li N, Chen M, Yin CC. Advances in molecular evaluation of myeloproliferative neoplasms. Semin Diagn Pathol 2023; 40:187-194. [PMID: 37087305 DOI: 10.1053/j.semdp.2023.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/24/2023]
Abstract
Myeloproliferative neoplasms (MPN) are a group of clonal hematopoietic stem cell disorders with uncontrolled proliferation of one or more hematopoietic cell types, including myeloid, erythroid and megakaryocytic lineages, and minimal defect in maturation. Most MPN are associated with well-defined molecular abnormalities involving genes that encode protein tyrosine kinases that lead to constitutive activation of the downstream signal transduction pathways and confer cells proliferative and survival advantage. Genome-wide sequencing analyses have discovered secondary cooperating mutations that are shared by most of the MPN subtypes as well as other myeloid neoplasms and play a major role in disease progression. Without appropriate management, the natural history of most MPN consists of an initial chronic phase and a terminal blast phase. Molecular aberrations involving protein tyrosine kinases have been used for the diagnosis, classification, detection of minimal/measurable residual disease, and target therapy. We review recent advances in molecular genetic aberrations in MPN with a focus on MPN associated with gene rearrangements or mutations involving tyrosine kinase pathways.
Collapse
Affiliation(s)
- Nianyi Li
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mingyi Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| | - C Cameron Yin
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
13
|
Krishnan V. The RUNX Family of Proteins, DNA Repair, and Cancer. Cells 2023; 12:cells12081106. [PMID: 37190015 DOI: 10.3390/cells12081106] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
The RUNX family of transcription factors, including RUNX1, RUNX2, and RUNX3, are key regulators of development and can function as either tumor suppressors or oncogenes in cancer. Emerging evidence suggests that the dysregulation of RUNX genes can promote genomic instability in both leukemia and solid cancers by impairing DNA repair mechanisms. RUNX proteins control the cellular response to DNA damage by regulating the p53, Fanconi anemia, and oxidative stress repair pathways through transcriptional or non-transcriptional mechanisms. This review highlights the importance of RUNX-dependent DNA repair regulation in human cancers.
Collapse
Affiliation(s)
- Vaidehi Krishnan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
14
|
Pierzynowska K, Gaffke L, Zaucha JM, Węgrzyn G. Transcriptomic Approaches in Studies on and Applications of Chimeric Antigen Receptor T Cells. Biomedicines 2023; 11:biomedicines11041107. [PMID: 37189725 DOI: 10.3390/biomedicines11041107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Chimeric antigen receptor T (CAR-T) cells are specifically modified T cells which bear recombinant receptors, present at the cell surface and devoted to detect selected antigens of cancer cells, and due to the presence of transmembrane and activation domains, able to eliminate the latter ones. The use of CAR-T cells in anti-cancer therapies is a relatively novel approach, providing a powerful tool in the fight against cancer and bringing new hope for patients. However, despite huge possibilities and promising results of preclinical studies and clinical efficacy, there are various drawbacks to this therapy, including toxicity, possible relapses, restrictions to specific kinds of cancers, and others. Studies desiring to overcome these problems include various modern and advanced methods. One of them is transcriptomics, a set of techniques that analyze the abundance of all RNA transcripts present in the cell at certain moment and under certain conditions. The use of this method gives a global picture of the efficiency of expression of all genes, thus revealing the physiological state and regulatory processes occurring in the investigated cells. In this review, we summarize and discuss the use of transcriptomics in studies on and applications of CAR-T cells, especially in approaches focused on improved efficacy, reduced toxicity, new target cancers (like solid tumors), monitoring the treatment efficacy, developing novel analytical methods, and others.
Collapse
Affiliation(s)
- Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Jan M. Zaucha
- Department of Hematology and Transplantology, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
15
|
Barnes EJ, Eide CA, Kaempf A, Bottomly D, Romine KA, Wilmot B, Saunders D, McWeeney SK, Tognon CE, Druker BJ. Secondary fusion proteins as a mechanism of BCR::ABL1 kinase-independent resistance in chronic myeloid leukaemia. Br J Haematol 2023; 200:323-328. [PMID: 36264026 PMCID: PMC9851972 DOI: 10.1111/bjh.18515] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/14/2022] [Accepted: 10/02/2022] [Indexed: 01/22/2023]
Abstract
Drug resistance in chronic myeloid leukaemia (CML) may occur via mutations in the causative BCR::ABL1 fusion or BCR::ABL1-independent mechanisms. We analysed 48 patients with BCR::ABL1-independent resistance for the presence of secondary fusion genes by RNA sequencing. We identified 10 of the most frequently detected secondary fusions in 21 patients. Validation studies, cell line models, gene expression analysis and drug screening revealed differences with respect to proliferation rate, differentiation and drug sensitivity. Notably, expression of RUNX1::MECOM led to resistance to ABL1 tyrosine kinase inhibitors in vitro. These results suggest secondary fusions contribute to BCR::ABL1-independent resistance and may be amenable to combined therapies.
Collapse
MESH Headings
- Humans
- Fusion Proteins, bcr-abl/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Mutation
- Cell Line
- Drug Resistance, Neoplasm/genetics
Collapse
Affiliation(s)
- Evan J Barnes
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Christopher A Eide
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Andy Kaempf
- Biostatistics Shared Resource, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Daniel Bottomly
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Kyle A Romine
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Beth Wilmot
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Dominick Saunders
- Flow Cytometry Shared Resource, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Shannon K McWeeney
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Cristina E Tognon
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Brian J Druker
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
16
|
Dutta B, Osato M. The RUNX Family, a Novel Multifaceted Guardian of the Genome. Cells 2023; 12:255. [PMID: 36672189 PMCID: PMC9856552 DOI: 10.3390/cells12020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/24/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
The DNA repair machinery exists to protect cells from daily genetic insults by orchestrating multiple intrinsic and extrinsic factors. One such factor recently identified is the Runt-related transcription factor (RUNX) family, a group of proteins that act as a master transcriptional regulator for multiple biological functions such as embryonic development, stem cell behaviors, and oncogenesis. A significant number of studies in the past decades have delineated the involvement of RUNX proteins in DNA repair. Alterations in RUNX genes cause organ failure and predisposition to cancers, as seen in patients carrying mutations in the other well-established DNA repair genes. Herein, we review the currently existing findings and provide new insights into transcriptional and non-transcriptional multifaceted regulation of DNA repair by RUNX family proteins.
Collapse
Affiliation(s)
- Bibek Dutta
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Motomi Osato
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
17
|
Rinaldi I, Winston K. Chronic Myeloid Leukemia, from Pathophysiology to Treatment-Free Remission: A Narrative Literature Review. J Blood Med 2023; 14:261-277. [PMID: 37051025 PMCID: PMC10084831 DOI: 10.2147/jbm.s382090] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 02/06/2023] [Indexed: 04/14/2023] Open
Abstract
Chronic myeloid leukemia (CML) is one of the most common leukemias occurring in the adult population. The course of CML is divided into three phases: the chronic phase, the acceleration phase, and the blast phase. Pathophysiology of CML revolves around Philadelphia chromosome that constitutively activate tyrosine kinase through BCR-ABL1 oncoprotein. In the era of tyrosine kinase inhibitors (TKIs), CML patients now have a similar life expectancy to people without CML, and it is now very rare for CML patients to progress to the blast phase. Only a small proportion of CML patients have resistance to TKI, caused by BCR-ABL1 point mutations. CML patients with TKI resistance should be treated with second or third generation TKI, depending on the BCR-ABL1 mutation. Recently, many studies have shown that it is possible for CML patients who achieve a long-term deep molecular response to stop TKIs treatment and maintain remission. This review aimed to provide an overview of CML, including its pathophysiology, clinical manifestations, the role of stem cells, CML treatments, and treatment-free remission.
Collapse
Affiliation(s)
- Ikhwan Rinaldi
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Cipto Mangunkusumo National General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Correspondence: Ikhwan Rinaldi, Division of Hematology and Medical Oncology, Department of Internal Medicine, Cipto Mangunkusumo National General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia, Email
| | - Kevin Winston
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Hospital Medicine, Bhakti Medicare Hospital, Sukabumi, Indonesia
| |
Collapse
|
18
|
Prognostic impact of ASXL1 mutations in chronic phase chronic myeloid leukemia. Blood Cancer J 2022; 12:144. [PMID: 36307398 PMCID: PMC9616867 DOI: 10.1038/s41408-022-00742-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/22/2022] Open
Abstract
While the clinical impact of mutations in the ABL1 gene on response to therapy in chronic phase chronic myeloid leukemia (CP-CML) is well established, less is known about how other mutations affect prognosis. In a retrospective analysis, we identified 115 patients with CML (71 chronic, 15 accelerated and 29 blast phase) where targeted next-generation sequencing of genes recurrently mutated in myeloid leukemias was performed. ASXL1 was the most frequently mutated gene in the chronic (14%) and accelerated phase (40%) CML patients, whereas RUNX1 (20%) was the most common mutation in blast phase. Compared with wild-type ASXL1, CP-CML with mutant ASXL1 was associated with worse event-free survival (EFS) (median of 32.8 vs 88.3 months; P = 0.002) and failure-free survival (median of 13.8 vs 57.8 months; P = 0.04). In a multivariate analysis, ASXL1 mutation was the only independent risk factor associated with worse EFS in chronic phase CML with a hazard ratio of 4.25 (95% CI 1.59–11.35, P = 0.004). In conclusion, mutations in ASXL1 are associated with worse outcomes when detected in chronic phase CML.
Collapse
|
19
|
Ghosh S, Roth J, Babushok D, Lim M. Significance of RUNX1 mutation in BCR-ABL1 positive acute myeloid leukemia – a diagnostic dilemma in a young woman with persistent bleeding. Leuk Lymphoma 2022; 63:1975-1979. [DOI: 10.1080/10428194.2022.2047673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sharmila Ghosh
- Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jacquelyn Roth
- Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Daria Babushok
- Blood and Marrow Transplantation Program, Abramson Cancer Center and the Division of Hematology and Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Megan Lim
- Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
20
|
Shanmuganathan N, Wadham C, Thomson D, Shahrin NH, Vignaud C, Obourn V, Chaturvedi S, Yang F, Feng J, Saunders V, Kok CH, Yeung D, King RM, Kenyon RR, Lin M, Wang P, Scott H, Hughes T, Schreiber AW, Branford S. RNA-Based Targeted Gene Sequencing Improves the Diagnostic Yield of Mutant Detection in Chronic Myeloid Leukemia. J Mol Diagn 2022; 24:803-822. [PMID: 35550185 DOI: 10.1016/j.jmoldx.2022.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 04/05/2022] [Accepted: 04/14/2022] [Indexed: 11/28/2022] Open
Abstract
Mutation detection is increasingly used for the management of hematological malignancies. Prior whole transcriptome and whole exome sequencing studies using total RNA and DNA identified diverse mutation types in cancer-related genes associated with treatment failure in patients with chronic myeloid leukemia. Variants included single-nucleotide variants and small insertions/deletions, plus fusion transcripts and partial or whole gene deletions. The hypothesis that all of these mutation types could be detected by a single cost-effective hybridization capture next-generation sequencing method using total RNA was assessed. A method was developed that targeted 130 genes relevant for myeloid and lymphoid leukemia. Retrospective samples with 121 precharacterized variants were tested using total RNA and/or DNA. Concordance of detection of precharacterized variants using RNA or DNA was 96%, whereas the enhanced sensitivity identified additional variants. Comparison between 24 matched DNA and RNA samples demonstrated 95.3% of 170 variants detectable using DNA were detected using RNA, including all but one variant predicted to activate nonsense-mediated decay. RNA identified an additional 10 variants, including fusion transcripts. Furthermore, the true effect of splice variants on RNA splicing was only evident using RNA. In conclusion, capture sequencing using total RNA alone is suitable for detecting a range of variants relevant in chronic myeloid leukemia and may be more broadly applied to other hematological malignancies where diverse variant types define risk groups.
Collapse
Affiliation(s)
- Naranie Shanmuganathan
- Department of Haematology, Royal Adelaide Hospital and SA Pathology, Adelaide, South Australia, Australia; Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia; Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia.
| | - Carol Wadham
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | - Daniel Thomson
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | - Nur H Shahrin
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | | | - Vanessa Obourn
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | | | - Feng Yang
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Jinghua Feng
- Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | - Verity Saunders
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Chung H Kok
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - David Yeung
- Department of Haematology, Royal Adelaide Hospital and SA Pathology, Adelaide, South Australia, Australia; Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Rob M King
- Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | - Rosalie R Kenyon
- Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | - Ming Lin
- Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | - Paul Wang
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia; Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | - Hamish Scott
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia; Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia; Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | - Timothy Hughes
- Department of Haematology, Royal Adelaide Hospital and SA Pathology, Adelaide, South Australia, Australia; Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Andreas W Schreiber
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia; Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia; School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Susan Branford
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia; Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
21
|
Hayashi Y, Harada Y, Harada H. Myeloid neoplasms and clonal hematopoiesis from the RUNX1 perspective. Leukemia 2022; 36:1203-1214. [PMID: 35354921 DOI: 10.1038/s41375-022-01548-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/03/2022] [Accepted: 03/11/2022] [Indexed: 12/17/2022]
Abstract
RUNX1 is a critical transcription factor for the emergence of definitive hematopoiesis and the precise regulation of adult hematopoiesis. Dysregulation of its regulatory network causes aberrant hematopoiesis. Recurrent genetic alterations in RUNX1, including chromosomal translocations and mutations, have been identified in both inherited and sporadic diseases. Recent genomic studies have revealed a vast mutational landscape surrounding genetic alterations in RUNX1. Accumulating pieces of evidence also indicate the leukemogenic role of wild-type RUNX1 in certain situations. Based on these efforts, part of the molecular mechanisms of disease development as a consequence of dysregulated RUNX1-regulatory networks have become increasingly evident. This review highlights the recent advances in the field of RUNX1 research and discusses the critical roles of RUNX1 in hematopoiesis and the pathobiological function of its alterations in the context of disease, particularly myeloid neoplasms, and clonal hematopoiesis.
Collapse
Affiliation(s)
- Yoshihiro Hayashi
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yuka Harada
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.,Department of Clinical Laboratory, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Hironori Harada
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.
| |
Collapse
|
22
|
Lin TC. RUNX1 and cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188715. [DOI: 10.1016/j.bbcan.2022.188715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
|
23
|
Lee KL, Ko TK, Saw NYL, Javed A, Hillmer AM, Chuah C, Krishnan V, Ong ST. Validation and refinement of a RUNX1 mutation-associated gene expression signature in blast crisis chronic myeloid leukemia. Leukemia 2022; 36:892-896. [PMID: 35121847 PMCID: PMC8885404 DOI: 10.1038/s41375-022-01508-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/20/2021] [Accepted: 01/07/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Kian Leong Lee
- Cancer & Stem Cell Biology Signature Research Programme, Duke-NUS Medical School, Singapore, Singapore.
| | - Tun Kiat Ko
- Cancer & Stem Cell Biology Signature Research Programme, Duke-NUS Medical School, Singapore, Singapore.,Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore, Singapore
| | - Nicole Y L Saw
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Asif Javed
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.,Cancer Therapeutics & Stratified Oncology, Genome Institute of Singapore, Singapore, Singapore
| | - Axel M Hillmer
- Cancer Therapeutics & Stratified Oncology, Genome Institute of Singapore, Singapore, Singapore.,Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Charles Chuah
- Cancer & Stem Cell Biology Signature Research Programme, Duke-NUS Medical School, Singapore, Singapore.,Department of Haematology, Singapore General Hospital, Singapore, Singapore
| | - Vaidehi Krishnan
- Cancer & Stem Cell Biology Signature Research Programme, Duke-NUS Medical School, Singapore, Singapore
| | - S Tiong Ong
- Cancer & Stem Cell Biology Signature Research Programme, Duke-NUS Medical School, Singapore, Singapore. .,Department of Haematology, Singapore General Hospital, Singapore, Singapore. .,Department of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore. .,Department of Medicine, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
24
|
Solayappan M, Azlan A, Khor KZ, Yik MY, Khan M, Yusoff NM, Moses EJ. Utilization of CRISPR-Mediated Tools for Studying Functional Genomics in Hematological Malignancies: An Overview on the Current Perspectives, Challenges, and Clinical Implications. Front Genet 2022; 12:767298. [PMID: 35154242 PMCID: PMC8834884 DOI: 10.3389/fgene.2021.767298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/17/2021] [Indexed: 11/26/2022] Open
Abstract
Hematological malignancies (HM) are a group of neoplastic diseases that are usually heterogenous in nature due to the complex underlying genetic aberrations in which collaborating mutations enable cells to evade checkpoints that normally safeguard it against DNA damage and other disruptions of healthy cell growth. Research regarding chromosomal structural rearrangements and alterations, gene mutations, and functionality are currently being carried out to understand the genomics of these abnormalities. It is also becoming more evident that cross talk between the functional changes in transcription and proteins gives the characteristics of the disease although specific mutations may induce unique phenotypes. Functional genomics is vital in this aspect as it measures the complete genetic change in cancerous cells and seeks to integrate the dynamic changes in these networks to elucidate various cancer phenotypes. The advent of CRISPR technology has indeed provided a superfluity of benefits to mankind, as this versatile technology enables DNA editing in the genome. The CRISPR-Cas9 system is a precise genome editing tool, and it has revolutionized methodologies in the field of hematology. Currently, there are various CRISPR systems that are used to perform robust site-specific gene editing to study HM. Furthermore, experimental approaches that are based on CRISPR technology have created promising tools for developing effective hematological therapeutics. Therefore, this review will focus on diverse applications of CRISPR-based gene-editing tools in HM and its potential future trajectory. Collectively, this review will demonstrate the key roles of different CRISPR systems that are being used in HM, and the literature will be a representation of a critical step toward further understanding the biology of HM and the development of potential therapeutic approaches.
Collapse
Affiliation(s)
- Maheswaran Solayappan
- Regenerative Medicine Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Malaysia
| | - Adam Azlan
- Regenerative Medicine Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Kang Zi Khor
- Regenerative Medicine Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Mot Yee Yik
- Regenerative Medicine Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Matiullah Khan
- Department of Pathology, Faculty of Medicine, AIMST University, Bedong, Malaysia
| | - Narazah Mohd Yusoff
- Regenerative Medicine Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Emmanuel Jairaj Moses
- Regenerative Medicine Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
25
|
Fernandes A, Shanmuganathan N, Branford S. Genomic Mechanisms Influencing Outcome in Chronic Myeloid Leukemia. Cancers (Basel) 2022; 14:620. [PMID: 35158889 PMCID: PMC8833554 DOI: 10.3390/cancers14030620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic myeloid leukemia (CML) represents the disease prototype of genetically based diagnosis and management. Tyrosine kinase inhibitors (TKIs), that target the causal BCR::ABL1 fusion protein, exemplify the success of molecularly based therapy. Most patients now have long-term survival; however, TKI resistance is a persistent clinical problem. TKIs are effective in the BCR::ABL1-driven chronic phase of CML but are relatively ineffective for clinically defined advanced phases. Genomic investigation of drug resistance using next-generation sequencing for CML has lagged behind other hematological malignancies. However, emerging data show that genomic abnormalities are likely associated with suboptimal response and drug resistance. This has already been supported by the presence of BCR::ABL1 kinase domain mutations in drug resistance, which led to the development of more potent TKIs. Next-generation sequencing studies are revealing additional mutations associated with resistance. In this review, we discuss the initiating chromosomal translocation that may not always be a straightforward reciprocal event between chromosomes 9 and 22 but can sometimes be accompanied by sequence deletion, inversion, and rearrangement. These events may biologically reflect a more genomically unstable disease prone to acquire mutations. We also discuss the future role of cancer-related gene mutation analysis for risk stratification in CML.
Collapse
Affiliation(s)
- Adelina Fernandes
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide 5000, Australia; (A.F.); (N.S.)
- School of Medicine, University of Adelaide, Adelaide 5000, Australia
- Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide 5000, Australia
| | - Naranie Shanmuganathan
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide 5000, Australia; (A.F.); (N.S.)
- School of Medicine, University of Adelaide, Adelaide 5000, Australia
- Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide 5000, Australia
- Department of Haematology, Royal Adelaide Hospital and SA Pathology, Adelaide 5000, Australia
- School of Pharmacy and Medical Science, University of South Australia, Adelaide 5000, Australia
| | - Susan Branford
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide 5000, Australia; (A.F.); (N.S.)
- School of Medicine, University of Adelaide, Adelaide 5000, Australia
- Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide 5000, Australia
- School of Pharmacy and Medical Science, University of South Australia, Adelaide 5000, Australia
| |
Collapse
|
26
|
Hayakawa A, Sano R, Takahashi Y, Okawa T, Kubo R, Harada M, Fukuda H, Yokohama A, Handa H, Kawabata-Iwakawa R, Tsuneyama H, Tsukada J, Kominato Y. Reduction of blood group A antigen on erythrocytes in a patient with myelodysplastic syndrome harboring somatic mutations in RUNX1 and GATA2. Transfusion 2021; 62:469-480. [PMID: 34918362 DOI: 10.1111/trf.16766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/30/2021] [Accepted: 11/18/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Reduction of blood group ABO antigens on red blood cells (RBCs) is well known in patients with leukemias, and this reduction of ABO expression is strongly associated with DNA methylation of the ABO promoter. Previously, we reported a two-nucleotide deletion in RUNX1 encoding an abnormally elongated protein lacking the trans-activation domain in a patient with myelodysplastic syndrome (MDS) showing A-antigen loss on RBCs. This prompted us to investigate the underlying mechanism responsible for A-antigen reduction on RBCs in another patient with MDS. STUDY DESIGN AND METHODS Screening of somatic mutations was carried out using a targeted sequencing panel with genomic DNA from peripheral blood mononuclear cells from the patient and eleven MDS controls without A- or B-antigen loss. DNA methylation of the ABO promoter was examined by bisulfite genomic sequencing. Transient transfection assays were performed for functional evaluation of mutations. RESULTS Screening of somatic mutations showed missense mutations in RUNX1 and GATA2 in the patient, while no mutation was found in exons of those genes in the controls. There was no significant difference in ABO promoter methylation between the patient and the controls. Transient transfection experiments into COS-7 and K562 cells suggested that the amino acid substitutions encoded by those mutations reduced or lost the trans-activation potential of the ABO expression. CONCLUSION Considering the discrepancy between the variant frequencies of these mutations and the ratios of the RBCs with A-antigens loss, the antigen reduction might be associated with these somatic mutations and hypermethylation of the ABO promoter.
Collapse
Affiliation(s)
- Akira Hayakawa
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan.,Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Rie Sano
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoichiro Takahashi
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takafumi Okawa
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Rieko Kubo
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Megumi Harada
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Haruki Fukuda
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akihiko Yokohama
- Blood Transfusion Service, Gunma University Hospital, Maebashi, Japan
| | - Hiroshi Handa
- Department of Hematology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi, Japan
| | - Hatsue Tsuneyama
- Kanto-Koshinetsu Block Blood Center, Japanese Red Cross Society, Tokyo, Japan
| | - Junichi Tsukada
- Department of Hematology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yoshihiko Kominato
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
27
|
Krishnan V, Kim DDH, Hughes TP, Branford S, Ong ST. Integrating genetic and epigenetic factors in chronic myeloid leukemia risk assessment: toward gene expression-based biomarkers. Haematologica 2021; 107:358-370. [PMID: 34615339 PMCID: PMC8804571 DOI: 10.3324/haematol.2021.279317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Indexed: 11/17/2022] Open
Abstract
Cancer treatment is constantly evolving from a one-size-fits-all towards bespoke approaches for each patient. In certain solid cancers, including breast and lung, tumor genome profiling has been incorporated into therapeutic decision-making. For chronic phase chronic myeloid leukemia (CML), while tyrosine kinase inhibitor therapy is the standard treatment, current clinical scoring systems cannot accurately predict the heterogeneous treatment outcomes observed in patients. Biomarkers capable of segregating patients according to outcome at diagnosis are needed to improve management, and facilitate enrollment in clinical trials seeking to prevent blast crisis transformation and improve the depth of molecular responses. To this end, gene expression (GE) profiling studies have evaluated whether GE signatures at diagnosis are clinically informative. Patient material from a variety of sources has been profiled using microarrays, RNA sequencing and, more recently, single-cell RNA sequencing. However, differences in the cell types profiled, the technologies used, and the inherent complexities associated with the interpretation of genomic data pose challenges in distilling GE datasets into biomarkers with clinical utility. The goal of this paper is to review previous studies evaluating GE profiling in CML, and explore their potential as risk assessment tools for individualized CML treatment. We also review the contribution that acquired mutations, including those seen in clonal hematopoiesis, make to GE profiles, and how a model integrating contributions of genetic and epigenetic factors in resistance to tyrosine kinase inhibitors and blast crisis transformation can define a route to GE-based biomarkers. Finally, we outline a four-stage approach for the development of GE-based biomarkers in CML.
Collapse
Affiliation(s)
- Vaidehi Krishnan
- Cancer and Stem Cell Biology Signature Research Program, Duke-NUS Medical School, Singapore, Singapore; International Chronic Myeloid Leukemia Foundation
| | - Dennis Dong Hwan Kim
- International Chronic Myeloid Leukemia Foundation; Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto
| | - Timothy P Hughes
- International Chronic Myeloid Leukemia Foundation; School of Medicine, University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia; Department of Haematology, Royal Adelaide Hospital, Adelaide
| | - Susan Branford
- International Chronic Myeloid Leukemia Foundation; School of Medicine, University of Adelaide, Adelaide, Australia; Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, Australia; School of Pharmacy and Medical Science, University of South Australia, Adelaide
| | - S Tiong Ong
- Cancer and Stem Cell Biology Signature Research Program, Duke-NUS Medical School, Singapore, Singapore; International Chronic Myeloid Leukemia Foundation; Department of Haematology, Singapore General Hospital, Singapore, Singapore; Department of Medical Oncology, National Cancer Centre Singapore; Department of Medicine, Duke University Medical Center, Durham, NC.
| |
Collapse
|
28
|
The Plasmacytoid Dendritic Cell CD123+ Compartment in Acute Leukemia with or without RUNX1 Mutation: High Inter-Patient Variability Disclosed by Immunophenotypic Unsupervised Analysis and Clustering. HEMATO 2021. [DOI: 10.3390/hemato2030036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Plasmacytoid dendritic cells (PDC) constitute a small subset of normal bone marrow (BM) cells but have also been shown to be present, sometimes in large numbers, in several hematological malignancies such as acute myeloid leukemia with RUNX1 mutation, chronic myelomonocytic leukemia or, obviously, blastic plasmacytoid dendritic cell neoplasms. These cells have been reported to display somewhat variable immunophenotypic features in different conditions. However, little is known of their plasticity within individual patients. Using an unsupervised clustering tool (FlowSOM) to re-visit flow cytometry results of seven previously analyzed cases of hematological malignancies (6 acute myeloid leukemia and one chronic myelomonocytic leukemia) with a PDC contingent, we report here on the unexpectedly high variability of PDC subsets. Although five of the studied patients harbored a RUNX1 mutation, no consistent feature of PDCs could be disclosed as associated with this variant. Moreover, the one normal single-node small subset of PDC detected in the merged file of six normal BM could be retrieved in the remission BM samples of three successfully treated patients. This study highlights the capacity of unsupervised flow cytometry analysis to delineate cell subsets not detectable with classical supervised tools.
Collapse
|
29
|
Wang L, Li L, Chen R, Huang X, Ye X. Understanding and Monitoring Chronic Myeloid Leukemia Blast Crisis: How to Better Manage Patients. Cancer Manag Res 2021; 13:4987-5000. [PMID: 34188552 PMCID: PMC8236273 DOI: 10.2147/cmar.s314343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/13/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic myeloid leukemia (CML) is triggered primarily by the t(9;22) (q34.13; q11.23) translocation. This reciprocal chromosomal translocation leads to the formation of the BCR-ABL fusion gene. Patients in the chronic phase (CP) experience a good curative effect with tyrosine kinase inhibitors. However, cases are treatment refractory, with a dismal prognosis, when the disease has progressed to the accelerated phase (AP) or blast phase (BP). Until now, few reports have provided a comprehensive description of the mechanisms involved at different molecular levels. Indeed, the underlying pathogenesis of CML evolution comprises genetic aberrations, chromosomal translocations (except for the Philadelphia chromosome), telomere biology, and epigenetic anomalies. Herein, we provide knowledge of the biology responsible for blast transformation of CML at several levels, such as genetics, telomere biology, and epigenetic anomalies. Because of the limited treatment options available and poor outcomes, only the therapeutic response is monitored regularly, which involves BCR-ABL transcript level assessment and immunologic surveillance, with the optimal treatment strategy for patients in CP adapted to evaluate disease recurrence or progression. Overall, selecting optimal treatment endpoints to predict survival and successful TFR improves the quality of life of patients. Thus, identifying risk factors and developing risk-adapted therapeutic options may contribute to a better outcome for advanced-phase patients.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Program in Clinical Medicine, School of Medicine of Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Li Li
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Rongrong Chen
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Program in Clinical Medicine, School of Medicine of Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Xianbo Huang
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiujin Ye
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
30
|
STAT3 activation in large granular lymphocyte leukemia is associated with cytokine signaling and DNA hypermethylation. Leukemia 2021; 35:3430-3443. [PMID: 34075200 PMCID: PMC8632689 DOI: 10.1038/s41375-021-01296-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022]
Abstract
Large granular lymphocyte leukemia (LGLL) is characterized by somatic gain-of-function STAT3 mutations. However, the functional effects of STAT3 mutations on primary LGLL cells have not been studied in detail. In this study, we show that CD8+ T cells isolated from STAT3 mutated LGLL patients have high protein levels of epigenetic regulators, such as DNMT1, and are characterized by global hypermethylation. Correspondingly, treatment of healthy CD8+ T cells with IL-6, IL-15, and/or MCP-1 cytokines resulted in STAT3 activation, increased DNMT1, EZH2, c-MYC, l-MYC, MAX, and NFκB levels, increased DNA methylation, and increased oxidative stress. Similar results were discovered in KAI3 NK cells overexpressing gain-of-function STAT3Y640F and STAT3G618R mutants compared to KAI3 NK cells overexpressing STAT3WT. Our results also confirm that STAT3 forms a direct complex with DNMT1, EZH2, and HDAC1. In STAT3 mutated LGLL cells, DNA methyltransferase (DNMT) inhibitor azacitidine abrogated the activation of STAT3 via restored SHP1 expression. In conclusion, STAT3 mutations cause DNA hypermethylation resulting in sensitivity to DNMT inhibitors, which could be considered as a novel treatment option for LGLL patients with resistance to standard treatments.
Collapse
|
31
|
Adnan-Awad S, Kankainen M, Mustjoki S. Mutational landscape of chronic myeloid leukemia: more than a single oncogene leukemia. Leuk Lymphoma 2021; 62:2064-2078. [PMID: 33944660 DOI: 10.1080/10428194.2021.1894652] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The BCR-ABL1 fusion gene, which causes aberrant kinase activity and uncontrolled cell proliferation, is the hallmark of chronic myeloid leukemia (CML). The development of tyrosine kinase inhibitors (TKI) that target the BCR-ABL oncoprotein has led to dramatic improvement in CML management. However, some challenges remain to be addressed in the TKI era, including patient stratification and the selection of frontline TKIs and CML progression. Additionally, with the emerging goal of treatment-free remission (TFR) in CML management, biomarkers that predict the outcomes of stopping TKI remain to be identified. Notably, recent reports have revealed the power of genome screening in understanding the role of genome aberrations other than BCR-ABL1 in CML pathogenesis. These studies have discovered the presence of disease-phase specific mutations and linked certain mutations to inferior responses to TKI treatment and CML progression. A personalized approach that incorporates genetic data in tailoring treatment strategies has been successfully implemented in acute leukemia, and it represents a promising approach for the management of high-risk CML patients. In this article, we will review current knowledge about the mutational profile in different phases of CML as well as patterns of mutational dynamics in patients having different outcomes. We highlight the effects of somatic mutations involving certain genes (e.g. epigenetic modifiers) on the outcomes of TKI treatment. We also discuss the potential value of incorporating genetic data in treatment decisions and the routine care of CML patients as a future direction for optimizing CML management.
Collapse
Affiliation(s)
- Shady Adnan-Awad
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Matti Kankainen
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland.,iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland.,iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| |
Collapse
|
32
|
Récher C. Clinical Implications of Inflammation in Acute Myeloid Leukemia. Front Oncol 2021; 11:623952. [PMID: 33692956 PMCID: PMC7937902 DOI: 10.3389/fonc.2021.623952] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Recent advances in the description of the tumor microenvironment of acute myeloid leukemia, including the comprehensive analysis of the leukemic stem cell niche and clonal evolution, indicate that inflammation may play a major role in many aspects of acute myeloid leukemia (AML) such as disease progression, chemoresistance, and myelosuppression. Studies on the mechanisms of resistance to chemotherapy or tyrosine kinase inhibitors along with high-throughput drug screening have underpinned the potential role of glucocorticoids in this disease classically described as steroid-resistant in contrast to acute lymphoblastic leukemia. Moreover, some mutated oncogenes such as RUNX1, NPM1, or SRSF2 transcriptionally modulate cell state in a manner that primes leukemic cells for glucocorticoid sensitivity. In clinical practice, inflammatory markers such as serum ferritin or IL-6 have a strong prognostic impact and may directly affect disease progression, whereas interesting preliminary data suggested that dexamethasone may improve the outcome for AML patients with a high white blood cell count, which paves the way to develop prospective clinical trials that evaluate the role of glucocorticoids in AML.
Collapse
Affiliation(s)
- Christian Récher
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| |
Collapse
|
33
|
Improving outcomes in chronic myeloid leukemia through harnessing the immunological landscape. Leukemia 2021; 35:1229-1242. [PMID: 33833387 PMCID: PMC8102187 DOI: 10.1038/s41375-021-01238-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/01/2021] [Accepted: 03/22/2021] [Indexed: 02/02/2023]
Abstract
The quest for treatment-free remission (TFR) and deep molecular response (DMR) in chronic myeloid leukemia (CML) has been profoundly impacted by tyrosine kinase inhibitors (TKIs). Immunologic surveillance of residual leukemic cells is hypothesized to be one of the critical factors in successful TFR, with self-renewing leukemic stem cells implicated in relapse. Immunological characterization in CML may help to develop novel immunotherapies that specifically target residual leukemic cells upon TKI discontinuation to improve TFR rates. This review focuses on immune dysfunction in newly diagnosed CML patients, and the role that TKIs and other therapies have in restoring immune surveillance. Immune dysfunction and immunosurveillance in CML points towards several emerging areas in the key goals of DMR and TFR, including: (1) Aspects of innate immune system, in particular natural killer cells and the newly emerging target plasmacytoid dendritic cells. (2) The adaptive immune system, with promise shown in regard to leukemia-associated antigen vaccine-induced CD8 cytotoxic T-cells (CTL) responses, increased CTL expansion, and immune checkpoint inhibitors. (3) Immune suppressive myeloid-derived suppressor cells and T regulatory cells that are reduced in DMR and TFR. (4) Immunomodulator mesenchymal stromal cells that critically contribute to leukomogenesis through immunosuppressive properties and TKI- resistance. Therapeutic strategies that leverage existing immunological approaches include donor lymphocyte infusions, that continue to be used, often in combination with TKIs, in patients relapsing following allogeneic stem cell transplant. Furthermore, previous standards-of-care, including interferon-α, hold promise in attaining TFR in the post-TKI era. A deeper understanding of the immunological landscape in CML is therefore vital for both the development of novel and the repurposing of older therapies to improve TFR outcomes.
Collapse
|
34
|
Characterization of p190-Bcr-Abl chronic myeloid leukemia reveals specific signaling pathways and therapeutic targets. Leukemia 2020; 35:1964-1975. [PMID: 33168949 PMCID: PMC8257498 DOI: 10.1038/s41375-020-01082-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/30/2020] [Accepted: 10/25/2020] [Indexed: 02/06/2023]
Abstract
The oncogenic protein Bcr-Abl has two major isoforms, p190Bcr-Abl and p210Bcr-Abl. While p210Bcr-Abl is the hallmark of chronic myeloid leukemia (CML), p190Bcr-Abl occurs in the majority of Philadelphia-positive acute lymphoblastic leukemia (Ph + ALL) patients. In CML, p190Bcr-Abl occurs in a minority of patients associating with distinct hematological features and inferior outcomes, yet the pathogenic role of p190Bcr-Abl and potential targeting therapies are largely uncharacterized. We employed next generation sequencing, phospho-proteomic profiling, and drug sensitivity testing to characterize p190Bcr-Abl in CML and hematopoietic progenitor cell line models (Ba/f3 and HPC-LSK). p190Bcr-Abl CML patients demonstrated poor response to imatinib and frequent mutations in epigenetic modifiers genes. In contrast with p210Bcr-Abl, p190Bcr-Abl exhibited specific transcriptional upregulation of interferon, interleukin-1 receptor, and P53 signaling pathways, associated with hyperphosphorylation of relevant signaling molecules including JAK1/STAT1 and PAK1 in addition to Src hyperphosphorylation. Comparable to p190Bcr-Abl CML patients, p190Bcr-Abl cell lines demonstrated similar transcriptional and phospho-signaling signatures. With the drug sensitivity screening we identified targeted drugs with specific activity in p190Bcr-Abl cell lines including IAP-, PAK1-, and Src inhibitors and glucocorticoids. Our results provide novel insights into the mechanisms underlying the distinct features of p190Bcr-Abl CML and promising therapeutic targets for this high-risk patient group.
Collapse
|