1
|
Archer KJ, Fu H, Mrózek K, Nicolet D, Mims AS, Uy GL, Stock W, Byrd JC, Hiddemann W, Metzeler KH, Rausch C, Krug U, Sauerland C, Görlich D, Berdel WE, Woermann BJ, Braess J, Spiekermann K, Herold T, Eisfeld AK. Improving risk stratification for 2022 European LeukemiaNet favorable-risk patients with acute myeloid leukemia. Innovation (N Y) 2024; 5:100719. [PMID: 39529956 PMCID: PMC11551470 DOI: 10.1016/j.xinn.2024.100719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Assignment of patients diagnosed with acute myeloid leukemia (AML) to the 2022 European LeukemiaNet (ELN) favorable genetic risk group has important clinical implications, as allogeneic stem cell transplantation in first complete remission (CR) is not advised due to a relatively good outcome of patients receiving chemotherapy alone and transplant-associated mortality. However, not all favorable genetic risk patients experience long-term relapse-free survival (RFS), making recognition of patients who would most likely be cured of high importance. We analyzed 297 patients aged <60 years with de novo AML classified as 2022 ELN favorable genetic risk who achieved a CR and had RNA sequencing (RNA-seq) and gene mutation data from diagnostic samples available (Alliance trial A152010). To identify prognostically relevant transcripts that can distinguish patients cured from patients susceptible to lower or higher risk of relapse or death, we fit a regularized mixture cure model (MCM) where RNA-seq expression values were our candidate covariates. To validate the identified transcripts, we analyzed 75 patients with de novo AML aged <60 years included in the 2022 ELN favorable genetic risk group who achieved a CR in an independent test set from Gene Expression Omnibus (GSE37642). Our MCM identified 145 transcripts associated with cure or long-term RFS and 149 transcripts associated with latency or shorter-term time to relapse. The area under the curve and C-statistic were, respectively, 0.946 and 0.856 for our training set and 0.877 and 0.857 for our test set. Our results suggest that the favorable risk group includes distinct transcriptionally defined subgroups with different biological properties, which may be useful for refining this genetic risk category.
Collapse
Affiliation(s)
- Kellie J. Archer
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Han Fu
- Google, Inc., Mountain View, CA, USA
| | - Krzysztof Mrózek
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Deedra Nicolet
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Alliance Statistics and Data Management Center, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Alice S. Mims
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Geoffrey L. Uy
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Wendy Stock
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL, USA
| | - John C. Byrd
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Wolfgang Hiddemann
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Klaus H. Metzeler
- Department of Oncology and Hematology, Hospital Barmherzige Brüder, Regensburg, Germany
| | - Christian Rausch
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Utz Krug
- Department of Medicine 3, Klinikum Leverkusen, Leverkusen, Germany
| | - Cristina Sauerland
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | - Dennis Görlich
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | | | | | - Jan Braess
- Department of Oncology and Hematology, Hospital Barmherzige Brüder, Regensburg, Germany
| | - Karsten Spiekermann
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Tobias Herold
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Ann-Kathrin Eisfeld
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| |
Collapse
|
2
|
Tao Q, Wu Q, Xue Y, Chen C, Zhou Y, Shao R, Zhang H, Liu H, Zeng X, Zhou L, Liu Q, Jin H. Prognostic impact of IL7R mutations on acute myeloid leukemia. Ther Adv Hematol 2024; 15:20406207241279533. [PMID: 39346679 PMCID: PMC11439168 DOI: 10.1177/20406207241279533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/24/2024] [Indexed: 10/01/2024] Open
Abstract
Background Interleukin-7 receptor (IL7R) mutation has been demonstrated to be an adverse prognostic factor in acute lymphoblastic leukemia (ALL) patients. However, the effects of the IL7R mutation on acute myeloid leukemia (AML) have rarely been reported. Here, we investigated IL7R mutations and their effects on AML patients. Methods A total of 346 newly diagnosed AML patients from January 2017 to July 2020 at Nanfang Hospital were analyzed in this study. A genomic panel of 167 gene targets was detected by next-generation sequencing. Results Among 346 patients, 33 (9.5%) AML patients carried IL7R mutations. With a median follow-up of 50.7 months (95% confidence interval (CI) 17.3-62.2), the 5-year overall survival (OS) rates were 51.5% (95% CI 37.0%-71.0%) and 72.2% (95% CI 67.4%-77.3%; p = 0.008), the 5-year event-free survival (EFS) rates were 36.1% (95% CI 23.2%-57.1%) and 58.1% (95% CI 52.9%-63.8%; p = 0.005), the 5-year non-relapse mortality (NRM) were 21.4% (95% CI 8.5%-38.2%) and 6.2% (95% CI 3.7%-9.5%; p = 0.004) in the IL7R mutant (IL7R MUT ) group and non-IL7R mutant (IL7R WT ) group, respectively. There is no significant difference in the disease-free survival (75.1% vs 73.5%, p = 0.885) and cumulative incidence of relapse (25.7% vs 25.2%, p = 0.933) between IL7R MUT and IL7R WT group. Furthermore, patients who underwent hematopoietic stem cell transplantation (HSCT) still had more adverse outcomes in the IL7R MUT group than in the IL7R WT group (5-year OS: 61.9% vs 85.3%, p = 0.003). In the TET2 (p = 0.013) and DNA methyltransferase 3A (DNMT3A; p = 0.046) mutation subgroups, the presence of IL7R mutations was associated with worse OS than in AML patients without IL7R mutations. Conclusion Our study demonstrated that the IL7R mutation is associated with an inferior prognosis for AML patients. Patients with IL7R mutations have higher NRM, shorter OS, and EFS than patients without IL7R mutations, even patients who have undergone HSCT. Future larger and multicentric prospective studies will be explored.
Collapse
Affiliation(s)
- Qiqi Tao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Hematology, The Sixth Affiliated Hospital, school of Medicine, South China University of Technology, Foshan, China
| | - Qiaoyuan Wu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Yutong Xue
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Changkun Chen
- Department of Hematology, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, China
- Department of Hematology, Ganzhou People’s Hospital, Ganzhou, Jiangxi, China
| | - Ya Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Ruoyang Shao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Haiyan Zhang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | | | - Xiangzong Zeng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Hematology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China
| | - Lingling Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Hua Jin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Hematology, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| |
Collapse
|
3
|
Wu Q, Zhang Y, Yuan B, Huang Y, Jiang L, Liu F, Yan P, Cheng J, Long Z, Jiang X. Influence of genetic co-mutation on chemotherapeutic outcome in NPM1-mutated and FLT3-ITD wild-type AML patients. Cancer Med 2024; 13:e70102. [PMID: 39126219 PMCID: PMC11316012 DOI: 10.1002/cam4.70102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/27/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Nucleophosmin 1 (NPM1) gene-mutated acute myeloid leukemia (NPM1mut AML) is classified as a subtype with a favorable prognosis. However, some patients fail to achieve a complete remission or relapse after intensified chemotherapy. Genetic abnormalities in concomitant mutations contribute to heterogeneous prognosis of NPM1mut AML patients. METHODS In this study, 91 NPM1-mutated and FLT3-ITD wild-type (NPM1mut/FLT3-ITDwt) AML patients with intermediate-risk karyotype were enrolled to analyze the impact of common genetic co-mutations on chemotherapeutic outcome. RESULTS Our data revealed that TET1/2 (52/91, 57.1%) was the most prevalent co-mutation in NPM1mut AML patients, followed by IDH1/2 (36/91, 39.6%), DNMT3A (35/91, 38.5%), myelodysplastic syndrome related genes (MDS-related genes) (ASXL1, BCOR, EZH2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1 and ZRSR2 genes) (35/91, 38.5%), FLT3-TKD (27/91, 29.7%) and GATA2 (13/91, 14.3%) mutations. Patients with TET1/2mut exhibited significantly worse relapse-free survival (RFS) (median, 28.7 vs. not reached (NR) months; p = 0.0382) compared to patients with TET1/2wt, while no significant difference was observed in overall survival (OS) (median, NR vs. NR; p = 0.3035). GATA2mut subtype was associated with inferior OS (median, 28 vs. NR months; p < 0.0010) and RFS (median, 24 vs. NR months; p = 0.0224) compared to GATA2wt. By multivariate analysis, GATA2mut and MDS-related genesmut were independently associated with worse survival. CONCLUSION Mutations in TET1/2, GATA2 and MDS-related genes were found to significantly influence the chemotherapeutic outcome of patients with NPM1mut AML. The findings of our study have significant clinical implications for identifying patients who have an adverse response to frontline chemotherapy and provide a novel reference for further prognostic stratification of NPM1mut/FLT3-ITDwt AML patients.
Collapse
Affiliation(s)
- Quan Wu
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yujiao Zhang
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Baoyi Yuan
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yun Huang
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Ling Jiang
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Fang Liu
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Ping Yan
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Jiaying Cheng
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Zhiquan Long
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xuejie Jiang
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
4
|
Yao Y, Zhou Y, Zhuo N, Xie W, Meng H, Lou Y, Mao L, Tong H, Qian J, Yang M, Yu W, Zhou D, Jin J, Wang H. Co-mutation landscape and its prognostic impact on newly diagnosed adult patients with NPM1-mutated de novo acute myeloid leukemia. Blood Cancer J 2024; 14:118. [PMID: 39039048 PMCID: PMC11263537 DOI: 10.1038/s41408-024-01103-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024] Open
Affiliation(s)
- Yiyi Yao
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China
| | - Yile Zhou
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China
| | - Nanfang Zhuo
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China
| | - Wanzhuo Xie
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China
| | - Haitao Meng
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China
| | - Yinjun Lou
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China
| | - Liping Mao
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China
- Zhejiang Provincial Clinical Research Center for Hematological disorders, Hangzhou, 310000, Zhejiang, PR China
- Zhejiang University Cancer Center, Hangzhou, 310000, Zhejiang, PR China
| | - Jiejing Qian
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China
| | - Min Yang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China
| | - Wenjuan Yu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China
| | - De Zhou
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China
- Zhejiang Provincial Clinical Research Center for Hematological disorders, Hangzhou, 310000, Zhejiang, PR China
- Zhejiang University Cancer Center, Hangzhou, 310000, Zhejiang, PR China
| | - Huafeng Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China.
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China.
- Zhejiang Provincial Clinical Research Center for Hematological disorders, Hangzhou, 310000, Zhejiang, PR China.
- Zhejiang University Cancer Center, Hangzhou, 310000, Zhejiang, PR China.
| |
Collapse
|
5
|
Tan Y, Xin L, Wang Q, Xu R, Tong X, Chen G, Ma L, Yang F, Jiang H, Zhang N, Wu J, Li X, Guo X, Wang C, Zhou H, Zhou F. FLT3-selective PROTAC: Enhanced safety and increased synergy with Venetoclax in FLT3-ITD mutated acute myeloid leukemia. Cancer Lett 2024; 592:216933. [PMID: 38705564 DOI: 10.1016/j.canlet.2024.216933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
Acute myeloid leukemia (AML) patients carrying Fms-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) mutations often face a poor prognosis. While some FLT3 inhibitors have been used clinically, challenges such as short efficacy and poor specificity persist. Proteolytic targeting chimera (PROTAC), with its lower ligand affinity requirement for target proteins, offers higher and rapid targeting capability. Gilteritinib, used as the ligand for the target protein, was connected with different E3 ligase ligands to synthesize several series of PROTAC targeting FLT3-ITD. Through screening and structural optimization, the optimal lead compound PROTAC Z29 showed better specificity than Gilteritinib. Z29 induced FLT3 degradation through the proteasome pathway and inhibited tumor growth in subcutaneous xenograft mice. We verified Z29's minimal impact on platelets in a patient-derived xenografts (PDX) model compared to Gilteritinib. The combination of Z29 and Venetoclax showed better anti-tumor effects, lower platelet toxicity, and lower hepatic toxicity in FLT3-ITD+ models. The FLT3-selective PROTAC can mitigate the platelet toxicity of small molecule inhibitors, ensuring safety and efficacy in monotherapy and combination therapy with Venetoclax. It is a promising strategy for FLT3-ITD+ patients, especially those with platelet deficiency or liver damage.
Collapse
Affiliation(s)
- Yuxin Tan
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Lilan Xin
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Qian Wang
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Rong Xu
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiqin Tong
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Guopeng Chen
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Linlu Ma
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Fuwei Yang
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Hongqiang Jiang
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Nan Zhang
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Jinxian Wu
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Xinqi Li
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Xinyi Guo
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Chao Wang
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Haibing Zhou
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
6
|
Zhang Z, Huang J, Zhang Z, Shen H, Tang X, Wu D, Bao X, Xu G, Chen S. Application of omics in the diagnosis, prognosis, and treatment of acute myeloid leukemia. Biomark Res 2024; 12:60. [PMID: 38858750 PMCID: PMC11165883 DOI: 10.1186/s40364-024-00600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/17/2024] [Indexed: 06/12/2024] Open
Abstract
Acute myeloid leukemia (AML) is the most frequent leukemia in adults with a high mortality rate. Current diagnostic criteria and selections of therapeutic strategies are generally based on gene mutations and cytogenetic abnormalities. Chemotherapy, targeted therapies, and hematopoietic stem cell transplantation (HSCT) are the major therapeutic strategies for AML. Two dilemmas in the clinical management of AML are related to its poor prognosis. One is the inaccurate risk stratification at diagnosis, leading to incorrect treatment selections. The other is the frequent resistance to chemotherapy and/or targeted therapies. Genomic features have been the focus of AML studies. However, the DNA-level aberrations do not always predict the expression levels of genes and proteins and the latter is more closely linked to disease phenotypes. With the development of high-throughput sequencing and mass spectrometry technologies, studying downstream effectors including RNA, proteins, and metabolites becomes possible. Transcriptomics can reveal gene expression and regulatory networks, proteomics can discover protein expression and signaling pathways intimately associated with the disease, and metabolomics can reflect precise changes in metabolites during disease progression. Moreover, omics profiling at the single-cell level enables studying cellular components and hierarchies of the AML microenvironment. The abundance of data from different omics layers enables the better risk stratification of AML by identifying prognosis-related biomarkers, and has the prospective application in identifying drug targets, therefore potentially discovering solutions to the two dilemmas. In this review, we summarize the existing AML studies using omics methods, both separately and combined, covering research fields of disease diagnosis, risk stratification, prognosis prediction, chemotherapy, as well as targeted therapy. Finally, we discuss the directions and challenges in the application of multi-omics in precision medicine of AML. Our review may inspire both omics researchers and clinical physicians to study AML from a different angle.
Collapse
Affiliation(s)
- Zhiyu Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, Jiangsu, China
- Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China
| | - Jiayi Huang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhibo Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hongjie Shen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaowen Tang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiebing Bao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, Jiangsu, China.
- Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China.
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
7
|
Garciaz S, Berton G, Hospital MA, Guille A, Adélaïde J, Saillard C, Hicheri Y, Mozziconacci MJ, Duprez E, Récher C, Alary AS, Birnbaum D, Vey N. Long-term survival of NPM1 AML treated with intensive chemotherapy with extensive molecular data available. Leuk Lymphoma 2024; 65:700-703. [PMID: 38329727 DOI: 10.1080/10428194.2024.2312430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Affiliation(s)
- Sylvain Garciaz
- Department of Hematology, Institut Paoli-Calmettes, INSERM UMR 1068, CNRS UMR725, CNRS, Aix-Marseille University, Marseille, France
| | - Guillaume Berton
- Department of Hematology, Institut Paoli-Calmettes, INSERM UMR 1068, CNRS UMR725, CNRS, Aix-Marseille University, Marseille, France
| | - Marie-Anne Hospital
- Department of Hematology, Institut Paoli-Calmettes, INSERM UMR 1068, CNRS UMR725, CNRS, Aix-Marseille University, Marseille, France
| | - Arnaud Guille
- Predictive Oncology Laboratory, Marseille Cancer Research Center, INSERMUMR 1068, CNRS UMR725, CNRS, Aix-Marseille University, Marseille, France
| | - José Adélaïde
- Predictive Oncology Laboratory, Marseille Cancer Research Center, INSERMUMR 1068, CNRS UMR725, CNRS, Aix-Marseille University, Marseille, France
| | - Colombe Saillard
- Department of Hematology, Institut Paoli-Calmettes, INSERM UMR 1068, CNRS UMR725, CNRS, Aix-Marseille University, Marseille, France
| | - Yosr Hicheri
- Department of Hematology, Institut Paoli-Calmettes, INSERM UMR 1068, CNRS UMR725, CNRS, Aix-Marseille University, Marseille, France
| | | | - Estelle Duprez
- Epigenetic Factors in Normal and Malignant Hematopoiesis, Marseille Cancer Research Center, INSERMUMR 1068, CNRS UMR725, CNRS, Aix-Marseille University, Marseille, France
| | - Christian Récher
- Department of Hematology, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
- Université Toulouse III Paul Sabatier, Cancer Research Center of Toulouse, UMR1037-INSERM, ERL5294 CNRS, Toulouse, France
| | - Anne-Sophie Alary
- Department of Cancer Biology, Institut Paoli-Calmettes, Marseille, France
| | - Daniel Birnbaum
- Predictive Oncology Laboratory, Marseille Cancer Research Center, INSERMUMR 1068, CNRS UMR725, CNRS, Aix-Marseille University, Marseille, France
| | - Norbert Vey
- Department of Hematology, Institut Paoli-Calmettes, INSERM UMR 1068, CNRS UMR725, CNRS, Aix-Marseille University, Marseille, France
| |
Collapse
|
8
|
Chan O, Al Ali N, Tashkandi H, Ellis A, Ball S, Grenet J, Hana C, Deutsch Y, Zhang L, Hussaini M, Song J, Yun S, Talati C, Kuykendall A, Padron E, Walker A, Roboz G, Desai P, Sallman D, Sweet K, Komrokji R, Lancet J. Mutations highly specific for secondary AML are associated with poor outcomes in ELN favorable risk NPM1-mutated AML. Blood Adv 2024; 8:1075-1083. [PMID: 38170740 PMCID: PMC10907389 DOI: 10.1182/bloodadvances.2023011173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/14/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
ABSTRACT Acute myeloid leukemia (AML) is a heterogeneous malignancy with outcomes largely predicted by genetic abnormalities. Mutations of NPM1 are common in AML, occurring in ∼30% of cases, and generally considered a favorable risk factor. Mutations highly specific for secondary AML (sMut) have been shown to confer poor prognosis, but the overall impact of these mutations in the setting of favorable-risk AML defined by mutant NPM1 remains unclear. In this multicenter study of patients with AML (n = 233) with NPM1 mutation at diagnosis, we observed that patients with sMut had worse overall survival (OS) than those without sMut (15.3 vs 43.7 months; P = .002). Importantly, this finding persisted in the European LeukemiaNet (ELN) 2017-defined favorable risk subset (14.7 months vs not reached; P < .0001). Among patients who achieved NPM1 measurable residual disease (MRD) negativity, longer OS was observed in the entire cohort (P = .015) as well as in both the sMut subset (MRD negative: median OS (mOS) 73.9 months vs MRD positive: 12.3 months; P = .0170) and sMut ELN 2017-favorable subset (MRD negative: mOS 27.3 vs MRD positive: 10.5 months; P = .009). Co-occurrence of sMut and mutant NPM1 confers a poor prognosis in AML.
Collapse
Affiliation(s)
- Onyee Chan
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL
| | - Najla Al Ali
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL
| | | | - Austin Ellis
- Department of Hematopathology, Moffitt Cancer Center, Tampa, FL
| | - Somedeb Ball
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL
| | - Justin Grenet
- Division of Hematology and Oncology, Weill Cornell Medical College, New York, NY
| | - Caroline Hana
- Department of Malignant Hematology and Cellular Therapy at Memorial Healthcare System, Moffitt Cancer Center, Pembroke Pines, FL
| | - Yehuda Deutsch
- Department of Malignant Hematology and Cellular Therapy at Memorial Healthcare System, Moffitt Cancer Center, Pembroke Pines, FL
| | - Ling Zhang
- Department of Hematopathology, Moffitt Cancer Center, Tampa, FL
| | | | - Jinming Song
- Department of Hematopathology, Moffitt Cancer Center, Tampa, FL
| | - Seongseok Yun
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL
| | - Chetasi Talati
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL
| | - Andrew Kuykendall
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL
| | - Eric Padron
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL
| | - Alison Walker
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL
| | - Gail Roboz
- Division of Hematology and Oncology, Weill Cornell Medical College, New York, NY
| | - Pinkal Desai
- Division of Hematology and Oncology, Weill Cornell Medical College, New York, NY
| | - David Sallman
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL
| | - Kendra Sweet
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL
| | - Rami Komrokji
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL
| | - Jeffrey Lancet
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL
| |
Collapse
|
9
|
Eisfeld AK. Disparities in acute myeloid leukemia treatments and outcomes. Curr Opin Hematol 2024; 31:58-63. [PMID: 38059809 DOI: 10.1097/moh.0000000000000797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
PURPOSE OF REVIEW This review aims to summarize different contributors to survival disparities in acute myeloid leukemia (AML) patients. The focus is set on African-American (hereafter referred to as Black) patients, with separate consideration of self-reported race and ancestry. It aims to also highlight the interconnectivity of the different features that impact on despair survival. RECENT FINDINGS The main themes in the literature covered in this article include the impact of social deprivation, clinical trial enrollment and biobanking, structural racism and ancestry-associated differences in genetic features on survival outcomes. SUMMARY An increasing number of studies have not only shown persistent survival disparities between Black and non-Hispanic White AML patients, but uncovered a multitude of contributors that have additive adverse effects on patient outcomes. In addition to potentially modifiable features, such as socioeconomic factors and trial enrollment odds that require urgent interventions, there is emerging data on differences in disease biology with respect to genetic ancestry, including frequencies of known AML-driver mutations and their associated prognostic impact.
Collapse
Affiliation(s)
- Ann-Kathrin Eisfeld
- The Ohio State University Comprehensive Cancer Center
- Division of Hematology, Department of Internal Medicine
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University, Comprehensive Cancer Center, Columbus, Ohio, USA
| |
Collapse
|
10
|
Falini B, Dillon R. Criteria for Diagnosis and Molecular Monitoring of NPM1-Mutated AML. Blood Cancer Discov 2024; 5:8-20. [PMID: 37917833 PMCID: PMC10772525 DOI: 10.1158/2643-3230.bcd-23-0144] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/28/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023] Open
Abstract
NPM1-mutated acute myeloid leukemia (AML) represents the largest molecular subgroup of adult AML. NPM1-mutated AML is recognizable by molecular techniques and immunohistochemistry, which, when combined, can solve difficult diagnostic problems (including identification of myeloid sarcoma and NPM1 mutations outside exon 12). According to updated 2022 European LeukemiaNet (ELN) guidelines, determining the mutational status of NPM1 (and FLT3) is a mandatory step for the genetic-based risk stratification of AML. Monitoring of measurable residual disease (MRD) by qRT-PCR, combined with ELN risk stratification, can guide therapeutic decisions at the post-remission stage. Here, we review the criteria for appropriate diagnosis and molecular monitoring of NPM1-mutated AML. SIGNIFICANCE NPM1-mutated AML represents a distinct entity in the 2022 International Consensus Classification and 5th edition of World Health Organization classifications of myeloid neoplasms. The correct diagnosis of NPM1-mutated AML and its distinction from other AML entities is extremely important because it has clinical implications for the management of AML patients, such as genetic-based risk stratification according to 2022 ELN. Monitoring of MRD by qRT-PCR, combined with ELN risk stratification, can guide therapeutic decisions at the post-remission stage, e.g., whether or not to perform allogeneic hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Brunangelo Falini
- Institute of Hematology and Center for Hemato-Oncological Research (CREO), University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Richard Dillon
- Department of Medical and Molecular Genetics, King's College, London, United Kingdom
| |
Collapse
|
11
|
Ozga M, Nicolet D, Mrózek K, Yilmaz AS, Kohlschmidt J, Larkin KT, Blachly JS, Oakes CC, Buss J, Walker CJ, Orwick S, Jurinovic V, Rothenberg-Thurley M, Dufour A, Schneider S, Sauerland MC, Görlich D, Krug U, Berdel WE, Woermann BJ, Hiddemann W, Braess J, Subklewe M, Spiekermann K, Carroll AJ, Blum WG, Powell BL, Kolitz JE, Moore JO, Mayer RJ, Larson RA, Uy GL, Stock W, Metzeler KH, Grimes HL, Byrd JC, Salomonis N, Herold T, Mims AS, Eisfeld AK. Sex-associated differences in frequencies and prognostic impact of recurrent genetic alterations in adult acute myeloid leukemia (Alliance, AMLCG). Leukemia 2024; 38:45-57. [PMID: 38017103 PMCID: PMC10776397 DOI: 10.1038/s41375-023-02068-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/25/2023] [Accepted: 10/09/2023] [Indexed: 11/30/2023]
Abstract
Clinical outcome of patients with acute myeloid leukemia (AML) is associated with demographic and genetic features. Although the associations of acquired genetic alterations with patients' sex have been recently analyzed, their impact on outcome of female and male patients has not yet been comprehensively assessed. We performed mutational profiling, cytogenetic and outcome analyses in 1726 adults with AML (749 female and 977 male) treated on frontline Alliance for Clinical Trials in Oncology protocols. A validation cohort comprised 465 women and 489 men treated on frontline protocols of the German AML Cooperative Group. Compared with men, women more often had normal karyotype, FLT3-ITD, DNMT3A, NPM1 and WT1 mutations and less often complex karyotype, ASXL1, SRSF2, U2AF1, RUNX1, or KIT mutations. More women were in the 2022 European LeukemiaNet intermediate-risk group and more men in adverse-risk group. We found sex differences in co-occurring mutation patterns and prognostic impact of select genetic alterations. The mutation-associated splicing events and gene-expression profiles also differed between sexes. In patients aged <60 years, SF3B1 mutations were male-specific adverse outcome prognosticators. We conclude that sex differences in AML-associated genetic alterations and mutation-specific differential splicing events highlight the importance of patients' sex in analyses of AML biology and prognostication.
Collapse
Affiliation(s)
- Michael Ozga
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Deedra Nicolet
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA
- Alliance Statistics and Data Management Center, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Krzysztof Mrózek
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA.
| | - Ayse S Yilmaz
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA
| | - Jessica Kohlschmidt
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA
- Alliance Statistics and Data Management Center, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Karilyn T Larkin
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA
| | - James S Blachly
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA
| | - Christopher C Oakes
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA
| | - Jill Buss
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA
| | - Christopher J Walker
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA
| | - Shelley Orwick
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Vindi Jurinovic
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Maja Rothenberg-Thurley
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Annika Dufour
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Stephanie Schneider
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- Institute of Human Genetics, University Hospital, LMU Munich, Munich, Germany
| | | | - Dennis Görlich
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | - Utz Krug
- Department of Medicine 3, Klinikum Leverkusen, Leverkusen, Germany
| | - Wolfgang E Berdel
- Department of Medicine, Hematology and Oncology, University of Münster, Münster, Germany
| | | | - Wolfgang Hiddemann
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Braess
- Department of Oncology and Hematology, Hospital Barmherzige Brüder, Regensburg, Germany
| | - Marion Subklewe
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Karsten Spiekermann
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Andrew J Carroll
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Bayard L Powell
- Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Jonathan E Kolitz
- Monter Cancer Center, Hofstra Northwell School of Medicine, Lake Success, NY, USA
| | - Joseph O Moore
- Duke Cancer Institute, Duke University Health System, Durham, NC, USA
| | - Robert J Mayer
- Department of Medical Oncology, Dana-Farber/Partners CancerCare, Boston, MA, USA
| | | | - Geoffrey L Uy
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Wendy Stock
- University of Chicago Medical Center, Chicago, IL, USA
| | - Klaus H Metzeler
- Department of Hematology, Cellular Therapy, and Hemostaseology, Leipzig University Hospital, Leipzig, Germany
| | - H Leighton Grimes
- Division of Immunobiology, Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - John C Byrd
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Nathan Salomonis
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, OH, USA
| | - Tobias Herold
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Alice S Mims
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA
| | - Ann-Kathrin Eisfeld
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA.
| |
Collapse
|
12
|
Chen E, Jiao C, Yu J, Gong Y, Jin D, Ma X, Cui J, Wu Z, Zhou J, Wang H, Su B, Ge J. Assessment of 2022 European LeukemiaNet risk classification system in real-world cohort from China. Cancer Med 2023; 12:21615-21626. [PMID: 38098254 PMCID: PMC10757130 DOI: 10.1002/cam4.6696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/09/2023] [Accepted: 10/26/2023] [Indexed: 12/31/2023] Open
Abstract
BACKGROUND The European LeukemiaNet (ELN) risk classification system for acute myeloid leukemia (AML) patients has been used worldwide. In 2022, the ELN risk classification system modified risk genes including CEBPA mutation status, myelodysplasia-related (MR) gene mutations and internal tandem duplications of FLT3 (FLT3-ITD). METHODS We include newly diagnosed de novo AML patients at our center from January 2017 to December 2021, regardless of the further treatment received. Clinical data and date of survival were included. Survival analysis were performed using the Kaplan-Meier method, and the log-rank test was used to compare survival between different risk groups. RESULTS We include 363 newly diagnosed de novo AML patients from 2017 to 2021 to assess the accuracy of the ELN risk classification system. Their survival results show that the ELN-2022 risk classification system is not superior to the ELN-2017 version; for patients with FLT3-ITD mutations but without FLT3 inhibitor treatment, their survival is similar to the ELN-2022 adverse risk group. The ELN-2022 risk classification system cannot accurately clarify ECOG performance status (PS) 2-4 patients, especially in the ELN-2022 favorable risk group. CONCLUSION The ELN-2022 risk stratification system may not be appropriate for patients unable to receive intensive therapy or FLT3 inhibitor; more real-world data is needed to straify patients with worse ECOG PS and inferior intensive therapy.
Collapse
Affiliation(s)
- Enbo Chen
- Department of HematologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Changqing Jiao
- Department of HematologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Jian Yu
- Department of HematologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Yu Gong
- Department of HematologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- Department of HematologyChaoyang HospitalHuainanAnhuiChina
| | - Duo Jin
- Department of HematologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- Department of HematologyTaihe County People's HospitalFuyangAnhuiChina
| | - Xiaoyu Ma
- Department of HematologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Jianling Cui
- Department of HematologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Zhonghui Wu
- Department of HematologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Junjie Zhou
- Department of HematologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Haixia Wang
- Department of HematologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Bobing Su
- Department of HematologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Jian Ge
- Department of HematologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| |
Collapse
|
13
|
Yang J, Zhao L, Wu Y, Niu T, Gong Y, Chen X, Huang X, Liu J, Dai Y, Ma H. The clinical features and prognostic implications of PTPN11 mutation in adult patients with acute myeloid leukemia in China. Cancer Med 2023; 12:21111-21117. [PMID: 37937729 PMCID: PMC10726903 DOI: 10.1002/cam4.6669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/03/2023] [Accepted: 10/19/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND The clinical significance of protein tyrosine phosphatase nonreceptor type 11 mutation (PTPN11mut ) in acute myeloid leukemia (AML) is underestimated. METHODS We collected the data of AML patients with mutated PTPN11 and wild-type PTPN11 (PTPN11wt ) treated at our hospital and analyzed their clinical characteristics and prognosis. RESULTS Fifty-nine PTPN11mut and 124 PTPN11wt AML patients were included. PTPN11mut was more common in myelomonocytic and monocytic leukemia, and was more likely to co-mutate with KRAS, KMT2C, NRAS, U2AF1, NOTCH1, IKZF1, and USH2A mutations than PTPN11wt . The overall survival for AML patients with PTPN11mut was significantly shorter than that for those with PTPN11wt (p = 0.03). The negative impact of PTPN11mut on overall survival was pronounced in the "favorable" and "intermediate" groups of ELN2017 risk stratification, as well as in the wild-type NPM1 group (p = 0.01, p = 0.01, and p = 0.04). CONCLUSION PTPN11mut is associated with distinct clinical and molecular characteristics, and adverse prognosis in AML patients.
Collapse
Affiliation(s)
- Jinjun Yang
- Department of Hematology and Institute of Hematology, West China HospitalSichuan UniversityChengduChina
| | - Lei Zhao
- Department of Hematology and Institute of Hematology, West China HospitalSichuan UniversityChengduChina
| | - Yu Wu
- Department of Hematology and Institute of Hematology, West China HospitalSichuan UniversityChengduChina
| | - Ting Niu
- Department of Hematology and Institute of Hematology, West China HospitalSichuan UniversityChengduChina
| | - Yuping Gong
- Department of Hematology and Institute of Hematology, West China HospitalSichuan UniversityChengduChina
| | - Xinchuan Chen
- Department of Hematology and Institute of Hematology, West China HospitalSichuan UniversityChengduChina
| | - Xiaoou Huang
- Department of Hematology and Institute of Hematology, West China HospitalSichuan UniversityChengduChina
| | - Jiazhuo Liu
- Department of Hematology and Institute of Hematology, West China HospitalSichuan UniversityChengduChina
| | - Yang Dai
- Department of Hematology and Institute of Hematology, West China HospitalSichuan UniversityChengduChina
| | - Hongbing Ma
- Department of Hematology and Institute of Hematology, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
14
|
La J, Lee MH, Brophy MT, Do NV, Driver JA, Tuck DP, Fillmore NR, Dumontier C. Baseline correlates of frailty and its association with survival in United States veterans with acute myeloid leukemia. Leuk Lymphoma 2023; 64:2081-2090. [PMID: 37671705 DOI: 10.1080/10428194.2023.2254434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/09/2023] [Accepted: 08/27/2023] [Indexed: 09/07/2023]
Abstract
Frailty is an important construct to measure in acute myeloid leukemia (AML). We used the Veterans Affairs Frailty Index (VA-FI) - calculated using readily available data within the VA's electronic health records - to measure frailty in U.S. veterans with AML. Of the 1166 newly diagnosed and treated veterans with AML between 2012 and 2022, 722 (62%) veterans with AML were classified as frail (VA-FI > 0.2). At a median follow-up of 252.5 days, moderate-severely frail veterans had significantly worse survival than mildly frail, and non-frail veterans (median survival 179 vs. 306 vs. 417 days, p < .001). Increasing VA-FI severity was associated with higher mortality. A model with VA-FI in addition to the European LeukemiaNet (ELN) risk classification and other covariates statistically outperformed a model containing the ELN risk and other covariates alone (p < .001). These findings support the VA-FI as a tool to expand frailty measurement in research and clinical practice for informing prognosis in veterans with AML.
Collapse
Affiliation(s)
- Jennifer La
- CSP Informatics Center, Massachusetts Veterans Epidemiology Research and Information Center, Boston, MA, USA
| | - Michelle H Lee
- Department of Internal Medicine, Section of Hematology and Medical Oncology, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, MA, USA
- Department of Medicine, VA Boston Healthcare System, Boston, MA, USA
- Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Mary T Brophy
- CSP Informatics Center, Massachusetts Veterans Epidemiology Research and Information Center, Boston, MA, USA
- Department of Internal Medicine, Section of Hematology and Medical Oncology, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, MA, USA
- Department of Medicine, VA Boston Healthcare System, Boston, MA, USA
| | - Nhan V Do
- CSP Informatics Center, Massachusetts Veterans Epidemiology Research and Information Center, Boston, MA, USA
- Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jane A Driver
- New England Geriatric Research, Education and Clinical Center, VA Boston Healthcare System, Boston, MA, USA
- Division of Aging, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - David P Tuck
- Department of Internal Medicine, Section of Hematology and Medical Oncology, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, MA, USA
- Department of Medicine, VA Boston Healthcare System, Boston, MA, USA
| | - Nathanael R Fillmore
- CSP Informatics Center, Massachusetts Veterans Epidemiology Research and Information Center, Boston, MA, USA
- Department of Medicine, VA Boston Healthcare System, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Clark Dumontier
- New England Geriatric Research, Education and Clinical Center, VA Boston Healthcare System, Boston, MA, USA
- Division of Aging, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Dana Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
15
|
Yao Y, Lin X, Wang C, Gu Y, Jin J, Zhu Y, Wang H. Identification of a novel NPM1 mutation in acute myeloid leukemia. Exp Hematol Oncol 2023; 12:87. [PMID: 37794441 PMCID: PMC10548603 DOI: 10.1186/s40164-023-00449-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/23/2023] [Indexed: 10/06/2023] Open
Abstract
Nucleophosmin (NPM1) is a widely expressed nucleocytoplasmic shuttling protein with prominent nucleolar localization. It is estimated that 25-35% of adult patients with acute myeloid leukemia (AML) carry NPM1 mutations. The classic NPM1 type A mutation occurs in exon 12, which accounts for 75-80% of adult patients with NPM1-mutated AML. It produces an additional leucine and valine-rich nuclear export signal (NES) at the C-terminus, and causes aberrant cytoplasmic dislocation of NPM1 protein. Notably, emerging evidence indicates that besides the classic type A mutation, rare mutants occurring in other exons may also lead to the imbalance of the nucleocytoplasmic shuttle of NPM1. Identification of novel non-type A mutants is crucial for the diagnosis, prognosis, risk stratification and disease monitoring of potential target populations. Here we reported a novel NPM1 mutation in exon 5 identified from a de novo AML patient. Similar to the classic type A mutation, the exon 5 mutation had the NPM1 mutant bound to exportin-1 and directed the mutant into the cytoplasm by generating an additional NES sequence, resulting in aberrant cytoplasmic dislocation of NPM1 protein, which could be reversed by exportin-1 inhibitor leptomycin B. Our findings strongly support that besides the exon 12 mutation, the exon 5 mutant is another NPM1 "born to be exported" mutant critical for leukemogenesis. Therefore, similar to the classic type A mutation, the identification of our novel NPM1 mutation is beneficial for clinical laboratory diagnosis, genetic risk assessment and MRD monitoring.
Collapse
Affiliation(s)
- Yiyi Yao
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79, Qingchun Road, Hangzhou, 310003 People’s Republic of China
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310000 Zhejiang People’s Republic of China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, 310000 Zhejiang People’s Republic of China
- Zhejiang University Cancer Center, Hangzhou, 310000 Zhejiang People’s Republic of China
| | - Xiangjie Lin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79, Qingchun Road, Hangzhou, 310003 People’s Republic of China
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310000 Zhejiang People’s Republic of China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, 310000 Zhejiang People’s Republic of China
- Zhejiang University Cancer Center, Hangzhou, 310000 Zhejiang People’s Republic of China
| | - Chen Wang
- Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, 310058 Zhejiang People’s Republic of China
| | - Ying Gu
- Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, 310058 Zhejiang People’s Republic of China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79, Qingchun Road, Hangzhou, 310003 People’s Republic of China
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310000 Zhejiang People’s Republic of China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, 310000 Zhejiang People’s Republic of China
- Zhejiang University Cancer Center, Hangzhou, 310000 Zhejiang People’s Republic of China
| | - Yinghui Zhu
- Research Center for Translational Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092 China
| | - Huafeng Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79, Qingchun Road, Hangzhou, 310003 People’s Republic of China
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310000 Zhejiang People’s Republic of China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, 310000 Zhejiang People’s Republic of China
- Zhejiang University Cancer Center, Hangzhou, 310000 Zhejiang People’s Republic of China
| |
Collapse
|
16
|
Li T, Lin T, Zhu J, Zhou M, Fan S, Zhou H, Mu Q, Sheng L, Ouyang G. Prognostic and therapeutic implications of iron-related cell death pathways in acute myeloid leukemia. Front Oncol 2023; 13:1222098. [PMID: 37736548 PMCID: PMC10509477 DOI: 10.3389/fonc.2023.1222098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/27/2023] [Indexed: 09/23/2023] Open
Abstract
Acute myeloid leukemia (AML) is a blood cancer that is diverse in terms of its molecular abnormalities and clinical outcomes. Iron homeostasis and cell death pathways play crucial roles in cancer pathogenesis, including AML. The objective of this study was to examine the clinical significance of genes involved in iron-related cell death and apoptotic pathways in AML, with the intention of providing insights that could have prognostic implications and facilitate the development of targeted therapeutic interventions. Gene expression profiles, clinical information, and molecular alterations were integrated from multiple datasets, including TCGA-LAML and GSE71014. Our analysis identified specific molecular subtypes of acute myeloid leukemia (AML) displaying varying outcomes, patterns of immune cell infiltration, and profiles of drug sensitivity for targeted therapies based on the expression of genes involved in iron-related apoptotic and cell death pathways. We further developed a risk model based on four genes, which demonstrated promising prognostic value in both the training and validation cohorts, indicating the potential of this model for clinical decision-making and risk stratification in AML. Subsequently, Western blot analysis showed that the expression levels of C-Myc and CyclinD1 were significantly reduced after CD4 expression levels were knocked down. The findings underscore the potential of iron-related cell death pathways as prognostic biomarkers and therapeutic targets in AML, paving the way for further research aimed at understanding the molecular mechanisms underlying the correlation between iron balance, apoptosis regulation, and immune modulation in the bone marrow microenvironment.
Collapse
Affiliation(s)
- Tongyu Li
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
- Ningbo Clinical Research Center for Hematologic Malignancies, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Tongtong Lin
- Department of Pharmacy, Tsinghua University, Beijing, China
| | - Jiahao Zhu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Miao Zhou
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
- Ningbo Clinical Research Center for Hematologic Malignancies, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Shufang Fan
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Hao Zhou
- Ningbo Clinical Research Center for Hematologic Malignancies, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
- Stem Cell Transplantation Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Qitian Mu
- Ningbo Clinical Research Center for Hematologic Malignancies, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
- Stem Cell Transplantation Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Lixia Sheng
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
- Ningbo Clinical Research Center for Hematologic Malignancies, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Guifang Ouyang
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
- Ningbo Clinical Research Center for Hematologic Malignancies, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
17
|
Falini B. NPM1-mutated acute myeloid leukemia: New pathogenetic and therapeutic insights and open questions. Am J Hematol 2023; 98:1452-1464. [PMID: 37317978 DOI: 10.1002/ajh.26989] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/02/2023] [Indexed: 06/16/2023]
Abstract
The nucleophosmin (NPM1) gene encodes for a multifunctional chaperone protein that is localized in the nucleolus but continuously shuttles between the nucleus and cytoplasm. NPM1 mutations occur in about one-third of AML, are AML-specific, usually involve exon 12 and are frequently associated with FLT3-ITD, DNMT3A, TET2, and IDH1/2 mutations. Because of its unique molecular and clinico-pathological features, NPM1-mutated AML is regarded as a distinct leukemia entity in both the International Consensus Classification (ICC) and the 5th edition of the World Health Organization (WHO) classification of myeloid neoplasms. All NPM1 mutations generate leukemic mutants that are aberrantly exported in the cytoplasm of the leukemic cells and are relevant to the pathogenesis of the disease. Here, we focus on recently identified functions of the NPM1 mutant at chromatin level and its relevance in driving HOX/MEIS gene expression. We also discuss yet controversial issues of the ICC/WHO classifications, including the biological and clinical significance of therapy-related NPM1-mutated AML and the relevance of blasts percentage in defining NPM1-mutated AML. Finally, we address the impact of new targeted therapies in NPM1-mutated AML with focus on CAR T cells directed against NPM1/HLA neoepitopes, as well as XPO1 and menin inhibitors.
Collapse
Affiliation(s)
- Brunangelo Falini
- Institute of Hematology and Center for Hemato-Oncological Research (CREO), University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy
| |
Collapse
|
18
|
Kohyanagi N, Ohama T. The impact of SETBP1 mutations in neurological diseases and cancer. Genes Cells 2023; 28:629-641. [PMID: 37489294 PMCID: PMC11447826 DOI: 10.1111/gtc.13057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/05/2023] [Indexed: 07/26/2023]
Abstract
SE translocation (SET) is a cancer-promoting factor whose expression is upregulated in many cancers. High SET expression positively correlates with a poor cancer prognosis. SETBP1 (SET-binding protein 1/SEB/MRD29), identified as SET-binding protein, is the causative gene of Schinzel-Giedion syndrome, which is characterized by severe intellectual disability and a distorted facial appearance. Mutations in these genetic regions are also observed in some blood cancers, such as myelodysplastic syndromes, and are associated with a poor prognosis. However, the physiological role of SETBP1 and the molecular mechanisms by which the mutations lead to disease progression have not yet been fully elucidated. In this review, we will describe the current epidemiological data on SETBP1 mutations and shed light on the current knowledge about the SET-dependent and -independent functions of SETBP1.
Collapse
Affiliation(s)
- Naoki Kohyanagi
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary MedicineYamaguchi UniversityYamaguchiJapan
| | - Takashi Ohama
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary MedicineYamaguchi UniversityYamaguchiJapan
| |
Collapse
|
19
|
Rebechi M, Kohlschmidt J, Mrózek K, Nicolet D, Mims AS, Blachly JS, Orwick S, Larkin KT, Oakes CC, Hantel A, Carroll AJ, Blum WG, Powell BL, Uy GL, Stone RM, Larson RA, Byrd JC, Paskett ED, Plascak JJ, Eisfeld AK. Association of social deprivation with survival in younger adult patients with AML: an Alliance study. Blood Adv 2023; 7:4019-4023. [PMID: 37196637 PMCID: PMC10425796 DOI: 10.1182/bloodadvances.2022009325] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/29/2022] [Indexed: 05/19/2023] Open
Affiliation(s)
- Melanie Rebechi
- Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Jessica Kohlschmidt
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Alliance Statistics and Data Management Center, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Krzysztof Mrózek
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Deedra Nicolet
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Alliance Statistics and Data Management Center, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Alice S. Mims
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - James S. Blachly
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Shelley Orwick
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Karilyn T. Larkin
- Department of Internal Medicine, The Ohio State University, Columbus, OH
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Christopher C. Oakes
- Department of Internal Medicine, The Ohio State University, Columbus, OH
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Andrew Hantel
- Department of Medical Oncology, Dana-Farber/Partners CancerCare, Boston, MA
| | - Andrew J. Carroll
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - William G. Blum
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Bayard L. Powell
- Department of Internal Medicine, Section on Hematology and Oncology, Comprehensive Cancer Center of Wake Forest Baptist Health, Winston-Salem, NC
| | - Geoffrey L. Uy
- Division of Oncology, Washington University School of Medicine, St. Louis, MO
| | - Richard M. Stone
- Department of Medical Oncology, Dana-Farber/Partners CancerCare, Boston, MA
| | | | - John C. Byrd
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH
| | - Electra D. Paskett
- Division of Cancer Prevention and Control, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Jesse J. Plascak
- Division of Cancer Prevention and Control, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Ann-Kathrin Eisfeld
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| |
Collapse
|
20
|
Krizsán S, Péterffy B, Egyed B, Nagy T, Sebestyén E, Hegyi LL, Jakab Z, Erdélyi DJ, Müller J, Péter G, Csanádi K, Kállay K, Kriván G, Barna G, Bedics G, Haltrich I, Ottóffy G, Csernus K, Vojcek Á, Tiszlavicz LG, Gábor KM, Kelemen Á, Hauser P, Gaál Z, Szegedi I, Ujfalusi A, Kajtár B, Kiss C, Matolcsy A, Tímár B, Kovács G, Alpár D, Bödör C. Next-Generation Sequencing-Based Genomic Profiling of Children with Acute Myeloid Leukemia. J Mol Diagn 2023; 25:555-568. [PMID: 37088137 PMCID: PMC10435843 DOI: 10.1016/j.jmoldx.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/11/2023] [Accepted: 04/05/2023] [Indexed: 04/25/2023] Open
Abstract
Pediatric acute myeloid leukemia (AML) represents a major cause of childhood leukemic mortality, with only a limited number of studies investigating the molecular landscape of the disease. Here, we present an integrative analysis of cytogenetic and molecular profiles of 75 patients with pediatric AML from a multicentric, real-world patient cohort treated according to AML Berlin-Frankfurt-Münster protocols. Targeted next-generation sequencing of 54 genes revealed 17 genes that were recurrently mutated in >5% of patients. Considerable differences were observed in the mutational profiles compared with previous studies, as BCORL1, CUX1, KDM6A, PHF6, and STAG2 mutations were detected at a higher frequency than previously reported, whereas KIT, NRAS, and KRAS were less frequently mutated. Our study identified novel recurrent mutations at diagnosis in the BCORL1 gene in 9% of the patients. Tumor suppressor gene (PHF6, TP53, and WT1) mutations were found to be associated with induction failure and shorter event-free survival, suggesting important roles of these alterations in resistance to therapy and disease progression. Comparison of the mutational landscape at diagnosis and relapse revealed an enrichment of mutations in tumor suppressor genes (16.2% versus 44.4%) and transcription factors (35.1% versus 55.6%) at relapse. Our findings shed further light on the heterogeneity of pediatric AML and identify previously unappreciated alterations that may lead to improved molecular characterization and risk stratification of pediatric AML.
Collapse
Affiliation(s)
- Szilvia Krizsán
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Borbála Péterffy
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Bálint Egyed
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Tibor Nagy
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Endre Sebestyén
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Lajos László Hegyi
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Jakab
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Dániel J Erdélyi
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Judit Müller
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - György Péter
- Hemato-Oncology Unit, Heim Pal Children's Hospital, Budapest, Hungary
| | - Krisztina Csanádi
- Hemato-Oncology Unit, Heim Pal Children's Hospital, Budapest, Hungary
| | - Krisztián Kállay
- Division of Pediatric Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Gergely Kriván
- Division of Pediatric Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Gábor Barna
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Gábor Bedics
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Irén Haltrich
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Gábor Ottóffy
- Department of Pediatrics, University of Pécs Clinical Centre, Pécs, Hungary
| | - Katalin Csernus
- Department of Pediatrics, University of Pécs Clinical Centre, Pécs, Hungary
| | - Ágnes Vojcek
- Department of Pediatrics, University of Pécs Clinical Centre, Pécs, Hungary
| | - Lilla Györgyi Tiszlavicz
- Department of Pediatrics and Pediatric Health Care Center, University of Szeged, Szeged, Hungary
| | - Krisztina Mita Gábor
- Department of Pediatrics and Pediatric Health Care Center, University of Szeged, Szeged, Hungary
| | - Ágnes Kelemen
- Hemato-Oncology and Stem Cell Transplantation Unit, Velkey László Child's Health Center, Borsod-Abaúj-Zemplén County Central Hospital and University Teaching Hospital, Miskolc, Hungary
| | - Péter Hauser
- Hemato-Oncology and Stem Cell Transplantation Unit, Velkey László Child's Health Center, Borsod-Abaúj-Zemplén County Central Hospital and University Teaching Hospital, Miskolc, Hungary
| | - Zsuzsanna Gaál
- Department of Pediatric Hematology and Oncology, Institute of Pediatrics, University of Debrecen, Debrecen, Hungary
| | - István Szegedi
- Department of Pediatric Hematology and Oncology, Institute of Pediatrics, University of Debrecen, Debrecen, Hungary
| | - Anikó Ujfalusi
- Department of Laboratory Medicine, University of Debrecen, Debrecen, Hungary
| | - Béla Kajtár
- Department of Pathology, University of Pécs Clinical Centre, Pécs, Hungary
| | - Csongor Kiss
- Hemato-Oncology and Stem Cell Transplantation Unit, Velkey László Child's Health Center, Borsod-Abaúj-Zemplén County Central Hospital and University Teaching Hospital, Miskolc, Hungary
| | - András Matolcsy
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Botond Tímár
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Gábor Kovács
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Donát Alpár
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Csaba Bödör
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
21
|
Park MN. The Therapeutic Potential of a Strategy to Prevent Acute Myeloid Leukemia Stem Cell Reprogramming in Older Patients. Int J Mol Sci 2023; 24:12037. [PMID: 37569414 PMCID: PMC10418941 DOI: 10.3390/ijms241512037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common and incurable leukemia subtype. Despite extensive research into the disease's intricate molecular mechanisms, effective treatments or expanded diagnostic or prognostic markers for AML have not yet been identified. The morphological, immunophenotypic, cytogenetic, biomolecular, and clinical characteristics of AML patients are extensive and complex. Leukemia stem cells (LSCs) consist of hematopoietic stem cells (HSCs) and cancer cells transformed by a complex, finely-tuned interaction that causes the complexity of AML. Microenvironmental regulation of LSCs dormancy and the diagnostic and therapeutic implications for identifying and targeting LSCs due to their significance in the pathogenesis of AML are discussed in this review. It is essential to perceive the relationship between the niche for LSCs and HSCs, which together cause the progression of AML. Notably, methylation is a well-known epigenetic change that is significant in AML, and our data also reveal that microRNAs are a unique factor for LSCs. Multiple-targeted approaches to reduce the risk of epigenetic factors, such as the administration of natural compounds for the elimination of local LSCs, may prevent potentially fatal relapses. Furthermore, the survival analysis of overlapping genes revealed that specific targets had significant effects on the survival and prognosis of patients. We predict that the multiple-targeted effects of herbal products on epigenetic modification are governed by different mechanisms in AML and could prevent potentially fatal relapses. Thus, these strategies can facilitate the incorporation of herbal medicine and natural compounds into the advanced drug discovery and development processes achievable with Network Pharmacology research.
Collapse
Affiliation(s)
- Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Republic of Korea
| |
Collapse
|
22
|
Mill CP, Fiskus W, Das K, Davis JA, Birdwell CE, Kadia TM, DiNardo CD, Daver N, Takahashi K, Sasaki K, McGeehan GM, Ruan X, Su X, Loghavi S, Kantarjian H, Bhalla KN. Causal linkage of presence of mutant NPM1 to efficacy of novel therapeutic agents against AML cells with mutant NPM1. Leukemia 2023; 37:1336-1348. [PMID: 36977823 PMCID: PMC10244173 DOI: 10.1038/s41375-023-01882-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023]
Abstract
In AML with NPM1 mutation causing cytoplasmic dislocation of NPM1, treatments with Menin inhibitor (MI) and standard AML chemotherapy yield complete remissions. However, the causal and mechanistic linkage of mtNPM1 to the efficacy of these agents has not been definitively established. Utilizing CRISPR-Cas9 editing to knockout (KO) or knock-in a copy of mtNPM1 in AML cells, present studies demonstrate that KO of mtNPM1 from AML cells abrogates sensitivity to MI, selinexor (exportin-1 inhibitor), and cytarabine. Conversely, the knock-in of a copy of mtNPM1 markedly sensitized AML cells to treatment with MI or cytarabine. Following AML therapy, most elderly patients with AML with mtNPM1 and co-mutations in FLT3 suffer AML relapse with poor outcomes, creating a need for novel effective therapies. Utilizing the RNA-Seq signature of CRISPR-edited AML cells with mtNPM1 KO, we interrogated the LINCS1000-CMap data set and found several pan-HDAC inhibitors and a WEE1 tyrosine kinase inhibitor among the top expression mimickers (EMs). Additionally, treatment with adavosertib (WEE1 inhibitor) or panobinostat (pan-HDAC inhibitor) exhibited synergistic in vitro lethal activity with MI against AML cells with mtNPM1. Treatment with adavosertib or panobinostat also reduced AML burden and improved survival in AML xenograft models sensitive or resistant to MI.
Collapse
Affiliation(s)
- Christopher P Mill
- The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Warren Fiskus
- The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kaberi Das
- The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - John A Davis
- The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA
| | | | - Tapan M Kadia
- The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Courtney D DiNardo
- The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Naval Daver
- The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Koichi Takahashi
- The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Koji Sasaki
- The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA
| | | | - Xinjia Ruan
- The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaoping Su
- The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sanam Loghavi
- The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hagop Kantarjian
- The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kapil N Bhalla
- The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
23
|
Rausch C, Rothenberg-Thurley M, Dufour A, Schneider S, Gittinger H, Sauerland C, Görlich D, Krug U, Berdel WE, Woermann BJ, Hiddemann W, Braess J, von Bergwelt-Baildon M, Spiekermann K, Herold T, Metzeler KH. Validation and refinement of the 2022 European LeukemiaNet genetic risk stratification of acute myeloid leukemia. Leukemia 2023:10.1038/s41375-023-01884-2. [PMID: 37041198 DOI: 10.1038/s41375-023-01884-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 04/13/2023]
Abstract
The revised 2022 European LeukemiaNet (ELN) AML risk stratification system requires validation in large, homogeneously treated cohorts. We studied 1118 newly diagnosed AML patients (median age, 58 years; range, 18-86 years) who received cytarabine-based induction chemotherapy between 1999 and 2012 and compared ELN-2022 to the previous ELN-2017 risk classification. Key findings were validated in a cohort of 1160 mostly younger patients. ELN-2022 reclassified 15% of patients, 3% into more favorable, and 12% into more adverse risk groups. This was mainly driven by patients reclassified from intermediate- to adverse-risk based on additional myelodysplasia-related mutations being included as adverse-risk markers. These patients (n = 79) had significantly better outcomes than patients with other adverse-risk genotypes (5-year OS, 26% vs. 12%) and resembled the remaining intermediate-risk group. Overall, time-dependent ROC curves and Harrel's C-index controlling for age, sex, and AML type (de novo vs. sAML/tAML) show slightly worse prognostic discrimination of ELN-2022 compared to ELN-2017 for OS. Further refinement of ELN-2022 without including additional genetic markers is possible, in particular by recognizing TP53-mutated patients with complex karyotypes as "very adverse". In summary, the ELN-2022 risk classification identifies a larger group of adverse-risk patients at the cost of slightly reduced prognostic accuracy compared to ELN-2017.
Collapse
Affiliation(s)
- Christian Rausch
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Maja Rothenberg-Thurley
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Annika Dufour
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Stephanie Schneider
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- Institute of Human Genetics, University Hospital, LMU Munich, Munich, Germany
| | - Hanna Gittinger
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Cristina Sauerland
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | - Dennis Görlich
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | - Utz Krug
- Department of Medicine 3, Klinikum Leverkusen, Leverkusen, Germany
| | - Wolfgang E Berdel
- Department of Medicine A, University Hospital Münster, Münster, Germany
| | | | - Wolfgang Hiddemann
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Braess
- Department of Oncology and Hematology, Hospital Barmherzige Brüder, Regensburg, Germany
| | - Michael von Bergwelt-Baildon
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Karsten Spiekermann
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Tobias Herold
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Klaus H Metzeler
- Department of Hematology, Cellular Therapy and Hemostaseology, University Hospital Leipzig, Leipzig, Germany.
| |
Collapse
|
24
|
Mrózek K, Kohlschmidt J, Blachly JS, Nicolet D, Carroll AJ, Archer KJ, Mims AS, Larkin KT, Orwick S, Oakes CC, Kolitz JE, Powell BL, Blum WG, Marcucci G, Baer MR, Uy GL, Stock W, Byrd JC, Eisfeld AK. Outcome prediction by the 2022 European LeukemiaNet genetic-risk classification for adults with acute myeloid leukemia: an Alliance study. Leukemia 2023; 37:788-798. [PMID: 36823396 PMCID: PMC10079544 DOI: 10.1038/s41375-023-01846-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/25/2023]
Abstract
Recently, the European LeukemiaNet (ELN) revised its genetic-risk classification of acute myeloid leukemia (AML). We categorized 1637 adults with AML treated with cytarabine/anthracycline regimens according to the 2022 and 2017 ELN classifications. Compared with the 2017 ELN classification, 2022 favorable group decreased from 40% to 35% and adverse group increased from 37% to 41% of patients. The 2022 genetic-risk groups seemed to accurately reflect treatment outcomes in all patients and patients aged <60 years, but in patients aged ≥60 years, relapse rates, disease-free (DFS) and overall (OS) survival were not significantly different between intermediate and adverse groups. In younger African-American patients, DFS and OS did not differ between intermediate-risk and adverse-risk patients nor did DFS between favorable and intermediate groups. In Hispanic patients, DFS and OS did not differ between favorable and intermediate groups. Outcome prediction abilities of 2022 and 2017 ELN classifications were similar. Among favorable-risk patients, myelodysplasia-related mutations did not affect patients with CEBPAbZIP mutations or core-binding factor AML, but changed risk assignment of NPM1-mutated/FLT3-ITD-negative patients to intermediate. NPM1-mutated patients with adverse-risk cytogenetic abnormalities were closer prognostically to the intermediate than adverse group. Our analyses both confirm and challenge prognostic significance of some of the newly added markers.
Collapse
Grants
- UG1 CA233180 NCI NIH HHS
- U10 CA180821 NCI NIH HHS
- UG1 CA189850 NCI NIH HHS
- P30 CA033572 NCI NIH HHS
- UG1 CA233247 NCI NIH HHS
- R35 CA197734 NCI NIH HHS
- UG1 CA233339 NCI NIH HHS
- P50 CA140158 NCI NIH HHS
- UG1 CA233331 NCI NIH HHS
- U10 CA180882 NCI NIH HHS
- UG1 CA233338 NCI NIH HHS
- U24 CA196171 NCI NIH HHS
- P30 CA016058 NCI NIH HHS
- UG1 CA233327 NCI NIH HHS
- Leukemia and Lymphoma Society (Leukemia & Lymphoma Society)
- Aptevo, Daiichi Sankyo, Glycomemetics, Kartos Pharmaceuticals, Xencor and Genentech
- U.S. Department of Health & Human Services | NIH | NCI | Division of Cancer Epidemiology and Genetics, National Cancer Institute (National Cancer Institute Division of Cancer Epidemiology and Genetics)
- BLP is a consultant for Cornerstone Pharmaceuticals and reported research funding from Ambit Biosciences, Cornerstone, Genentech, Hoffman LaRoche, Jazz Pharmaceuticals, Novartis and Pfizer.
- WGB reported honoraria from Abbvie, Syndax, and AmerisourceBergen and research funding from Celyad Oncology, Nkarta, Xencor, Forma Therapeutics and Leukemia and Lymphoma Society.
- Agios Savvas Regional Cancer Hospital
- GLU is a consultant for AbbVie, Agios, Jazz, GlaxoSmithKline, Genentech, and Novartis; reported honoraria from Astellas and research funding from Macrogenics.
- JCB consults for Astellas, AstraZeneca, Novartis, Pharmacyclics, Syndax and Trillium; receives honoraria from Astellas, AstraZeneca, Novartis, Pharmacyclics, Syndax and Trillium; he is a Chairman of the Scientific Advisory Board of Vincerx Pharmaceuticals and a member of advisory committee of Newave; and is a current equity holder of Vincerx Pharmaceuticals.
- U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- American Cancer Society (American Cancer Society, Inc.)
- Leukemia Research Foundation (LRF)
- Pelotonia
Collapse
Affiliation(s)
- Krzysztof Mrózek
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
| | - Jessica Kohlschmidt
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Alliance Statistics and Data Management Center, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - James S Blachly
- The Ohio State University, Department of Internal Medicine, Columbus, OH, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Deedra Nicolet
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Alliance Statistics and Data Management Center, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Andrew J Carroll
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kellie J Archer
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Alice S Mims
- The Ohio State University, Department of Internal Medicine, Columbus, OH, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Karilyn T Larkin
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- The Ohio State University, Department of Internal Medicine, Columbus, OH, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Shelley Orwick
- The Ohio State University, Department of Internal Medicine, Columbus, OH, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Christopher C Oakes
- The Ohio State University, Department of Internal Medicine, Columbus, OH, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Jonathan E Kolitz
- Monter Cancer Center, Hofstra Northwell School of Medicine, Lake Success, NY, USA
| | - Bayard L Powell
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | | | - Guido Marcucci
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Maria R Baer
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Geoffrey L Uy
- Washington University School of Medicine, St. Louis, MO, USA
| | - Wendy Stock
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - John C Byrd
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Ann-Kathrin Eisfeld
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
- The Ohio State University, Department of Internal Medicine, Columbus, OH, USA.
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
25
|
Xu X, Wang H, Han H, Yao Y, Li X, Qi J, Cai C, Zhou M, Tang Y, Pan T, Zhang Z, Yang J, Wu D, Han Y. Clinical characteristics and prognostic significance of DNA methylation regulatory gene mutations in acute myeloid leukemia. Clin Epigenetics 2023; 15:54. [PMID: 36991512 PMCID: PMC10061765 DOI: 10.1186/s13148-023-01474-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND DNA methylation is a form of epigenetic modification that regulates gene expression. However, there are limited data on the comprehensive analysis of DNA methylation regulated gene mutations (DMRGM) in acute myeloid leukemia (AML) mainly referring to DNA methyltransferase 3α (DNMT3A), isocitrate dehydrogenase 1 (IDH1), isocitrate dehydrogenase 2 (IDH2), and Tet methylcytidine dioxygenase 2 (TET2). RESULTS A retrospective study of the clinical characteristics and gene mutations in 843 newly diagnosed non-M3 AML patients was conducted between January 2016 and August 2019. 29.7% (250/843) of patients presented with DMRGM. It was characterized by older age, higher white blood cell count, and higher platelet count (P < 0.05). DMRGM frequently coexisted with FLT3-ITD, NPM1, FLT3-TKD, and RUNX1 mutations (P < 0.05). The CR/CRi rate was only 60.3% in DMRGM patients, significantly lower than in non-DMRGM patients (71.0%, P = 0.014). In addition to being associated with poor overall survival (OS), DMRGM was also an independent risk factor for relapse-free survival (RFS) (HR: 1.467, 95% CI: 1.030-2.090, P = 0.034). Furthermore, OS worsened with an increasing burden of DMRGM. Patients with DMRGM may be benefit from hypomethylating drugs, and the unfavorable prognosis of DMRGM can be overcome by hematopoietic stem cell transplantation (HSCT). For external validation, the BeatAML database was downloaded, and a significant association between DMRGM and OS was confirmed (P < 0.05). CONCLUSION Our study provides an overview of DMRGM in AML patients, which was identified as a risk factor for poor prognosis.
Collapse
Affiliation(s)
- Xiaoyan Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Hong Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Haohao Han
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Yifang Yao
- Soochow Hopes Hematonosis Hospital, Suzhou, People's Republic of China
| | - Xueqian Li
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Jiaqian Qi
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Chengsen Cai
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Meng Zhou
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Yaqiong Tang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Tingting Pan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Ziyan Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Jingyi Yang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China.
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China.
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China.
| | - Yue Han
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China.
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China.
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China.
| |
Collapse
|
26
|
Li Z, He Z, Wang J, Kong G. RNA splicing factors in normal hematopoiesis and hematologic malignancies: novel therapeutic targets and strategies. J Leukoc Biol 2023; 113:149-163. [PMID: 36822179 DOI: 10.1093/jleuko/qiac015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Indexed: 01/18/2023] Open
Abstract
RNA splicing, a crucial transesterification-based process by which noncoding regions are removed from premature RNA to create mature mRNA, regulates various cellular functions, such as proliferation, survival, and differentiation. Clinical and functional studies over the past 10 y have confirmed that mutations in RNA splicing factors are among the most recurrent genetic abnormalities in hematologic neoplasms, including myeloid malignancies, chronic lymphocytic leukemia, mantle cell lymphoma, and clonal hematopoiesis. These findings indicate an important role for splicing factor mutations in the development of clonal hematopoietic disorders. Mutations in core or accessory components of the RNA spliceosome complex alter splicing sites in a manner of change of function. These changes can result in the dysregulation of cancer-associated gene expression and the generation of novel mRNA transcripts, some of which are not only critical to disease development but may be also serving as potential therapeutic targets. Furthermore, multiple studies have revealed that hematopoietic cells bearing mutations in splicing factors depend on the expression of the residual wild-type allele for survival, and these cells are more sensitive to reduced expression of wild-type splicing factors or chemical perturbations of the splicing machinery. These findings suggest a promising possibility for developing novel therapeutic opportunities in tumor cells based on mutations in splicing factors. Here, we combine current knowledge of the mechanistic and functional effects of frequently mutated splicing factors in normal hematopoiesis and the effects of their mutations in hematologic malignancies. Moreover, we discuss the development of potential therapeutic opportunities based on these mutations.
Collapse
Affiliation(s)
- Zhenzhen Li
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, No. 127 Youyi West Road, Beilin District, Xi'an, Shaanxi 710072, China
| | - Zhongzheng He
- Department of Neurosurgery, Mini-invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161 Xiwu Road, Xincheng District, Xi'an, Shaanxi 710003, China
| | - Jihan Wang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, No. 127 Youyi West Road, Beilin District, Xi'an, Shaanxi 710072, China
| | - Guangyao Kong
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xincheng District, Xi'an, Shaanxi 710004, China
| |
Collapse
|
27
|
Tsai XCH, Sun KJ, Lo MY, Tien FM, Kuo YY, Tseng MH, Peng YL, Chuang YK, Ko BS, Tang JL, Sun HI, Liu MC, Liu CW, Lin CC, Yao M, Chou WC, Hou HA, Tien HF. Poor prognostic implications of myelodysplasia-related mutations in both older and younger patients with de novo AML. Blood Cancer J 2023; 13:4. [PMID: 36599822 DOI: 10.1038/s41408-022-00774-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
A set of myelodysplasia-related (MDS-R) gene mutations are incorporated into the 2022 European LeukemiaNet risk classification as adverse genetic factors for acute myeloid leukemia (AML) based on their poor prognostic impact on older patients. The impact of these mutations on younger patients (age < 60 years) remains elusive. In the study of 1213 patients with de novo non-M3 AML, we identified MDS-R mutations in 32.7% of the total cohort, 44.9% of older patients and 23.4% of younger patients. The patients with MDS-R mutations had a significantly lower complete remission rate in both younger and older age groups. With a median follow-up of 9.2 years, the MDS-R group experienced shorter overall survival (P = 0.034 for older and 0.035 for younger patients) and event-free survival (P = 0.004 for older and 0.042 for younger patients). Furthermore, patients with MDS-R mutations more frequently harbored measurable residual disease that was detectable using next generation sequencing at morphological CR than those without MDS-R mutations. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) might ameliorate the negative impact of MDS-R mutations. In summary, AML patients with MDS-R mutations have significantly poorer outcomes regardless of age. More intensive treatment, such as allo-HSCT and/or novel therapies, is warranted for AML patients with MDS-R mutations.
Collapse
Affiliation(s)
- Xavier Cheng-Hong Tsai
- Department of Medical Education and Research, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan.,Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Hematological Oncology, National Taiwan University Cancer Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Kuo-Jui Sun
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Min-Yen Lo
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Feng-Ming Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Hematological Oncology, National Taiwan University Cancer Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Yuan-Yeh Kuo
- Tai-Chen Cell Therapy Center, National Taiwan University, Taipei, Taiwan
| | - Mei-Hsuan Tseng
- Tai-Chen Cell Therapy Center, National Taiwan University, Taipei, Taiwan
| | - Yen-Ling Peng
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Kuang Chuang
- Tai-Chen Cell Therapy Center, National Taiwan University, Taipei, Taiwan
| | - Bor-Sheng Ko
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Hematological Oncology, National Taiwan University Cancer Center, National Taiwan University Hospital, Taipei, Taiwan.,Tai-Chen Cell Therapy Center, National Taiwan University, Taipei, Taiwan
| | - Jih-Luh Tang
- Department of Hematological Oncology, National Taiwan University Cancer Center, National Taiwan University Hospital, Taipei, Taiwan.,Tai-Chen Cell Therapy Center, National Taiwan University, Taipei, Taiwan
| | - Hsun-I Sun
- Tai-Chen Cell Therapy Center, National Taiwan University, Taipei, Taiwan
| | - Ming-Chih Liu
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Wen Liu
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Chin Lin
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming Yao
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Chien Chou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsin-An Hou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Hwei-Fang Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan. .,Department of Internal Medicine, Far-Eastern Memorial Hospital, New Taipei City, Taiwan.
| |
Collapse
|
28
|
Zhang Q, Ma R, Chen H, Guo W, Li Z, Xu K, Chen W. CD86 Is Associated with Immune Infiltration and Immunotherapy Signatures in AML and Promotes Its Progression. JOURNAL OF ONCOLOGY 2023; 2023:9988405. [PMID: 37064861 PMCID: PMC10104747 DOI: 10.1155/2023/9988405] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/21/2022] [Accepted: 07/25/2022] [Indexed: 04/18/2023]
Abstract
Background Cluster of differentiation 86 (CD86), also known as B7-2, is a molecule expressed on antigen-presenting cells that provides the costimulatory signals required for T cell activation and survival. CD86 binds to two ligands on the surface of T cells: the antigen CD28 and cytotoxic T lymphocyte-associated protein 4 (CTLA-4). By binding to CD28, CD86-together with CD80-promotes the participation of T cells in the antigen presentation process. However, the interrelationships among CD86, immunotherapy, and immune infiltration in acute myeloid leukemia (AML) are unclear. Methods The immunological effects of CD86 in various cancers (including on chemokines, immunostimulators, MHC, and receptors) were evaluated through a pan-cancer analysis using TCGA and GEO databases. The relationship between CD86 expression and mononucleotide variation, gene copy number variation, methylation, immune checkpoint blockers (ICBs), and T-cell inflammation score in AML was subsequently examined. ESTIMATE and limma packages were used to identify genes at the intersection of CD86 with StromalScore and ImmuneScore. Subsequently, GO/KEGG and PPI network analyses were performed. The immune risk score (IRS) model was constructed, and the validation set was used for verification. The predictive value was compared with the TIDE score. Results CD86 was overexpressed in many cancers, and its overexpression was associated with a poor prognosis. CD86 expression was positively correlated with the expression of CTLA4, PDCD1LG2, IDO1, HAVCR2, and other genes and negatively correlated with CD86 methylation. The expression of CD86 in AML cell lines was detected by QRT-PCR and Western blot, and the results showed that CD86 was overexpressed in AML cell lines. Immune infiltration assays showed that CD86 expression was positively correlated with CD8 T cell, Dendritic cell, macrophage, NK cell, and Th1_cell and also with immune examination site, immune regulation, immunotherapy response, and TIICs. ssGSEA showed that CD86 was enriched in immune-related pathways, and CD86 expression was correlated with mutations in the genes RB1, ERBB2, and FANCC, which are associated with responses to radiotherapy and chemotherapy. The IRS score performed better than the TIDE website score. Conclusion CD86 appears to participate in immune invasion in AML and is an important player in the tumor microenvironment in this malignancy. At the same time, the IRS score developed by us has a good effect and may provide some support for the diagnosis of AML. Thus, CD86 may serve as a potential target for AML immunotherapy.
Collapse
Affiliation(s)
- Qianqian Zhang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ruixue Ma
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Huimin Chen
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wentong Guo
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhenyu Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou, Jiangsu, China
| | - Kailin Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou, Jiangsu, China
| | - Wei Chen
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou, Jiangsu, China
- Department of Hematology, The First People's Hospital of Suqian, Suqian, Jiangsu, China
| |
Collapse
|
29
|
Wang Y, Quesada AE, Zuo Z, Medeiros LJ, Yin CC, Li S, Xu J, Borthakur G, Li Y, Yang C, Abaza Y, Gao J, Lu X, You MJ, Zhang Y, Lin P. The Impact of Mutation of Myelodysplasia-Related Genes in De Novo Acute Myeloid Leukemia Carrying NPM1 Mutation. Cancers (Basel) 2022; 15:cancers15010198. [PMID: 36612194 PMCID: PMC9818485 DOI: 10.3390/cancers15010198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Background: The impact of gene mutations typically associated with myelodysplastic syndrome (MDS) in acute myeloid leukemia (AML) with NPM1 mutation is unclear. Methods: Using a cohort of 107 patients with NPM1-mutated AML treated with risk-adapted therapy, we compared survival outcomes of patients without MDS-related gene mutations (group A) with those carrying concurrent FLT3-ITD (group B) or with MDS-related gene mutations (group C). Minimal measurable disease (MMD) status assessed by multiparameter flow cytometry (MFC), polymerase chain reaction (PCR), and/or next-generation sequencing (NGS) were reviewed. Results: Among the 69 patients treated intensively, group C showed significantly inferior progression-free survival (PFS, p < 0.0001) but not overall survival (OS, p = 0.055) compared to group A. Though groups A and C had a similar MMD rate, group C patients had a higher relapse rate (p = 0.016). Relapse correlated with MMD status at the end of cycle 2 induction (p = 0.023). Survival of group C patients was similar to that of group B. Conclusion: MDS-related gene mutations are associated with an inferior survival in NPM1-mutated AML.
Collapse
Affiliation(s)
- Yi Wang
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andres E. Quesada
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhuang Zuo
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - L. Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - C. Cameron Yin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shaoying Li
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jie Xu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yisheng Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chao Yang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yasmin Abaza
- Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Juehua Gao
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Xinyan Lu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - M. James You
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yizhuo Zhang
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Correspondence: (Y.Z.); (P.L.); Tel.: +86-18622221239 (Y.Z.); +1-(713)-794-1746 (P.L.); Fax: +86-022-23340123 (Y.Z.); +1-(713)-563-2977 (P.L.)
| | - Pei Lin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (Y.Z.); (P.L.); Tel.: +86-18622221239 (Y.Z.); +1-(713)-794-1746 (P.L.); Fax: +86-022-23340123 (Y.Z.); +1-(713)-563-2977 (P.L.)
| |
Collapse
|
30
|
Wang SL. Genetic changes in refractory relapsed acute myeloid leukemia with NPM1 mutation: A case report. World J Clin Cases 2022; 10:13058-13063. [PMID: 36569004 PMCID: PMC9782936 DOI: 10.12998/wjcc.v10.i35.13058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Acute myeloid leukemia is often associated with gene mutation or chromosome abnormality, which is an important factor affecting prognosis. The 5-year survival rate of patients with acute myeloid leukemia without hematopoietic stem cell transplantation is low. For patients who only received chemotherapy and whose first remission lasted > 5 years, there are few reports of gene spectrum changes between relapse and initial diagnosis.
CASE SUMMARY We report a 41-year-old woman who presented to our hospital with complaints of dizziness, poor appetite and wasting. She was diagnosed with acute myelomonocytic leukemia (M4b) with NPM1 mutation and only received chemotherapy. Her first remission lasted > 5 years. New genetic variants were detected upon relapse that may have been related to relapse and chemotherapy resistance.
CONCLUSION Mutations in WT1 (R394fs/A387fs)/PTPN11 T73I/ETV6 S350P and JAK2 W659R may be related to relapse and chemotherapy resistance in acute myeloid leukemia.
Collapse
Affiliation(s)
- Shuang-Ling Wang
- Department of Hematology and Oncology, The Second Affiliated Hospital of Medical College of Shantou University, Shantou 515041, Guangdong Province, China
| |
Collapse
|
31
|
Yu S, Ye J, Wang Y, Lu T, Liu Y, Liu N, Zhang J, Lu F, Ma D, Gale RP, Ji C. DNA damage to bone marrow stromal cells by antileukemia drugs induces chemoresistance in acute myeloid leukemia via paracrine FGF10-FGFR2 signaling. J Biol Chem 2022; 299:102787. [PMID: 36509141 PMCID: PMC9860495 DOI: 10.1016/j.jbc.2022.102787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 12/14/2022] Open
Abstract
Chemoresistance remains a major challenge in the current treatment of acute myeloid leukemia (AML). The bone marrow microenvironment (BMM) plays a complex role in protecting leukemia cells from chemotherapeutics, and the mechanisms involved are not fully understood. Antileukemia drugs kill AML cells directly but also damage the BMM. Here, we determined antileukemia drugs induce DNA damage in bone marrow stromal cells (BMSCs), resulting in resistance of AML cell lines to adriamycin and idarubicin killing. Damaged BMSCs induced an inflammatory microenvironment through NF-κB; suppressing NF-κB with small molecule inhibitor Bay11-7082 attenuated the prosurvival effects of BMSCs on AML cell lines. Furthermore, we used an ex vivo functional screen of 507 chemokines and cytokines to identify 44 proteins secreted from damaged BMSCs. Fibroblast growth factor-10 (FGF10) was most strongly associated with chemoresistance in AML cell lines. Additionally, expression of FGF10 and its receptors, FGFR1 and FGFR2, was increased in AML patients after chemotherapy. FGFR1 and FGFR2 were also widely expressed by AML cell lines. FGF10-induced FGFR2 activation in AML cell lines operates by increasing P38 MAPK, AKT, ERK1/2, and STAT3 phosphorylation. FGFR2 inhibition with small molecules or gene silencing of FGFR2 inhibited proliferation and reverses drug resistance of AML cells by inhibiting P38 MAPK, AKT, and ERK1/2 signaling pathways. Finally, release of FGF10 was mediated by β-catenin signaling in damaged BMSCs. Our data indicate FGF10-FGFR2 signaling acts as an effector of damaged BMSC-mediated chemoresistance in AML cells, and FGFR2 inhibition can reverse stromal protection and AML cell chemoresistance in the BMM.
Collapse
Affiliation(s)
- Shuang Yu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, China
| | - Jingjing Ye
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, China
| | - Yingqiao Wang
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, China
| | - Ting Lu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, China
| | - Yan Liu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, China
| | - Na Liu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, China
| | - Jingru Zhang
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, China
| | - Fei Lu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, China
| | - Robert Peter Gale
- Haematology Section, Division of Experimental Medicine, Department of Medicine, Imperial College London, London, United Kingdom
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, China,For correspondence: Chunyan Ji
| |
Collapse
|
32
|
Metafuni E, Amato V, Giammarco S, Bellesi S, Rossi M, Minnella G, Frioni F, Limongiello MA, Pagano L, Bacigalupo A, Sica S, Chiusolo P. Pre-transplant gene profiling characterization by next-generation DNA sequencing might predict relapse occurrence after hematopoietic stem cell transplantation in patients affected by AML. Front Oncol 2022; 12:939819. [PMID: 36568206 PMCID: PMC9768016 DOI: 10.3389/fonc.2022.939819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/18/2022] [Indexed: 12/12/2022] Open
Abstract
Background In the last decade, many steps forward have been made in acute myeloid leukemia prognostic stratification, adding next-generation sequencing techniques to the conventional molecular assays. This resulted in the revision of the current risk classification and the introduction of new target therapies. Aims and methods We wanted to evaluate the prognostic impact of acute myeloid leukemia (AML) mutational pattern on relapse occurrence and survival after allogeneic stem cell transplantation. A specific next-generation sequencing (NGS) panel containing 26 genes was designed for the study. Ninety-six patients studied with NGS at diagnosis were included and retrospectively studied for post-transplant outcomes. Results Only eight patients did not show any mutations. Multivariate Cox regression revealed FLT3 (HR, 3.36; p=0.02), NRAS (HR, 4.78; p=0.01), TP53 (HR, 4.34; p=0.03), and WT1 (HR 5.97; p=0.005) mutations as predictive variables for relapse occurrence after transplantation. Other independent variables for relapse recurrence were donor age (HR, 0.97; p=0.04), the presence of an adverse cytogenetic risk at diagnosis (HR, 3.03; p=0.04), and the obtainment of complete remission of the disease before transplantation (HR, 0.23; p=0.001). Overall survival appeared to be affected only by grade 2-4 acute GvHD occurrence (HR, 2.29; p=0.05) and relapse occurrence (HR, 4.33; p=0.0001) in multivariate analysis. Conclusions The small number of patients and the retrospective design of the study might affect the resonance of our data. Although results on TP53, FLT3, and WT1 were comparable to previous reports, the interesting data on NRAS deserve attention.
Collapse
Affiliation(s)
- Elisabetta Metafuni
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Viviana Amato
- Division of Haemato-Oncology, IEO European Institute of Oncology Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Sabrina Giammarco
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Silvia Bellesi
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Monica Rossi
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Gessica Minnella
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Filippo Frioni
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Assunta Limongiello
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Livio Pagano
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy,Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Bacigalupo
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy,Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Simona Sica
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy,Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy,*Correspondence: Simona Sica,
| | - Patrizia Chiusolo
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy,Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
33
|
Zhang N, Liu X, Wu J, Li X, Wang Q, Chen G, Ma L, Wu S, Zhou F. Serum proteomics screening intercellular adhesion molecule-2 improves intermediate-risk stratification in acute myeloid leukemia. Ther Adv Hematol 2022; 13:20406207221132346. [PMID: 36324489 PMCID: PMC9619266 DOI: 10.1177/20406207221132346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/12/2022] [Indexed: 11/22/2022] Open
Abstract
Background The clinical risk classification of acute myelocytic leukemia (AML) is largely based on cytogenetic and molecular genetic detection. However, the optimal treatment for intermediate-risk AML patients remains uncertain. Further refinement and improvement of prognostic stratification are therefore necessary. Objectives The aim of this study was to identify serum protein biomarkers to refine risk stratification in AML patients. Design This study is a retrospective study. Methods Label-free proteomics was used to identify the differential abundance of serum proteins in AML patients. Transcriptomic data were combined to identify key altered markers that could indicate the risk rank of AML patients. The survival status was assessed by Kaplan-Meier and multivariate Cox regression analyses. Results We delineated serum protein expression in a population of AML patients. Many biological processes were influenced by the identified differentially expressed proteins. Association analysis of transcriptome data showed that intercellular adhesion molecule-2 (ICAM2) had a higher survival prediction value in the intermediate-risk AML group. ICAM2 was detrimental for intermediate-risk AML, regardless of whether patients received bone marrow transplantation. ICAM2 well distinguishes the intermediate group of patients, whose probability of survival is comparable to that of patients with the ELN-2017 according to the reference classification. In addition, newly established stratified clinical features were associated with leukemia stem cell scores. Conclusion The inclusion of ICAM2 expression into the AML risk classification according to ELN-2017 was a good way to transfer patients from three to two groups. Thus, providing more information for clinical decision-making to improve intermediate-risk stratification in AML patients.
Collapse
Affiliation(s)
| | | | - Jinxian Wu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinqi Li
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qian Wang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guopeng Chen
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Linlu Ma
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Sanyun Wu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | | |
Collapse
|
34
|
Larkin KT, Nicolet D, Kelly BJ, Mrózek K, LaHaye S, Miller KE, Wijeratne S, Wheeler G, Kohlschmidt J, Blachly JS, Mims AS, Walker CJ, Oakes CC, Orwick S, Boateng I, Buss J, Heyrosa A, Desai H, Carroll AJ, Blum W, Powell BL, Kolitz JE, Moore JO, Mayer RJ, Larson RA, Stone RM, Paskett ED, Byrd JC, Mardis ER, Eisfeld AK. High early death rates, treatment resistance, and short survival of Black adolescents and young adults with AML. Blood Adv 2022; 6:5570-5581. [PMID: 35788257 PMCID: PMC9577622 DOI: 10.1182/bloodadvances.2022007544] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/20/2022] [Indexed: 11/20/2022] Open
Abstract
Survival of patients with acute myeloid leukemia (AML) is inversely associated with age, but the impact of race on outcomes of adolescent and young adult (AYA; range, 18-39 years) patients is unknown. We compared survival of 89 non-Hispanic Black and 566 non-Hispanic White AYA patients with AML treated on frontline Cancer and Leukemia Group B/Alliance for Clinical Trials in Oncology protocols. Samples of 327 patients (50 Black and 277 White) were analyzed via targeted sequencing. Integrated genomic profiling was performed on select longitudinal samples. Black patients had worse outcomes, especially those aged 18 to 29 years, who had a higher early death rate (16% vs 3%; P=.002), lower complete remission rate (66% vs 83%; P=.01), and decreased overall survival (OS; 5-year rates: 22% vs 51%; P<.001) compared with White patients. Survival disparities persisted across cytogenetic groups: Black patients aged 18 to 29 years with non-core-binding factor (CBF)-AML had worse OS than White patients (5-year rates: 12% vs 44%; P<.001), including patients with cytogenetically normal AML (13% vs 50%; P<.003). Genetic features differed, including lower frequencies of normal karyotypes and NPM1 and biallelic CEBPA mutations, and higher frequencies of CBF rearrangements and ASXL1, BCOR, and KRAS mutations in Black patients. Integrated genomic analysis identified both known and novel somatic variants, and relative clonal stability at relapse. Reduced response rates to induction chemotherapy and leukemic clone persistence suggest a need for different treatment intensities and/or modalities in Black AYA patients with AML. Higher early death rates suggest a delay in diagnosis and treatment, calling for systematic changes to patient care.
Collapse
Affiliation(s)
- Karilyn T. Larkin
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Deedra Nicolet
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Alliance Statistics and Data Center, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Benjamin J. Kelly
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH
| | - Krzysztof Mrózek
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Stephanie LaHaye
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH
| | - Katherine E. Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH
| | - Saranga Wijeratne
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH
| | - Gregory Wheeler
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH
| | - Jessica Kohlschmidt
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Alliance Statistics and Data Center, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - James S. Blachly
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Alice S. Mims
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Christopher J. Walker
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Christopher C. Oakes
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Shelley Orwick
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Isaiah Boateng
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Jill Buss
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Adrienne Heyrosa
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Helee Desai
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Andrew J. Carroll
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - William Blum
- Emory University School of Medicine, Atlanta, GA
| | - Bayard L. Powell
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC
| | - Jonathan E. Kolitz
- Monter Cancer Center, Hofstra Northwell School of Medicine, Lake Success, NY
| | - Joseph O. Moore
- Duke Cancer Institute, Duke University Medical Center, Durham, NC
| | - Robert J. Mayer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | | | - Richard M. Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Electra D. Paskett
- Division of Cancer Prevention and Control, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
- The Center for Cancer Health Equity, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - John C. Byrd
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH
| | - Elaine R. Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH
| | - Ann-Kathrin Eisfeld
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| |
Collapse
|
35
|
Zhao Y, Niu LT, Hu LJ, Lv M. Comprehensive analysis of ECHDC3 as a potential biomarker and therapeutic target for acute myeloid leukemia: Bioinformatic analysis and experimental verification. Front Oncol 2022; 12:947492. [PMID: 36172164 PMCID: PMC9511173 DOI: 10.3389/fonc.2022.947492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundEnoyl-CoA hydratase domain containing 3 (ECHDC3) increased in CD34+ progenitor cells of acute myeloid leukemia (AML) cells after chemotherapy. However, the prognostic significance and function of ECHDC3 in AML remain to be clarified.MethodsIn the training cohort, 24 AML (non-acute promyelocytic leukemia, APL) patients were enrolled in Peking University People’s Hospital and tested for ECHDC3 in enriched CD34+ cells at diagnosis. In the validation set, 351 bone marrow RNA-seq data of non-APL AML were obtained by two independent online datasets (TCGA-LAML and BEAT-AML). LASSO regression model was conducted to a new prediction model of ECHDC3-related genes. In addition, the ECHDC3 signature was further explored by GO, KEGG, GSEA, and immuno-infiltration analysis. By RNA interference, the function of ECHDC3 in mitochondrial DNA (mt-DNA) transcriptome and chemoresistance was further explored, and the GSE52919 database re-verified the ECHDC3 chemoresistance feature.ResultsBy Kaplan-Meier analysis, patients with ECHDC3high demonstrated inferior overall survival (OS) compared to those with ECHDC3low both in the training (2-year OS, 55.6% vs. 100%, p = 0.011) and validation cohorts (5-year OS, 9.6% vs. 24.3%, p = 0.002). In addition, ECHDC3high predicted inferior OS in the subgroup of patients with ELN 2017 intermediated (int) risk (5-year OS, 9.5% vs. 26.3%, p = 0.039) or FLT3+NPM1− adverse (adv) risk (4-year OS, 6.4% vs. 31.8%, p = 0.003). In multivariate analysis, ECHDC3 was an independent risk factor of inferior OS (HR 1.159, 95% CI 1.013–1.326, p = 0.032). In the prediction model combining ECHDC3 and nine selected genes (RPS6KL1, RELL2, FAM64A, SPATS2L, MEIS3P1, CDCP1, CD276, IL1R2, and OLFML2A) by Lasso regression, patients with high risk showed inferior 5-year OS (9.3% vs. 23.5%, p < 0.001). Bioinformatic analysis suggested that ECHDC3 alters the bone marrow microenvironment by inducing NK, resting mast cell, and monocyte differentiation. Knocking down ECHDC3 in AML cells by RNAi promoted the death of leukemia cells with cytarabine and doxorubicin.ConclusionThese bioinformatic analyses and experimental verification indicated that high ECHDC3 expression might be a poor prognostic biomarker for non-APL AML, which might be a potential target for reverting chemoresistance.
Collapse
Affiliation(s)
| | | | | | - Meng Lv
- *Correspondence: Meng Lv, ; Li-Juan Hu,
| |
Collapse
|
36
|
A Focus on Intermediate-Risk Acute Myeloid Leukemia: Sub-Classification Updates and Therapeutic Challenges. Cancers (Basel) 2022; 14:cancers14174166. [PMID: 36077703 PMCID: PMC9454629 DOI: 10.3390/cancers14174166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Acute myeloid leukemia (AML) represents a heterogeneous group of hematopoietic neoplasms deriving from the abnormal proliferation of myeloid progenitors in the bone marrow. Patients with AML may have highly variable outcomes, which are generally dictated by individual clinical and genomic characteristics. As such, the European LeukemiaNet 2017 and 2022 guidelines categorize newly diagnosed AML into favorable-, intermediate-, and adverse-risk groups, based on their molecular and cytogenetic profiles. Nevertheless, the intermediate-risk category remains poorly defined, as many patients fall into this group as a result of their exclusion from the other two. Moreover, further genomic data with potential prognostic and therapeutic influences continue to emerge, though they are yet to be integrated into the diagnostic and prognostic models of AML. This review highlights the latest therapeutic advances and challenges that warrant refining the prognostic classification of intermediate-risk AML.
Collapse
|
37
|
Tao Y, Wei L, You H. Ferroptosis-related gene signature predicts the clinical outcome in pediatric acute myeloid leukemia patients and refines the 2017 ELN classification system. Front Mol Biosci 2022; 9:954524. [PMID: 36032681 PMCID: PMC9403410 DOI: 10.3389/fmolb.2022.954524] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
Background: The prognostic roles of ferroptosis-related mRNAs (FG) and lncRNAs (FL) in pediatric acute myeloid leukemia (P-AML) patients remain unclear. Methods: RNA-seq and clinical data of P-AML patients were downloaded from the TARGET project. Cox and LASSO regression analyses were performed to identify FG, FL, and FGL (combination of FG and FL) prognostic models, and their performances were compared. Tumor microenvironment, functional enrichment, mutation landscape, and anticancer drug sensitivity were analyzed. Results: An FGL model of 22 ferroptosis-related signatures was identified as an independent parameter, and it showed performance better than FG, FL, and four additional public prognostic models. The FGL model divided patients in the discovery cohort (N = 145), validation cohort (N = 111), combination cohort (N = 256), and intermediate-risk group (N = 103) defined by the 2017 European LeukemiaNet (ELN) classification system into two groups with distinct survival. The high-risk group was enriched in apoptosis, hypoxia, TNFA signaling via NFKB, reactive oxygen species pathway, oxidative phosphorylation, and p53 pathway and associated with low immunity, while patients in the low-risk group may benefit from anti-TIM3 antibodies. In addition, patients within the FGL high-risk group might benefit from treatment using SB505124_1194 and JAK_8517_1739. Conclusion: Our established FGL model may refine and provide a reference for clinical prognosis judgment and immunotherapies for P-AML patients.
Collapse
Affiliation(s)
- Yu Tao
- Department of Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Li Wei
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing, China
| | - Hua You
- Department of Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Hua You,
| |
Collapse
|
38
|
Matos S, Bernardo P, Esteves S, Botelho de Sousa A, Lemos M, Ribeiro P, Silva M, Nunes A, Lobato J, Frade MDJ, da Silva MG, Chacim S, Mariz J, Esteves G, Raposo J, Espadana A, Carda J, Barbosa P, Martins V, Carmo-Fonseca M, Desterro J. Screening a Targeted Panel of Genes by Next-Generation Sequencing Improves Risk Stratification in Real World Patients with Acute Myeloid Leukemia. Cancers (Basel) 2022; 14:3236. [PMID: 35805006 PMCID: PMC9265035 DOI: 10.3390/cancers14133236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
Although mutation profiling of defined genes is recommended for classification of acute myeloid leukemia (AML) patients, screening of targeted gene panels using next-generation sequencing (NGS) is not always routinely used as standard of care. The objective of this study was to prospectively assess whether extended molecular monitoring using NGS adds clinical value for risk assessment in real-world AML patients. We analyzed a cohort of 268 newly diagnosed AML patients. We compared the prognostic stratification of our study population according to the European LeukemiaNet recommendations, before and after the incorporation of the extended mutational profile information obtained by NGS. Without access to NGS data, 63 patients (23%) failed to be stratified into risk groups. After NGS data, only 27 patients (10%) failed risk stratification. Another 33 patients were re-classified as adverse-risk patients once the NGS data was incorporated. In total, access to NGS data refined risk assessment for 62 patients (23%). We further compared clinical outcomes with prognostic stratification, and observed unexpected outcomes associated with FLT3 mutations. In conclusion, this study demonstrates the prognostic utility of screening AML patients for multiple gene mutations by NGS and underscores the need for further studies to refine the current risk classification criteria.
Collapse
Affiliation(s)
- Sónia Matos
- GenoMed-Diagnósticos de Medicina Molecular SA, 1649-028 Lisboa, Portugal; (S.M.); (V.M.)
| | - Paulo Bernardo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (P.B.); (P.B.)
- Serviço de Hematologia Clínica, Hospital da Luz de Lisboa, 1500-650 Lisboa, Portugal
| | - Susana Esteves
- Unidade de Investigação Clínica, Instituto Português de Oncologia de Lisboa, Francisco Gentil, 1099-023 Lisboa, Portugal;
| | - Aida Botelho de Sousa
- Serviço de Hematologia, Centro Hospitalar Lisboa Central-Hospital de St. António dos Capuchos, 1150-315 Lisboa, Portugal; (A.B.d.S.); (M.L.); (P.R.); (M.S.)
| | - Marcos Lemos
- Serviço de Hematologia, Centro Hospitalar Lisboa Central-Hospital de St. António dos Capuchos, 1150-315 Lisboa, Portugal; (A.B.d.S.); (M.L.); (P.R.); (M.S.)
| | - Patrícia Ribeiro
- Serviço de Hematologia, Centro Hospitalar Lisboa Central-Hospital de St. António dos Capuchos, 1150-315 Lisboa, Portugal; (A.B.d.S.); (M.L.); (P.R.); (M.S.)
| | - Madalena Silva
- Serviço de Hematologia, Centro Hospitalar Lisboa Central-Hospital de St. António dos Capuchos, 1150-315 Lisboa, Portugal; (A.B.d.S.); (M.L.); (P.R.); (M.S.)
| | - Albertina Nunes
- Serviço de Hematologia, Instituto Português de Oncologia de Lisboa, Francisco Gentil, 1099-023 Lisboa, Portugal; (A.N.); (J.L.); (M.d.J.F.); (M.G.d.S.)
| | - Joana Lobato
- Serviço de Hematologia, Instituto Português de Oncologia de Lisboa, Francisco Gentil, 1099-023 Lisboa, Portugal; (A.N.); (J.L.); (M.d.J.F.); (M.G.d.S.)
| | - Maria de Jesus Frade
- Serviço de Hematologia, Instituto Português de Oncologia de Lisboa, Francisco Gentil, 1099-023 Lisboa, Portugal; (A.N.); (J.L.); (M.d.J.F.); (M.G.d.S.)
| | - Maria Gomes da Silva
- Serviço de Hematologia, Instituto Português de Oncologia de Lisboa, Francisco Gentil, 1099-023 Lisboa, Portugal; (A.N.); (J.L.); (M.d.J.F.); (M.G.d.S.)
| | - Sérgio Chacim
- Serviço de Hematologia, Instituto Português de Oncologia do Porto, 4200-072 Porto, Portugal; (S.C.); (J.M.)
| | - José Mariz
- Serviço de Hematologia, Instituto Português de Oncologia do Porto, 4200-072 Porto, Portugal; (S.C.); (J.M.)
| | - Graça Esteves
- Serviço de Hematologia e Transplantação de Medula, Centro Hospitalar Lisboa Norte-Hospital de Santa Maria, 1649-028 Lisboa, Portugal; (G.E.); (J.R.)
| | - João Raposo
- Serviço de Hematologia e Transplantação de Medula, Centro Hospitalar Lisboa Norte-Hospital de Santa Maria, 1649-028 Lisboa, Portugal; (G.E.); (J.R.)
| | - Ana Espadana
- Serviço de Hematologia Clínica, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal; (A.E.); (J.C.)
| | - José Carda
- Serviço de Hematologia Clínica, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal; (A.E.); (J.C.)
| | - Pedro Barbosa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (P.B.); (P.B.)
| | - Vânia Martins
- GenoMed-Diagnósticos de Medicina Molecular SA, 1649-028 Lisboa, Portugal; (S.M.); (V.M.)
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (P.B.); (P.B.)
| | - Joana Desterro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (P.B.); (P.B.)
- Serviço de Hematologia, Instituto Português de Oncologia de Lisboa, Francisco Gentil, 1099-023 Lisboa, Portugal; (A.N.); (J.L.); (M.d.J.F.); (M.G.d.S.)
| |
Collapse
|
39
|
Venetoclax plus 3 + 7 daunorubicin and cytarabine chemotherapy as first-line treatment for adults with acute myeloid leukaemia: a multicentre, single-arm, phase 2 trial. THE LANCET HAEMATOLOGY 2022; 9:e415-e424. [DOI: 10.1016/s2352-3026(22)00106-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 12/17/2022]
|
40
|
Shin DY. Human acute myeloid leukemia stem cells: evolution of concept. Blood Res 2022; 57:67-74. [PMID: 35483929 PMCID: PMC9057671 DOI: 10.5045/br.2022.2021221] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/23/2022] [Accepted: 03/25/2022] [Indexed: 11/17/2022] Open
Abstract
The history of human acute myeloid leukemia stem cells (AMLSCs) began in a seminal study performed by Lapidot and Dick, proving that only CD34+CD38- human primary acute myeloid leukemia (AML) cells can repopulate in severe combined immunodeficient mice. The concept of leukemic stem cells (LSCs) has impeded a huge change in the treatment strategy against AML from killing proliferating leukemic cells to eradicating quiescent/dormant LSCs. As next-generation sequencing technologies have developed, multiple and recurrent genetic mutations have been discovered in large cohorts of patients with AML, and the updated understanding of leukemogenesis has improved the old concept of LSC to a revised version of a serial developmental model of LSC; that is, pre-LSCs are generated as seeds by the first hit on epigenetic regulators, and then, leukemia-initiating LSCs emerge from seeds by the second hits on genes involved in transcription and signaling. Dreams for universal and targetable AMLSC biomarker sparing healthy hematopoietic stem cells have weakened after the confrontation of significant heterogeneity of AMLSCs from genomic and immunophenotypic viewpoints. However, there is still hope for effective targets for AMLSCs since there is evidence that grouped gene signatures, such as 17-gene LSC score, and common epigenetic signatures, such as HOXA clusters, independent of various gene mutations, exist. Recently, the LSC niche in the bone marrow has been actively investigated and has expanded our knowledge of the physiology and vulnerability of AMLSCs. Presently, an applicable treatment that always works in AMLSCs is lacking. However, we will find a way, we always have.
Collapse
Affiliation(s)
- Dong-Yeop Shin
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Center for Medical Innovation, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
41
|
Impact of IDH1 and IDH2 mutation detection at diagnosis and in remission in patients with AML receiving allogeneic transplantation. Blood Adv 2022; 7:436-444. [PMID: 35381077 PMCID: PMC9979713 DOI: 10.1182/bloodadvances.2021005789] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/27/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023] Open
Abstract
Somatic mutations in the isocitrate dehydrogenase 1 and 2 genes (IDH1 and IDH2) are common in acute myeloid leukemia (AML). The prognostic impact of the presence of IDH mutations may be influenced by the comutational status, the specific location of the mutation (ie, IDH1 R132, IDH2 R140, and IDH2 R172) at diagnosis, and the dynamics of the mutation burden during disease course. Even though many patients with IDH-mutated AML are consolidated by hematopoietic stem cell transplantation (HSCT), the underlying biology and prognostic consequences remain largely unknown. Here, we present a large analysis of 292 patients with AML who received HSCT in complete remission (CR) or CR with incomplete peripheral recovery (CRi), in which we assessed the IDH mutation status at diagnosis and HSCT as a potential marker for measurable residual disease (MRD). About a quarter of all patients were IDH-mutated at diagnosis. The diagnostic presence of IDH mutations in AML did not have a significant prognostic impact when consolidated with HSCT. However, IDH1 R132 and IDH2 R172 MRD positivity in remission at HSCT associated with an increased risk of relapse, while IDH2 R140 mutations did not. The IDH2 R140 variant allele frequency (VAF) at diagnosis was higher, clustering around 50%, and the mutation clearance at HSCT in morphologic remission was much lower compared with IDH1 R132 and IDH2 R172. In our cohort, IDH2 R140 mutations behaved more like a clonal hematopoiesis-related aberration, while IDH1 R132 and IDH2 R172 harbored AML disease-specific features.
Collapse
|
42
|
Shen Q, Feng Y, Gong X, Jia Y, Gao Q, Jiao X, Qi S, Liu X, Wei H, Huang B, Zhao N, Song X, Ma Y, Liang S, Zhang D, Qin L, Wang Y, Qu S, Zou Y, Chen Y, Guo Y, Yi S, An G, Jiao Z, Zhang S, Li L, Yan J, Wang H, Song Z, Mi Y, Qiu L, Zhu X, Wang J, Xiao Z, Chen J. A Phenogenetic Axis that Modulates Clinical Manifestation and Predicts Treatment Outcome in Primary Myeloid Neoplasms. CANCER RESEARCH COMMUNICATIONS 2022; 2:258-276. [PMID: 36873623 PMCID: PMC9981215 DOI: 10.1158/2767-9764.crc-21-0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/02/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022]
Abstract
Although the concept of "myeloid neoplasm continuum" has long been proposed, few comparative genomics studies directly tested this hypothesis. Here we report a multi-modal data analysis of 730 consecutive newly diagnosed patients with primary myeloid neoplasm, along with 462 lymphoid neoplasm cases serving as the outgroup. Our study identified a "Pan-Myeloid Axis" along which patients, genes, and phenotypic features were all aligned in sequential order. Utilizing relational information of gene mutations along the Pan-Myeloid Axis improved prognostic accuracy for complete remission and overall survival in adult patients of de novo acute myeloid leukemia and for complete remission in adult patients of myelodysplastic syndromes with excess blasts. We submit that better understanding of the myeloid neoplasm continuum might shed light on how treatment should be tailored to individual diseases. Significance The current criteria for disease diagnosis treat myeloid neoplasms as a group of distinct, separate diseases. This work provides genomics evidence for a "myeloid neoplasm continuum" and suggests that boundaries between myeloid neoplastic diseases are much more blurred than previously thought.
Collapse
Affiliation(s)
- Qiujin Shen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yahui Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaowen Gong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yujiao Jia
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Qingyan Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | | | - Saibing Qi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xueou Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Hui Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Bingqing Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ningning Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaoqiang Song
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yueshen Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | | | - Donglei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Li Qin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ying Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Shiqiang Qu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yao Zou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yumei Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ye Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Shuhua Yi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Gang An
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | | | - Song Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Linfeng Li
- Yidu Cloud Technology Inc., Beijing, China
| | - Jun Yan
- Yidu Cloud Technology Inc., Beijing, China
| | - Huijun Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zhen Song
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yingchang Mi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zhijian Xiao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Junren Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| |
Collapse
|
43
|
Schmucker AM, Leiby BE, Wilde L. Validation of AML-score in Older Adults Receiving CPX-351 Intensive Induction Chemotherapy for Treatment of Secondary Acute Myeloid Leukemia. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:e206-e212. [PMID: 34686446 DOI: 10.1016/j.clml.2021.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/13/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
INTRODUCTION/BACKGROUND The AML-Score has been validated in patients receiving traditional induction chemotherapies but not CPX-351. We conducted a retrospective analysis to evaluate, among patients with secondary acute myeloid leukemia who received intensive induction with CPX-351, if the AML-Score associates with (1) complete remission (CR) and (2) early mortality (EM) within 60 days of induction. MATERIALS AND METHODS We abstracted demographic and clinical data from consecutive patients receiving CPX-351 at Sidney Kimmel Cancer Center at Thomas Jefferson University Hospital between September 2017 and November 2020. We used descriptive statistics and receiver operating curves to evaluate the relationship between AML-Score and rates of CR and EM. RESULTS In total, 40 patients were included. 27 (67.5%) were male, 27 (67.5%) were white, 36 (90.0%) were not Hispanic or Latino, and 29 (72.5%) were aged ≥60 years. Twenty-seven patients (67.5%) had a CR, and 4 (10%) experienced EM. Observed rates of CR and EM generally increased with increasing predicted risk. The area under the curve was 0.75 (95% CI 0.60-0.90) for CR and 0.82 (95% CI 0.68-0.96) for EM. CONCLUSION The AML-Score tool trends in the correct direction for predicting CR and EM, and thus may facilitate oncologist prognostication and treatment planning for patients receiving CPX-351. However, its clinical utility is limited by its underestimation of the risk of CR and overestimation of the risk of EM. Further validation in a larger cohort is needed to calculate accurate point estimates of CR and EM risk in this population.
Collapse
Affiliation(s)
- Abigail M Schmucker
- Department of Internal Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Benjamin E Leiby
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Lindsay Wilde
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA.
| |
Collapse
|
44
|
Fu W, Huang A, Xu L, Peng Y, Gao L, Chen L, Chen J, Tang G, Yang J, Ni X. Cytogenetic abnormalities in NPM1-mutated acute myeloid leukemia. Leuk Lymphoma 2022; 63:1956-1963. [PMID: 35227153 DOI: 10.1080/10428194.2022.2045600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
NPM1mut acute myeloid leukemia (AML) has been identified as a distinct entity of myeloid neoplasms according to the 2017 European LeukemiaNet (ELN) guidelines. It confers a favorable prognosis regardless of cytogenetic abnormalities. We evaluated 418 newly diagnosed AML patients to test the validity of this hypothesis. Seventy-four patients with NPM1mut AML showed a good response to induction and a relatively favorable prognosis. Abnormal karyotypes were observed in 15 patients. Chromosomal abnormalities were significantly associated with a worse prognosis in NPM1mut AML patients (5-year overall survival (OS): 38.9 ± 12.9%, p = .037; event-free survival (EFS): 33.3 ± 12.2%, p = .043, respectively). Four patients with abnormal karyotypes who underwent allogeneic hematopoietic stem cell transplantation (alloHSCT) during CR1 had longer survival than those who received chemotherapy only. Multivariable analysis revealed abnormal karyotypes independently predicted OS and EFS among NPM1mut AML patients. In summary, cytogenetic abnormalities are strong prognostic indicators in NPM1mut AML. Therefore, they should be classified accordingly, and alloHSCT should be performed on selected patients during CR1.
Collapse
Affiliation(s)
- Weijia Fu
- Department of Hematology, Institute of Hematology, Changhai Hospital 200433, Shanghai, China
| | - Aijie Huang
- Department of Hematology, Institute of Hematology, Changhai Hospital 200433, Shanghai, China
| | - Lili Xu
- Department of Hematology, Institute of Hematology, Changhai Hospital 200433, Shanghai, China
| | - Yanni Peng
- Department of Hematology, Institute of Hematology, Changhai Hospital 200433, Shanghai, China
| | - Lei Gao
- Department of Hematology, Institute of Hematology, Changhai Hospital 200433, Shanghai, China
| | - Li Chen
- Department of Hematology, Institute of Hematology, Changhai Hospital 200433, Shanghai, China
| | - Jie Chen
- Department of Hematology, Institute of Hematology, Changhai Hospital 200433, Shanghai, China
| | - Gusheng Tang
- Department of Hematology, Institute of Hematology, Changhai Hospital 200433, Shanghai, China
| | - Jianmin Yang
- Department of Hematology, Institute of Hematology, Changhai Hospital 200433, Shanghai, China
| | - Xiong Ni
- Department of Hematology, Institute of Hematology, Changhai Hospital 200433, Shanghai, China
| |
Collapse
|
45
|
Germline ATG2B/GSKIP-containing 14q32 duplication predisposes to early clonal hematopoiesis leading to myeloid neoplasms. Leukemia 2022; 36:126-137. [PMID: 34172895 DOI: 10.1038/s41375-021-01319-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/26/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023]
Abstract
The germline predisposition associated with the autosomal dominant inheritance of the 14q32 duplication implicating ATG2B/GSKIP genes is characterized by a wide clinical spectrum of myeloid neoplasms. We analyzed 12 asymptomatic carriers and 52 patients aged 18-74 years from six families, by targeted sequencing of 41 genes commonly mutated in myeloid malignancies. We found that 75% of healthy carriers displayed early clonal hematopoiesis mainly driven by TET2 mutations. Molecular landscapes of patients revealed two distinct routes of clonal expansion and leukemogenesis. The first route is characterized by the clonal dominance of myeloproliferative neoplasms (MPN)-driver events associated with TET2 mutations in half of cases and mutations affecting splicing and/or the RAS pathway in one-third of cases, leading to the early development of MPN, mostly essential thrombocythemia, with a high risk of transformation (50% after 10 years). The second route is distinguished by the absence of MPN-driver mutations and leads to AML without prior MPN. These patients mostly harbored a genomic landscape specific to acute myeloid leukemia secondary to myelodysplastic syndrome. An unexpected result was the total absence of DNMT3A mutations in this cohort. Our results suggest that the germline duplication constitutively mimics hematopoiesis aging by favoring TET2 clonal hematopoiesis.
Collapse
|
46
|
European LeukemiaNet 2017 risk stratification for acute myeloid leukemia: validation in a risk-adapted protocol. Blood Adv 2021; 6:1193-1206. [PMID: 34911079 PMCID: PMC8864653 DOI: 10.1182/bloodadvances.2021005585] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/08/2021] [Indexed: 11/20/2022] Open
Abstract
The ELN 2017 classification has been validated in a risk-adapted intensive protocol, supporting its utility to predict outcome. Within the ELN 2017 adverse group, there is a subset of patients (inv(3) and TP53 abnormalities) with a particularly poor prognosis.
The 2017 European LeukemiaNet (ELN 2017) guidelines for the diagnosis and management of acute myeloid leukemia (AML) have become fundamental guidelines to assess the prognosis and postremission therapy of patients. However, they have been retrospectively validated in few studies with patients included in different treatment protocols. We analyzed 861 patients included in the Cooperativo Para el Estudio y Tratamiento de las Leucemias Agudas y Mielodisplasias-12 risk-adapted protocol, which indicates cytarabine-based consolidation for patients allocated to the ELN 2017 favorable-risk group, whereas it recommends allogeneic stem cell transplantation (alloSCT) as a postremission strategy for the ELN 2017 intermediate- and adverse-risk groups. We retrospectively classified patients according to the ELN 2017, with 327 (48%), 109 (16%), and 245 (36%) patients allocated to the favorable-, intermediate-, and adverse-risk group, respectively. The 2- and 5-year overall survival (OS) rates were 77% and 70% for favorable-risk patients, 52% and 46% for intermediate-risk patients, and 33% and 23% for adverse-risk patients, respectively. Furthermore, we identified a subgroup of patients within the adverse group (inv(3)/t(3;3), complex karyotype, and/or TP53 mutation/17p abnormality) with a particularly poor outcome, with a 2-year OS of 15%. Our study validates the ELN 2017 risk stratification in a large cohort of patients treated with an ELN-2017 risk-adapted protocol based on alloSCT after remission for nonfavorable ELN subgroups and identifies a genetic subset with a very poor outcome that warrants investigation of novel strategies.
Collapse
|
47
|
Friedman R. The molecular mechanisms behind activation of FLT3 in acute myeloid leukemia and resistance to therapy by selective inhibitors. Biochim Biophys Acta Rev Cancer 2021; 1877:188666. [PMID: 34896257 DOI: 10.1016/j.bbcan.2021.188666] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukemia is an aggressive cancer, which, in spite of increasingly better understanding of its genetic background remains difficult to treat. Mutations in the FLT3 gene are observed in ≈30% of the patients. Most of these mutations are internal tandem duplications (ITDs) of a sequence within the protein coding region, an activation mechanism that is almost non-existent with other genes and cancers. As patients each carry their own unique set of mutations, it is challenging to understand how ITDs activate the protein, and ascertain the risk for each individual patient. Available treatment options are limited due to development of drug resistance. Here, recent studies are reviewed that help to better understand the molecular mechanism behind activation of the FLT3 protein due to mutations. It is argued that difference in mutation sequences and especially location might be coupled to prognosis. When it comes to FLT3 inhibitors, key differences between them can be attributed to the mode of inhibition (type-1 and type-2 inhibitors), effective inhibitory coefficient in the blood plasma and off-target binding. Accounting for the position and length of insertions may in the future be used to predict prognosis and rationalise treatment. Development of new inhibitors must take into account the potential for resistance mutations. Inhibitors aimed at multiple specific targets are currently being developed. These, and as well as combination therapies will hopefully lead to longer periods during which targeted FLT3 therapy will remain effective.
Collapse
Affiliation(s)
- Ran Friedman
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnæus University, 391 82 Kalmar, Sweden.
| |
Collapse
|
48
|
Pimenta DB, Varela VA, Datoguia TS, Caraciolo VB, Lopes GH, Pereira WO. The Bone Marrow Microenvironment Mechanisms in Acute Myeloid Leukemia. Front Cell Dev Biol 2021; 9:764698. [PMID: 34869355 PMCID: PMC8639599 DOI: 10.3389/fcell.2021.764698] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
Bone marrow (BM) is a highly complex tissue that provides important regulatory signals to orchestrate hematopoiesis. Resident and transient cells occupy and interact with some well characterized niches to produce molecular and cellular mechanisms that interfere with differentiation, migration, survival, and proliferation in this microenvironment. The acute myeloid leukemia (AML), the most common and severe hematological neoplasm in adults, arises and develop in the BM. The osteoblastic, vascular, and reticular niches provide surface co-receptors, soluble factors, cytokines, and chemokines that mediate important functions on hematopoietic cells and leukemic blasts. There are some evidences of how AML modify the architecture and function of these three BM niches, but it has been still unclear how essential those modifications are to maintain AML development. Basic studies and clinical trials have been suggesting that disturbing specific cells and molecules into the BM niches might be able to impair leukemia competencies. Either through niche-specific molecule inhibition alone or in combination with more traditional drugs, the bone marrow microenvironment is currently considered the potential target for new strategies to treat AML patients. This review describes the cellular and molecular constitution of the BM niches under healthy and AML conditions, presenting this anatomical compartment by a new perspective: as a prospective target for current and next generation therapies.
Collapse
Affiliation(s)
- Débora Bifano Pimenta
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Vanessa Araujo Varela
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Tarcila Santos Datoguia
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Victória Bulcão Caraciolo
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Gabriel Herculano Lopes
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Welbert Oliveira Pereira
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
49
|
Sajjadi-Dokht M, Merza Mohamad TA, Rahman HS, Maashi MS, Danshina S, Shomali N, Solali S, Marofi F, Zeinalzadeh E, Akbari M, Adili A, Aslaminabad R, Hagh MF, Jarahian M. MicroRNAs and JAK/STAT3 signaling: A new promising therapeutic axis in blood cancers. Genes Dis 2021; 9:849-867. [PMID: 35685482 PMCID: PMC9170603 DOI: 10.1016/j.gendis.2021.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/16/2021] [Accepted: 10/22/2021] [Indexed: 11/27/2022] Open
Abstract
Blood disorders include a wide spectrum of blood-associated malignancies resulting from inherited or acquired defects. The ineffectiveness of existing therapies against blood disorders arises from different reasons, one of which is drug resistance, so different types of leukemia may show different responses to treatment. Leukemia occurs for a variety of genetic and acquired reasons, leading to uncontrolled proliferation in one or more cell lines. Regarding the genetic defects, oncogene signal transducer and activator of transcription (STAT) family transcription factor, especially STAT3, play an essential role in hematological disorders onset and progress upon mutations, dysfunction, or hyperactivity. Besides, microRNAs, as biological molecules, has been shown to play a dual role in either tumorigenesis and tumor suppression in various cancers. Besides, a strong association between STAT3 and miRNA has been reported. For example, miRNAs can regulate STAT3 via targeting its upstream mediators such as IL6, IL9, and JAKs or directly binding to the STAT3 gene. On the other hand, STAT3 can regulate miRNAs. In this review study, we aimed to determine the role of either microRNAs and STAT3 along with their effect on one another's activity and function in hematological malignancies.
Collapse
|
50
|
Zhou F, Chen B. Prognostic significance of ferroptosis-related genes and their methylation in AML. Hematology 2021; 26:919-930. [PMID: 34789073 DOI: 10.1080/16078454.2021.1996055] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Ferroptosis involves in the development and therapeutic response of various types of tumors. This study aims to explore ferroptosis-related prognostic genes that could further accurately stratify AML patients. METHODS We investigated the prognosis significance of ferroptosis-related genes in AML by Univariate and multivariate Cox proportional hazards regression analyses. With the methylation data of TCGA samples, we looked for methylation sites associated with prognostic genes and compared the correlation between methylation and mRNA expression. R software and 'edgeR' packages were used to identify the DEGs between the high-and-low-risk groups divided by the FRPGs prognosis model and then run GO enrichment, KEGG pathway, and PPI network. RESULTS We found a prognostic risk model that included AKR1C2 and SOCS1 predicted outcomes in AML patients. Methylation analysis showed that AKR1C2 and SOCS1 are negatively regulated by their methylation, leading to their low expression in AML patients. Besides, both decreased SOCS1 expression and hypermethylation predicted favorable OS and PFS in AML patients. Finally, this prognostic risk model exhibited a close correlation with several clinical features, especially with age (P=0.005), cytogenetic type (P=0.031), risk_cytogenetic (P=0.001), and risk_molecular (P<0.001). Functional enrichment analysis showed that DEGs are most enriched in the regulation of cell death and the PI3K-Akt signaling pathway. CONCLUSION AKR1C2 and SOCS1 are promising biomarkers for predicting prognosis in patients with AML.
Collapse
Affiliation(s)
- Fang Zhou
- Medical School, Southeast University, Nanjing, Jiangsu Province, People's Republic of China
| | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu Province, People's Republic of China
| |
Collapse
|