1
|
Zhang Y, Xu Q, Gao Z, Zhang H, Xie X, Li M. High-throughput screening for optimizing adoptive T cell therapies. Exp Hematol Oncol 2024; 13:113. [PMID: 39538305 PMCID: PMC11562648 DOI: 10.1186/s40164-024-00580-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Adoptive T cell therapy is a pivotal strategy in cancer immunotherapy, demonstrating potent clinical efficacy. However, its limited durability often results in primary resistance. High-throughput screening technologies, which include both genetic and non-genetic approaches, facilitate the optimization of adoptive T cell therapies by enabling the selection of biologically significant targets or substances from extensive libraries. In this review, we examine advancements in high-throughput screening technologies and their applications in adoptive T cell therapies. We highlight the use of genetic screening for T cells, tumor cells, and other promising combination strategies, and elucidate the role of non-genetic screening in identifying small molecules and targeted delivery systems relevant to adoptive T cell therapies, providing guidance for future research and clinical applications.
Collapse
Affiliation(s)
- Yuchen Zhang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Qinglong Xu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Zhifei Gao
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Honghao Zhang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Xiaoling Xie
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China.
| | - Meifang Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China.
| |
Collapse
|
2
|
Guo J, Wu Q, Li H, Liang C, Dai J, Zhang S, Dai C, Zhang J, Wen Y, Yang W. Preclinical delayed toxicity studies of BCMA CAR T-cell injection in B-NDG mice with multiple myeloma. Front Immunol 2024; 15:1435934. [PMID: 39606226 PMCID: PMC11598525 DOI: 10.3389/fimmu.2024.1435934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/23/2024] [Indexed: 11/29/2024] Open
Abstract
Purpose Based on the efficacy data from the previous study of B-cell maturation antigen (BCMA) chimeric antigen receptor (CAR) T-cell injection, we further examined the delayed toxicity for 8 weeks after a single dose of BCMA CAR T-cell injection to observe possible toxic reactions. Methods B-NDG mice transplanted with multiple myeloma (MM) cells were given a single dose of BCMA CAR T-cell injection at two dosages or human normal T cells and then subjected to examinations including clinical signs, weight and food intake measurements, haematology, blood biochemical analysis, cytokine assay, T-lymphocyte subpopulation quantification and histopathology on days 28 and 56 after dosing. In addition, quantitative polymerase chain reaction (qPCR) was used to quantify DNA fragments in different tissues to assess the tissue distribution of CAR and provide a basis for its preclinical safety evaluation and clinical dosing. Results In the delayed toxicity study, no mortality or significant toxic effects such as reductions in food intake, body weight, relevant biochemical parameters and target organ weights were observed in the BCMA CAR T-cell-treated groups. Compared to the model group, restorative changes in clinical signs and clinicopathology indicating therapeutic effects were seen in the BCMA CAR T-cell-treated groups. Human-derived cytokines interleukin-2 (IL-2), IL-4, IL-6, IL-12, IL-10, tumor necrosis factor α (TNF-α), and interferon-γ (IFN-γ) could be detected in all cancer cell-bearing mice by cytokine level measurement. IFN-γ levels showed a geometric increase due to the graft versus host disease (GVHD) response induced in the mice, while the levels of the other cytokines did not show significant changes. Histopathological examination indicated that the BCMA CAR T-cell treatment groups showed mixed cellular infiltration of human-derived T cells, cancer cells, and inflammatory cells in several target organs including the liver, spleen, lung, and kidney, and some of them showed mild tissue damage, but the number of the animals and the severity of damage were significantly less than those of the T-cell control group as well as the model group. The results of the tissue distribution study showed that BCMA CAR T cells were mainly concentrated in the kidney, lung, bone marrow and the related immune organs/tissues, and the distribution of BCMA CAR T cells was highly consistent with that of MM cells, suggesting that BCMA CAR T cells could follow the cancer cells during metastatic targeting of the tissues. Conclusions The present study demonstrated a low toxicity of BCMA CAR T-cell injection, with manageable side effects and good anticancer activity and without observable adverse effects. This study provides data to support future clinical studies of BCMA CAR T-cell injection for MM.
Collapse
Affiliation(s)
- Jianmin Guo
- Division of Life Science and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, Hong Kong SAR, China
- Guangzhou Bay Area Institute of Biomedicine, Guangdong Lewwin Pharmaceutical Research Institute Co.,Ltd., Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangdong Engineering Research Center for Innovative Drug Evaluation and Research, Guangzhou, China
- Guangdong Engineering Research Center for Cellular and Genetic Therapy Innovative Drugs, Shenzhen, China
| | - Qiqi Wu
- Guangzhou Bay Area Institute of Biomedicine, Guangdong Lewwin Pharmaceutical Research Institute Co.,Ltd., Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangdong Engineering Research Center for Innovative Drug Evaluation and Research, Guangzhou, China
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Hongjian Li
- Guangdong Engineering Research Center for Cellular and Genetic Therapy Innovative Drugs, Shenzhen, China
- Shenzhen Pregene Biopharma Company Ltd., Research and Development (R&D) Department, Shenzhen, China
| | - Chun Liang
- Division of Life Science and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, Hong Kong SAR, China
| | - Jinlong Dai
- Guangzhou Bay Area Institute of Biomedicine, Guangdong Lewwin Pharmaceutical Research Institute Co.,Ltd., Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangdong Engineering Research Center for Innovative Drug Evaluation and Research, Guangzhou, China
- Guangdong Engineering Research Center for Cellular and Genetic Therapy Innovative Drugs, Shenzhen, China
| | - Shuren Zhang
- Guangzhou Bay Area Institute of Biomedicine, Guangdong Lewwin Pharmaceutical Research Institute Co.,Ltd., Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangdong Engineering Research Center for Innovative Drug Evaluation and Research, Guangzhou, China
- Guangdong Engineering Research Center for Cellular and Genetic Therapy Innovative Drugs, Shenzhen, China
| | - Cailing Dai
- Guangzhou Bay Area Institute of Biomedicine, Guangdong Lewwin Pharmaceutical Research Institute Co.,Ltd., Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangdong Engineering Research Center for Innovative Drug Evaluation and Research, Guangzhou, China
- Guangdong Engineering Research Center for Cellular and Genetic Therapy Innovative Drugs, Shenzhen, China
| | - Jishuai Zhang
- Guangzhou Bay Area Institute of Biomedicine, Guangdong Lewwin Pharmaceutical Research Institute Co.,Ltd., Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangdong Engineering Research Center for Innovative Drug Evaluation and Research, Guangzhou, China
- Guangdong Engineering Research Center for Cellular and Genetic Therapy Innovative Drugs, Shenzhen, China
| | - Yuying Wen
- Guangzhou Bay Area Institute of Biomedicine, Guangdong Lewwin Pharmaceutical Research Institute Co.,Ltd., Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangdong Engineering Research Center for Innovative Drug Evaluation and Research, Guangzhou, China
- Guangdong Engineering Research Center for Cellular and Genetic Therapy Innovative Drugs, Shenzhen, China
| | - Wei Yang
- Division of Life Science and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, Hong Kong SAR, China
- Guangzhou Bay Area Institute of Biomedicine, Guangdong Lewwin Pharmaceutical Research Institute Co.,Ltd., Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangdong Engineering Research Center for Innovative Drug Evaluation and Research, Guangzhou, China
- Guangdong Engineering Research Center for Cellular and Genetic Therapy Innovative Drugs, Shenzhen, China
| |
Collapse
|
3
|
English EP, Swingler RN, Patwa S, Tosun M, Howard JF, Miljković MD, Jewell CM. Engineering CAR-T therapies for autoimmune disease and beyond. Sci Transl Med 2024; 16:eado2084. [PMID: 39475572 DOI: 10.1126/scitranslmed.ado2084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/15/2024] [Accepted: 07/09/2024] [Indexed: 12/13/2024]
Abstract
Chimeric antigen receptor-T cell (CAR-T) therapy has transformed the management of refractory hematological malignancies. Now that targeting pathogenic cells of interest with antigen-directed cytotoxic T lymphocytes is possible, the field is expanding the reach of CAR-T therapy beyond oncology. Recently, breakthrough progress has been made in the application of CAR-T technology to autoimmune diseases, exploiting the same validated targets that were used by pioneering CAR-T therapies in hematology. Here, we discuss recent advances and outcomes that are paving the way for extension to new therapeutic areas, including autoimmunity.
Collapse
Affiliation(s)
| | | | - Simran Patwa
- Cartesian Therapeutics, Gaithersburg, MD 20878, USA
| | - Mehmet Tosun
- Cartesian Therapeutics, Gaithersburg, MD 20878, USA
| | - James F Howard
- University of North Carolina, Chapel Hill, NC 27514, USA
| | | | | |
Collapse
|
4
|
Pu J, Liu T, Sharma A, Jiang L, Wei F, Ren X, Schmidt-Wolf IGH, Hou J. Advances in adoptive cellular immunotherapy and therapeutic breakthroughs in multiple myeloma. Exp Hematol Oncol 2024; 13:105. [PMID: 39468695 PMCID: PMC11514856 DOI: 10.1186/s40164-024-00576-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
The basic idea of modulating the immune system to better recognize and fight tumor cells has led to the successful introduction of adoptive cellular immunotherapy (ACT). ACT-based treatment regimens, in which the patient's own immune cells are isolated and subsequently expanded (ex vivo) and reinfused, have also contributed significantly to the development of a personalized treatment strategy. Complementing this, the unprecedented advances in ACTs as chimeric antigen receptor (CAR)-T cell therapies and their derivatives such as CAR-NK, CAR-macrophages, CAR-γδT and CAR-NKT have further maximized the therapeutic outcomes. Herein, we provide a comprehensive overview of the development of ACTs in multiple myeloma (MM) and outline how they have evolved from an experimental form to a mainstay of standard clinical settings. Besides, we provide insights into cytokine-induced killer cell (CIK) therapy, an alternative form of ACT that (as CIK or CAR-CIK) has enormous potential in the clinical spectrum of MM. We also summarize the results of the major preclinical and clinical studies of adoptive cell therapy in MM and address the current challenges (such as cytokine release syndrome (CRS) and neurotoxicity) that limit its complete success in the cancer landscape.
Collapse
Affiliation(s)
- Jingjing Pu
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127, Bonn, NRW, Germany
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Ting Liu
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, NRW, Germany
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127, Bonn, NRW, Germany
| | - Liping Jiang
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, Jiangsu, China
| | - Feng Wei
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300070, China
| | - Xiubao Ren
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300070, China.
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127, Bonn, NRW, Germany.
| | - Jian Hou
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
5
|
Nasiri F, Asaadi Y, Mirzadeh F, Abdolahi S, Molaei S, Gavgani SP, Rahbarizadeh F. Updates on CAR T cell therapy in multiple myeloma. Biomark Res 2024; 12:102. [PMID: 39261906 PMCID: PMC11391811 DOI: 10.1186/s40364-024-00634-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/05/2024] [Indexed: 09/13/2024] Open
Abstract
Multiple myeloma (MM) is a hematological cancer characterized by the abnormal proliferation of plasma cells. Initial treatments often include immunomodulatory drugs (IMiDs), proteasome inhibitors (PIs), and monoclonal antibodies (mAbs). Despite salient progress in diagnosis and treatment, most MM patients typically have a median life expectancy of only four to five years after starting treatment. In recent developments, the success of chimeric antigen receptor (CAR) T-cells in treating B-cell malignancies exemplifies a new paradigm shift in advanced immunotherapy techniques with promising therapeutic outcomes. Ide-cel and cilta-cel stand as the only two FDA-approved BCMA-targeted CAR T-cells for MM patients, a recognition achieved despite extensive preclinical and clinical research efforts in this domain. Challenges remain regarding certain aspects of CAR T-cell manufacturing and administration processes, including the lack of accessibility and durability due to T-cell characteristics, along with expensive and time-consuming processes limiting health plan coverage. Moreover, MM features, such as tumor antigen heterogeneity, antigen presentation alterations, complex tumor microenvironments, and challenges in CAR-T trafficking, contribute to CAR T-cell exhaustion and subsequent therapy relapse or refractory status. Additionally, the occurrence of adverse events such as cytokine release syndrome, neurotoxicity, and on-target, off-tumor toxicities present obstacles to CAR T-cell therapies. Consequently, ongoing CAR T-cell trials are diligently addressing these challenges and barriers. In this review, we provide an overview of the effectiveness of currently available CAR T-cell treatments for MM, explore the primary resistance mechanisms to these treatments, suggest strategies for improving long-lasting remissions, and investigate the potential for combination therapies involving CAR T-cells.
Collapse
Affiliation(s)
- Fatemeh Nasiri
- Department of Internal Medicine, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Yasaman Asaadi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Farzaneh Mirzadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shahrokh Abdolahi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sedigheh Molaei
- School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Somayeh Piri Gavgani
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
6
|
Lu RM, Hsu HE, Perez SJLP, Kumari M, Chen GH, Hong MH, Lin YS, Liu CH, Ko SH, Concio CAP, Su YJ, Chang YH, Li WS, Wu HC. Current landscape of mRNA technologies and delivery systems for new modality therapeutics. J Biomed Sci 2024; 31:89. [PMID: 39256822 PMCID: PMC11389359 DOI: 10.1186/s12929-024-01080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024] Open
Abstract
Realizing the immense clinical potential of mRNA-based drugs will require continued development of methods to safely deliver the bioactive agents with high efficiency and without triggering side effects. In this regard, lipid nanoparticles have been successfully utilized to improve mRNA delivery and protect the cargo from extracellular degradation. Encapsulation in lipid nanoparticles was an essential factor in the successful clinical application of mRNA vaccines, which conclusively demonstrated the technology's potential to yield approved medicines. In this review, we begin by describing current advances in mRNA modifications, design of novel lipids and development of lipid nanoparticle components for mRNA-based drugs. Then, we summarize key points pertaining to preclinical and clinical development of mRNA therapeutics. Finally, we cover topics related to targeted delivery systems, including endosomal escape and targeting of immune cells, tumors and organs for use with mRNA vaccines and new treatment modalities for human diseases.
Collapse
Affiliation(s)
- Ruei-Min Lu
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | - Hsiang-En Hsu
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | | | - Monika Kumari
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Taipei, 11529, Taiwan
| | - Guan-Hong Chen
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | - Ming-Hsiang Hong
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | - Yin-Shiou Lin
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | - Ching-Hang Liu
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | - Shih-Han Ko
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | | | - Yi-Jen Su
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Taipei, 11529, Taiwan
| | - Yi-Han Chang
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | - Wen-Shan Li
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan.
- Institute of Chemistry, Academia Sinica, No. 128, Academia Road, Section 2, Taipei, 11529, Taiwan.
| | - Han-Chung Wu
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan.
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Taipei, 11529, Taiwan.
| |
Collapse
|
7
|
Srivastava S, Singh S, Singh A. Augmenting the landscape of chimeric antigen receptor T-cell therapy. Expert Rev Anticancer Ther 2024; 24:755-773. [PMID: 38912754 DOI: 10.1080/14737140.2024.2372330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
INTRODUCTION The inception of recombinant DNA technology and live cell genomic alteration have paved the path for the excellence of cell and gene therapies and often provided the first curative treatment for many indications. The approval of the first Chimeric Antigen Receptor (CAR) T-cell therapy was one of the breakthrough innovations that became the headline in 2017. Currently, the therapy is primarily restricted to a few nations, and the market is growing at a CAGR (current annual growth rate) of 11.6% (2022-2032), as opposed to the established bio-therapeutic market at a CAGR of 15.9% (2023-2030). The limited technology democratization is attributed to its autologous nature, lack of awareness, therapy inclusion criteria, high infrastructure cost, trained personnel, complex manufacturing processes, regulatory challenges, recurrence of the disease, and long-term follow-ups. AREAS COVERED This review discusses the vision and strategies focusing on the CAR T-cell therapy democratization with mitigation plans. Further, it also covers the strategies to leverage the mRNA-based CAR T platform for building an ecosystem to ensure availability, accessibility, and affordability to the community. EXPERT OPINION mRNA-guided CAR T cell therapy is a rapidly growing area wherein a collaborative approach among the stakeholders is needed for its success.
Collapse
Affiliation(s)
| | - Sanjay Singh
- mRNA Department, Gennova Biopharmaceuticals Ltd. ITBT Park, Pune, India
| | - Ajay Singh
- mRNA Department, Gennova Biopharmaceuticals Ltd. ITBT Park, Pune, India
| |
Collapse
|
8
|
Chen B, Yang Y, Wang X, Yang W, Lu Y, Wang D, Zhuo E, Tang Y, Su J, Tang G, Shao S, Gu K. mRNA vaccine development and applications: A special focus on tumors (Review). Int J Oncol 2024; 65:81. [PMID: 38994758 PMCID: PMC11251742 DOI: 10.3892/ijo.2024.5669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/20/2024] [Indexed: 07/13/2024] Open
Abstract
Cancer is characterized by unlimited proliferation and metastasis, and traditional therapeutic strategies usually result in the acquisition of drug resistance, thus highlighting the need for more personalized treatment. mRNA vaccines transfer the gene sequences of exogenous target antigens into human cells through transcription and translation to stimulate the body to produce specific immune responses against the encoded proteins, so as to enable the body to obtain immune protection against said antigens; this approach may be adopted for personalized cancer therapy. Since the recent coronavirus pandemic, the development of mRNA vaccines has seen substantial progress and widespread adoption. In the present review, the development of mRNA vaccines, their mechanisms of action, factors influencing their function and the current clinical applications of the vaccine are discussed. A focus is placed on the application of mRNA vaccines in cancer, with the aim of highlighting unique advances and the remaining challenges of this novel and promising therapeutic approach.
Collapse
Affiliation(s)
- Bangjie Chen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yipin Yang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Xinyi Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Wenzhi Yang
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - You Lu
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Daoyue Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Enba Zhuo
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yanchao Tang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Junhong Su
- Department of Rehabilitation, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Guozheng Tang
- Department of Orthopedics, Lu'an Hospital of Anhui Medical University, Lu'an, Anhui 237008, P.R. China
| | - Song Shao
- Department of Orthopedics, Lu'an Hospital of Anhui Medical University, Lu'an, Anhui 237008, P.R. China
| | - Kangsheng Gu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
9
|
Metanat Y, Viktor P, Amajd A, Kaur I, Hamed AM, Abed Al-Abadi NK, Alwan NH, Chaitanya MVNL, Lakshmaiya N, Ghildiyal P, Khalaf OM, Ciongradi CI, Sârbu I. The paths toward non-viral CAR-T cell manufacturing: A comprehensive review of state-of-the-art methods. Life Sci 2024; 348:122683. [PMID: 38702027 DOI: 10.1016/j.lfs.2024.122683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/11/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Although CAR-T cell therapy has emerged as a game-changer in cancer immunotherapy several bottlenecks limit its widespread use as a front-line therapy. Current protocols for the production of CAR-T cells rely mainly on the use of lentiviral/retroviral vectors. Nevertheless, according to the safety concerns around the use of viral vectors, there are several regulatory hurdles to their clinical use. Large-scale production of viral vectors under "Current Good Manufacturing Practice" (cGMP) involves rigorous quality control assessments and regulatory requirements that impose exorbitant costs on suppliers and as a result, lead to a significant increase in the cost of treatment. Pursuing an efficient non-viral method for genetic modification of immune cells is a hot topic in cell-based gene therapy. This study aims to investigate the current state-of-the-art in non-viral methods of CAR-T cell manufacturing. In the first part of this study, after reviewing the advantages and disadvantages of the clinical use of viral vectors, different non-viral vectors and the path of their clinical translation are discussed. These vectors include transposons (sleeping beauty, piggyBac, Tol2, and Tc Buster), programmable nucleases (ZFNs, TALENs, and CRISPR/Cas9), mRNA, plasmids, minicircles, and nanoplasmids. Afterward, various methods for efficient delivery of non-viral vectors into the cells are reviewed.
Collapse
Affiliation(s)
- Yekta Metanat
- Faculty of Medicine, Zahedan University of Medical Sciences, Sistan and Baluchestan Province, Iran
| | - Patrik Viktor
- Óbuda University, Karoly Keleti faculty, Tavaszmező u. 15-17, H-1084 Budapest, Hungary
| | - Ayesha Amajd
- Faculty of Transport and Aviation Engineering, Silesian University of Technology, Krasińskiego 8 Street, 40-019 Katowice, Poland
| | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bangalore, Karnataka, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan-303012, India
| | | | | | | | - M V N L Chaitanya
- School of pharmaceutical sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab - 144411, India
| | | | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | - Carmen Iulia Ciongradi
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania.
| | - Ioan Sârbu
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania.
| |
Collapse
|
10
|
Shu J, Xie W, Chen Z, Offringa R, Hu Y, Mei H. The enchanting canvas of CAR technology: Unveiling its wonders in non-neoplastic diseases. MED 2024; 5:495-529. [PMID: 38608709 DOI: 10.1016/j.medj.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/08/2023] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
Chimeric antigen receptor (CAR) T cells have made a groundbreaking advancement in personalized immunotherapy and achieved widespread success in hematological malignancies. As CAR technology continues to evolve, numerous studies have unveiled its potential far beyond the realm of oncology. This review focuses on the current applications of CAR-based cellular platforms in non-neoplastic indications, such as autoimmune, infectious, fibrotic, and cellular senescence-associated diseases. Furthermore, we delve into the utilization of CARs in non-T cell populations such as natural killer (NK) cells and macrophages, highlighting their therapeutic potential in non-neoplastic conditions and offering the potential for targeted, personalized therapies to improve patient outcomes and enhanced quality of life.
Collapse
Affiliation(s)
- Jinhui Shu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Wei Xie
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Zhaozhao Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Rienk Offringa
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China.
| |
Collapse
|
11
|
Zhang Y, Gao Z, Yang X, Xu Q, Lu Y. Leveraging high-throughput screening technologies in targeted mRNA delivery. Mater Today Bio 2024; 26:101101. [PMID: 38883419 PMCID: PMC11176929 DOI: 10.1016/j.mtbio.2024.101101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/06/2024] [Accepted: 05/25/2024] [Indexed: 06/18/2024] Open
Abstract
Messenger ribonucleic acid (mRNA) has emerged as a promising molecular preventive and therapeutic approach that opens new avenues for healthcare. Although the use of delivery systems, especially lipid nanoparticles (LNPs), greatly improves the efficiency and stability of mRNA, mRNA tends to accumulate in the liver and hardly penetrates physiological barriers to reach the target site after intravenous injection. Hence, the rational design of targeting strategies aimed at directing mRNA to specific tissues and cells remains an enormous challenge in mRNA therapy. High-throughput screening (HTS) is a cutting-edge targeted technique capable of synthesizing chemical compound libraries for the large-scale experiments to validate the efficiency of mRNA delivery system. In this review, we firstly provide an overview of conventional low-throughput targeting strategies. Then the latest advancements in HTS techniques for mRNA targeted delivery, encompassing optimizing structures of large-scale delivery vehicles and developing large-scale surface ligands, as well as the applications of HTS techniques in extrahepatic systemic diseases are comprehensively summarized. Moreover, we illustrate the selection of administration routes for targeted mRNA delivery. Finally, challenges in the field and potential solutions to tackle them are proposed, offering insights for future development toward mRNA targeted therapy.
Collapse
Affiliation(s)
- Yuchen Zhang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Zhifei Gao
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Xiao Yang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Qinglong Xu
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Yao Lu
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| |
Collapse
|
12
|
Johnson NM, Koumpouras F. Chimeric antigen receptors: "CARs" in the fast lane for rheumatology. Curr Opin Rheumatol 2024; 36:176-183. [PMID: 38517338 PMCID: PMC11224568 DOI: 10.1097/bor.0000000000001012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
PURPOSE OF REVIEW Recent advances in hematology-oncology have pioneered cell-mediated elimination of pathologic B-cell populations employing chimeric antigen receptor (CAR) T cells. In this review, we discuss recent adoption of CAR-T treatment for severe refractory autoimmune disease. We highlight unique aspects of the autoimmune model and review current clinical data regarding treatment of rheumatologic disease. RECENT FINDINGS To date, several CAR-Ts are FDA approved for Multiple Myeloma and B-cell malignancies and have demonstrated extraordinary clinical responses in refractory disease. Realizing the central role of B-cells in certain autoimmune diseases, CAR-T is now being explored for achieving drug-free remission induction, and potentially cure, of several rheumatologic diseases. The largest experience to date in the field of autoimmunity, building off the University Hospital Erlangen groups' earlier success treating a single patient with CD19-CAR in severe refractory SLE, Mackensen et al. enrolled five patients in a compassionate use program. Following autologous CD19-CAR T infusion, they demonstrated drug-free clinical and laboratory remission for at least 12 months in all five patients, with reconstitution of B cells expressing a naïve phenotype. SUMMARY CAR-T treatment has shown striking drug-free responses in severe lupus and other autoimmune diseases, creating a need for further exploration and development.
Collapse
Affiliation(s)
- Nathan M Johnson
- Depatment of Internal Medicine, Yale New-Haven Hospital, Yale School of Medicine
| | - Fotios Koumpouras
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale School of Medicine, New Haven Conn
| |
Collapse
|
13
|
Sheykhhasan M, Ahmadieh-Yazdi A, Vicidomini R, Poondla N, Tanzadehpanah H, Dirbaziyan A, Mahaki H, Manoochehri H, Kalhor N, Dama P. CAR T therapies in multiple myeloma: unleashing the future. Cancer Gene Ther 2024; 31:667-686. [PMID: 38438559 PMCID: PMC11101341 DOI: 10.1038/s41417-024-00750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/06/2024]
Abstract
In recent years, the field of cancer treatment has witnessed remarkable breakthroughs that have revolutionized the landscape of care for cancer patients. While traditional pillars such as surgery, chemotherapy, and radiation therapy have long been available, a cutting-edge therapeutic approach called CAR T-cell therapy has emerged as a game-changer in treating multiple myeloma (MM). This novel treatment method complements options like autologous stem cell transplants and immunomodulatory medications, such as proteasome inhibitors, by utilizing protein complexes or anti-CD38 antibodies with potent complement-dependent cytotoxic effects. Despite the challenges and obstacles associated with these treatments, the recent approval of the second FDA multiple myeloma CAR T-cell therapy has sparked immense promise in the field. Thus far, the results indicate its potential as a highly effective therapeutic solution. Moreover, ongoing preclinical and clinical trials are exploring the capabilities of CAR T-cells in targeting specific antigens on myeloma cells, offering hope for patients with relapsed/refractory MM (RRMM). These advancements have shown the potential for CAR T cell-based medicines or combination therapies to elicit greater treatment responses and minimize side effects. In this context, it is crucial to delve into the history and functions of CAR T-cells while acknowledging their limitations. We can strategize and develop innovative approaches to overcome these barriers by understanding their challenges. This article aims to provide insights into the application of CAR T-cells in treating MM, shedding light on their potential, limitations, and strategies employed to enhance their efficacy.
Collapse
Affiliation(s)
- Mohsen Sheykhhasan
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Amirhossein Ahmadieh-Yazdi
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi, University of Medical Sciences, Yazd, Iran
| | - Rosario Vicidomini
- Section on Cellular Communication, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - Hamid Tanzadehpanah
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ashkan Dirbaziyan
- Department of Microbiology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Hanie Mahaki
- Vascular & Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Manoochehri
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Naser Kalhor
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research, Qom, Iran
| | - Paola Dama
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK.
| |
Collapse
|
14
|
Berdecka D, De Smedt SC, De Vos WH, Braeckmans K. Non-viral delivery of RNA for therapeutic T cell engineering. Adv Drug Deliv Rev 2024; 208:115215. [PMID: 38401848 DOI: 10.1016/j.addr.2024.115215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 02/26/2024]
Abstract
Adoptive T cell transfer has shown great success in treating blood cancers, resulting in a growing number of FDA-approved therapies using chimeric antigen receptor (CAR)-engineered T cells. However, the effectiveness of this treatment for solid tumors is still not satisfactory, emphasizing the need for improved T cell engineering strategies and combination approaches. Currently, CAR T cells are mainly manufactured using gammaretroviral and lentiviral vectors due to their high transduction efficiency. However, there are concerns about their safety, the high cost of producing them in compliance with current Good Manufacturing Practices (cGMP), regulatory obstacles, and limited cargo capacity, which limit the broader use of engineered T cell therapies. To overcome these limitations, researchers have explored non-viral approaches, such as membrane permeabilization and carrier-mediated methods, as more versatile and sustainable alternatives for next-generation T cell engineering. Non-viral delivery methods can be designed to transport a wide range of molecules, including RNA, which allows for more controlled and safe modulation of T cell phenotype and function. In this review, we provide an overview of non-viral RNA delivery in adoptive T cell therapy. We first define the different types of RNA therapeutics, highlighting recent advancements in manufacturing for their therapeutic use. We then discuss the challenges associated with achieving effective RNA delivery in T cells. Next, we provide an overview of current and emerging technologies for delivering RNA into T cells. Finally, we discuss ongoing preclinical and clinical studies involving RNA-modified T cells.
Collapse
Affiliation(s)
- Dominika Berdecka
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
15
|
Strassl I, Podar K. The preclinical discovery and clinical development of ciltacabtagene autoleucel (Cilta-cel) for the treatment of multiple myeloma. Expert Opin Drug Discov 2024; 19:377-391. [PMID: 38369760 DOI: 10.1080/17460441.2024.2319672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
INTRODUCTION Despite remarkable therapeutic advances over the last two decades, which have resulted in dramatic improvements in patient survival, multiple myeloma (MM) is still considered an incurable disease. Therefore, there is a high need for new treatment strategies. Genetically engineered/redirected chimeric antigen receptor (CAR) T cells may represent the most compelling modality of immunotherapy for cancer treatment in general, and MM in particular. Indeed, unprecedented response rates have led to the recent approvals of the first two BCMA-targeted CAR T cell products idecabtagene-vicleucel ('Ide-cel') and ciltacabtagene-autoleucel ('Cilta-Cel') for the treatment of heavily pretreated MM patients. In addition, both are emerging as a new standard-of-care also in earlier lines of therapy. AREAS COVERED This article briefly reviews the history of the preclinical development of CAR T cells, with a particular focus on Cilta-cel. Moreover, it summarizes the newest clinical data on Cilta-cel and discusses strategies to further improve its activity and reduce its toxicity. EXPERT OPINION Modern next-generation immunotherapy is continuously transforming the MM treatment landscape. Despite several caveats of CAR T cell therapy, including its toxicity, costs, and limited access, prolonged disease-free survival and potential cure of MM are finally within reach.
Collapse
Affiliation(s)
- Irene Strassl
- Division of Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Department of Internal Medicine I, Ordensklinikum Linz Hospital, Linz, Austria
- Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Klaus Podar
- Department of Internal Medicine II, University Hospital Krems, Austria
- Division of Molecular Oncology and Hematology, Department of General and Translational Oncology and Hematology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| |
Collapse
|
16
|
Nie S, Qin Y, Ou L, Chen X, Li L. In Situ Reprogramming of Immune Cells Using Synthetic Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310168. [PMID: 38229527 DOI: 10.1002/adma.202310168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/12/2024] [Indexed: 01/18/2024]
Abstract
In the past decade, adoptive cell therapy with chimeric antigen receptor-T (CAR-T) cells has revolutionized cancer treatment. However, the complexity and high costs involved in manufacturing current adoptive cell therapy greatly inhibit its widespread availability and access. To address this, in situ cell therapy, which directly reprograms immune cells inside the body, has recently been developed as a promising alternative. Here, an overview of the recent progress in the development of synthetic nanomaterials is provided to deliver plasmid DNA or mRNA for in situ reprogramming of T cells and macrophages, focusing especially on in situ CAR therapies. Also, the main challenges for in situ immune cell reprogramming are discussed and some approaches to overcome these barriers to fulfill the clinical applications are proposed.
Collapse
Affiliation(s)
- Shihong Nie
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuyang Qin
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Liyuan Ou
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Ling Li
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
17
|
Zhang J, Ding X, Ding X. Exploring the efficacy and safety of anti-BCMA chimeric antigen receptor T-cell therapy for multiple myeloma: Systematic review and meta-analysis. Cytojournal 2024; 21:13. [PMID: 38628287 PMCID: PMC11021094 DOI: 10.25259/cytojournal_64_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/31/2023] [Indexed: 04/19/2024] Open
Abstract
Objective Multiple myeloma (MM) is a bone marrow cancer that profoundly affects plasma cells involved in the immune response. Myeloma cells alter the average production of cells in the bone marrow. Anti-B-cell maturation antigen (BCMA) chimeric antigen receptor (CAR) T-cell therapy allows genetic modifications of an individual's T-cells to increase the expression of CARs used to identify and attach BCMA proteins to the malignant cells. Our main objective is to perform a systematic review and meta-analysis to explore the efficacy and safety of anti-BCMA CAR T-cell therapy for MM. Material and Methods We searched five databases, PubMed, CNKI, EMBASE, Cochrane, Web of Science, and CNKI, for studies published on anti-BCMA,CAR-T-cell treatment for MM. Inclusion criteria involved prospective single-arm studies either single or multi-center, in various MM phases and studies that reported anti-BCMA,CAR-T-cell treatment for MM. We excluded non-English publications and conference papers. All statistical analyses were performed in R software and Review Manager 5.4.1. Results Thirteen articles were included in the analysis. We found that the overall response survival complete response increase was statistically significant. Similarly, the reduction in cytokine release syndrome grades 3 and 4 and neurotoxicity after follow-up was statistically significant. However, the reduction in minimal residual disease negativity (MRDN) was not statistically significant. Conclusion Using anti-BCMA CAR T-cell therapy in MM was highly efficacious and safe in lowering the adverse outcomes and improving the survival outcomes, complete response, and overall response.
Collapse
Affiliation(s)
- Jia Zhang
- Department of Hematology and Oncology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
| | - Xinhua Ding
- Department of Oncology, Tiantai People’s Hospital of Zhejiang Province, Taizhou, China
| | - Xiaoxiao Ding
- Department of Hematology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
18
|
Deyhimfar R, Izady M, Shoghi M, Kazazi MH, Ghazvini ZF, Nazari H, Fekrirad Z, Arefian E. The clinical impact of mRNA therapeutics in the treatment of cancers, infections, genetic disorders, and autoimmune diseases. Heliyon 2024; 10:e26971. [PMID: 38486748 PMCID: PMC10937594 DOI: 10.1016/j.heliyon.2024.e26971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/19/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024] Open
Abstract
mRNA-based therapeutics have revolutionized medicine and the pharmaceutical industry. The recent progress in the optimization and formulation of mRNAs has led to the development of a new therapeutic platform with a broad range of applications. With a growing body of evidence supporting the use of mRNA-based drugs for precision medicine and personalized treatments, including cancer immunotherapy, genetic disorders, and autoimmune diseases, this emerging technology offers a rapidly expanding category of therapeutic options. Furthermore, the development and deployment of mRNA vaccines have facilitated a prompt and flexible response to medical emergencies, exemplified by the COVID-19 outbreak. The establishment of stable and safe mRNA molecules carried by efficient delivery systems is now available through recent advances in molecular biology and nanotechnology. This review aims to elucidate the advancements in the clinical applications of mRNAs for addressing significant health-related challenges such as cancer, autoimmune diseases, genetic disorders, and infections and provide insights into the efficacy and safety of mRNA therapeutics in recent clinical trials.
Collapse
Affiliation(s)
- Roham Deyhimfar
- Department of Stem Cells Technology and Tissue Regeneration, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Urology Research Center, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrnaz Izady
- Department of Stem Cells Technology and Tissue Regeneration, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | | | - Mohammad Hossein Kazazi
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, ON, Canada
| | - Zahra Fakhraei Ghazvini
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Hojjatollah Nazari
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - Zahra Fekrirad
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Wu J, Wu W, Zhou B, Li B. Chimeric antigen receptor therapy meets mRNA technology. Trends Biotechnol 2024; 42:228-240. [PMID: 37741706 DOI: 10.1016/j.tibtech.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/25/2023]
Abstract
Genetically engineered immune cells expressing chimeric antigen receptors (CARs) have emerged as a new game changer in cancer immunotherapy. The utility of CAR T cell therapy against hematological malignancies has been validated in clinical practice. Other CAR immune cells are currently under investigation to improve the potency of CAR therapy in solid tumors. As a new class of therapeutic modalities, mRNA-based therapeutics hold enormous potential beyond COVID-19 mRNA vaccines. Arming immune cells with mRNA-encoded CARs represents a new frontier in cancer and beyond, enabling in vivo generation of CAR cells without causing transgene integration. In this review, we summarize recent advances in mRNA-based CAR immunotherapies and highlight their opportunities and challenges for the development of a new generation of living drugs.
Collapse
Affiliation(s)
- Jiacai Wu
- Department of Infectious Disease, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology and The Second Clinical Medical College of Jinan University, Shenzhen 518020, China; School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Weigang Wu
- Department of Infectious Disease, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology and The Second Clinical Medical College of Jinan University, Shenzhen 518020, China
| | - Boping Zhou
- Department of Infectious Disease, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology and The Second Clinical Medical College of Jinan University, Shenzhen 518020, China; School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Bin Li
- Department of Infectious Disease, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology and The Second Clinical Medical College of Jinan University, Shenzhen 518020, China; School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
20
|
Yu Z, Li H, Lu Q, Zhang Z, Tong A, Niu T. Fc receptor-like 5 (FCRL5)-directed CAR-T cells exhibit antitumor activity against multiple myeloma. Signal Transduct Target Ther 2024; 9:16. [PMID: 38212320 PMCID: PMC10784595 DOI: 10.1038/s41392-023-01702-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 10/11/2023] [Accepted: 11/08/2023] [Indexed: 01/13/2024] Open
Abstract
Multiple myeloma (MM) remains a challenging hematologic malignancy despite advancements in chimeric antigen receptor T-cell (CAR-T) therapy. Current targets of CAR-T cells used in MM immunotherapy have limitations, with a subset of patients experiencing antigen loss resulting in relapse. Therefore, novel targets for enhancing CAR-T cell therapy in MM remain needed. Fc receptor-like 5 (FCRL5) is a protein marker with considerably upregulated expression in MM and has emerged as a promising target for CAR-T cell therapeutic interventions, offering an alternative treatment for MM. To further explore this option, we designed FCRL5-directed CAR-T cells and assessed their cytotoxicity in vitro using a co-culture system and in vivo using MM cell-derived xenograft models, specifically focusing on MM with gain of chromosome 1q21. Given the challenges in CAR-T therapies arising from limited T cell persistence, our approach incorporates interleukin-15 (IL-15), which enhances the functionality of central memory T (TCM) cells, into the design of FCRL5-directed CAR-T cells, to improve cytotoxicity and reduce T-cell dysfunction, thereby promoting greater CAR-T cell survival and efficacy. Both in vitro and xenograft models displayed that FCRL5 CAR-T cells incorporating IL-15 exhibited potent antitumor efficacy, effectively inhibiting the proliferation of MM cells and leading to remarkable tumor suppression. Our results highlight the capacity of FCRL5-specific CAR-T cells with the integration of IL-15 to improve the therapeutic potency, suggesting a potential novel immunotherapeutic strategy for MM treatment.
Collapse
Affiliation(s)
- Zhengyu Yu
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hexian Li
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qizhong Lu
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zongliang Zhang
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Aiping Tong
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Ting Niu
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
21
|
Albelda SM. CAR T cell therapy for patients with solid tumours: key lessons to learn and unlearn. Nat Rev Clin Oncol 2024; 21:47-66. [PMID: 37904019 DOI: 10.1038/s41571-023-00832-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 11/01/2023]
Abstract
Chimeric antigen receptor (CAR) T cells have been approved for use in patients with B cell malignancies or relapsed and/or refractory multiple myeloma, yet efficacy against most solid tumours remains elusive. The limited imaging and biopsy data from clinical trials in this setting continues to hinder understanding, necessitating a reliance on imperfect preclinical models. In this Perspective, I re-evaluate current data and suggest potential pathways towards greater success, drawing lessons from the few successful trials testing CAR T cells in patients with solid tumours and the clinical experience with tumour-infiltrating lymphocytes. The most promising approaches include the use of pluripotent stem cells, co-targeting multiple mechanisms of immune evasion, employing multiple co-stimulatory domains, and CAR ligand-targeting vaccines. An alternative strategy focused on administering multiple doses of short-lived CAR T cells in an attempt to pre-empt exhaustion and maintain a functional effector pool should also be considered.
Collapse
Affiliation(s)
- Steven M Albelda
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Pulmonary and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Sauerer T, Albrecht L, Sievers NM, Gerer KF, Hoyer S, Dörrie J, Schaft N. Electroporation of mRNA as a Universal Technology Platform to Transfect a Variety of Primary Cells with Antigens and Functional Proteins. Methods Mol Biol 2024; 2786:219-235. [PMID: 38814397 DOI: 10.1007/978-1-0716-3770-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Electroporation (EP) of mRNA into human cells is a broadly applicable method to transiently express proteins of choice in a variety of different cell types. We have spent more than two decades to optimize and adapt this method, first for antigen-loading of dendritic cells (DCs) and subsequently for T cells, B cells, bulk PBMCs, and several cell lines. In this regard, antigens were introduced, processed, and presented in context of MHC class I and II. Next to that, functional proteins like adhesion receptors, T-cell receptors (TCRs), chimeric antigen receptors (CARs), constitutively active signal transducers (i.e. caIKK), and others were successfully expressed. We have also established this protocol under full GMP compliance as part of a manufacturing license to produce mRNA-electroporated DCs and mRNA-electroporated T cells for therapeutic applications in clinical trials. Therefore, we here want to share our universal mRNA electroporation protocol and the experience we have gathered with this method. The advantages of the transfection method presented here are: (1) easy adaptation to different cell types; (2) scalability from 106 to approximately 108 cells per shot; (3) high transfection efficiency (80-99%); (4) homogenous protein expression; (5) GMP compliance if the EP is performed in a class A clean room; and (6) no transgene integration into the genome. The provided protocol involves: OptiMEM® as EP medium, a square-wave pulse with 500 V, and 4 mm cuvettes. To adapt the protocol to differently sized cells, simply the pulse time has to be altered. Thus, we share an overview of proven electroporation settings (including recovery media), which we have established for various cell types. Next to the basic protocol, we also provide an extensive list of hints and tricks, which, in our opinion, are of great value for everyone who intends to use this transfection technique.
Collapse
Affiliation(s)
- Tatjana Sauerer
- RNA-based Immunotherapy, Department of Dermatology, Universitätsklinikum Erlangen (UKER), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Leoni Albrecht
- RNA-based Immunotherapy, Department of Dermatology, Universitätsklinikum Erlangen (UKER), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Nico M Sievers
- RNA-based Immunotherapy, Department of Dermatology, Universitätsklinikum Erlangen (UKER), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Kerstin F Gerer
- RNA-based Immunotherapy, Department of Dermatology, Universitätsklinikum Erlangen (UKER), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Novartis Pharma GmbH, Nuremberg, Germany
| | - Stefanie Hoyer
- RNA-based Immunotherapy, Department of Dermatology, Universitätsklinikum Erlangen (UKER), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Department of Palliative Medicine, Universitätsklinikum Erlangen, Comprehensive Cancer Center CCC Erlangen-EMN, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jan Dörrie
- RNA-based Immunotherapy, Department of Dermatology, Universitätsklinikum Erlangen (UKER), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Niels Schaft
- RNA-based Immunotherapy, Department of Dermatology, Universitätsklinikum Erlangen (UKER), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany.
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany.
| |
Collapse
|
23
|
Nasiri F, Farrokhi K, Safarzadeh Kozani P, Mahboubi Kancha M, Dashti Shokoohi S, Safarzadeh Kozani P. CAR-T cell immunotherapy for ovarian cancer: hushing the silent killer. Front Immunol 2023; 14:1302307. [PMID: 38146364 PMCID: PMC10749368 DOI: 10.3389/fimmu.2023.1302307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/13/2023] [Indexed: 12/27/2023] Open
Abstract
As the most lethal gynecologic oncological indication, carcinoma of the ovary has been ranked as the 5th cause of cancer-related mortality in women, with a high percentage of the patients being diagnosed at late stages of the disease and a five-year survival of ~ 30%. Ovarian cancer patients conventionally undergo surgery for tumor removal followed by platinum- or taxane-based chemotherapy; however, a high percentage of patients experience tumor relapse. Cancer immunotherapy has been regarded as a silver lining in the treatment of patients with various immunological or oncological indications; however, mirvetuximab soravtansine (a folate receptor α-specific mAb) and bevacizumab (a VEGF-A-specific mAb) are the only immunotherapeutics approved for the treatment of ovarian cancer patients. Chimeric antigen receptor T-cell (CAR-T) therapy has achieved tremendous clinical success in the treatment of patients with certain B-cell lymphomas and leukemias, as well as multiple myeloma. In the context of solid tumors, CAR-T therapies face serious obstacles that limit their therapeutic benefit. Such hindrances include the immunosuppressive nature of solid tumors, impaired tumor infiltration, lack of qualified tumor-associated antigens, and compromised stimulation and persistence of CAR-Ts following administration. Over the past years, researchers have made arduous attempts to apply CAR-T therapy to ovarian cancer. In this review, we outline the principles of CAR-T therapy and then highlight its limitations in the context of solid tumors. Ultimately, we focus on preclinical and clinical findings achieved in CAR-T-mediated targeting of different ovarian cancer-associated target antigens.
Collapse
Affiliation(s)
- Fatemeh Nasiri
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC, Canada
| | - Khadijeh Farrokhi
- Department of Microbial Biotechnology, Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maral Mahboubi Kancha
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Setareh Dashti Shokoohi
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
24
|
Chen Z, Hu Y, Mei H. Advances in CAR-Engineered Immune Cell Generation: Engineering Approaches and Sourcing Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303215. [PMID: 37906032 PMCID: PMC10724421 DOI: 10.1002/advs.202303215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/03/2023] [Indexed: 11/02/2023]
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy has emerged as a highly efficacious treatment modality for refractory and relapsed hematopoietic malignancies in recent years. Furthermore, CAR technologies for cancer immunotherapy have expanded from CAR-T to CAR-natural killer cell (CAR-NK), CAR-cytokine-induced killer cell (CAR-CIK), and CAR-macrophage (CAR-MΦ) therapy. Nevertheless, the high cost and complex manufacturing processes of ex vivo generation of autologous CAR products have hampered broader application. There is an urgent need to develop an efficient and economical paradigm shift for exploring new sourcing strategies and engineering approaches toward generating CAR-engineered immune cells to benefit cancer patients. Currently, researchers are actively investigating various strategies to optimize the preparation and sourcing of these potent immunotherapeutic agents. In this work, the latest research progress is summarized. Perspectives on the future of CAR-engineered immune cell manufacturing are provided, and the engineering approaches, and diverse sources used for their development are focused upon.
Collapse
Affiliation(s)
- Zhaozhao Chen
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhanHubei430022China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic DiseaseWuhan430022China
| | - Yu Hu
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhanHubei430022China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic DiseaseWuhan430022China
| | - Heng Mei
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhanHubei430022China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic DiseaseWuhan430022China
| |
Collapse
|
25
|
Mashima R, Takada S, Miyamoto Y. RNA-Based Therapeutic Technology. Int J Mol Sci 2023; 24:15230. [PMID: 37894911 PMCID: PMC10607345 DOI: 10.3390/ijms242015230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/09/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
RNA-based therapy has been an expanding area of clinical research since the COVID-19 outbreak. Often, its comparison has been made to DNA-based gene therapy, such as adeno-associated virus- and lentivirus-mediated therapy. These DNA-based therapies show persistent expression, with maximized therapeutic efficacy. However, accumulating data indicate that proper control of gene expression is occasionally required. For example, in cancer immunotherapy, cytokine response syndrome is detrimental for host animals, while excess activation of the immune system induces supraphysiological cytokines. RNA-based therapy seems to be a rather mild therapy, and it has room to fit unmet medical needs, whereas current DNA-based therapy has unclear issues. This review focused on RNA-based therapy for cancer immunotherapy, hematopoietic disorders, and inherited disorders, which have received attention for possible clinical applications.
Collapse
Affiliation(s)
- Ryuichi Mashima
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Yoshitaka Miyamoto
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| |
Collapse
|
26
|
Niu H, Zhao P, Sun W. Biomaterials for chimeric antigen receptor T cell engineering. Acta Biomater 2023; 166:1-13. [PMID: 37137403 DOI: 10.1016/j.actbio.2023.04.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023]
Abstract
Chimeric antigen receptor T (CAR-T) cells have achieved breakthrough efficacies against hematological malignancies, but their unsatisfactory efficacies in solid tumors limit their applications. The prohibitively high prices further restrict their access to broader populations. Novel strategies are urgently needed to address these challenges, and engineering biomaterials can be one promising approach. The established process for manufacturing CAR-T cells involves multiple steps, and biomaterials can help simplify or improve several of them. In this review, we cover recent progress in engineering biomaterials for producing or stimulating CAR-T cells. We focus on the engineering of non-viral gene delivery nanoparticles for transducing CAR into T cells ex vivo/in vitro or in vivo. We also dive into the engineering of nano-/microparticles or implantable scaffolds for local delivery or stimulation of CAR-T cells. These biomaterial-based strategies can potentially change the way CAR-T cells are manufactured, significantly reducing their cost. Modulating the tumor microenvironment with the biomaterials can also considerably enhance the efficacy of CAR-T cells in solid tumors. We pay special attention to progress made in the past five years, and perspectives on future challenges and opportunities are also discussed. STATEMENT OF SIGNIFICANCE: Chimeric antigen receptor T (CAR-T) cell therapies have revolutionized the field of cancer immunotherapy with genetically engineered tumor recognition. They are also promising for treating many other diseases. However, the widespread application of CAR-T cell therapy has been hampered by the high manufacturing cost. Poor penetration of CAR-T cells into solid tissues further restricted their use. While biological strategies have been explored to improve CAR-T cell therapies, such as identifying new cancer targets or integrating smart CARs, biomaterial engineering provides alternative strategies toward better CAR-T cells. In this review, we summarize recent advances in engineering biomaterials for CAR-T cell improvement. Biomaterials ranging from nano-, micro-, and macro-scales have been developed to assist CAR-T cell manufacturing and formulation.
Collapse
Affiliation(s)
- Huanqing Niu
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Penghui Zhao
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Wujin Sun
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA; Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; Center for Emerging, Zoonotic, and Arthropod-Born Pathogens, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
27
|
Kong B, Kim Y, Kim EH, Suk JS, Yang Y. mRNA: A promising platform for cancer immunotherapy. Adv Drug Deliv Rev 2023; 199:114993. [PMID: 37414361 DOI: 10.1016/j.addr.2023.114993] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/22/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Messenger RNA (mRNA) is now in the limelight as a powerful tool for treating various human diseases, especially malignant tumors, thanks to the remarkable clinical outcomes of mRNA vaccines using lipid nanoparticle technology during the COVID-19 pandemic. Recent promising preclinical and clinical results that epitomize the advancement in mRNA and nanoformulation-based delivery technologies have highlighted the tremendous potential of mRNA in cancer immunotherapy. mRNAs can be harnessed for cancer immunotherapy in forms of various therapeutic modalities, including cancer vaccines, adoptive T-cell therapies, therapeutic antibodies, and immunomodulatory proteins. This review provides a comprehensive overview of the current state and prospects of mRNA-based therapeutics, including numerous delivery and therapeutic strategies.
Collapse
Affiliation(s)
- Byoungjae Kong
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Yelee Kim
- Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Eun Hye Kim
- Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Jung Soo Suk
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Yoosoo Yang
- Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.
| |
Collapse
|
28
|
Granit V, Benatar M, Kurtoglu M, Miljković MD, Chahin N, Sahagian G, Feinberg MH, Slansky A, Vu T, Jewell CM, Singer MS, Kalayoglu MV, Howard JF, Mozaffar T. Safety and clinical activity of autologous RNA chimeric antigen receptor T-cell therapy in myasthenia gravis (MG-001): a prospective, multicentre, open-label, non-randomised phase 1b/2a study. Lancet Neurol 2023; 22:578-590. [PMID: 37353278 PMCID: PMC10416207 DOI: 10.1016/s1474-4422(23)00194-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 06/25/2023]
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T cells are highly effective in treating haematological malignancies, but associated toxicities and the need for lymphodepletion limit their use in people with autoimmune disease. To explore the use of CAR T cells for the treatment of people with autoimmune disease, and to improve their safety, we engineered them with RNA (rCAR-T)-rather than the conventional DNA approach-to target B-cell maturation antigen (BCMA) expressed on plasma cells. To test the suitability of our approach, we used rCAR-T to treat individuals with myasthenia gravis, a prototypical autoantibody disease mediated partly by pathogenic plasma cells. METHODS MG-001 was a prospective, multicentre, open-label, phase 1b/2a study of Descartes-08, an autologous anti-BCMA rCAR-T therapy, in adults (ie, aged ≥18 years) with generalised myasthenia gravis and a Myasthenia Gravis Activities of Daily Living (MG-ADL) score of 6 or higher. The study was done at eight sites (ie, academic medical centres or community neurology clinics) in the USA. Lymphodepletion chemotherapy was not used. In part 1 (phase 1b), participants with Myasthenia Gravis Foundation of America (MGFA) disease class III-IV generalised myasthenia gravis received three ascending doses of Descartes-08 to determine a maximum tolerated dose. In part 2 (phase 2a), participants with generalised myasthenia gravis with MGFA disease class II-IV received six doses at the maximum tolerated dose in an outpatient setting. The primary objective was to establish safety and tolerability of Descartes-08; secondary objectives were to assess myasthenia gravis disease severity and biomarkers in participants who received Descartes-08. This trial is registered with clinicaltrials.gov, NCT04146051. FINDINGS We recruited 16 individuals for screening between Jan 7, 2020 and Aug 3, 2022. 14 participants were enrolled (n=3 in part 1, n=11 in part 2). Ten participants were women and four were men. Two individuals did not qualify due to low baseline MG-ADL score (n=1) or lack of generalised disease (n=1). Median follow-up in part 2 was 5 months (range 3-9 months). There was no dose-limiting toxicity, cytokine release syndrome, or neurotoxicity. Common adverse events were headache (six of 14 participants), nausea (five of 14), vomiting (three of 14), and fever (four of 14), which resolved within 24 h of infusion. Fevers were not associated with increased markers of cytokine release syndrome (IL-6, IL-2, and TNF). Mean improvements from baseline to week 12 were -6 (95% CI -9 to -3) for MG-ADL score, -7 (-11 to -3) for Quantitative Myasthenia Gravis score, -14 (-19 to -9) for Myasthenia Gravis Composite score, and -9 (-15 to -3) for Myasthenia Gravis Quality of Life 15-revised score. INTERPRETATION In this first study of an rCAR-T therapy in individuals with an autoimmune disease, Descartes-08 appeared to be safe and was well tolerated. Descartes-08 infusions were followed by clinically meaningful decreases on myasthenia gravis severity scales at up to 9 months of follow-up. rCAR-T therapy warrants further investigation as a potential new treatment approach for individuals with myasthenia gravis and other autoimmune diseases. FUNDING Cartesian Therapeutics and National Institute of Neurological Disorders and Stroke of the National Institutes of Health.
Collapse
Affiliation(s)
- Volkan Granit
- Department of Neurology, University of Miami, Miami, FL, USA
| | - Michael Benatar
- Department of Neurology, University of Miami, Miami, FL, USA
| | | | | | - Nizar Chahin
- Department of Neurology, Oregon Health and Sciences University, Portland, OR, USA
| | | | | | | | - Tuan Vu
- Department of Neurology, University of South Florida, Tampa, FL, USA
| | | | | | | | - James F Howard
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Tahseen Mozaffar
- Department of Neurology, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
29
|
Sun L, Su Y, Jiao A, Wang X, Zhang B. T cells in health and disease. Signal Transduct Target Ther 2023; 8:235. [PMID: 37332039 PMCID: PMC10277291 DOI: 10.1038/s41392-023-01471-y] [Citation(s) in RCA: 193] [Impact Index Per Article: 96.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/20/2023] Open
Abstract
T cells are crucial for immune functions to maintain health and prevent disease. T cell development occurs in a stepwise process in the thymus and mainly generates CD4+ and CD8+ T cell subsets. Upon antigen stimulation, naïve T cells differentiate into CD4+ helper and CD8+ cytotoxic effector and memory cells, mediating direct killing, diverse immune regulatory function, and long-term protection. In response to acute and chronic infections and tumors, T cells adopt distinct differentiation trajectories and develop into a range of heterogeneous populations with various phenotype, differentiation potential, and functionality under precise and elaborate regulations of transcriptional and epigenetic programs. Abnormal T-cell immunity can initiate and promote the pathogenesis of autoimmune diseases. In this review, we summarize the current understanding of T cell development, CD4+ and CD8+ T cell classification, and differentiation in physiological settings. We further elaborate the heterogeneity, differentiation, functionality, and regulation network of CD4+ and CD8+ T cells in infectious disease, chronic infection and tumor, and autoimmune disease, highlighting the exhausted CD8+ T cell differentiation trajectory, CD4+ T cell helper function, T cell contributions to immunotherapy and autoimmune pathogenesis. We also discuss the development and function of γδ T cells in tissue surveillance, infection, and tumor immunity. Finally, we summarized current T-cell-based immunotherapies in both cancer and autoimmune diseases, with an emphasis on their clinical applications. A better understanding of T cell immunity provides insight into developing novel prophylactic and therapeutic strategies in human diseases.
Collapse
Affiliation(s)
- Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China.
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China.
| |
Collapse
|
30
|
Ding T, Yu Y, Pan X, Chen H. Establishment of humanized mice and its application progress in cancer immunotherapy. Immunotherapy 2023; 15:679-697. [PMID: 37096919 DOI: 10.2217/imt-2022-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
The current high prevalence of malignant tumors has attracted considerable attention, and treating advanced malignancies is becoming increasingly difficult. Although immunotherapy is a hopeful alternative, it is effective in only a few people. Thus, development of preclinical animal models is needed. Humanized xenotransplantation mouse models can help with selecting treatment protocols, evaluating curative effects and assessing prognosis. This review discusses the establishment of humanized mouse models and their application prospects in cancer immunotherapy to identify tailored therapies for individual patients.
Collapse
Affiliation(s)
- Tianlong Ding
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, PR China
- Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, PR China
| | - Yang Yu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, PR China
| | - Xiaoyuan Pan
- Department of Vision Rehabilitation, Gansu Province Hospital Rehabilitation Center, Lanzhou, 730030, PR China
| | - Hao Chen
- Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, PR China
- Key Laboratory of Digestive System Tumors, Lanzhou University Second Hospital, Lanzhou, 730030, PR China
| |
Collapse
|
31
|
Yang Z, Li X, Gan X, Wei M, Wang C, Yang G, Zhao Y, Zhu Z, Wang Z. Hydrogel armed with Bmp2 mRNA-enriched exosomes enhances bone regeneration. J Nanobiotechnology 2023; 21:119. [PMID: 37020301 PMCID: PMC10075167 DOI: 10.1186/s12951-023-01871-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/24/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Sustained release of bioactive BMP2 (bone morphogenetic protein-2) is important for bone regeneration, while the intrinsic short half-life of BMP2 at protein level cannot meet the clinical need. In this study, we aimed to design Bmp2 mRNA-enriched engineered exosomes, which were then loaded into specific hydrogel to achieve sustained release for more efficient and safe bone regeneration. RESULTS Bmp2 mRNA was enriched into exosomes by selective inhibition of translation in donor cells, in which NoBody (non-annotated P-body dissociating polypeptide, a protein that inhibits mRNA translation) and modified engineered BMP2 plasmids were co-transfected. The derived exosomes were named ExoBMP2+NoBody. In vitro experiments confirmed that ExoBMP2+NoBody had higher abundance of Bmp2 mRNA and thus stronger osteogenic induction capacity. When loaded into GelMA hydrogel via ally-L-glycine modified CP05 linker, the exosomes could be slowly released and thus ensure prolonged effect of BMP2 when endocytosed by the recipient cells. In the in vivo calvarial defect model, ExoBMP2+NoBody-loaded GelMA displayed great capacity in promoting bone regeneration. CONCLUSIONS Together, the proposed ExoBMP2+NoBody-loaded GelMA can provide an efficient and innovative strategy for bone regeneration.
Collapse
Affiliation(s)
- Zhujun Yang
- Department of Stomatology, Xi'an Central Hospital Affiliated to Xi'an Jiaotong University, Xi'an, 710003, Shaanxi, China
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Xuejian Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Xueqi Gan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan, 610041, Chengdu, China
| | - Mengying Wei
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Chunbao Wang
- College of Chemistry and Bio-Engineering, Yichun University, Yichun, 336000, Jiangxi, China
| | - Guodong Yang
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yimin Zhao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China.
| | - Zhuoli Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan, 610041, Chengdu, China.
| | - Zhongshan Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
32
|
Engineered exosome-mediated messenger RNA and single-chain variable fragment delivery for human chimeric antigen receptor T-cell engineering. Cytotherapy 2023; 25:615-624. [PMID: 36828738 DOI: 10.1016/j.jcyt.2023.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/01/2023] [Accepted: 01/10/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND AIMS Most current chimeric antigen receptor (CAR) T cells are generated by viral transduction, which induces persistent expression of CARs and may cause serious undesirable effects. Messenger RNA (mRNA)-based approaches in manufacturing CAR T cells are being developed to overcome these challenges. However, the most common method of delivering mRNA to T cells is electroporation, which can be toxic to cells. METHODS The authors designed and engineered an exosome delivery platform using the bacteriophage MS2 system in combination with the highly expressed protein lysosome-associated membrane protein 2 isoform B on exosomes. RESULTS The authors' delivery platform achieved specific loading and delivery of mRNA into target cells and achieved expression of specific proteins, and anti-CD3/CD28 single-chain variable fragments (scFvs) expressed outside the exosomal membrane effectively activated primary T cells in a similar way to commercial magnetic beads. CONCLUSIONS The delivery of CAR mRNA and anti-CD3/CD28 scFvs via designed exosomes can be used for ex vivo production of CAR T cells with cancer cell killing capacity. The authors' results indicate the potential applications of the engineered exosome delivery platform for direct conversion of primary T cells to CAR T cells while providing a novel strategy for producing CAR T cells in vivo.
Collapse
|
33
|
Banerjee R, Lee SS, Cowan AJ. Innovation in BCMA CAR-T therapy: Building beyond the Model T. Front Oncol 2022; 12:1070353. [PMID: 36505779 PMCID: PMC9729952 DOI: 10.3389/fonc.2022.1070353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Autologous chimeric antigen receptor T-cell (CAR-T) therapies targeting B-cell maturation antigen (BCMA) have revolutionized the field of multiple myeloma in the same way that the Ford Model T revolutionized the original CAR world a century ago. However, we are only beginning to understand how to improve the efficacy and usability of these cellular therapies. In this review, we explore three automotive analogies for innovation with BCMA CAR-T therapies: stronger engines, better mileage, and hassle-free delivery. Firstly, we can build stronger engines in terms of BCMA targeting: improved antigen binding, tools to modulate antigen density, and armoring to better reach the antigen itself. Secondly, we can improve "mileage" in terms of response durability through ex vivo CAR design and in vivo immune manipulation. Thirdly, we can implement hassle-free delivery through rapid manufacturing protocols and off-the-shelf products. Just as the Model T set a benchmark for car manufacturing over 100 years ago, idecabtagene vicleucel and ciltacabtagene autoleucel have now set the starting point for BCMA CAR-T therapy with their approvals. As with any emerging technology, whether automotive or cellular, the best in innovation and optimization is yet to come.
Collapse
Affiliation(s)
- Rahul Banerjee
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, United States
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Sarah S. Lee
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, United States
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Andrew J. Cowan
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, United States
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| |
Collapse
|
34
|
Wei Y, Jiang W. Development of non-viral site-specific integrated CAR-T technology and its application in clinical treatment of relapsed/refractory B-cell non-Hodgkin lymphoma. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-1080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
Feng J, Xu H, Cinquina A, Wu Z, Zhang W, Sun L, Chen Q, Tian L, Song L, Pinz KG, Wada M, Jiang X, Hanes WM, Ma Y, Zhang H. Treatment of aggressive T-cell lymphoma/leukemia with anti-CD4 CAR T cells. Front Immunol 2022; 13:997482. [PMID: 36172388 PMCID: PMC9511023 DOI: 10.3389/fimmu.2022.997482] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
T-cell lymphomas are aggressive lymphomas that often resist current therapy options or present with relapsed disease, making the development of more effective treatment regimens clinically important. Previously, we have shown that CD4 CAR can effectively target T-cell malignancies in preclinical studies. As IL-15 has been shown to strengthen the anti-tumor response, we have modified CD4 CAR to secrete an IL-15/IL-15sushi complex. These CD4-IL15/IL15sushi CAR T cells and NK92 cells efficiently eliminated CD4+ leukemic cell lines in co-culture assays. Additionally, CD4-IL15/IL15sushi CAR out-performed CD4 CAR in in vivo models, demonstrating a benefit to IL-15/IL-15sushi inclusion. In a Phase I clinical trial, CD4-IL15/IL15sushi CAR T cells were tested for safety in three patients with different T-cell lymphomas. Infusion of CD4-IL15/IL15sushi CAR T cells was well-tolerated by the patients without significant adverse effects and led to the remission of their lymphomas. Additionally, infusion led to the depletion of CD4+ Treg cells and expansion of CD3+CD8+ T cells and NK cells. These results suggest that CD4-IL15/IL15sushi CAR T cells may be a safe and effective treatment for patients with relapsed or refractory T-cell lymphomas, where new treatment options are needed.
Collapse
Affiliation(s)
- Jia Feng
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Haichan Xu
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Andrew Cinquina
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY, United States
| | - Zehua Wu
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Wenli Zhang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Lihua Sun
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qi Chen
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Lei Tian
- Department of Hematology, Peking University Third Hospital, Beijing, China
| | - Le Song
- Department of Nuclear Medicine, Peking University Third Hospital, Beijing, China
| | - Kevin G. Pinz
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY, United States
| | - Masayuki Wada
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY, United States
| | - Xun Jiang
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY, United States
| | - William M. Hanes
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY, United States
| | - Yupo Ma
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY, United States
- *Correspondence: Hongyu Zhang, ; Yupo Ma,
| | - Hongyu Zhang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
- *Correspondence: Hongyu Zhang, ; Yupo Ma,
| |
Collapse
|
36
|
Zhang J, Hu Y, Yang J, Li W, Zhang M, Wang Q, Zhang L, Wei G, Tian Y, Zhao K, Chen A, Tan B, Cui J, Li D, Li Y, Qi Y, Wang D, Wu Y, Li D, Du B, Liu M, Huang H. Non-viral, specifically targeted CAR-T cells achieve high safety and efficacy in B-NHL. Nature 2022; 609:369-374. [PMID: 36045296 PMCID: PMC9452296 DOI: 10.1038/s41586-022-05140-y] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/25/2022] [Indexed: 12/12/2022]
Abstract
Recently, chimeric antigen receptor (CAR)-T cell therapy has shown great promise in treating haematological malignancies1–7. However, CAR-T cell therapy currently has several limitations8–12. Here we successfully developed a two-in-one approach to generate non-viral, gene-specific targeted CAR-T cells through CRISPR–Cas9. Using the optimized protocol, we demonstrated feasibility in a preclinical study by inserting an anti-CD19 CAR cassette into the AAVS1 safe-harbour locus. Furthermore, an innovative type of anti-CD19 CAR-T cell with PD1 integration was developed and showed superior ability to eradicate tumour cells in xenograft models. In adoptive therapy for relapsed/refractory aggressive B cell non-Hodgkin lymphoma (ClinicalTrials.gov, NCT04213469), we observed a high rate (87.5%) of complete remission and durable responses without serious adverse events in eight patients. Notably, these enhanced CAR-T cells were effective even at a low infusion dose and with a low percentage of CAR+ cells. Single-cell analysis showed that the electroporation method resulted in a high percentage of memory T cells in infusion products, and PD1 interference enhanced anti-tumour immune functions, further validating the advantages of non-viral, PD1-integrated CAR-T cells. Collectively, our results demonstrate the high safety and efficacy of non-viral, gene-specific integrated CAR-T cells, thus providing an innovative technology for CAR-T cell therapy. Non-viral CAR-T cells with gene-specific targeted integration are safe and effective in patients with lymphoma.
Collapse
Affiliation(s)
- Jiqin Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| | - Yongxian Hu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Jiaxuan Yang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Wei Li
- BRL Medicine, Inc., Shanghai, China
| | - Mingming Zhang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | | | - Linjie Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Guoqing Wei
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Yue Tian
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Kui Zhao
- PETCT Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ang Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.,BRL Medicine, Inc., Shanghai, China
| | - Binghe Tan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.,BRL Medicine, Inc., Shanghai, China
| | - Jiazhen Cui
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Deqi Li
- BRL Medicine, Inc., Shanghai, China
| | - Yi Li
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Yalei Qi
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dongrui Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Yuxuan Wu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.,BRL Medicine, Inc., Shanghai, China
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China. .,BRL Medicine, Inc., Shanghai, China.
| | - Bing Du
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China. .,BRL Medicine, Inc., Shanghai, China.
| | - Mingyao Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China. .,BRL Medicine, Inc., Shanghai, China.
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China. .,Institute of Hematology, Zhejiang University, Hangzhou, China. .,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.
| |
Collapse
|
37
|
Kegyes D, Constantinescu C, Vrancken L, Rasche L, Gregoire C, Tigu B, Gulei D, Dima D, Tanase A, Einsele H, Ciurea S, Tomuleasa C, Caers J. Patient selection for CAR T or BiTE therapy in multiple myeloma: Which treatment for each patient? J Hematol Oncol 2022; 15:78. [PMID: 35672793 PMCID: PMC9171942 DOI: 10.1186/s13045-022-01296-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/22/2022] [Indexed: 01/09/2023] Open
Abstract
Multiple myeloma (MM) is a plasma cell malignancy that affects an increasing number of patients worldwide. Despite all the efforts to understand its pathogenesis and develop new treatment modalities, MM remains an incurable disease. Novel immunotherapies, such as CAR T cell therapy (CAR) and bispecific T cell engagers (BiTE), are intensively targeting different surface antigens, such as BMCA, SLAMF7 (CS1), GPRC5D, FCRH5 or CD38. However, stem cell transplantation is still indispensable in transplant-eligible patients. Studies suggest that the early use of immunotherapy may improve outcomes significantly. In this review, we summarize the currently available clinical literature on CAR and BiTE in MM. Furthermore, we will compare these two T cell-based immunotherapies and discuss potential therapeutic approaches to promote development of new clinical trials, using T cell-based immunotherapies, even as bridging therapies to a transplant.
Collapse
Affiliation(s)
- David Kegyes
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Catalin Constantinescu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Louise Vrancken
- Laboratory of Hematology, University of Liège, Liège, Belgium
- Department of Hematology, CHU de Liège, Liège, Belgium
| | - Leo Rasche
- Department of Internal Medicine II, University of Würzburg, Würzburg, Germany
| | - Celine Gregoire
- Laboratory of Hematology, University of Liège, Liège, Belgium
- Department of Hematology, CHU de Liège, Liège, Belgium
| | - Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gulei
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Delia Dima
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Alina Tanase
- Department of Stem Cell Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Hermann Einsele
- Department of Internal Medicine II, University of Würzburg, Würzburg, Germany
| | - Stefan Ciurea
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Program, Division of Hematology/Oncology, Chao Family Comprehensive Cancer Center, University of California, Irvine, USA
| | - Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania.
| | - Jo Caers
- Laboratory of Hematology, University of Liège, Liège, Belgium
- Department of Hematology, CHU de Liège, Liège, Belgium
| |
Collapse
|
38
|
Wei J, Hui AM. The paradigm shift in treatment from Covid-19 to oncology with mRNA vaccines. Cancer Treat Rev 2022; 107:102405. [PMID: 35576777 PMCID: PMC9068246 DOI: 10.1016/j.ctrv.2022.102405] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 02/08/2023]
Abstract
mRNA vaccines have gained popularity over the last decade as a versatile tool for developing novel therapeutics. The recent success of coronavirus disease (COVID-19) mRNA vaccine has unlocked the potential of mRNA technology as a powerful therapeutic platform. In this review, we apprise the literature on the various types of cancer vaccines, the novel platforms available for delivery of the vaccines, the recent progress in the RNA-based therapies and the evolving role of mRNA vaccines for various cancer indications, along with a future strategy to treat the patients. Literature reveals that despite multifaceted challenges in the development of mRNA vaccines, the promising and durable efficacy of the RNA in pre-clinical and clinical studies deserves consideration. The introduction of mRNA-transfected DC vaccine is an approach that has gained interest for cancer vaccine development due to its ability to circumvent the necessity of DC isolation, ex vivo cultivation and re-infusion. The selection of appropriate antigen of interest remains one of the major challenges for cancer vaccine development. The rapid development and large-scale production of mRNA platform has enabled for the development of both personalized vaccines (mRNA 4157, mRNA 4650 and RO7198457) and tetravalent vaccines (BNT111 and mRNA-5671). In addition, mRNA vaccines combined with checkpoint modulators and other novel medications that reverse immunosuppression show promise, however further research is needed to discover which combinations are most successful and the best dosing schedule for each component. Each delivery route (intradermal, subcutaneous, intra tumoral, intranodal, intranasal, intravenous) has its own set of challenges to overcome, and these challenges will decide the best delivery method. In other words, while developing a vaccine design, the underlying motivation should be a reasonable combination of delivery route and format. Exploring various administration routes and delivery route systems has boosted the development of mRNA vaccines.
Collapse
Affiliation(s)
- Jiao Wei
- Shanghai Fosun Pharmaceutical Industrial Development, Co., Ltd., 1289 Yishan Road, Shanghai 200233, China; Fosun Pharma USA Inc, 91 Hartwell Avenue, Suite 305, Lexington, MA 02421, USA
| | - Ai-Min Hui
- Shanghai Fosun Pharmaceutical Industrial Development, Co., Ltd., 1289 Yishan Road, Shanghai 200233, China; Fosun Pharma USA Inc, 91 Hartwell Avenue, Suite 305, Lexington, MA 02421, USA.
| |
Collapse
|
39
|
Novel treatment strategies for acetylcholine receptor antibody-positive myasthenia gravis and related disorders. Autoimmun Rev 2022; 21:103104. [PMID: 35452851 DOI: 10.1016/j.autrev.2022.103104] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/18/2022] [Indexed: 11/21/2022]
Abstract
The presence of autoantibodies directed against the muscle nicotinic acetylcholine receptor (AChR) is the most common cause of myasthenia gravis (MG). These antibodies damage the postsynaptic membrane of the neuromuscular junction and cause muscle weakness by depleting AChRs and thus impairing synaptic transmission. As one of the best-characterized antibody-mediated autoimmune diseases, AChR-MG has often served as a reference model for other autoimmune disorders. Classical pharmacological treatments, including broad-spectrum immunosuppressive drugs, are effective in many patients. However, complete remission cannot be achieved in all patients, and 10% of patients do not respond to currently used therapies. This may be attributed to production of autoantibodies by long-lived plasma cells which are resistant to conventional immunosuppressive drugs. Hence, novel therapies specifically targeting plasma cells might be a suitable therapeutic approach for selected patients. Additionally, in order to reduce side effects of broad-spectrum immunosuppression, targeted immunotherapies and symptomatic treatments will be required. This review presents established therapies as well as novel therapeutic approaches for MG and related conditions, with a focus on AChR-MG.
Collapse
|
40
|
Kwon S, Kwon M, Im S, Lee K, Lee H. mRNA vaccines: the most recent clinical applications of synthetic mRNA. Arch Pharm Res 2022; 45:245-262. [PMID: 35426547 PMCID: PMC9012156 DOI: 10.1007/s12272-022-01381-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/05/2022] [Indexed: 12/24/2022]
Abstract
Synthetic mRNA has been considered as an emerging biotherapeutic agent for the past decades. Recently, the SARS-CoV-2 pandemic has led to the first clinical use of synthetic mRNA. mRNA vaccines showed far surpassing influences on the public as compared to other vaccine platforms such as viral vector vaccines and recombinant protein vaccines. It allowed rapid development and production of vaccines that have never been achieved in history. Synthetic mRNA, called in vitro transcribed (IVT) mRNA, is the key component of mRNA vaccines. It has several advantages over conventional gene-expressing systems such as plasmid DNA and viral vectors. It can translate proteins in the cytoplasm by structurally resembling natural mRNA and exhibit various protein expression patterns depending on how it is engineered. Another advantage is that synthetic mRNA enables fast, scalable, and cost-effective production. Therefore, starting with the mRNA vaccine, synthetic mRNA is now in the spotlight as a promising new drug development agent. In this review, we will summarize the latest IVT mRNA technology such as new mRNA structures or large-scale production. In addition, the nature of the innate immunogenicity of IVT mRNA will be discussed along with its roles in the development of vaccines. Finally, the principles of the mRNA vaccine and the future direction of synthetic mRNA will be provided.
Collapse
Affiliation(s)
- Suji Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Minseon Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Seongeun Im
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Kyuri Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Hyukjin Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
41
|
Hammel JH, Zatorski JM, Cook SR, Pompano RR, Munson JM. Engineering in vitro immune-competent tissue models for testing and evaluation of therapeutics. Adv Drug Deliv Rev 2022; 182:114111. [PMID: 35031388 PMCID: PMC8908413 DOI: 10.1016/j.addr.2022.114111] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/16/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022]
Abstract
Advances in 3D cell culture, microscale fluidic control, and cellular analysis have enabled the development of more physiologically-relevant engineered models of human organs with precise control of the cellular microenvironment. Engineered models have been used successfully to answer fundamental biological questions and to screen therapeutics, but these often neglect key elements of the immune system. There are immune elements in every tissue that contribute to healthy and diseased states. Including immune function will be essential for effective preclinical testing of therapeutics for inflammatory and immune-modulated diseases. In this review, we first discuss the key components to consider in designing engineered immune-competent models in terms of physical, chemical, and biological cues. Next, we review recent applications of models of immunity for screening therapeutics for cancer, preclinical evaluation of engineered T cells, modeling autoimmunity, and screening vaccine efficacy. Future work is needed to further recapitulate immune responses in engineered models for the most informative therapeutic screening and evaluation.
Collapse
Affiliation(s)
- Jennifer H. Hammel
- Fralin Biomedical Research Institute and Department of Biomedical Engineering and Mechanics, Virginia Tech, Roanoke, Virginia 24016, USA
| | - Jonathan M. Zatorski
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Sophie R. Cook
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Rebecca R. Pompano
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA,Department of Biomedical Engineering, University of Virginia; Charlottesville, Virginia 22904, USA,Carter Immunology Center and UVA Cancer Center, University of Virginia School of Medicine, Charlottesville, Virginia 22903
| | - Jennifer M. Munson
- Fralin Biomedical Research Institute and Department of Biomedical Engineering and Mechanics, Virginia Tech, Roanoke, Virginia 24016, USA
| |
Collapse
|
42
|
Quazi S. An Overview of CAR T Cell Mediated B Cell Maturation Antigen Therapy. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:e392-e404. [PMID: 34992008 DOI: 10.1016/j.clml.2021.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022]
Abstract
Multiple Myeloma (MM) is one of the incurable types of cancer in plasma cells. While immense progress has been made in the treatment of this malignancy, a large percentage of patients were unable to adapt to such therapy. Additionally, these therapies might be associated with significant diseases and are not always tolerated well in all patients. Since cancer in plasma cells has no cure, patients develop resistance to treatments, resulting in R/R MM (Refractory/Relapsed Multiple Myeloma). BCMA (B cell maturation antigen) is primarily produced on mature B cells. It's up-regulation and activation are associated with multiple myeloma in both murine and human models, indicating that this might be an effective therapeutic target for this type of malignancy. Additionally, BCMA's predictive value, association with effective clinical trials, and capacity to be utilized in previously difficult to observe patient populations, imply that it might be used as a biomarker for multiple myeloma. Numerous kinds of BCMA-targeting medicines have demonstrated antimyeloma efficacy in individuals with refractory/relapsed MM, including CAR T-cell (Chimeric antigen receptor T cell) treatments, ADCs (Antibody-drug conjugate s), bispecific antibody constructs. Among these medications, CART cell-mediated BCMA therapy has shown significant outcomes in multiple myeloma clinical trials. This review article outlines CAR T cell mediated BCMA medicines have the efficiency to change the therapeutic pattern for multiple myeloma significantly.
Collapse
Affiliation(s)
- Sameer Quazi
- GenLab Biosolutions Private Limited, Bangalore, Karnataka, India.
| |
Collapse
|
43
|
Cho SF, Xing L, Anderson KC, Tai YT. Promising Antigens for the New Frontier of Targeted Immunotherapy in Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13236136. [PMID: 34885245 PMCID: PMC8657018 DOI: 10.3390/cancers13236136] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Defining the specificity and biological sequalae induced by receptors differentiated expressed in multiple myeloma cells are critical for the development of effective immunotherapies based on monoclonal antibodies. Ongoing studies continue to discover new antigens with superior tumor selectivity and defined function in regulating the pathophysiology of myeloma cells directly or indirectly in the immunosuppressive bone marrow microenvironment. Meanwhile, it is urgent to identify mechanisms of immune resistance and design more potent immunotherapies, alone and/or with best combination partners to further prolong anti-MM immunity. Abstract The incorporation of novel agents in recent treatments in multiple myeloma (MM) has improved the clinical outcome of patients. Specifically, the approval of monoclonal antibody (MoAb) against CD38 (daratumumab) and SLAMF7 (elotuzumab) in relapsed and refractory MM (RRMM) represents an important milestone in the development of targeted immunotherapy in MM. These MoAb-based agents significantly induce cytotoxicity of MM cells via multiple effector-dependent mechanisms and can further induce immunomodulation to repair a dysfunctional tumor immune microenvironment. Recently, targeting B cell maturation antigen (BCMA), an even MM-specific antigen, has shown high therapeutic activities by chimeric antigen receptor T cells (CAR T), antibody-drug conjugate (ADC), bispecific T-cell engager (BiTE), as well as bispecific antibody (BiAb), with some already approved for heavily pretreated RRMM patients. New antigens, such as orphan G protein-coupled receptor class C group 5 member D (GPRC5D) and FcRH5, were identified and rapidly moved to ongoing clinical studies. We here summarized the pathobiological function of key MM antigens and the status of the corresponding immunotherapies. The potential challenges and emerging treatment strategies are also discussed.
Collapse
Affiliation(s)
- Shih-Feng Cho
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA; (S.-F.C.); (K.C.A.)
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Lijie Xing
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China;
| | - Kenneth C. Anderson
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA; (S.-F.C.); (K.C.A.)
| | - Yu-Tzu Tai
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA; (S.-F.C.); (K.C.A.)
- Correspondence: ; Tel.: +1-617-632-3875; Fax: +1-617-632-2140
| |
Collapse
|
44
|
Puła A, Robak P, Mikulski D, Robak T. The Significance of mRNA in the Biology of Multiple Myeloma and Its Clinical Implications. Int J Mol Sci 2021; 22:12070. [PMID: 34769503 PMCID: PMC8584466 DOI: 10.3390/ijms222112070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
Multiple myeloma (MM) is a genetically complex disease that results from a multistep transformation of normal to malignant plasma cells in the bone marrow. However, the molecular mechanisms responsible for the initiation and heterogeneous evolution of MM remain largely unknown. A fundamental step needed to understand the oncogenesis of MM and its response to therapy is the identification of driver mutations. The introduction of gene expression profiling (GEP) in MM is an important step in elucidating the molecular heterogeneity of MM and its clinical relevance. Since some mutations in myeloma occur in non-coding regions, studies based on the analysis of mRNA provide more comprehensive information on the oncogenic pathways and mechanisms relevant to MM biology. In this review, we discuss the role of gene expression profiling in understanding the biology of multiple myeloma together with the clinical manifestation of the disease, as well as its impact on treatment decisions and future directions.
Collapse
Affiliation(s)
- Anna Puła
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland;
| | - Paweł Robak
- Department of Experimental Hematology, Medical University of Lodz, 93-510 Lodz, Poland;
| | - Damian Mikulski
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Tadeusz Robak
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland;
| |
Collapse
|
45
|
Podar K, Leleu X. Relapsed/Refractory Multiple Myeloma in 2020/2021 and Beyond. Cancers (Basel) 2021; 13:5154. [PMID: 34680303 PMCID: PMC8534171 DOI: 10.3390/cancers13205154] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 12/14/2022] Open
Abstract
Despite the challenges imposed by the COVID-19 pandemic, exciting therapeutic progress continues to be made in MM. New drug approvals for relapsed/refractory (RR)MM in 2020/2021 include the second CD38 monoclonal antibody, isatuximab, the first BCMA-targeting therapy and first-in-class antibody-drug conjugate (ADC) belantamab mafodotin, the first BCMA-targeting CAR T cell product Idecabtagen-Vicleucel (bb2121, Ide-Cel), the first in-class XPO-1 inhibitor selinexor, as well as the first-in-class anti-tumor peptide-drug conjugate, melflufen. The present introductory article of the Special Issue on "Advances in the Treatment of Relapsed and Refractory Multiple Myeloma: Novel Agents, Immunotherapies and Beyond" summarizes the most recent registration trials and emerging immunotherapies in RRMM, gives an overview on latest insights on MM genomics and on tumor-induced changes within the MM microenvironment, and presents some of the most promising rationally derived future therapeutic strategies.
Collapse
Affiliation(s)
- Klaus Podar
- Department of Internal Medicine 2, University Hospital Krems, Mitterweg 10, 3500 Krems an der Donau, Austria
- Molecular Oncology and Hematology Unit, Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria
| | - Xavier Leleu
- Department of Hematology, and CIC1402 INSERM Unit, Poitiers University Hospital, 2 Rue de la Milétrie, 86021 Poitiers, France;
| |
Collapse
|
46
|
Ackley J, Ochoa MA, Ghoshal D, Roy K, Lonial S, Boise LH. Keeping Myeloma in Check: The Past, Present and Future of Immunotherapy in Multiple Myeloma. Cancers (Basel) 2021; 13:4787. [PMID: 34638271 PMCID: PMC8507631 DOI: 10.3390/cancers13194787] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma is an incurable disease of malignant plasma cells and an ideal target for modern immune therapy. The unique plasma cell biology maintained in multiple myeloma, coupled with its hematological nature and unique bone marrow microenvironment, provide an opportunity to design specifically targeted immunotherapies that selectively kill transformed cells with limited on-target off-tumor effects. Broadly defined, immune therapy is the utilization of the immune system and immune agents to treat a disease. In the context of multiple myeloma, immune therapy can be subdivided into four main categories: immune modulatory imide drugs, targeted antibodies, adoptive cell transfer therapies, and vaccines. In recent years, advances in all four of these categories have led to improved therapies with enhanced antitumor activity and specificity. In IMiDs, modified chemical structures have been developed that improve drug potency while reducing dose limiting side effects. Targeted antibody therapies have resulted from the development of new selectively expressed targets as well as the development of antibody drug conjugates and bispecific antibodies. Adoptive cell therapies, particularly CAR-T therapies, have been enhanced through improvements in the manufacturing process, as well as through the development of CAR constructs that enhance CAR-T activation and provide protection from a suppressive immune microenvironment. This review will first cover in-class breakthrough therapies for each of these categories, as well as therapies currently utilized in the clinic. Additionally, this review will explore up and coming therapeutics in the preclinical and clinical trial stage.
Collapse
Affiliation(s)
- James Ackley
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA; (J.A.); (S.L.)
| | - Miguel Armenta Ochoa
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; (M.A.O.); (D.G.); (K.R.)
- NSF Engineering Research Center for Cell Manufacturing Technologies, The Marcus Center for Therapeutic Cell Characterization and Manufacturing and the Center for ImmunoEngineering, The Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Delta Ghoshal
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; (M.A.O.); (D.G.); (K.R.)
- NSF Engineering Research Center for Cell Manufacturing Technologies, The Marcus Center for Therapeutic Cell Characterization and Manufacturing and the Center for ImmunoEngineering, The Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Krishnendu Roy
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; (M.A.O.); (D.G.); (K.R.)
- NSF Engineering Research Center for Cell Manufacturing Technologies, The Marcus Center for Therapeutic Cell Characterization and Manufacturing and the Center for ImmunoEngineering, The Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA; (J.A.); (S.L.)
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Lawrence H. Boise
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA; (J.A.); (S.L.)
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
47
|
BCMA in Multiple Myeloma-A Promising Key to Therapy. J Clin Med 2021; 10:jcm10184088. [PMID: 34575199 PMCID: PMC8472544 DOI: 10.3390/jcm10184088] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/19/2022] Open
Abstract
Despite the discoveries of numerous agents including next generation proteasome inhibitors, immunomodulatory drugs, and monoclonal antibodies, multiple myeloma (MM) remains an incurable disease. The field of myeloma treatment in refractory or relapsed patients after standard therapy entered a new era due to the B-cell maturation antigen (BMCA) targeted approach. BCMA is a member of the tumor necrosis factor receptor family with high expression in mature B-lymphocytes and plasma cells. Given the understanding of BCMA mechanism of action in MM, BCMA plays a promising role as a therapeutic target. Several clinical trials are underway to evolve the current BCMA targeted treatment concept such as antibody-drug conjugates (ADCs), bispecific T cell engagers (BITEs) and chimeric antigen receptor (CAR) T cell therapy. Current results of representative BCMA trials may close the gap of the unmet clinical need to further improve the outcome of heavily pretreated MM patients with the potency to change the paradigm in newly diagnosed and refractory MM. This comprehensive review will give an update on various BMCA targeted treatment modalities (ADCs, BITEs, CAR T cell therapy) and its existing results on efficacy and safety from preclinical and clinical trials.
Collapse
|
48
|
Xing L, Wang S, Liu J, Yu T, Chen H, Wen K, Li Y, Lin L, Hsieh PA, Cho SF, An G, Qiu L, Kinneer K, Munshi N, Anderson KC, Tai YT. BCMA-Specific ADC MEDI2228 and Daratumumab Induce Synergistic Myeloma Cytotoxicity via IFN-Driven Immune Responses and Enhanced CD38 Expression. Clin Cancer Res 2021; 27:5376-5388. [PMID: 34301753 DOI: 10.1158/1078-0432.ccr-21-1621] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/11/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Efforts are required to improve the potency and durability of CD38- and BCMA-based immunotherapies in human multiple myeloma. We here delineated the molecular and cellular mechanisms underlying novel immunomodulatory effects triggered by BCMA pyrrolobenzodiazepine (PBD) antibody drug conjugate (ADC) MEDI2228 which can augment efficacy of these immunotherapies. EXPERIMENTAL DESIGN MEDI2228-induced transcriptional and protein changes were investigated to define significantly impacted genes and signaling cascades in multiple myeloma cells. Mechanisms whereby MEDI2228 combination therapies can enhance cytotoxicity or overcome drug resistance in multiple myeloma cell lines and patient multiple myeloma cells were defined using in vitro models of tumor in the bone marrow (BM) microenvironment, as well as in human natural killer (NK)-reconstituted NOD/SCID gamma (NSG) mice bearing MM1S tumors. RESULTS MEDI2228 enriched IFN I signaling and enhanced expression of IFN-stimulated genes in multiple myeloma cell lines following the induction of DNA damage-ATM/ATR-CHK1/2 pathways. It activated cGAS-STING-TBK1-IRF3 and STAT1-IRF1-signaling cascades and increased CD38 expression in multiple myeloma cells but did not increase CD38 expression in BCMA-negative NK effector cells. It overcame CD38 downregulation on multiple myeloma cells triggered by IL6 and patient BM stromal cell-culture supernatant via activation of STAT1-IRF1, even in immunomodulatory drug (IMiD)- and bortezomib-resistant multiple myeloma cells. In vitro and in vivo upregulation of NKG2D ligands and CD38 in MEDI2228-treated multiple myeloma cells was further associated with synergistic daratumumab (Dara) CD38 MoAb-triggered NK-mediated cytotoxicity of both cell lines and autologous drug-resistant patient multiple myeloma cells. CONCLUSIONS These results provide the basis for clinical evaluation of combination MEDI2228 with Dara to further improve patient outcome in multiple myeloma.
Collapse
Affiliation(s)
- Lijie Xing
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston Massachusetts
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Su Wang
- Department of Biomedical Informatics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
| | - Jiye Liu
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston Massachusetts
| | - Tengteng Yu
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston Massachusetts
| | - Hailin Chen
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston Massachusetts
| | - Kenneth Wen
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston Massachusetts
| | - Yuyin Li
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston Massachusetts
- School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin China
| | - Liang Lin
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston Massachusetts
| | - Phillip A Hsieh
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston Massachusetts
| | - Shih-Feng Cho
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston Massachusetts
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Gang An
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | | | - Nikhil Munshi
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston Massachusetts
| | - Kenneth C Anderson
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston Massachusetts
| | - Yu-Tzu Tai
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston Massachusetts
| |
Collapse
|
49
|
van de Donk NWCJ, Themeli M, Usmani SZ. Determinants of response and mechanisms of resistance of CAR T-cell therapy in multiple myeloma. Blood Cancer Discov 2021; 2:302-318. [PMID: 34386775 PMCID: PMC8357299 DOI: 10.1158/2643-3230.bcd-20-0227] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/18/2021] [Accepted: 03/28/2021] [Indexed: 01/17/2023] Open
Abstract
BCMA-specific CAR T-cells have substantial therapeutic potential in multiple myeloma (MM), but most patients eventually relapse. Determinants of response and mechanisms of resistance are most likely multifactorial and include MM-related factors, premanufacturing T-cell characteristics, CAR T-cell-related features, and several components of the immunosuppressive microenvironment. Efforts to improve the potency and safety of CAR T-cell therapy include optimizing CAR design, combinatorial approaches to enhance persistence and activity, treatment of less heavily pretreated patients, and dual-antigen targeting to prevent antigen escape. We expect that these rationally designed strategies will contribute to further improvement in the clinical outcome of MM patients.
Collapse
Affiliation(s)
- Niels W C J van de Donk
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| | - Maria Themeli
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Saad Z Usmani
- Levine Cancer Institute, Carolinas Healthcare System, Charlotte, North Carolina
| |
Collapse
|
50
|
Pisano M, Cheng Y, Sun F, Dhakal B, D’Souza A, Chhabra S, Knight JM, Rao S, Zhan F, Hari P, Janz S. Laboratory Mice - A Driving Force in Immunopathology and Immunotherapy Studies of Human Multiple Myeloma. Front Immunol 2021; 12:667054. [PMID: 34149703 PMCID: PMC8206561 DOI: 10.3389/fimmu.2021.667054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
Mouse models of human cancer provide an important research tool for elucidating the natural history of neoplastic growth and developing new treatment and prevention approaches. This is particularly true for multiple myeloma (MM), a common and largely incurable neoplasm of post-germinal center, immunoglobulin-producing B lymphocytes, called plasma cells, that reside in the hematopoietic bone marrow (BM) and cause osteolytic lesions and kidney failure among other forms of end-organ damage. The most widely used mouse models used to aid drug and immunotherapy development rely on in vivo propagation of human myeloma cells in immunodeficient hosts (xenografting) or myeloma-like mouse plasma cells in immunocompetent hosts (autografting). Both strategies have made and continue to make valuable contributions to preclinical myeloma, including immune research, yet are ill-suited for studies on tumor development (oncogenesis). Genetically engineered mouse models (GEMMs), such as the widely known Vκ*MYC, may overcome this shortcoming because plasma cell tumors (PCTs) develop de novo (spontaneously) in a highly predictable fashion and accurately recapitulate many hallmarks of human myeloma. Moreover, PCTs arise in an intact organism able to mount a complete innate and adaptive immune response and tumor development reproduces the natural course of human myelomagenesis, beginning with monoclonal gammopathy of undetermined significance (MGUS), progressing to smoldering myeloma (SMM), and eventually transitioning to frank neoplasia. Here we review the utility of transplantation-based and transgenic mouse models of human MM for research on immunopathology and -therapy of plasma cell malignancies, discuss strengths and weaknesses of different experimental approaches, and outline opportunities for closing knowledge gaps, improving the outcome of patients with myeloma, and working towards a cure.
Collapse
Affiliation(s)
- Michael Pisano
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States
| | - Yan Cheng
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Fumou Sun
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Binod Dhakal
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Anita D’Souza
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Saurabh Chhabra
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jennifer M. Knight
- Departments of Psychiatry, Medicine, and Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Sridhar Rao
- Division of Hematology, Oncology and Marrow Transplant, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, United States
| | - Fenghuang Zhan
- Myeloma Center, Department of Internal Medicine and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Parameswaran Hari
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Siegfried Janz
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|